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Overview

Overview

Most complex, efficient (and elegant?) information processor known

How do the architecture and neural response cooperate to encode
images?

How does this network develop?

Can we simulate and experiment with this?
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Overview

Goals

Develop intuition on visual system architecture

Understand this in context of self-organizing map models

Validate Topographica’s core model and implementation

Consider potential uses for and takeaways from software package
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Background Early visual system

Visual System

Retinal photoreceptors (rods,
cones)

Bipolar cells

Retinal ganglion cells (RGC)

Optic nerve

Lateral geniculate nucleus
(LGN)

Optic radiation

Primary visual cortex (V1)

[1]
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Background Early visual system

Retina

Cones - bright environments,
wavelength-sensitive (color)

Rods - dark environments,
peripheral vision

Rods/cones synapse with bipolar
cells

Bipolar cells - ON/OFF types,
temporal types, color-driven
types

Horizontal cells - feedback for
photoreceptors, shape response

Amacrine cells - tuning and
control of RGC response

RGC’s - relay response to LGN
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Background Early visual system

LGN

LGN in both left and right
hemisphere of brain

Serves as relay center for many
sensory systems

A given LGN receives inputs
from both eyes

Composed of 6 layers of neural
sheets

Columnar structure of
retinotopy consistent with
retinal arrangment

Credited with (some) temporal
encoding

Relays to V1 (layer 4)
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Background Early visual system

V1

Back of left and right
hemisphere of brain

Credited with feature extraction
of images

Also composed of 6 layers of
neural sheets

Columnar structure of features
(e.g. orientation)

Complex connection architecture
- afferent, lateral, feedback

Projects to and receives
feedback from higher brain
centers

Simple and complex cell types

[2]
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Background Receptive fields and cell responses

Receptive fields

Region which defines (linear) response of neuron

Spatiotemporal - f (x , y , t)

Subcortical - difference-of-Gaussian (DoG)

Cortical - Gabor
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Background Receptive fields and cell responses

Neural responses

Linear-nonlinear (LN) model

where,

L(t) =

∫ ∫
g(x , y , s)c(x , y , t − s)dxdyds,

R(t) = r0 + F (L(t)).
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Background Receptive fields and cell responses

Neural responses (cont’d)

Simple cells - phase variant,
highly tuned

Complex cells - phase invariant,
broad response

LN - great model for simple cells

Sum together simple responses
to get complex cells

Rcc(t) = R2
se(t) + R2

so(t) [3]

Rse(t) and Rso(t) are opposite
in phase. [4]
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Background Gain control

Gain control

Natural images - large deviation in mean luminance and contrast
(≈ 1000)

Gain control - adaptability to broad range of conditions, dynamic
range

Underlying physiological mechanism?

Mainly associated in the retina - horizontal, amacrine, bipolar cells,
and LGN

[5]
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Background Gain control

Divisive normalization and pooling

Efficient coding theory - exploit statistical dependencies of input

Traditionally accomplished via linear transforms (ICA)

Non-linear - more realistic because of occlusion, simple/complex cell
response [6]

Divisive normalization (DN) - scaling of input by nonlinear function of
its weighted combination

y = φ(x) =
x

f (α, ||x||)

Often termed “pooling” of neuron responses

Benefits in mitigating noise, adaptability, cooperation of neurons
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Self-organizing maps Plasticity and connectivity

Self-organizing maps

1011 neurons and 1014 synaptic connections in brain vs. 109

transistors on-chip

Genome only contains 105 genes or less

How to get 1014 from 105?

System must adapt on its own, self-organize
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Self-organizing maps Plasticity and connectivity

Plasticity

Feature extraction requires correlations between neuronal responses
and features of visual stimuli

Correlations are not inherent from prenatal development, neurons
must adapt short and long-term

Neuron can adjust its influence over its connections, synaptic
plasticity

Input-driven development, neural maps form as a result of input
statistics (Hubel and Weisel), Plato’s cave

Hebbian learning, weighting the connection strengths - “fire together,
wire together”
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Self-organizing maps Plasticity and connectivity

Connectivity

Afferent - feedforward
connections, excitatory,
preserves retinatopy

Lateral - excitatory, inhibitory

Feedback - excitatory, inhibitory

Each neuron has a connection
field

[7]
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Self-organizing maps LISSOM

Setup

Laterally interconnected synergetically self-organizing map

Topographically organized neural sheet forms V1

Each neuron in V1 has:

Afferent (excitatory) connections
Short-range lateral (excitatory) connections
Long-range lateral (inhibitory) connections

Lateral connections are order of magnitude weaker than afferent,
especially long-range

Biological merit as neurons actually have these types of connections,
long-range lateral have fewer synapses on postsynaptic neurons

Point firing-rate (non-spiking) framework
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Self-organizing maps LISSOM

Input presentation

Input space modeled as a vector of photoreceptor activations

Each afferent connection to V1 has non-negative associated strength
(weight) which scales input

Neuron forms an initial firing response

ηj(t0) = f
(∑

i∈h
ωijci (t0)

)
(1)

ηj(t0) - postsynaptic neuron j ’s initial response

h - afferent connection field (elements of vector)

ωij - weight from visual unit i to neuron j

ci (t0) - initial stimulus at unit i at time t0

f - nonlinear activation function
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Self-organizing maps LISSOM

Activation function

Nonlinear stage of LN model:

f (x) =


0 x ≤ δ,
(x − δ)/(β − δ) δ < x < β

1 x ≥ β

f (x) - piecewise-linear sigmoid
approximation

δ - activation threshold

β - saturation threshold

[8]
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Self-organizing maps LISSOM

Lateral connection influence

Lateral influence adjusts neuron response for next time step

ηj(t +dt) = f
(∑

i∈h
ωijci (t +dt) +γe

∑
k∈`

ξe,kjηk(t)−γi
∑
k∈`

ξi ,kjηk(t)
)

(2)

dt - discretized time step

γe - excitatory overall connection strength

γi - inhibitory overall connection strength

` - lateral connection field

ξe,jk - excitatory weight from presynaptic laterally connected neuron k

ξi ,jk - inhibitory weight from presynaptic laterally connected neuron k
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Self-organizing maps LISSOM

Weight updates

Weights are updated on a separate (longer) timescale, n, via Hebbian
learning rule to allow for activity settling in network

For afferent weights:

ωn+1
ij =

ωn
ij + αηj(tn)ci

{
∑

i∈h[ωn
ij + αηj(tn)ci ]2}1/2

(3)

For lateral weights:

ξn+1
jk =

ξnjk + αLηj(tn)ηk(tn)∑
k∈`[ξ

n
jk + αLηj(tn)ηk(tn)]

(4)

α - the Hebbian learning rate (for afferent or L lateral connections)

tn - time when weights are updated
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Self-organizing maps LISSOM

Weight updates (cont’d)

Biological plausibility for:

Simultaneous development of afferent and lateral connections - Has
been reported in the cat [9] where afferent connections form ocular
dominance columns in V1 as the lateral connections evolve to begin
extracting features
Hebbian rule allows for normalization - Neurons conserve synaptic
resources [10], this allows the model to assume total synaptic strength
to be constant
Weight normalization over neuron as a unit - Argued in [8] that
summing over all weights of a neuron converges to the same result as
biologically-grounded synaptic inhibition methods found in [11] as long
as numerous synapses are located locally on the neuron
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Self-organizing maps LISSOM

Activation function updates

Activation function updated on same timescale as weights, n

δn+1
j = min(δnj + αδηj , δmax)

βn+1
j = max(βnj + αβηj , βmin).

αδ - update learning rate for response threshold

αβ - update learning rate for saturation threshold

Provides for additional nonlinearity in neural response - as f (x)
becomes narrower, firing rate will vary more easily

Biological plausibility - immature neurons fire more easily, linearly.
Mature neurons harder to depolarize, but because of developed ion
channels at synapse it fires stronger [12]
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Self-organizing maps LISSOM

Connection death

“Prune” weak lateral connections after time duration

if ξkj < wc after initial time to ,

then ξkj = 0;

else if ξkj < wc after subsequent intervals tc

then ξkj = 0

Model gives the connection weights a timeframe to recover before
death as opposed to immediate removal

Biological plausibility - has been observed in many cases where the
majority of long-range lateral connections don’t survive cortical
development [9]
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Self-organizing maps LISSOM

LISSOM methodology review

1 Afferent weight vectors initially randomly distributed,
lateral weight vectors randomly distributed at various radii d for
excitatory, and d ′ for inhibitory; total weight of each set is fixed to 1.0

2 Image presentation - initial neuron response proportional to similarity
of input and afferent weights

3 Response refined through lateral interaction

4 Activity settles over multiple time steps, dt, to form activity “bubbles”

5 Time step hits tn when the weight and activation updates take place

6 New image presentation, and repeat

7 Lateral connections are pruned at to and subsequent tc intervals
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Self-organizing maps LISSOM

LISSOM performance

Initially random input afferent
weights

Each weight vector is
transformed into the
two-dimensional coordinate
system and plotted as a point
connected to its four immediate
neighbors

As inputs are randomly drawn,
the network evolves to form a
retinatopic map represented by
the afferent weights (after
30,000 iterations)

[8]
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Self-organizing maps LISSOM

RF-LISSOM performance

Same as LISSOM but with local, retinotopically-centered receptive
fields predefined

Ocular dominance results use two photoreceptor sheets (left and right
eyes)

Realistic results with left, right, and binocular preference

[13]
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Self-organizing maps LISSOM

LISSOM takeaways

Great base framework for map development, but certain elements lack
biological plausability

Supervised logical compare for threshold update is unrealistic

No gain control, contrast and luminance of input could drastically
affect performance
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Self-organizing maps GCAL

GCAL

Gain control, adaptation, laterally connected model improves upon
LISSOM

Incorporates feedforward gain control

Single-neuron homeostatic adaptation of firing-rate threshold

Comprised of (at least):

Photoreceptor sheet
RGC/LGN On sheet
RGC/LGN Off sheet
V1
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Self-organizing maps GCAL

Initial mechanisms

Connection field for afferent projection from photoreceptors to
RGC/LGN predefined as local to neuron

Weights are fixed as a DoG, where they take the form

ωij = α exp
(
− (xi − xj)

2 + (yi − yj)
2

2σ2
c

)
+ β exp

(
− (xi − xj)

2 + (yi − yj)
2

2σ2
s

)
(5)

α, beta - positive or negative scaling factors depending on on-center
or off-center

xi , yi - location of presynaptic unit i in photoreceptor sheet

xj , yj - location of postsynaptic neuron j in RGC/LGN sheet

σc , σs - width of center and surround Gaussians, respectively
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Self-organizing maps GCAL

RGC/LGN neuron activation

Activations are updated similar to LISSOM Eq. (1)

ηj(t + dt) = f
(
γL
∑
i∈Fj

ωijci (t)
)
, (6)

γL - constant strength of afferent connections

f - half-wave rectifier (no predefined limits)

Fj - neuron j ’s DoG connection field

...gain control?
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Self-organizing maps GCAL

RGC/LGN gain control

Gain control is implemented by divisive normalization from lateral
neuron’s through connection weights, ωij ,S

ωij ,S = exp
(
−

(xi − xj)
2 + (yi − yj)

2

2σ2
S

)
, (7)

σS - width of Gaussian

Gain control update of activity, on n timescale

ηn+1
j (tn) = f

( ηnj (tn)

γS
∑

i∈Lj ωij ,Sη
n
i (tn)

)
, (8)

γS - strength scaling factor

LS - lateral connection field

Gain control provides presynaptic stability of response variation
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Self-organizing maps GCAL

V1 activity update

Implemented in much the same way as LISSOM, can be described
more succinctly as

ηj(t + dt) = f
(∑

p

γp
( ∑
i∈Fjp

ωij,pηi (t)
)

︸ ︷︷ ︸
Xjp(t+dt)

)
, (9)

p - afferent, lateral exc., or lateral inh. projection

γp - strength factor for projection p, (+) for excitatory, (-) for
inhibitory

Xjp - contribution from projection p to neuron j

ηj is updated throughout the presentation of a single image over
multiple time steps until tn as in LISSOM - settling process

V1 activity is reset to 0 before the next presentation - allows for
discontinuous image presentations and non-biased feature maps
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Self-organizing maps GCAL

V1 homeostatic activation update

Activation function is updated as a result of average activity for each
neuron

Smoothed exponential average of neuron activity is calculated

η̄n+1
j = (1− β)ηj(tn) + βη̄nj , (10)

β ≈ 0.999 - smoothing parameter

Average η̄n+1
j is used to update the threshold activity for neuron j for

the next presentation

δn+1
j = δnj + λ(η̄n+1

j − µ), (11)

λ ≈ 0.0001 - learning rate

µ - target activity rate (spontaneous firing)

Provides postsynaptic stability of neuron response

Daniel Clark (Columbia University) Investigating topographic neural map development of the visual systemMay 10, 2013 34 / 59



Self-organizing maps GCAL

V1 weights update

Weights initialized similarly as in RGC/LGN but with cut-off radius rp
for projection p

ωij ,p =

{
u exp

(
− (xi−xj )2+(yi−yj )2

2σ2
p

)
, (xi − xj) ≤ rp,

0, otherwise

u = 1 for lateral excitatory, random scalar otherwise

Finally, weights are updated and normalized in the same way as in
LISSOM

ωn+1
ij ,p =

ωn
ij ,p + αηj(tn)ηi (tn)∑

k

(
ωn
kj ,p + αηj(tn)ηk(tn)

)
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Self-organizing maps GCAL

GCAL performance example

Leads to robust and stable map development - consistently developing
orientation preferences throughout training and contrast invariant
tuning

[14]
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Self-organizing maps GCAL

GCAL takeaways

Biological plausibility is same or better than LISSOM

Gain control mechanism plausible with horizontal and amacrine cells
contribution

Homeostatic adaptation converges towards spontaneous firing rate,
realistic assumption

RGC/LGN weights are most likely not fixed in vivo

Important to keep in mind - model and results are judged on
comparing simulated maps with real ones, if they match the model is
a good fit
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Self-organizing maps GCAL

GCAL vs LISSOM

LISSOM:

Biological Plausibile

No aspect of gain control

Logical compare enforced in
activation function

Model allows for continuous
inputs

Each neuron interprets entire
input space

GCAL:

Biologically plausible

Feedforward gain control in
RGC/LGN

Activation function based on
moving average

Model assumes discontinuous
inputs, reset activity

Each neuron has fixed radius
connection fields
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Topographica Functionality

Overview

Open source software package designed for topographic neural map
development on large-scale

Is ideal for implementing LISSOM and GCAL models

Can interface with other languages for allocating computing tasks -
C/C++, MATLAB, Python

Also interface with small-scale, individual neuron analysis packages -
GENESIS, NEST, NEURON
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Topographica Functionality

Setting up a network

Architecture setup before training or testing, user-specified

Minimally must have a photoreceptor sheet and cortical sheet, but
more are common

User must also specify connection field types between sheets and how
they project to postsynaptic units

A wide range of built-in visual patterns and user image files can be
presented

[15]
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Topographica Functionality

Basic features

Calculation of weights, presynaptic, postsynaptic activity is
completely customizable

Once network is setup, can be ran over n iterations, or stepped
through by dt timescale

Throughout the training process, one can view network results
including sheet activity, individual connection strengths, sheet-wide
projections

Feature preference can also be viewed (e.g. orientation), however,
these calculations can take a while
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Topographica Functionality

Interfacing

Topographica can use outside simulators to compute the response of
input activity, including spiking neuron models (NEST, NEURON)

Accomplished by exporting activity through a Python wrapper (e.g.
PyNN), specifying run time and number of neurons

Import matrix of spike times for each neuron from external simulator,
compute average firing rate

Use this as the activity input for the next neural sheet

An example of this is well documented in [16]
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Topographica Implementation

Framework

Each sheet represented as a
two-dimensional array of
neurons

Neurons specified in sheet
coordinates and matrix
coordinates

Density parameters specifies
how many units are present in a
1.0 length of sheet

Sheet size increases from cortex
down to photoreceptors
(1.0× 1.0 to ≈ 2.75× 2.75) to
avoid boundary effects

Weights are defined within
connection field radius

[15]
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Topographica Implementation

Function and sheet types

Pattern generators, transfer, response, learning functions

Generator sheets, projection sheets, joint normalizing continuous
sheets
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Topographica Implementation

Input-driven development

Patterns presented to network are crucial for how it develops

Natural images are the best for simulating real experience

However, for specific feature extraction, mathematical function
patterns provide interesting insight

For example, take a Gabor, human face, and line all randomly rotated
and translated between presentations
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Topographica Implementation

Input-driven development (cont’d)
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Topographica Applications and further research

Complex cell development

In [14], Topographica was utilized to show realistic development of
complex cells

Use two layers of V1, layer 4Cβ and layer 2/3, only 4Cβ receives
LGN connection directly

Lateral connections in layer 4Cβ are several times weaker than in 2/3

Afferent projection from 4Cβ to 2/3, feedback from 2/3 to 4Cβ

Interesting dynamic - weak connections and random initialization
cause local phase variations in 4Cβ

Layer 2/3 pools together phase variance to produce complex cell-like
responses

Feedback from 2/3 (strong lateral connections) to 4Cβ preservers
orientation preference while traversing layers (consistent with early
visual system architecture)
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Topographica Applications and further research

Complex cell development (cont’d)

Training sequence for this model was very elaborate

Two stages of training - prenatal (retinal waves), post natal (natural
images)

Retinal waves simulated as a concentric ring convolved with white
noise, natural images from database in [17]
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Topographica Applications and further research

Complex cell development (cont’d)

[18]
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Topographica Applications and further research

TCAL

Initial experiments were developed to derive a spatiotemporal RF by
exposing a trained network to white noise and using reverse correlation

D(x , y , τ) =
QLc(x , y ,−τ)

σ2
c

=
1

T

∫ T

0
L(t)c(x , y , t + τ)dt (12)

D(x , y , τ) - spatiotemporal RF, QLc(x , y , τ) - correlation of white
noise stimulus and output firing rate L(t) of neuron

However, the built-in models were all setup to reset V1 activity
between input presentations

Develops of Topographica are working on TCAL (Temporally
CALibrated GCAL) to integrate with training to test on continuous
inputs [19]
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Topographica Applications and further research

Further research

Find relationship between afferent projection weights and receptive
field of cortical unit to give a quantitative measure of the impact of
lateral connectivity

Evaluate encoding performance of different stimuli on various models,
and training input patterns

Integration of spiking neurons for performance comparison between
point firing rate units and more realistic neural behavior

Reproduce the experimental results from early-stage models to the
latest ones to develop an intuition on how each additional component
influences performance

Suggestions...?
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