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Overview

Overview

Review Diderot - uses, continuous fields, high-level simple syntax,
parallelism

Hypothesis: Can we use Diderot to define high-level brain operators
(e.g. optical flow)?

Neural field equation
?
= Diderot’s continuous tensor field

Initial experiments and limitations of Diderot

Visualizing the phase plane with line integral convolution (LIC)

Experimental results and future direction
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The Diderot Language Background

Diderot’s intended use

Domain Specific Language (DSL) - designed for image analysis and
visualization

Image analysis - Extract quantitative geometric properties of objects
from image data

Image visualization - use image data in tandem with computer
graphics to qualitatively describe image properties [1]

Optimized for algorithms with large number of (mostly) independent
computations

Provides a high-level, simple and direct syntax
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The Diderot Language Language design and implementation

Language design and implementation

Diderot is structured for dealing with data as continuous tensor fields

Tensor field - scalars (order 0), vectors (order 1), matrices (order 2)

Formed via convolution of discrete input with ”continuous“ kernel -
field#k(d)[σ] F = bspln3 ~ img

k - continuous derivatives, d - dimensionality, σ - tensor order

Operators on field include -
t = F(pos), ∇F(pos), ∇⊗F(pos);
F = ∇F, ∇⊗F, s∗F, F1+F2;
b = inside(pos,F);

t is a tensor, which can be manipulated by standard discrete
operations, such as - •, ⊗, | |, ∗
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The Diderot Language Language design and implementation

Field computation

Actual field computation is performed when field is probed -
t = ∇F, ∇⊗F, F(pos);

[2]
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The Diderot Language Language design and implementation

Field computation

e.g. t = ∇F(pos); This performs,

∇F (x) = (V ⊗∇h)(x)

=
(

V ⊗
[ ∂
∂x h
∂
∂y h

])
=

[∑s
i=1−s

∑s
j=1−s V [n+ < i , j >]h′(fx − i)h(fy − j)∑s

i=i−s
∑s

j=1−s V [n+ < i , j >]h(fx − i)h′(fy − j)

]
,

(1)

where V - discrete input, h - (separable) continuous kernel, x - field
position index, M−1 - space mapping matrix, n = bM−1xc discrete
mapped point, f = M−1x− n
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The Diderot Language Language design and implementation

Program structure

3 sections - global definitions, strand, initialization

Global - define immutable variables, inputs, load image data, usually
create field

Strand - computational core of application - run via parameters, init
state variables (including output), update, die, stabilize
methods

A given strand will continue to execute its update method until the
stabilize (write to output) or die (no write to output) method is
called on that strand

Initialization - define range of strand parameters (e.g. pixel indices)
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The Diderot Language Language design and implementation

Parallelism

Bulk-synchronous parallelism model - super steps (update method),
each consisting of asynchronous computations (individual strands),
executes until all strands die or stabilize

Strands organized into (4096 supported) strands per block, followed
by barrier synchronization at end of super step

Parallel C code, OpenCL, CUDA (future)
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The Diderot Language Example

Toy program

// ----- Global defs -----
int imgSizeX = 300; // how many x pts user wants from field
int imgSizeY = 200; // how many y pts user wants from field
int stepNum = 25; // step limit before writing to output
image(2)[] img = load("../data/einstein.nrrd"); // import image
field#1(2)[] F = img Ł ctmr; // convolve img with kernel = field

// ----- Strand section -----
strand DEMO (int xi, int yi) {

real xx = lerp(0.0, 3.0, -0.5, real(xi), real(imgSizeX)-0.5);
real yy = lerp(0.0, 2.0, -0.5, real(yi), real(imgSizeY)-0.5);
vec2 pos0 = [xx,yy];
output real sum = F(pos0);
int step = 0;
// --- Update thread with math under condtions ---
update {

// Do some fancy math
vec2 grad = F (pos); // take gradient of field and probe it
sum = grad[0]+grad[1];
step += 1;
if (step == stepNum) {

stabilize; // write "sum" to output
}

}
}

// ----- Initialization section -----
initially [ DEMO(xi, yi) | yi in 0..(imgSizeY-1), xi in 0..(imgSizeX-1) ];
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High-level brain operators

Hypotheses

1 We can define high-level operators (analogous to ∇) that will perform
encoding of sensory data on a neural circuit.

2 We can represent this circuit as a continuous tensor field.

Can we use Diderot as a convenient medium for accomplishing this?

Daniel Clark (Columbia University) Exploring the Diderot programming language and its applications to the visualization of neural modelsDecember 18, 2013 11 / 43



High-level brain operators Continuous neural fields

Continuous neural fields

Utilize maturely developed area of continuous dynamical systems to
approximate neural circuitry

Continuous equations - able to model neural activity as quantities in a
continuous field, with functional relationships to sources and sinks of
that field [3]

Basic idea: activity of a neuron unit (e.g. average firing rate) in field
layer i at point x , time t is

Zi (x , t) = fi
(
ui (x , t)

)
(2)

ui (x , t) is average membrane potential, fi is a non-linear activation
function [4]
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High-level brain operators Continuous neural fields

Continuous neural fields (cont’d)

Model also assumes local excitatory and distant inhibitory
inter-connectivity between neurons, described by time-varying weight
function

wij(x , y ; t) - influence activity from neuron at point y in layer j has
on neuron at point x in layer i , t time units after firing initiates from
neuron y

(a) Neural layers (b) Weight function
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High-level brain operators Continuous neural fields

Continuous neural fields (cont’d)

Canonical continuous field equation [4]:

τi
∂ui (x , t)

∂t
= hi + ∆si (x , t)− ui (x , t)+

m∑
j=1

∫
Ωj

∫
v

wij(x , y ; t − v)Zj(y , v) dv dy
(3)

τi is the recovery time to steady-state, ∆si (x , t) is change in external
stimulus, hi is average distance to steady-state activity, Ωj spatial
neighborhood of summation on layer j

Can think of neural field as Nx × Nt × Nj continuous tensor field
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High-level brain operators Optical flow

Optical flow

If we can define a neural circuit, such as in Eq. (3), what can we do
with it?

Put operation of continuous field into context - specific objective:
encode optical flow

Optical flow - quantification of relative motion in a vision sequence
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High-level brain operators Optical flow

Optical flow (cont’d)

In general, three stages in detecting optical flow:

1 Pre-filter/smooth input data spatiotemporally

2 Extract relevant features (e.g. gradients)

3 Weight and integrate features to produce field flow vectors

Known, in general, as a differential or gradient-based approach
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High-level brain operators Optical flow

Horn-Schunk method

Gradient constraint: change along the spatiotemporal path of a point
of intensity is zero.

dI (x, t)

dt
= 0 ⇒ ∇xI (x, t) · v +

∂I (x, t)

∂t
= 0 (4)

∇xI (x, t) =

[
∂I (x,t)
∂x

∂I (x,t)
∂y

]
, v =

[
u
v

]
(5)

Horn and Schunk posed this as an optimization problem with
smoothness constraint, given by λ [5]

min
v

∫
Ω

(∇I · v +
∂I

∂t
)2 + λ2(||∇u||22 + ||∇v ||22)dx (6)
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High-level brain operators Optical flow

Horn-Schunk method (cont’d)

HS iterative algorithm:

uk+1 = ūk −
Ix
(

Ix ūk + Iy v̄k + It
)

α2 + I 2
x + I 2

y

(7)

vk+1 = v̄k −
Iy
(

Ix ūk + Iy v̄k + It
)

α2 + I 2
x + I 2

y

(8)

ūk , v̄k are the average velocity values of kth iteration

Can think of dI
dt as 3× Nx × Ny × Nt continuous tensor field
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High-level brain operators Optical flow

Bio-inspired (Neumann) model

dI
dt

gradients represented as likelihood
values corresponding to membrane
potentials of neurons

Optical flow detection implemented as

a three-level process:

1 Spatiotemporal
smoothing/feature extraction via
three-stage cascade (V1)

2 Integration of motion features
(asymmetric filter kernels),
detection for self-motion,
feedback (MT)

3 Integration of self-motion
gradients, feedback (MST)
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High-level brain operators Optical flow

Bio-inspired (Neumann) model (cont’d)

We’ll focus on first level - three-stage cascade to implement:

Feedfoward connectivity and temporal filtering

ẋ (1) = −x (1) + fsample

(
[xFF ]α ∗ Λspace

)
∗ Λvel . (9)

Feedback connectivity

ẋ (2) = −x (2) + x (1)(1 + βxFB). (10)

Lateral (excitatory Λ+, inhibitory Λ−) connectivity

ẋ (3) = −γx (3) + x (2) ∗ Λ+ − x (3)
(
x (2) ∗ Λ−

)
, (11)

Can think of likelihood values as Nx × Ny × Nd × Nv continuous
tensor field
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High-level brain operators Initial Diderot experimentation

Gradient detection

Use binary image sequence for simplest case of optical flow detection

(a) 1st image (b) 2nd image (c) 1st and 2nd

Use Diderot to store this sequence as a continuous field F and use ∇
operator to verify we can calculate dI

dt
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High-level brain operators Initial Diderot experimentation

Gradient detection (cont’d)

We implemented a simple function in Diderot to output the gradient
of F , and plotted in MATLAB:

We probed the field at 10 points temporally to get an interpolated
flow between 1st and 2nd image
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High-level brain operators Initial Diderot experimentation

Limitations

Next step: try iterative updates via Eq. (7) in Horn-Schunk method
within Diderot

Requires local averaging of gradients to yield [ūk , v̄k ]>

Problem for Diderot - no convenient way to access neighboring points
in F and perform average; can’t use averaging kernel on a continuous
field as it is defined in Diderot

Even bigger limitation: no shared memory between strands; this
prevents inter-neuron connectivity given in Eq. (3) from the neural
field formulation, and Eq.(9), (10), and (11)

Can we use Diderot for something else? → Image visualization
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High-level brain operators Initial Diderot experimentation

Harnessing Diderot

Recall novelties of Diderot:

1 Flexibility of dealing with “continuous” interpretation of discrete data
(e.g. limited resolution)

2 Image visualization - high-level math operators common in
visualization algorithms are conveniently built in

3 Parallel framework - algorithms that can be run in parallel can be
executed quickly
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Visualizing the phase plane Neuron dynamics and bifurcation

Neuron dynamics and bifurcation

Phase portrait - way to understand dynamics of conductance-based
neuron models

Figure : INa,p + IK model, with V and n nullclines [6]

Compare three models of interest: Hodgkin-Huxley, Morris-Lecar,
Fitzhugh-Nagumo
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Visualizing the phase plane Neuron dynamics and bifurcation

Reduced Hodgkin-Huxley model

Reduced-Hodgkin Huxley model (two-variable V , n):

C V̇ = I − gL(V − EL)− gNam∞(V )3h∞(V )(V − ENa)− gKn4(V − EK )

ṅ =
n∞(V )− n

τn(V )
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Visualizing the phase plane Neuron dynamics and bifurcation

Morris-Lecar model

Morris-Lecar model:

C V̇ = I − gL(V − EL)− gCam∞(V )(V − ECa)− gKn(V − EK )

ṅ =
n∞(V )− n

τn(V )

m∞(V ) =
1

2

(
1 + tanh(

V − V1

V2
)
)

n∞(V ) =
1

2

(
1 + tanh(

V − V3

V4
)
)

τn(V ) = φ cosh
(V − V3

2V4

)
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Visualizing the phase plane Neuron dynamics and bifurcation

Fitzhugh-Nagumo model

Fitzhugh-Nagumo model:

V̇ = V (a− V )(V − 1)− w + I

ẇ = bV − cw .
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Visualizing the phase plane Line integral convolution

Line integral convolution

Gradients figure is convenient for seeing general flow of states, but is
distorted to show flow better

Would be nicer to see this dynamic as a “continuous flow”

Line integral convolution (LIC) - integrates underlying texture field F
along gradient vectors in V to yield more intuitive image

(a) Original vector field (b) LIC over white noise

Figure : LIC results from Diderot program lic.diderot
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Visualizing the phase plane Line integral convolution

Line integral convolution (cont’d)

In general, integrate some kernel function Λ(w) over step sk and step
size ∆sk on kth iteration

hk =

∫ sk+∆sk

sk
Λ(w)dw

Pk = Pk−1 +
V
(
bPk−1c

)
||V
(
bPk−1c

)
||

∆sk−1

LIC (x , y) =

∑lf
k=0 F

(
bPk

f c
)
hk
f +

∑lb
k=0 F

(
bPk

b c
)
hk
b∑lf

k=0 hk
f +

∑lb
k=0 hk

b

F - underlying texture field to integrate over, bPkc - floored-position
index, V - gradient vector field, hk - kernel weight, l - number of
iterations over k to perform
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Visualizing the phase plane Line integral convolution

Line integral convolution (cont’d)

We can simplify the equations by using box kernel and fixed step-size ∆s
and step number l for forward and backward, with P0 = (x , y)

Pk
f = Pk−1

f + ∆sV (Pk−1
f ), Pk

b = Pk−1
b −∆sV (Pk−1

b )

⇒ LIC (x , y) =

∑2l
k=0 F (Pk

f ) + F (Pk
b )

2l + 1

(a) Integration (b) Stream line [7]
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Visualizing the phase plane Experiments visualizing phase response curves

Generating initial phase portraits

Generate gradient vectors via MATLAB’s quiver

Figure : Un-normalized phase portraits for each neuron model

Need a normalization to get a better result, without distorting image
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Visualizing the phase plane Experiments visualizing phase response curves

Normalization and multi-path limit cycles

Normalize gradients by a factor of input voltage range

dVnorm = dV /η
(

max(V )−min(V )
)
. (12)

Figure : Normalized phase portraits for each neuron model

Multi-path limit cycle runs verify the quiver vectors
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Visualizing the phase plane Experiments visualizing phase response curves

LIC of input phase portraits using Diderot

(a) Hodgkin-Huxley (b) Morris-Lecar

(c) Fitzhugh-Nagumo
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Visualizing the phase plane Experiments visualizing phase response curves

Generating phase portraits/LIC using Diderot (cont’d)

(a) Hodgkin-Huxley (b) Morris-Lecar

(c) Fitzhugh-Nagumo
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Visualizing the phase plane Experiments visualizing phase response curves

Generating phase portraits/LIC using Diderot (cont’d)

Generating phase portrait/LIC entirely within Diderot was accurate
with respect to the plots from MATLAB

More convenient having results done all in one place

More accurate using interpolation of V , n input range rather than
interpolation over vector gradients - functions of nonlinear diff eqs

Extend this for time-varying injected current - demo videos...
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Visualizing the phase plane Experiments visualizing phase response curves

Diderot benchmarking

Sequential C Parallel C OpenCL CUDA
2.7 GHz Core i5 iMac 30 m 43.8 s 9 m 20 s Alloc. error N/A
Huxley Cluster 94 m 39.6 sec 25 m 15 s Alloc. error N/A

Table : Benchmark for licMLInject.diderot

Sequential C Parallel C OpenCL CUDA
2.7 GHz Core i5 iMac 7.71 s 2.04 s 59.39 s N/A
Huxley Cluster 9.59 s 2.71 s 0.85 s N/A

Table : Benchmark for licp.diderot

*Huxley cluster did manage to utilize OpenCL backend to successfully compile

and run (reduced size) licHHInject.diderot
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Summary and future direction

Summary

Diderot - great tool for interacting with data from a high-level domain

Provides flexibility to manipulate data at user-specified granularity,
regardless of input resolution

(Mostly) independent image visualization/analysis algorithms best fit
for use in Diderot

However, not ideal at this time to implement high-level brain
operators or perform any sort of sophisticated feature extraction on
input sequences

Despite this limitation, we were able to use Diderot as a visualization
tool to bring about a convenient and intuitive way to understand the
phase response of various neuron models
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Summary and future direction

Future direction

Three-dimensional LIC program for phase portrait over the V, n,
m plane over Hodgkin-Huxley and Morris-Lecar models, would yield a
more sophisticated depiction of the underlying model dynamics.

LIC is inherently capable of supporting three-dimensional data,
though how to visualize the output of the data in a meaningful way?
Time-varying input current?

Diderot’s authors: implement inter-strand communication, global
mutable memory, CUDA-supported backend, higher memory
allocation for OpenCL

With these functionalities, Diderot would be well equipped for further
research in neural encoding and brain operators
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