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Dr. Glatstein’s recent Editorial, ‘‘The Omega on Alpha and
Beta’’ provided a thoughtful, provocative, and skeptical
view regarding the utility of the linear-quadratic (LQ) model
in radiotherapy (1). By contrast, we suggest that, over the
past quarter century, the use of a/b ratios in the context of
the LQ model has markedly improved our understanding
of one of the most basic tools that radiation oncologists
have at their disposal: the potential to optimize fractionation.
We do not doubt Dr. Glatstein’s suggestion that one can in-
deed be an excellent clinical radiation oncologist without
‘‘knowing squat about a/b’’ ratios. We do, however, suggest
that the LQ model continues to provide our field with two
important tools. First, with appropriate caveats, LQ is an im-
portant tool for the research-oriented radiation oncologist
wishing to design improved radiotherapeutic protocols.
However, beyond this, we also suggest that the LQ model
provides our field with ongoing easily digestible lessons
about the clinical significance of fractionation and overall
time—lessons that can often get lost in the enthusiasm for
new irradiation technologies.

It has been well established since the 1930s that fraction-
ation is a key determinant of radiotherapeutic response (2);
however, until the 1980s, we did not have a reliable quanti-
tative framework to use this insight to generate improved
protocols. What we had were empirical formulae such as
the NSD, CRE and TDF (Nominal Standard Dose, Cumula-
tive Radiation Effect and Time-Dose Factor [2]), which sum-
marized past clinical experience. However, when these were
used to design protocols with very different fractionation
schemes from those on which they were based, the results
were sometimes disastrous (3–5).

By the early 1980s came the application of the LQ a/b for-
malism to clinical radiotherapy, initially by the Houston (6)
and Amsterdam (7) groups. Essentially this provided a for-
malism that quantified the changes in the response of
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early-responding tissues, including tumors, and late-
responding sequelae, when the fractionation pattern (and,
subsequently, the overall time [8]) was changed. The LQ for-
malism is a consequence of the repair/misrepair kinetics of
radiation-induced damage (9); by the 1980s, it was already
a well-studied mechanistically based model of dose and
dose–rate response in laboratory settings, but the insight of
the Houston and Amsterdam groups was to see that by using
clinically derived parameters, the model could be applied in
the clinic. Both groups showed that the LQ model parameter
a/b provided a quantification of the fractionation response;
thus, the already established qualitative differences in frac-
tionation response between early- and late-responding tis-
sues (10) could be quantified through differences in this a/
b ratio. So in its clinical context, the LQ model became,
and still is, a mechanistically based formalism but with pa-
rameters directly derived from clinical data (2).

The key here is that the LQ formalism has worked. Over
the past two decades, dozens of new radiotherapeutic proto-
cols have been designed using the LQ formalismwitha/b pa-
rameter values derived from clinical data, and we have not
had any of the clinical disasters that were associated with
the application of empirical formulae such as NSD. Alterna-
tive fractionation schemes designed using the LQ approach
have not only shown clear survival benefit (11), but have
also come out very much as predicted by the LQ modeling
using clinical a/b parameters, even for highly nonstandard
protocols such as hyperfractionation (12), high-dose-rate
vs. low-dose-rate brachytherapy (13), or prostate hypofrac-
tionation (14).

We suspect that the perceived ‘‘trouble with a/b ratios’’
(1) stems from three main concerns:

1. That it is inappropriate to derive a/b values from in vitro
laboratory-based systems, in that no single in vitro assay
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could reflect the multitude of mechanisms that lead,
particularly, to late sequelae. We would agree with this
concern if that was indeed how a/b values for late-
responding tissues were routinely estimated. However,
they are almost always estimated by an analysis of clini-
cal data (2, 15), and thus the dominant processes are
effectively ‘‘built in’’ to the a/b estimates.

2. That, because radiation-induced late effects are not
wholly attributable to cell killing (and indeed radiation-
induced nonlethal cellular dysfunction is clearly an im-
portant mechanism here (16)), this might invalidate the
use of the LQ model. However, it has long been estab-
lished that radiation-induced nonlethal mutation yields
also typically follow the standard LQ formalism at radio-
therapeutic doses (17).

3. That estimated a/b values represent averages over many
patients. This is certainly true, but then the same applies
to all radiotherapy treatment protocols—and the possibil-
ity of assessing individualized a/b values represents just
one of the directions that might be possible in the future
for individualized predictive assays.

Quite conspicuous by their absence in Dr. Glatstein’s cri-
tique (1), or indeed elsewhere, are specific suggestions for
alternatives. Unless we think our field has progressed just
about as far as it can go, we need to take advantage of the
rapidly developing technologies for targeting and timing;
thus, some practical and reliable tool is needed to design
and assess potential new fractionation protocols. The LQ
model with clinically derived a/b values represents the sim-
plest reliable mechanistically based quantitative description
of how different tumors, different early-responding tissues,
and different late-responding normal tissues respond to
changes in fractionation and overall time (6–8). It
represents a tractable mechanistic model that is
nevertheless anchored in clinical experience through
clinically derived a/b ratios.

It should be emphasized that the clinical application of
LQ is not for generating absolute ab initio predictions of
radiotherapeutic response, but rather to compare one frac-
tionation/protraction protocol with another. When two frac-
tionation schemes being compared each contain more than
just a few fractions, their differences are expected to be
dominated by repair and repopulation, and here the stan-
dard LQ model (6–8) would be expected to perform well.
For comparative studies involving more ‘‘extreme’’
protocols, such as a single very high-dose fraction, the
standard LQ model undoubtedly becomes less reliable
(18). Modifications of the LQ model for such situations
do exist (19, 20), although at the price of increased
model complexity and consequent decreased practical
usability.

When used with appropriate caution, the LQ model has
proved a very useful tool for designing and comparing the
effects of new fractionation protocols. More than that, built
into the LQ model with its clinically derived parameters,
are key lessons about fractionation and overall time, learnt
over many decades and at considerable cost to many pa-
tients, and that are likely to be forgotten if designers of
new radiotherapy protocols do not appreciate the signifi-
cance of clinical a/b parameters. A pertinent example is
the growing trend toward the use of hypofractionation.
There are specific biologic situations when hypofractiona-
tion makes sense relative to more standard protocols (21,
22); in general, however, the LQ model provides explicit
quantitative predictions of increased sequelae when the
number of fractions is markedly reduced, particularly
when critical normal tissues are too close (23–25) to the
target volume. We forget at our peril the lessons built
into the a/b model.
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