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Purpose: At present, the linear-quadratic model for cellular response to radiation can incorporate sublethal
damage repair and repopulation. We suggest an extension, termed LQR, to include also the other two ‘‘Rs”’
of radiobiology, cell cycle redistribution, and reoxygenation.

Methods and Materials: In this approach, redistribution and reoxygenation are both regarded as aspects
of a single phenomenon, which we term resensitization. After the first portion of a radiation exposure has
decreased the average radiosensitivity of a diverse cell population by preferentially sparing less sensitive
cells, resensitization gradually restores the average sensitivity of the population towards its previous value.
The proposed LQR formula is of the same form as the original LQ formula, but with two extra parameters,
an overall resensitization magnitude and a characteristic resensitization time. The LQR model assumes
that resensitization is monotonic rather than oscillatory in time, i.e., always tends to increase average
cellular sensitivity as overall time increases. We argue that this monotonicity assumption is likely to hold
in clinical situations, though a possible extension is discussed to account for oscillatory decay of resensitiza-
tion effects.

Results: The LQR model gives reasonable fits to relevant experimental data in the literature, reproducing
an initial rise in cell survival, due to repair, as the treatment time is increased, followed by a resensitization-
related decrease in survival due to redistribution and/or reoxygenation for treatment times of the order of
the cell cycle time, and a final survival increase due to repopulation as the treatment time is increased still
further.

Conclusion: The LQR model is a simple and potentially useful extension of the LQ model for computing
more realistic isoeffect relations for early responding tissues, including tumors, when comparing different

radiotherapeutic protocols.

Redistribution, Reoxygenation, Repair, Repopulation, Linear-quadratic, Isoeffect relations.

INTRODUCTION

There is increasing interest in the use of alternative frac-
tionation schemes in radiotherapy, to increase the thera-
peutic advantage between tumor control and late sequellae
(9). In parallel, there has been an increased focus on tools
to predict isoeffect relations, when changes are made in
dose, dose rate, fractionation, or overall time. Currently,
the most commonly used tool is the linear-quadratic (LQ)
approach (19, 42), which stems from a mechanistically
based model for cell killing and sublethal damage repair
(28). The LQ approach remains applicable in situation
where repair between fractions is incomplete (42). An
extension of the LQ model, the LQ + time model, which

takes into account cellular repopulation, was first sug-
gested by Travis and Tucker (45), and has subsequently
been developed by several others (3, 10, 19).

Thus, among the ‘4 Rs’’ of radiobiology (Repair, Re-
population, Redistribution, and Reoxygenation) identified
by Withers (51), the LQ + time model is currently capable
of dealing with the first two. However, it is quite probable
that cellular redistribution and, in some circumstances,
tumor reoxygenation, affect the radiotherapeutic response
to fractionated or continuous exposure (20).

Both redistribution and reoxygenation are complex
phenomena and several multiparametric computer simula-
tion calculations have been introduced in an attempt to
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understand their underlying mechanisms (14, 15, 25, 53,
55, 56). Although such approaches are important in eluci-
dating and testing mechanisms, their complexity and mul-
tiparametric nature result in, as yet, limited application
for the estimation of isoeffect relations in clinical practice.

We suggest here that both redistribution and reoxygen-
ation potentially lead to the same type of outcome after
the initial stage of a fractionated or prolonged exposure,
namely a gradual increase in average cell population sen-
sitivity towards its pretreatment level. Based on this ob-
servation, we discuss a convenient extension to the LQ
formalism, which we term the LQR approach, because it
now incorporates all four “*Rs.”” The approach, although
mechanistically driven, is sufficiently simple, and has suf-
ficiently few extra parameters (two), to be potentially of
practical use in radiotherapy. In a subsequent article, some
proposed practical applications of the approach in radio-
therapy will be discussed.

We first briefly review here the phenomena of redistri-
bution and reoxygenation, further details being discussed,
e.g., by Hall (20).

Redistribution

Radiation-induced redistribution (sometimes called re-
assortment) is the process whereby the proportion of cells
in different phases of the cell cycle is altered by a radia-
tion exposure and subsequent cell-cycle progression.
Following the work of Elkind et al. (17) and many others,
it is now clear that the first or early part of a radiation
exposure of an asynchronous cycling cell population will
preferentially spare cells that are in a resistant phase of
the cell cycle. Subsequent progression of these resistant
cells to a more radiosensitive part of the cell cycle will
tend to decrease survival upon further irradiation at a later
time.

This redistribution phenomenon is sharply demon-
strated in ‘‘split-dose’” experiments where the time be-
tween two exposures is progressively increased. As the
time between fractions is increased up to a few hours,
the surviving fraction increases due to sublethal damage
repair. However, as the time between fractions is further
increased beyond the few hours needed for full repair, up
to times comparable to the cell cycle time, the surviving
fraction decreases due to redistribution. In other words,
resistant cells that preferentially survived the first fraction
had sufficient time to move into a more sensitive part of
the cycle, and were killed by the subsequent dose fraction.
In addition to normal cell-cycle progression, radiation
induced perturbations, such as G, delay in which cells
may be temporarily arrested in a sensitive portion of their
cycle, are often important components of redistribution.

The phenomenon of redistribution is probably ubiqui-
tous in cycling cells, and has been observed both in vivo
(1, 18, 23, 32, 36, 37, 44, 50, 52), and in vitro (16, 17,
29, 40), as well as in multicellular spheroids (41). It has
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also been demonstrated in vitro using continuous low
dose rate irradiation (31, 33, 39).

Reoxygenation

Reoxygenation is the phenomenon by which hypoxic
tumor cells surviving a first or partial radiation exposure
can become increasingly oxygenated. Its potential clinical
significance lies in the fact that tumors often contain a
proportion of hypoxic cells that are less sensitive to radia-
tion than corresponding well-oxygenated cells. Reoxy-
genation, first demonstrated by van Putten and Kallman
(47), allows some of the surviving hypoxic cells to move
into a more sensitive (oxic) state before a subsequent
exposure. The time constant for this process varies from
a few hours to a few days (20), with a variety of different
metabolic processes being linked to the phenomenon (5).

Common features of redistribution and reoxygenation:
Resensitization

Although prima facie quite different phenomena, redis-
tribution, and reoxygenation do share a common outcome
(43), a postirradiation increase in the sensitivity of cells
that survive an initial or partial exposure. Following
Hlatky et al. (22), we denote this common outcome resen-
sitization. In general, resensitization occurs when (a) an
early part of a radiation exposure leads to decreased aver-
age radiosensitivity just after the dose is administered, by
preferentially killing the more radiosensitive cells of a
diverse population; and (b) subsequent biologically driven
changes gradually restore the original population average
radiosensitivity. It is the general phenomenon of resensiti-
zation that we model here by an extension to the LQ
model.

Rationale for the LOR model

As in the LQ model, the general rationale is to repro-
duce the main features of a complex situation using a
minimum number of adjustable parameters. Thus, we do
not attempt to analyze resensitization in detail by specific
estimates of such complex effects as normal progression
through the cell cycle, G, delay, or fluctuations in oxygen
status; rather, we use a simpler model (22), involving one
overall resensitization magnitude and one characteristic
resensitization time, leading to a formalism virtually iden-
tical in mathematical structure to the existing LQ equa-
tions.

The essential assumption of the LQR model is that
the effects of resensitization decrease monotonically with
time, i.e., they tend to produce a continuous increase in
average radiosensitivity back toward preirradiation val-
ues. This assumption must, in general, be an approxima-
tion that will not always be reasonable, particularly in
highly homogeneous cell systems such as can be obtained
in vitro. For example, cell-cycle synchrony due to prefer-
ential sparing of cells in resistant parts of the cycle fol-
lowed by normal progression through the cycle, might
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be expected to lead to oscillatory resensitization effects.
Although we discuss (in Appendix A) a generalization of
the LQR approach in which a monotonic change is re-
placed by damped oscillatory behavior, we argue that, in
clinical practice, monotonicity is likely to be a reasonable
assumption. Specifically, at any given time, cells in a
tumor form a highly diverse population (21), differing
from each other both genetically and epigenetically, as
well as biochemically. The consequent distribution of
properties such as cell-cycle time and oxygen status
would be expected to average out oscillations in the pro-
cess of resensitization (22).

Similar comments apply to radiation-induced delay.
For example, Denekamp (11) quotes a typical G, delay
time of ~1 h, or ~10% of the overall cycle time, per
Gy. Recent results suggest that such values are generally
reasonable (27, 34, 46, 49, 55). For therapeutically rele-
vant fractions of ~2 Gy, such delays should be consistent
with monotonic resensitization, because the number of
extra cells in G at any given subsequent time would not
dominate the average response of a diverse cell popula-
tion.

It is possible that more extreme fluctuations of popula-
tion radiosensitivity could occur during fractionated ra-
diotherapy. For example, G, delay is cell-line dependent
(27, 34, 46, 49, 55), and a few cell lines show delays
as large as one cell-cycle per Gy. Such long delays, if
accompanied by extra G, radiosensitivity, could lead to
situations where the average radiosensitivity temporarily
rises to levels greater than preirradiation values, after an
acute dose of several Gy. If such drastic fluctuations in
radiosensitivity occur, they would be beyond the scope
of the LQR model and the generalization given in Appen-
dix A. However, we know of no data that demonstrate
such major increases in sensitivity in a heterogeneous cell
population.

Although not a necessary aspect of the LQR model,
we shall assume here that resensitization can be described
by one average characteristic resensitization time, and a
corresponding single resensitization amplitude. This as-
sumption is reasonable if any one of the biological pro-
cesses underlying resensitization is dominant, or if the
various processes that drive resensitization have compara-
ble time scales. Again, this assumption should be consid-
ered as an approximation, analogous for example to the
practical use of a single characteristic time for sublethal
damage repair, even though this single repair time is de-
rived from a variety of underlying repair processes. Al-
though biexponential kinetics could be used, the extra
parameters that would be introduced make this an undesir-
able option.

METHODS AND MATERIALS

The essential assumption of the model is that resensiti-
zation can be described by a single amplitude and a single

characteristic time. An earlier presentation (22) of the
proposed LQR (i.e., extended L.Q) formalism was struc-
tured in terms of a partial differential equation containing
the resensitization amplitude and time as parameters. We
give here a simpler description that is equivalent and
easier to use.

Before discussing the LQR model for general dose-
delivery protocols, we will discuss two special cases that
illustrate the principles underlying this repair + resensiti-
zation approach. The first special case concerns the re-
sponse of a diverse cell population to a single acute dose,
and the results here coincide with those for a Gaussian
model suggested by Schultheiss er al. (38). The second
special case, of two acute doses separated by an adjustable
time interval, illustrates the time dependence in the LQR
model. After describing these two special cases, we de-
scribe the LQR model for the general case, where any
temporal pattern of dose delivery is allowed.

Special case I: Response of a heterogeneous cell
population to acute irradiation
Schultheiss er al. (38) suggested a Gaussian probability
model for analyzing the response of diverse cell popula-
tions to an acute radiation exposure. Of interest here is a
special case that can be described as follows: let us as-
sume that a cell population is composed of various sub-
populations, i, with different sensitivities, and that each
subpopulation responds to a single acute dose, D, ac-
cording to the LQ dose—response relation:
S; = exp[—a,D — BD?. (Eq. 1)
For example, the different subpopulations might corre-
spond to cells in different stages of the cell cycle, or with
different levels of oxygenation, or both. We assume that
the value of f is effectively the same for all subpopula-
tions (as discussed in Appendix C, the effects of fluctua-
tions in the parameter 3 are likely to be small). Finally,
we shall assume that, prior to an acute exposure to a dose
D, the probability distribution of the random variable, e,
corresponding to the linear parameter in Eq. 1, is
Gaussian, characterized by an average value « and vari-
ance o”. Then, averaging Eq. 1 over the diverse cell popu-
lation gives the following two main results (22, 38): first,
the surviving fraction for the overall population is
I 2)D2

S = expl—aD — (B — (Eq.2)

Comparing Eq. 2 with the standard LQ Eq. 1, there is
an extra term 30°D”. This term corresponds to an increase
in the surviving fraction due to cell-to-cell diversity. Its
interpretation is that the extra resistance of particularly
resistant cells ‘‘outweighs’’ the extra sensitivity of partic-
ularly sensitive cells. Equation 2 implies that if the qua-
dratic (dose squared) term is measured by generating a



382 I. J. Radiation Oncology @ Biology ® Physics

dose—response curve for acute exposures, the coefficient
obtained will be B — j0° (38). Some experimental evi-
dence for the situation implied by Equation 2 has been
described elsewhere (13, 22, 30, 38).

In addition to Eq. 2, the second main prediction of
the Gaussian model is that, immediately after an acute
irradiation, the distribution of the random variable, a,
remains Gaussian and has the original variance o2, but
its average value is decreased. Specifically, the new value,
averaged over the surviving cells, is « — o°D. The inter-
pretation of this decrease in the average value of a corre-
sponds to that originally suggested by Elkind et al. (17):
resistant cells are preferentially spared, so that just after
irradiation they comprise a larger fraction of the popula-
tion than before irradiation. This larger fraction of resis-
tant cells corresponds to a decrease in radiosensitivity.

The arguments that we have made here, following those
of Schultheiss ef al. (38), are based on the assumption that
« is normally distributed. In fact we show, in Appendix B,
that Eq. 2 remains valid at doses of relevance to radiother-
apy, even in the non-Gaussian case.

Special case II: The LOR repair/resensitization model
Jor two acute fractions

The standard LQ model deals with time dependence
by using a repair time g, which is of the order of minutes
or hours. The LQR model additionally uses an average
resensitization time 75, which would be expected to have
an order of magnitude comparable to cell cycle times
or reoxygenation characteristic times, 1.e., hours to days.
Roughly speaking, the extra population resistance that
occurs just after an acute irradiation, due to preferential
sparing of resistant subpopulations, is postulated to die
away monotonically on the time scale 74, as biological
processes such as cell—cycle redistribution or reoxygena-
tion alter the resistance of individual cells.

We next give results of the LQR repair/resensitization
model in a special case illustrating the main results of the
general case. Suppose two acute exposures, D, and D,,
are separated by a time 7. Then the predicted surviving
fraction is (22)

S = exp[—a(D, + D,)
— B(D} + D3 + 2D\D, e ""x)

+ 30> (D7 + D3 + 2D\D, e "™5)], (Eq.3)

where « is again a population average prior to irradiation.
The terms involving « and £ are the standard ones of the
LQ model including incomplete repair (4, 19, 42). The
time-independent terms involving o> have been discussed
above, and refer to an increase in survival due to cell-to-
cell heterogeneity. Thus, the only novelty in Eq. 3 is the
last term, +0°D,D, exp(—T/7s), which is a time-depen-
dent resensitization term: as the interfraction interval 7
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increases, this term tcnds to zero, and its disappearance
makes the survival decrease, i.e., resensitization effects
tend to decrease survival at larger times 7. Of course,
there is another time-dependent term in Eq. 3, —28DD,
exp(—T/Tr), corresponding to sublethal damage repair,
and this term, having the opposite sign, has the opposite
influence. It is the balance between these two effects (as
well as repopulation, discussed below) that results in the
characteristic shape of the ‘‘split-dose’” survival curve
pointed out by Elkind ef al. (17) and others.

The LQR repair/resensitization model for arbitrary
fractionation schemes

Suppose a radiation protocol, either fractionated or con-
tinuous, delivers a total dose D during a total time 7. If
the assumptions of the LQR repair/resensitization mode]
hold then, in general,

S = exp[—aD — BG(rg) D* + (i0?) G(rs) D). (Eq.4)

Here, the first term describes cell killing by one-track
action, the second term describes killing by two-track
action (and possible repair), while the third term refers
to intercellular diversity of radiosensitivity and resensiti-
zation. Here G(7) is the generalized Lea-Catcheside func-
tion defined (4) by

G(r) = (%) f du R(u) f“ dw Rw)Y®(u, w),
D 0 0

D(u, w) = expl—(u — wi/r], (Eq.5)
where the function R(r) describes the variation in dose
rate as a function of time over the entire course of the
treatment. By choosing R(t) appropriately, any radiothera-
peutic protocol can be considered. For example in a con-
tinuous low dose rate protocol, the function R(?) is a
constant (D/T), and substituting this into Eq. 5 gives the
Lea-Catcheside function (28):

G(ry) = 2(r/TY (677 — 1) + 27/T,
G(rs) = A7gT)? (¢ ™s — 1) + 27J/T. (Eq.6)

Note that the resensitization terms involving 3o in Egs.
3 and 4 are formally identical to the damage/repair terms
involving £, apart from different values of the characteris-
tic time and amplitude, and the (crucial) change in sign.
The mathematical proof of Egs. 3 and 4 is based on
showing that the distribution function for the random vari-
able & is Gaussian, with a fixed variance at all times;
it follows that the time development of the distribution
function is determined by specifications of how the aver-
age value of @ changes with time. The details are an
extension of calculations given earlier (4, 22).
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Repopulation

In most situations where resensitization is potentially
of importance, the total exposure time is comparable to,
or greater than, the cell cycle time. Thus, it is important
to take into account cellular repopulation. In the follow-
ing, this is done using the simple exponential growth
model proposed by Travis and Tucker (45), in which
a time-dependent exponential term is factored into the
predicted survival:

S(D) = S(D) e (Eq.7)
where T is the overall exposure time, and 7 is a character-
istic time for cellular or tumor repopulation. (More com-
plex approaches in place of this simple exponential model
have been considered (3, 19), and could be used if desired,
but will not be considered further here.) Here, for exam-
ple, the LQR formula for the special case (Eq. 3) of a
split-dose experiment becomes

S = exp[—a(D, + D) — B(D7 + D3 + 2D\D, ¢ "'"®)

+ 10° (D} + D3 + 2D\D> e "s) + T/7p] (Eq. 8)
and the general LQR formula, Eq. 4, becomes
§ = expl—aD — BG(ry) D*
+ (%az) G(rs) D + Tirp), (Eq. 9)

As before, in both these equations the first term describes
cell killing by one-track action, the second term describes
killing by two-track action (and possible repair), and the
third term refers to resensitization; the final term now
describes repopulation.

RESULTS

Here, we apply the LQR formalism to the analysis of
laboratory-based experiments. (Clinical applications will
be discussed in a subsequent article.) There are a variety
of experiments that would be appropriate for analysis with
the formalism described here. In particular, ‘‘split-dose”’
experiments, in which two fractions are separated by in-
creasing times, are capable of exhibiting the effects of
redistribution and, in appropriate situations, reoxygena-
tion. We make no attempt to analyze all appropriate data,
but consider a few representative experiments, on the
basis of which the advantages and problems of the LQR
model will be discussed.

Data analysis was performed by fitting experimental
results to Eq. 8, using the technique of simulated anneal-
ing (26). Simulating annealing is a useful curve-fitting
technique when the fitted function is sufficiently complex
that the minimization search procedure can otherwise eas-
ily fall into “‘false minima’’; by sometimes taking ‘‘up-
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Fig. 1. Modeling combined effects of repair, resensitization,
and repopulation. Data points are from Belli et al. (1) for P-
388 tumors exposed in vivo to two acute doses separated by the
time shown on the horizontal axis. Recovery factor is the ratio
of clonogenic survival to that for zero time separation. ¢ and
lower curve: hypoxic tumors exposed to 15 Gy + 15 Gy. OJ
and upper curve: aerobic tumors exposed to 5 Gy + 5 Gy. The
curves are from the LQR model, Eq. 8, with the parameter
choices shown in Table 1. For small interfraction times there
is a characteristic rise of recovery factor, attributed to repair of
sublethal lesions; at larger times there is a decrease, attributed
in the model to resensitization, the final rise then being attrib-
uted to repopulation.

hill’” steps in the search, simulated annealing potentially
avoids such problems.

Figure 1 shows fits of Eq. 8 to the data reported by
Belli et al. (1), which are the results of split-dose experi-
ments with either oxic or hypoxic P388 lymphocytic tu-
mors in the mouse. The features discussed above are
clearly present here, with an initial rise in cellular survival
due to sublethal damage repair, a subsequent decrease due
to resensitization (redistribution/reoxygenation), followed
by a final rise, assumed (see below) to be primarily due
to repopulation. Figure 2 (solid curve) shows correspond-
ing fits of Eq. 8 for an in vivo split-dose experiment
reported by Till and McCulloch (44) on marrow cells
proliferating in mice. (The dashed curve in this and subse-
quent figures, referring to a generalized model, are dis-
cussed below and in Appendix A.) Figure 3 shows fits to
survival assayed in vitro for human HeLa cells exposed
to a split-dose regime (29).

It is apparent from Figs. 1-3 that the formalism de-
scribed here does reproduce the main trends in cellular
survival or isoeffect relations as a function of overall
time. However, Fig. 4 shows some further split-dose data,
for V-79 cells (17), where the measured survival increases
by more than a factor of 6 when the overall time is in-
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Fig. 2. Data points are from Till and McCulloch (41) for mouse
marrow cells exposed in vivo to two acute doses (2 Gy + 2
Gy) separated by the time shown on the horizontal axis. Recov-
ery factor is the ratio of clonogenic survival to that for zero
time separation. The solid curve is from the LQR model, as in
Fig. 1. The dotted curve is for a generalization of the LQR
model, described in the Appendix A, which has one extra adjust-
able parameter. The parameter choices are given in Table 1.

creased from 5.6 to 9.5 h. In the LQR formalism this
final increase in survival, occurring after the minimum
produced by resensitization, is taken to be entirely due
to repopulation; this follows from the exponential term,
exp(—T/7s), in Egs. 8 and 9, which implies that resensiti-
zation causes strictly a monotonic decrease in survival
with increasing time. An increase in survival of a factor of
6 in 4 h is too fast to be attributable solely to repopulation.
Reference to Fig. 2 might also suggest a faster increase
immediately after the survival minimum than could be
accounted for solely on the basis of repopulation.

The inability of the LQR model to reproduce a very
rapid rise in survival sometimes seen (Figs. 2 and 4, but
not Figs. 1 and 3) immediately after the resensitization
minimum, implies that resensitization effects do not al-
ways change in a strictly monotonic way with increasing
time. Indeed, one might expect (17) that if an initial dose
causes some synchronization in a resistant part of the cell
cycle, increasing time will cause those cells to move into
a more sensitive part of the cell cycle (resensitization),
but still more time would allow them to revert to a resis-
tant phase (desensitization).

In a heterogeneous situation, such as a human tumor,
the effects of the initial partial synchrony will be lost
quite rapidly. Then the effects of a post-resensitization
desensitization might be expected to be small, and the
assumption in the LQR model that resensitization causes
a monotonic decrease in survival with time is likely to
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be adequate. However, in Appendix A, we discuss a
further modification of the LQR model, essentially a
generalization of Egs. 8 or 9, in which the assumption
that the effects of resensitization are strictly monotonic
with time is relaxed. Specifically, cell-cycle related ar-
guments imply that the time dependence of the resensiti-
zation term may be generalized from exp(—T/7s) to
exp(—T/7s)cos(wT+¢), where the phase constant, ¢, is
fixed by external mechanistic arguments. This latter
function, which contains one further parameter (w), de-
scribes damped oscillations, rather than a continuous
decrease with increasing overall time. This generalized
formalism can model a rapid rise in cellular survival
after the resensitization minimum, now assumed to be
related both to repopulation and desensitization due to
redistribution. Examples are shown by the dashed-curve
fits in Figs. 2 and 4.

DISCUSSION

It has long been a valid criticism of the application of
the LQ model to radiotherapy that the model takes into
account only some of the factors affecting radiotherapeu-
tic response to fractionated exposure; specifically, it takes
into account sublethal damage repair and, in a later modi-
fication, repopulation, but not redistribution or reoxygena-
tion. We have suggested that both redistribution and re-
oxygenation exhibit a similar common outcome, namely
resensitization. Resensitization (22) occurs when a radia-
tion exposure preferentially kills radiosensitive cells in a
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Fig. 3. Data points are from Lockart et al. (26) for clonogenic
survival of HeL.a cells exposed in vitro to two acute doses (2.71
Gy + 3.61 Gy) separated by the time shown on the horizontal
axis. The curve is from the LQR model, as in Fig. 1. The
parameter choices are given in Table 1.
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Fig. 4. Data points are from Elkind et al. (16) for clonogenic
survival of V-79 cells exposed in vitro to two acute doses (7.47
Gy + 8.04 Gy) separated by the time shown on the horizontal
axis. The dotted curve is, as in Fig. 2, for the generalized LQR
model (Appendix A), with parameters shown in Table 1. In this
case, a fit using the LQR model itself gives unrealistically small
values for the characteristic repopulation time.

diverse population, producing a decreased average radio-
sensitivity just after the dose is administered; after this
radiation exposure, biologically driven changes then tend
to restore the original population average radiosensitivity.
We have proposed a simplified repair/resensitization
model, termed LQR, which extends the LQ model to take
into account the combined effects of redistribution and
reoxygenation.

The LQR model represents an extension to the LQ +
time model. In terms of parameter numbers, the standard
LQ model has a total of three parameters («, 8, Tr), the
simplest extension to include repopulation has one more
(7p), and the LQR extension proposed here has two further
parameters (resensitization characteristic time and resen-
sitization amplitude). In terms of mathematical complex-
ity, the LQR model is essentially the same as the LQ
model—a second ‘‘dose-squared’’ term being added,
which is of exactly the same structure (though with a
different sign) as the dose-squared term in the standard
LQ equation.

Parameters of the model were evaluated by comparison
with some in vitro and in vivo experiments. The basic
features of the experimental results, namely an initial in-
crease in survival due to sublethal damage repair, fol-
lowed by a decrease due to resensitization, followed by
an increase due to repopulation, could generally be well
reproduced using the LQR formalism. The LQR model
predicts a quadratic increase in the effects of resensitiza-
tion, as well as sublethal damage repair, with increasing

dose. We do not know of any data that can be used to
confirm unequivocally the predicted dose dependence of
resensitization; for example, the results reported by Rui-
frok et al. (37) using a mouse-skin model, while consis-
tent with a quadratic dependence for resensitization, are
also consistent with a linear dose dependency.

Although the original derivation of the LQR repair/
resensitization model is quite complex, the key assump-
tion involved is relatively simple: beyond the assumptions
of the normal LQ + time model for repair and repopula-
tion, the LQR model is based on the assumption that
resensitization occurs monotonically, so that once suble-
thal damage repair is essentially complete, the average
radiosensitivity of the cell population gradually increases
towards its preirradiation value. For situations where such
monotonic resensitization is present, the LQR model
should prove useful, despite its inherent idealizations.

In some of the laboratory-based experiments analyzed
here, it is clear that the assumption of monotonicity does
not completely hold. We have discussed (Appendix A) a
possible generalization of the LQR model that allows the
effects of resensitization to undergo damped oscillations
in time. The price of this generalization is a further free
parameter. We have suggested that in a highly heteroge-
neous situation such as a human tumor, treating the effects
of redistribution and reoxygenation as varying monotoni-
cally with time will be an adequate approximation. Our
reasoning is that oscillations corresponding, for example,
to synchronous progression through the cell cycle or to G,
delay, are likely to be of small amplitude due to cellular
diversity, differences in cycling status, differences in oxy-
genation, and other microenvironmental factors. Further
analysis of this point is clearly needed.

Resensitization effects would be expected to apply
most directly to tumors or early responding normal tis-
sues, containing many rapidly cycling cells. Because typi-
cal time constants for resensitization (redistribution and/
or reoxygenation) are quite long (hours to days), the LQR
model may apply to most external beam radiotherapy
protocols. Thus, with the caveats discussed above about
resensitization monotonicity, the LQR model would be
applicable not only to hyperfractionation, but also to con-
ventional external beam radiotherapy delivering ~2 Gy/
day, where the significance of redistribution and reoxy-
genation has long been debated (20, 51).

The applicability of the model to continuous low dose
rate brachytherapy is less clear. Specifically, it may be
that for therapeutically relevant dose rates, there is virtu-
ally complete cessation of cycling, due to delays at cell
cycle checkpoints (33, 55). A situation where cycling
essentially stops, and overall radiosensitivity is dominated
by sensitivity in the particular states in which cells are
arrested, would appear to be beyond the scope of the
current approach.

Finally it is emphasized that the LQR model, while
mechanistically driven, is designed to be sufficiently sim-
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ple that it can be practically applied to isoeffect calcula-
tions in radiotherapy. The many idealizations in the con-
sideration of resensitization parallel those inherent in the
standard LQ model relating to repair. For example, while
more complex multiparametric or simulation models have
been developed to understand the detailed mechanisms
of sublethal damage repair (2), these are not of direct
practical use in radiotherapy. Similarly, complex models
have been developed to understand the details of redistri-
bution (14, 15, 25, 53, 54, 56) and reoxygenation (12).
Ultimately, it might be anticipated that such approaches.
particularly Monte-Carlo based simulation models, will
be incorporated into biologically based treatment plan-
ning. However, we suggest that in the near future, com-
paratively simple analytic models of the type described
here may be of more practical utility in the design of
improved fractionation schemes.

APPENDIX A

Decay of resensitization through damped oscillations

We discuss a possible generalization of the LQR model
discussed in the main text. Specifically, we wish to relax
the assumption, inherent in the LQR model, that resensiti-
zation is monotonic with increasing time, leading to a
steady increase in radiosensitivity. In this Appendix, the
general picture is that the main resensitization effects are
due to cell-cycle progression, and we, therefore, take
advantage of standard detailed mathematical models of
cell-cycle progression during the periods when no irradi-
ation occurs.

Standard cell-cycle models typically address the cell
number density function n(a.t), where a is age, i.e., the
time since mitosis of the parental cell. By definition,
n(a,nNda is the number of cells of age a in the range da
at time r. These models are based on the von-Foerster
partial differential equation, its discreet-time analogs, and
its generalizations (35, 48). They predict that, in the ab-
sence of radiation, the cell number density function has
the form (7)

nia, t) = eMCs(a) + si(a)e "v'cos(w,t + ¢))

+ sy(a)e " cos(wat + o) + ... (Eq. A1)
Where growth inhibition is not important, A is the growth
rate for exponentially growing cells, sometimes referred
to as the ‘‘Malthusian’’ parameter (35); in simple situa-
tions, in the notation of the Methods and Materials sec-
tion, A = 1/7p. In Eq. A.l, C is a constant and s(a) is
the “‘stable’’ cell population probability distribution, with
Js(a)da = 1. In the generic case, 0 < v, < v, < ..., s0
that, for large times, the cell population pattern ap-
proaches the log-phase probability distribution s(a), re-
gardless of the cell population pattern at time ¢ = 0. The
rate of approach to the log-phase probability distribution
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is governed by v, large values of v, corresponding to
rapid loss of cell-cycle synchronization. Detailed expres-
sions for \, A, s(a), si{a) (i =1, 2,3, ..., %), v, w;, and
¢; depend on the detailed cell—cycle model and on initial
conditions, with «, having order of magnitude 27/7p (7).
We will not need these detailed expressions in the argu-
ments that follow. It is of interest to note that Eq. A.1 is
also valid for density-inhibited populations, with A = 0,
for small deviations from equilibrium (35).

We consider a population of cells with age-dependent
radiation sensitivity a(a), where « is the linear coefficient
of the LQ model (see Eq. 1). Then the population average
value is

_];)x a(a)n(a, Hda
_[)x n(a, Hda

a) = (Eq. A2)

Using Egs. A.1 and A.2, and neglecting terms that
decrease more rapidly than exp(—v,t), gives
a(t) = a — B exp(—t/rs)cos(wt + ¢) (Eq. A.3)

where, again, « is the average over the unirradiated popu-
lation, i.e.,

a = f ala)s(a)da.
(

)

(Eq. A.4)

In Eq. A3, w = w;, B is a constant, and, using the
notation of the main text, v, = 1/75. Thus, during periods
where no irradiation occurs, the average value of the ran-
dom variable, @, gradually approaches «, the dominant
correction term at large times being oscillatory and expo-
nentially decaying.

The basic mathematical approximations of the general-
ized model are to approximate the probability distribution
of the random variable, e, as a Gaussian with fixed vari-
ance ¢, and to extrapolate its average value (Eq. A.3) to
small times. For a single acute dose D delivered at time
t = 0, the Gaussian approximation again implies that, just
after 1 = 0, the average value of e is decreased to o —
o’D; the second approximation implies that for 1 = 0,

a) = a — fiHo, (Eq. A.5)
where
S = A exp(—t/Ts)cos(wt + @),
with A cos ¢ = 1. (Eq. A.6)

A resensitization expression that incorporates the single
acute-dose behavior shown in Eqgs. A.5 and A.6, but is
applicable to an arbitrary dose pattern, can be obtained
by replacing G(7s) in Eq. 9 by the double integral in Eq.
S with
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Table 1. Parameter values obtained from fits of LQR model (Eq. 8) or generalized LQR model (Appendix A) to data in Figs 1-4

1 2

@ B 50 TR Ts 27/w Tp
Gy ™ (Gy™ (Gy™) (h) (h) (h) (h)
Fig. 1 Aerobic tumor cells in vivo, Belli et al. (1) 0.553 0.547 2.88 3.32 9.11
Fig. 1 Hypoxic tumor cells in vivo, Belli et al. (1) 0.1713 0.176 4.65 4.93 7.25
Fig. 2 Marrow cells in vivo, Till & McCulloch (41) 3.63 3.83 4.74 5.16 11.0
Fig. 2 Marrow cells in vivo, Till & McCulloch (41) 0.172 0.158 2.96 9.53 24.1 43.8
(generalized LQR)
Fig. 3 Hela cells in vitro, Lockart et al. (26) 0.490 2.14 2.10 1.46 1.50 29.8
Fig. 4 V-79 cells in vitro, Elkind et al. (16). 0.159 0.0223 0.0107 0.794 56.2 11.4 26.0

(generalized LQR)

%02 is the amplitude of resensitization effects, 75 is the characteristic resensitization time, w is the oscillation frequency for the
generalized LQR model (Appendix A), and 7 is the characteristic repopulation time. In some cases, when the data comprise only
a ratio of effects, the « coefficient is not needed and cannot be determined from the published data.

Pu, w) = flu — w), (Eq. A.7)

where the function fis given in Eq. A.6. The monotonic
LQR resensitization model used in the main body of the
article can be obtained by taking the limit of w < v in
Eq. A.6.

For example, in the case of two doses, D, and D,
separated by a time 7, using Eq. A.7, the survival can be
written

S = expl—a(D, + Ds) = f (D} + D3 + 2D\D; ¢ ")
+ 30> (D7 + D3 + 2D\D, A s cos(wT + ¢))],

(Eq. A.8)

where A cos¢p = 1. Setting w = 0 in Eq. A.8 yields the
LQR model of Eq. 3.

Using Eq. A.8, gives excellent fits to most of the data
sets, though this is hardly surprising because there are
now two extra adjustable parameters (w and ¢) beyond
the already significant number used in the LQR model
described in the main text. The number of additional pa-
rameters can be reduced by using the following argument
for determining the phase, ¢:

In a detailed model of resensitization caused by redistri-
bution, Chen et al. (8) found that after an acute dose
administered at r = 0, (da/dt)(0) = 0. This condition is
related to the fact that during cell cycle progression some
cells will go from more sensitive to less sensitive states,
even when the dominant trend is in the other direction.
Thus, a plausible restriction on f{r) in Eq. A.6 is (df/d)(0)
= 0, i.e., tangp = —1/(wTs).

With this additional restriction, resulting in a model
that has only one more parameter than the LQR model
used in the main body of the article, good fits to the data
can be obtained. It is these fits that are shown by the
dashed curves in Figs. 2 and 4. The corresponding values
of the various parameters (Table 1) are plausible, consid-

ering the mechanistic interpretations that the model as-
signs to the parameters.

APPENDIX B

Applicability of LQR formalism at low doses for non-
Gaussian distributions

Like the model of Schultheiss et al. (38), the LQR
model assumes a Gaussian distribution for . We show
here that, for sufficiently low doses, many of our consider-
ations apply also to the non-Gaussian case. This general-
ization is relevant because Gaussian models of population
response have well-known limitations (6, 24). For exam-
ple. the occurrence of formally negative values of a must
be taken into account (22).

For small doses, the relation given in Eq. 2 between the
variance of the random variable & and surviving fraction
remains valid in the non-Gaussian case. In fact, using a
Taylor series in dose D gives the following mathematical
identity:

In(exp(—aD)) = ~aD + 30°D*

- Y@ — a)D* + O(D*) (Eq. B.1)

Here { ) denotes population averaging prior to irradiation;
thus, o = (@) is the average preirradiation value of e, o’
= {(@ — «)?) is the variance, and O(D") refers to higher-
order terms. For the Gaussian case, Eqgs. 1 and 2 of the
text show that the same result, Eq. B.1, holds, with all
the terms cubic or higher in D vanishing. Thus, for doses
sufficiently small that terms cubic or higher in dose can
be neglected, Eq. 2 would hold even if the distribution
of @ is not Gaussian.

To gauge the significance of the higher order, non-
Gaussian terms in Eq. B.1, we estimate the cubic term
for a specific example. The value of {(@—a)’) depends
on the details of the population diversity, but some insight
is obtained by assuming a population with two-thirds of
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its cells having a sensitivity half as large as average, and
the remaining cells twice as sensitive as the average. In
other words, for illustrative purposes, we consider a
strongly bimodal population whose sensitivity varies by
a factor of 4. In this case, an explicit calculation gives:

1 1 : | 3
507 =307, (e — a)) = %o’

(Eq. B.2)

Equation B.2 implies that, in this illustrative case, the D*
term in Eq. B.1 is negative, corresponding to more killing
than in a Gaussian model with the same mean and vari-
ance. The ratio of this D’ term to the term aD is (aD)/
24. Using typical values (D = 2 Gy, a= 0.3 Gy '), the
cubic term in Eq. B.1 represents a correction of only 1.5%
to the dominant linear term. We conclude that for a typical
fractionation protocol and reasonable e values, Eq. 2 of
the Methods and Materials section remains a good ap-
proximation, even if the distribution of e is not Gaussian.

With regard to Eq. 3, describing survival after a split dose
with time interval 7, the equation remains valid in the limit
as T = 0 in the non-Gaussian case, provided the dose is
sufficiently low that cubic terms of Eq. B.1 can be neglected.
This result can be seen by noting that in the limit as 7 =
0, two acute doses D, and D,, which are administered in
rapid succession, are equivalent to a single acute dose D,
+ D-, whence Eq. B.1 applies. The validity of Eq. 3 as T
= ( implies that it is consistent to postulate (ad hoc) the
remaining equations of the LQR model, as given in the
Methods and Materials section of the article.

Finally, we note that the advantages and drawbacks of
Gaussian models have been discussed elsewhere in the
context of quantitative genetics (6, 24). Like cell survival
models for protracted radiation protocols, quantitative ge-
netics is concerned with the repeated selective elimination
of subpopulations within a diverse population. The main
considerations of quantitative genetics, regarding the av-
erage response and remaining variance in a surviving pop-
ulation, are surprisingly similar to the considerations of
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the LQR model. Generally speaking, quantitative genetics
suggests that Gaussian models can handle the main effects
(6) but need modification in special situations (24), and
we suggest the same holds in the context of radiotherapy.

APPENDIX C

Effects of variations in B amongst subpopulations

In this Appendix, we show that, for fraction sizes com-
parable to 2 Gy, the effects of variations in 8 amongst
subpopulations, neglected in our treatment, but consid-
ered by Schultheiss er al. (38), should be comparatively
small for early responding tissues. The argument holds,
irrespective of whether the joint distribution of & and the
random variable 8 is bivariate normal, as assumed by
Schultheiss er al. (38).

Specifically, in analogy to the Taylor expansion of
In {exp(—aD)), given in Eq. B.1, the Taylor expansion
of In{exp(—aD — BD%) gives all the terms in Eq. B.1
and the following extra terms:

—{(B)D* + poo, D’ + O(DY), (Eq. C.1)
where p is the correlation coefficient between @ and 8,
and o} is the variance in 8. Significant effects produced
by variations in 8 would result in the second (cubic)
term in Eq. C.1 producing a significant correction to the
dominant linear (aD) term in Eq. B.1.

Rough estimates for the parameters are p = —0.5 (38),
o = 02 Gy' (see Appendix B), and gz = {8)/,2 (using,
for illustrative purposes, a distribution of B analogous to
that used in Appendix B for ). We assume, as in Appendix
B, that « = 0.3 Gy*‘, and also assume that a typical value
of a/f3 (where 8 = (B)), for early responding tissues, is 10
Gy. Then, for a typical dose per fraction of 2 Gy, the ratio
of the cubic term in Eq. C.1 to the dominant linear term
(aD) is ~0.03. This crude estimate suggests that effects due
to variations in 8 are small compared to the effects consid-
ered in the LQR model, i.e., due to average values of a,
average values of B, and variations in a.
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