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Simulated global changes alter phosphorus demand in
annual grassland

D U N C A N N . L . M E N G E * and C H R I S T O P H E R B . F I E L D w
*Earth Systems Program, Stanford University, Stanford, CA 94305, USA, wDepartment of Global Ecology, Carnegie Institution of

Washington, Stanford, CA 94305, USA

Abstract

In the Jasper Ridge Global Change Experiment – an annual grassland with elevated

carbon dioxide (CO2), nitrate deposition, temperature, and precipitation – we used six

indices of phosphorus (P) limitation to test the hypothesis that global changes that

increase net primary production (NPP) increase P demand or limitation. All indices

indicated that nitrate deposition, the only factor that stimulated NPP, increased P

demand or limitation: (1) soil phosphatase activity increased by 14%; (2) P concentration

in green and (3) senescent leaves of the dominant grass genus, Avena, dropped by 40%

and 44%, respectively; (4) N : P ratios in green and (5) senescent Avena widened by 99%

and 161%, respectively; and (6) total aboveground plant P decreased by 17% with

elevated nitrate deposition. The other three factors, which did not stimulate NPP, did

not increase P demand: based on two indices, enhanced precipitation decreased P

demand (11% decrease in phosphatase activity, 19% increase in total aboveground P),

and there was no evidence that elevated CO2 or temperature altered P demand. In a meta-

analysis to assess the generality of P constraints on growth increases from global change

factors, we found that six of 11 N-limited ecosystems responded to N deposition with

enhanced P limitation or demand, but did not detect significant effects of elevated CO2 or

warming.

Keywords: Avena barbata, Avena fatua, climate change, CO2, global change, grassland, Jasper Ridge, N : P

ratio, nitrogen deposition, nitrogen saturation, phosphatase, phosphorus

Received 16 May 2005; revised version received 23 January 2007 and accepted 12 July 2007

Introduction

Atmospheric carbon dioxide (CO2) concentrations, ni-

trogen (N) deposition, and global average temperature

are increasing, and precipitation patterns are changing

as a result of anthropogenic emissions of greenhouse

gases (IPCC, 2001). Because they share a common set of

causes, these four global change factors are strongly

linked at the global scale, with potentially important

differences in spatial pattern (IPCC, 2001). CO2, N, and

water frequently limit plant growth (Field et al., 1992),

whereas warming can either increase or decrease pri-

mary production. Thus, increasing the availability of

any factor or combination of factors could increase

primary production, potentially driving terrestrial car-

bon storage and offsetting some of the carbon released

from fossil fuel combustion (McGuire et al., 2001).

However, increased growth must have some limit.

Any stimulation will saturate at some level, as a result

of inadequate supply of another essential resource, an

environmental constraint, or intrinsic growth potential

(Field et al., 1992). In particular, the supply of phos-

phorus (P) may function as a secondary limit, for it

too often limits primary production (Chapin, 1980;

Vitousek & Farrington, 1997). Local availability of P is

controlled by a combination of substrate composition

and age, climate, and vegetation (Vitousek, 2004), with

inputs from dust deposition being important in some

cases (Chadwick et al., 1999; Smil, 2000). Importantly,

anthropogenic changes in patterns of P supply are not

necessarily linked to CO2 and NOx emissions as are

temperature and precipitation. Due to this uncoupling,

we hypothesize that P availability may constrain the

growth-enhancing effects of CO2, N (Huenneke et al.,

1990; Vitousek & Farrington, 1997), and/or precipitation.

Correspondence: Present address: Duncan N. L. Menge,

Department of Ecology and Evolutionary Biology, Princeton

University, 106A Guyot Hall, Princeton, NJ 08544, USA, tel. 11 609

258 6883, fax 11 609 258 1334, e-mail: dmenge@princeton.edu

Global Change Biology (2007) 13, 2582–2591, doi: 10.1111/j.1365-2486.2007.01456.x
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We examined the effects of elevated CO2, nitrate

deposition, precipitation, and temperature on biological

P demand in an ecosystem limited by N but not CO2,

water, or temperature (Zavaleta et al., 2003; Dukes et al.,

2005). Our work took place in the Jasper Ridge Global

Change Experiment (JRGCE), which maintains all 16

possible combinations of ambient and elevated atmo-

spheric CO2, nitrate deposition, temperature, and pre-

cipitation in intact annual grassland, allowing us to

determine single- and multiple-factor effects (Zavaleta

et al., 2003). The elevated levels of all factors fall in the

range of possibility for later decades of the 21st century

in California (IPCC, 2001; Dukes et al., 2005). Since the

dominant species are annuals, each year represents a

new generation, allowing us to detect effects driven

through multigeneration changes in population or com-

munity structure.

We measured six indices relevant to P demand in the

JRGCE. The first index addresses ecosystem-level P

demand with an assay for potential soil (extracellular)

phosphatase activity. Extracellular phosphatases are

enzymes produced and secreted by plants and microbes

that catalyze the hydrolysis of ester bonds; they release

phosphate from organic matter so it is available for

uptake (Speir & Ross, 1978). Phosphatase production by

both plants and microbes increases in response to P

limitation in many systems (Spiers & McGill, 1979;

Dracup et al., 1984; Sinsabaugh et al., 1993; Tadano

et al., 1993; Barrett et al., 1998; Fries et al., 1998; Olander

& Vitousek, 2000; Treseder & Vitousek, 2001). However,

not all P-limited systems respond with increased

phosphatase production (Speir & Ross, 1978), so we

examined five other indices.

The five other P demand indices are the concentration

of P and the N : P ratio in green and senescent foliage,

and the total amount of aboveground P. The ratio of

N : P can indicate which element is more limiting

(Koerselman & Meuleman, 1996), although critical

values for limitation vary with species (Drenovsky &

Richards, 2004; Gusewell, 2004). Senescent tissue chem-

istry reveals nutrient inputs to litter, which partially

control future plant nutrient availability. Since tissue

chemistry measurements are more sensitive to changes

in nutrient availability in fast-growing plants (Chapin,

1980), we used a fast-growing grass genus, Avena,

which comprises �27% of net primary production

(NPP) in the JRGCE (in the 2001 harvest). [The two

species of Avena in the JRGCE, A. fatua and A. barbata

(Zavaleta et al., 2003), were not sorted to species in this

harvest and are, therefore, pooled for our analyses.

Hereafter, they are referred to collectively by their

genus name.] Finally, assuming that Avena tissue P data

from each plot reflect P content for all species, we

estimated treatment effects on aboveground P pools.

Collectively, these varied aspects of P nutrition pro-

vide a window on interactions between anthropogenic

global changes and P limitation in the JRGCE. We

hypothesized that manipulated factors that tend to

increase NPP would increase P demand, which could

potentially constrain growth increases, and thus carbon

storage.

To understand how widespread this mechanism may

be globally, we analyzed published P cycle responses to

elevated CO2, N, precipitation, or temperature in 16

ecosystems ranging from desert to rainforest and from

tropical to arctic.

Methods

Study site

The JRGCE lies in the foothills of the Central California

(CA) coast range (371240N, 1221140W). It experiences

a Mediterranean-type climate, with a cool, wet winter

(the growing season) and hot, dry summers. Introduced

annual grasses (A. fatua, A. barbata, and Bromus hordea-

ceus) and forbs (Geranium dissectum and Erodium botrys)

dominate the plant community. The soil is a fine, mixed

Typic Haploxeralf developed from Franciscan complex

alluvium sandstone. Detailed site and climate descrip-

tions can be found elsewhere (Zavaleta et al., 2003).

Experimental design

The JRGCE is a four-way factorial split-plot design

(Shaw et al., 2002). Within each of the eight randomized

blocks, there are four plots 1 m in radius, each of which

is divided into four quadrants. The four manipulated

factors are atmospheric CO2, temperature, precipitation,

and nitrate deposition. Atmospheric CO2, manipulated

at the plot level, is elevated from ambient (�370 ppm)

to ambient 1300 ppm with a ring of free-air emitters

surrounding each plot, using the mini-FACE approach

(Miglietta et al., 1996). Temperature, also a plot-level

treatment, is elevated by �1 1C at canopy height by

infrared heaters (80 W m�2), with dummy heaters over

unheated plots to reproduce shading or other non-

treatment effects of the heaters (Zavaleta et al., 2003;

Dukes et al., 2005). Precipitation, a quadrant-level treat-

ment, is elevated to 150% of ambient with drip (1998–

2000) or spray (2001–2003) irrigation following each

rain event, with two additional simulated rain events,

extending the rainy season by approximately 20 days

(Zavaleta et al., 2003). Nitrate deposition, also applied at

the quadrant level, is elevated by 7 g NO3-N m�2 yr�1

above the background rate of o1 g N m�2 yr�1 (Weiss,

1999). Nitrate is applied as Ca(NO3)2, with an initial

application of 2 g m�2 in solution directly following the
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first autumn rain (to mimic the pulse of accumulated dry

N deposition that occurs with the first rains after the dry

summer), and an additional 5 g m�2 applied as a slow-

release fertilizer (Nutricote 12-0-0; Agrivert, Riverside,

CA, USA) in January (Zavaleta et al., 2003; Dukes et al.,

2005). Treatments have been applied throughout each

growing season since the 1998–1999 growing season.

Sampling

We took soil cores from the JRGCE in March 2002, May

2002, and January 2003. Core depth and diameter in

March and May were 15 cm and 22 mm; in January they

were 5 cm and 11 mm. Phosphatase activity from 0 to 5,

from 5 to 10, and from 10 to 15 cm was statistically

indistinguishable, although there was a tendency to-

ward decreased activity with depth (data not shown).

We completed each round of coring within 3 days,

stored the soil samples at 4 1C, and processed soils

within 3 weeks of sampling. Foliar tissue samples were

harvested from the JRGCE on May 16, 2001, approxi-

mately 30 weeks after germination. Following the har-

vest, Avena samples were dried for 24 h at 70 1C and

stored at room temperature. For chemical analyses, we

ground samples to 20 mesh in a Wiley mill or cut them

with scissors if samples were too small to grind.

Phosphatase assays and tissue chemistry

Phosphatase assay techniques followed the outline of

Tabatabai & Bremner (1969). We incubated soils (with

roots removed) at pH 5.0 (acetate buffer) or 7.0 (TRIS

buffer) with 5.0 mM para-nitrophenyl phosphate (pre-

sumed to be saturating concentration) for 120 min,

stopping the reaction with NaOH. This assay measures

the maximum enzyme activity rate (Vmax), which will

rarely, if ever, be realized in natural soils with low

P availability. Our interpretation of the measurement,

therefore, assumes that the biotic P demand response is

to produce more phosphatases, not different (e.g. higher

affinity) phosphatases. Phosphatase activity was calcu-

lated from spectrophotometric readings (Beckman

DU70, Fullerton, CA, USA) at 410 nm (color-corrected

for sample and substrate controls) of the reaction pro-

duct para-nitrophenol. It is likely that both plants and

microbes contributed to the measured phosphatase

activity. We cannot exclude the possibility that treat-

ments induced P limitation in either plants or microbes,

but not both (Sundareshwar et al., 2003).

Dry, ground plant tissue was sulfuric acid (Kjeldahl)

digested for nutrient analysis. At no more than 10 days

following digestions, samples were colorimetrically

analyzed for total P and total N concentration on an

Alpkem RFA/2 continuous flow analyzer (Clackamas,

OR, USA). For details on both techniques see Menge

(2003). To quantify the aboveground plant P pool we

assumed that, for each tissue type (green or senescent)

in each quadrant, all species had the same P concentra-

tion as Avena, filling in the few gaps in tissue P data

with treatment means. Green and senescent biomass

data used to calculate the plant P pools were from

the same 2001 harvest as Avena tissue chemistry data

(Zavaleta et al., 2003).

JRGCE Statistical analyses

Data from the JRGCE were analyzed with a split-plot

general linear model (GLM) in SAS 9.1, with two levels

(ambient and elevated) each for CO2, temperature,

precipitation, and nitrate (Zavaleta, 2001). All data were

transformed (logarithmically or square-root) for statis-

tical analyses when necessary to meet homoskedasticity

and normality assumptions (using Bartlett’s test for

homoskedasticity; Sokal & Rohlf, 1995).

Meta-analysis

To investigate published effects of global change on P

demand or limitation in a relatively unbiased way, we

searched Web of Science in June 2006 with the keys

‘phosphorus and global change,’ ‘phosphorus and

warming,’ and ‘phosphorus and CO2 and (enrichment

or elevated),’ then used those hits and the references

therein to compile our initial database. Other search

keys we tried suggested that these captured most of the

relevant literature. We then restricted the database to

manipulative experiments in intact terrestrial ecosys-

tems in which experimentally increasing a global

change factor elevated NPP (or some similar measure

such as basal area), and in which some P cycle response

to the manipulations was measured and presented with

statistics. The final database comprised 24 studies (in-

cluding this study) from 16 ecosystems, listed in Table 1.

None of these studies included a precipitation manip-

ulation that increased NPP, so we present only CO2, N,

and temperature effects.

The aspects of the P cycle measured varied from

study to study, and are listed for each study in Table

1. Since each study used different metrics that are not

quantitatively comparable, and many studies did not

report effect sizes (only P-values), we used a vote-

counting meta-analysis to test our hypothesis (Hedges

& Olkin, 1980; Gurevitch & Hedges, 1999). Our method

follows the outline of Hedges & Olkin (1980), with

changes as follows. We scored effects on P limitation

or demand as positive (significant increases in those

measures with a 1 superscript in Table 1 or significant

decreases in those with a �superscript), negative, or not
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significant, using statistics in the published works (with

a5 0.05 and two-tailed tests), then analyzed the data by

each measure, each study, and each ecosystem. A ‘sig-

nificant’ study effect indicates that the majority of the

measures had that effect, and likewise a significant

ecosystem effect indicates a majority of studies in the

Table 1 Sources, ecosystems, manipulations, and measurements used in meta-analysis of P cycle responses to global change

Source Ecosystem Manipulation(s) P cycle measurement(s)

Aerts et al. (1992) Sweden bog, 1 year NH4NO3: 1 2 �Plant [P], 1 N : P

Clarholm (1993) Sweden spruce forest, 20 years NH4NO3: 1 6 �Microbial P, 1 soil phosphatase

activity

Vitousek et al. (1993) Hawaii forest, 2 years Urea/NH4NO3: 1 5–10 1 Growth response to P after N

fertilization

Chapin et al. (1995) Alaska tundra, 3–9 years Temperature: 1 3–5 1C �Soil KCl PO4, �resin PO4

Moorhead & Linkins

(1997)

Alaska tundra, 3 years CO2: 1 300 ppm 1 Root and 1 soil phosphatase

activity

van Duren et al. (1997) Belgium fen, 2 years CO (NH2)2: 1 20 1 Growth response to P after N

fertilization

Vitousek & Farrington

(1997)

Hawaii forest, 2 years Urea/NH4NO3: 1 10 1 Growth response to P after N

fertilization

Niklaus et al. (1998) Switzerland grassland, 4 years CO2: 1 250 ppm �Plant P pool, 1 N : P

Ajwa et al. (1999) Kansas tallgrass prairie, 9 years NH4NO3: 1 10 1 Soil acid, alkaline phosphatase

activity

Jonasson et al. (1999) Sweden subalpine heath,

Sweden fellfield, 5 years

Temperature: 1 0.4–5.0 1C �Total soil, �inorganic soil,
�microbial, �plant P pools

van Wijnen & Bakker

(1999)

Netherlands salt marsh, 3 years NH4NO3: 1 5, 25 1 Growth response to P after N

fertilization

Olander & Vitousek

(2000)

Hawaii forest, 11 years Urea/NH4NO3: 1 10 1 Soil phosphatase activity

Finzi et al. (2001) North Carolina forest, 2 years CO2: 1 200 ppm �Foliar, �litter [P], 1 P resorption,
�litter P pool

Treseder & Vitousek

(2001)

Hawaii forest, 11 years Urea/NH4NO3: 1 10 1 Root phosphatase activity

Ebersberger et al. (2003) Switzerland grassland, 6 years CO2: 1 250 ppm 1 Soil phosphatase activity

van Heerwaarden

et al. (2003)

Sweden subarctic bog, 3 years NH4: 1 10 �Plant green, �senescent [P], 1 N : P,
1 P resorption efficiency

Drenovsky & Richards

(2004)

California desert, 2 years NH4NO3:

1 105 g N plant�1 yr�1

1 Growth response to P after N

fertilization, �plant [P]

Finzi et al. (2004) North Carolina forest, 4 years CO2: 1 200 ppm �Foliar [P], 1 canopy N : P

Niklaus & Körner (2004) Switzerland grassland, 6 years CO2: 1 250 ppm �Aboveground, �litter, �root P

pools

Øien (2004) Norway fens, 1 year NH4NO3: 1 12 1 Growth response to P after N

fertilization

Henry et al. (2005) California annual grassland

(JRGCE), 6 years

NO3: 1 7 1 Soil phosphatase activity

Niinemets & Kull (2005) Estonian meadow, 1 year NH4NO3: 1 2, 5, 10, 20 1 Growth response to P after N

fertilization

Finzi et al. (2006) North Carolina forest, 6 years CO2: 1 200 ppm 1 Soil phosphatase activity

This study California annual grassland

(JRGCE), 3–5 years

NO3: 1 7 1 Soil phosphatase activity, �Avena

[P], 1Avena N : P, �Total

aboveground P

All N additions are given in g N m�2 yr�1 unless otherwise stated. In the ‘ecosystem’ column, the number of years of treatment is

given after the type of ecosystem. Evidence that the manipulation increased NPP (or some similar measure) is in the source listed

except for Moorhead & Linkins (1997) (Oechel et al., 1994); Ajwa et al. (1999) (Baer et al., 2003); Finzi et al. (2001, 2004, 2006) (DeLucia

et al., 1999); van Heerwaarden et al. (2003) (Richardson et al., 2002); Henry et al. (2005) and this study (Zavaleta et al., 2003; Dukes

et al., 2005 for both). A1 to the left of a measurement denotes that an increase in the level of that measurement indicates an increase in

P limitation or demand. A� denotes that an increase in the level of that response indicates a decrease in P limitation or demand.

JRGCE, Jasper Ridge Global Change Experiment; P, phosphorus; CO2, carbon dioxide.
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ecosystem had that effect (ties were given half an effect).

Although not all measures and not all studies are equal,

measures in any given study and studies within each

ecosystem were given equal weight in this analysis. Our

statistical null model was that each measure, study, or

ecosystem was a random draw from a binomial dis-

tribution with P 5 0.025 for an increase (because this

was the cutoff used in the published studies); results

showing more increases than expected by chance were

deemed significant.

Results

Soil phosphatase activity

Soil phosphatase activity in the JRGCE control plots

ranged from 0.69 to 3.33mmol pNP g dry soil�1 h�1

(0.58–4.33 for manipulated plots). Addition of nitrate

increased soil phosphatase activity (March P 5 0.082,

May P 5 0.005, January Po0.001), whereas enhancing

precipitation decreased it (March P 5 0.012, May

P 5 0.010, January Po0.001) (Table 2, Fig. 1f). All other

effects and interactions were insignificant (P40.06 at all

time points).

Avena tissue chemistry

Nitrate deposition decreased tissue P concentration in

green and senescent Avena (Po0.001, Table 2, Fig. 1a

and b). Increased precipitation decreased P concentra-

tion in senescent (P 5 0.029, Fig. 1b) but not in green

Avena (P 5 0.131, Fig. 1a). Main effects of temperature

and CO2 and all interactions were not significant for

green or senescent foliar P concentration in Avena

(P40.17). Nitrate deposition increased the N : P ratio

in both green and senescent Avena (Po0.001, Table 2,

Fig. 1c and d). No other main effects or interactions

were significant for green or senescent Avena N : P

(P40.06).

Whole plot P

Assuming Avena tissue chemistry is representative of

the entire community in each quadrant, precipitation

increased the aboveground plant P pool (P 5 0.043,

Table 2, Fig. 1e) and N decreased it (P 5 0.024). No

other main effects or interactions were significant

(P40.08).

Meta-analysis

Of the studies in which elevated CO2 increased NPP,

29% (2/7) resulted in increases in some index of P

limitation or demand (Table 3). P limitation increased

in Alaska tussock tundra but not in Swiss calcareous

grassland or North Carolina pine forest. The propor-

tions of studies and ecosystems (0.29, 0.33) showing a

positive P limitation response were substantially greater

than the null expectation (0.05), but due to the small

sample size (n 5 7, 3) these responses were not signifi-

cant at Po0.025 (P 5 0.044, 0.14). Of the studies in

which elevated N increased NPP, 59% (10/17,

Po0.001) showed a P limitation increase in response

to N deposition, corresponding to six of the 11 (55%,

Po0.001) ecosystems: California grassland, Sweden

bog, intermediate-aged Hawaii montane forest, Estonia

meadow, Norway fen, and Kansas prairie showed

increased P limitation or demand, whereas California

desert, Sweden forest, young Hawaii montane forest,

Netherlands salt marsh, and Belgium fen did not. P

limitation or demand did not increase in either of the

two studies in which warming increased NPP (Table 3).

Table 2 ANOVA table for Jasper Ridge Global Change Experiment (JRGCE) data, showing P-values only

Treatment

Phosphatase Green Avena Senescent Avena

AGP poolMarch May January [P] N : P [P] N : P

C 0.087w 0.878 0.643 0.279 0.764 0.885 0.965 0.756

T 0.757 0.334 0.587 0.393 0.246 0.278 0.368 0.320

R 0.012* 0.010** o0.001*** 0.131 0.643 0.029* 0.938 0.043*

N 0.082w 0.005** o0.001*** o0.001*** o0.001*** o0.001*** o0.001*** 0.024*

R�N 0.068w 0.939 0.178 0.546 0.089w 0.348 0.063w 0.586

C�T�R 0.278 0.133 0.077w 0.219 0.200 0.750 0.970 0.461

T�R�N 0.186 0.918 0.306 0.539 0.590 0.308 0.244 0.085w

Interactions are only shown if they have at least marginally significant (Po0.10) effects on one or more variables.

Treatment abbreviations: C, carbon dioxide; T, temperature; R, rain (precipitation); N, nitrate deposition. AGP pool indicates the

total plant aboveground P, assuming Avena tissue chemistry reflects community tissue chemistry.

wPo0.10; *Po0.05; **Po0.01; ***Po0.001.
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Discussion

CO2, temperature, and interactions

Previous results from the JRGCE have shown that

elevating atmospheric CO2 does not increase NPP

(Dukes et al., 2005), and can even suppress the positive

effects of heat, precipitation, and N on NPP (Shaw et al.,

2002). One proposed explanation for this suppression

was limitation by a soil nutrient, probably P (Shaw et al.,

2002). However, none of the indices in our study

suggests that P demand sufficiently increased under

elevated CO2 to bring it into the limiting range. In

studies from other ecosystems where CO2 was limiting,

there was a tendency for P limitation or demand to

increase, but we found too few such studies in natural

ecosystems for this effect to be significant in our

meta-analysis.

Increasing temperature by � 1 1C in the JRGCE did

not increase NPP (Dukes et al., 2005), and accordingly,

our study revealed no evidence of P limitation. Our full

factorial design was set up to detect nonadditive effects,

but we found none for P demand, as no interaction term

was significant at the 5% level. Neither of the two

published studies where warming increased NPP

showed an increase in P limitation.

Precipitation

Increasing precipitation by 50% decreased soil phos-

phatase activity in the JRGCE by �11%, agreeing with

results from the 2004 growing season (Henry et al.,

2005). Together with the increase in total aboveground

P, this indicates that increasing precipitation moved the

ecosystems away from, not toward, P limitation. In

open-top chambers at Jasper Ridge, an increase in soil

moisture (which resulted from decreased transpiration

in elevated CO2 chambers) stimulated N mineralization

(Hungate et al., 1997), and it is possible the same
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Fig. 1 Main effects of nitrate deposition, precipitation, temperature, and carbon dioxide (CO2) on measures of phosphorus (P) demand

or limitation in the Jasper Ridge Global Change Experiment (JRGCE). Each pair of bars represents all experimental units in the JRGCE:

white bars show means � SE of all experimental units with ambient level of the corresponding factor, black bars show means � SE of

elevated experimental units. Significance of main factors only is shown: ***Po0.001; **Po0.01; *Po0.05; ns P40.10. (a) and (b) show P

concentration in green and senescent Avena foliage, respectively. (c) and (d) show N : P ratio in green and senescent Avena foliage,

respectively. (e) shows the total P in aboveground plant biomass, assuming Avena P chemistry in each quadrant is representative of the

entire community in that quadrant. (f) shows soil phosphatase activity, where the data are pooled from the three assay periods.
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mechanism – increased mineralization with increased

soil moisture – occurs with P. The decreased phospha-

tase activity and increased aboveground P may also

reflect an increase in P diffusivity through soil to roots

and microbes – which is frequently the rate-limiting

step in plant P uptake (Chapin, 1980) – and/or an

increase in the number and size of anaerobic microsites

in the soil, which could stimulate iron reduction and

mobilize iron-bound P.

Another possible mechanism of decreased P demand

with increased precipitation is increased N loss,

through leaching or denitrification (Parkin, 1987). Un-

like the Hungate et al. (1997) study, where increased soil

moisture occurred during water-stressed periods

(through decreased transpiration), precipitation in this

experiment is supplemented at the time of natural

precipitation, when water stress is least likely and N

leaching losses and denitrification are most likely. An

increase in N losses would help to explain both the

decreased P demand and the lack of NPP response to

precipitation (Dukes et al., 2005). The increased above-

ground P may have been offset by decreased root P, if

root P (not measured) followed root biomass (Dukes

et al., 2005). Thus, it is possible that the decreased P

demand follows from increased N losses. However,

increased N losses and increased mineralization of both

N and P are not mutually exclusive, and could act in

concert. We were not able to examine precipitation

effects on P limitation in the meta-analysis because no

precipitation studies met our criteria.

Nitrate deposition

Previous data from the JRGCE have shown that nitrate

addition enhances grass (including Avena) (Zavaleta

et al., 2003), shoot, and total NPP over many years

(Dukes et al., 2005), including the years of our study,

qualifying it as the best candidate factor to increase P

demand. The strongest effect we observed in the JRGCE

was the addition of nitrate: our data show decreases in

P concentrations and widened N : P ratios in green and

senescent Avena, increased phosphatase activity, and

even a decrease in total aboveground plant P, perhaps

a consequence of decreased root allocation under N

deposition (Dukes et al., 2005). Because we did not

fertilize with P we cannot conclusively show P limita-

tion, but all the evidence lines up. Critical N : P values –

that determine the cutoff for N or P limitation – for

terrestrial plants tend to range from 10 to 20 in terres-

trial foliage (Drenovsky & Richards, 2004; Gusewell,

2004), and thus the shift in Avena N : P ratios from 5 to

10 with N fertilization is consistent with P limitation

under elevated N deposition. Soil phosphatase activity

in the JRGCE increased by 14% with elevated N deposi-

tion, indicating an increase in net ecosystem P demand.

Decreases in P concentration (40% for green, 44% for

senescent) indicate P stress to plants, and the decrease in

total aboveground P (17%), consistent with the N : P

ratios, suggests this increased demand has not been met.

Earlier nutrient work at Jasper Ridge yielded a dif-

ferent pattern. A fertilization study with mesocosms

found that, on sandstone (the same substrate as the

JRGCE), (1) PK addition after N fertilization (the

N�PK interaction) decreased Avena shoot biomass

relative to N alone, (2) no other species showed a

significant N�PK interaction, and (3) no species had

a direct response to PK fertilization, suggesting that P is

not limiting (Joel et al., 2001). The earlier study involved

breaking up rock and soil to fill the mesocosms (as

opposed to the JRGCE, which is on natural soils). Given

the results from our study and others in the JRGCE

(e.g. Henry et al., 2005), we now hypothesize that this

process released a pulse of rock-derived nutrients

Table 3 Meta-analysis: effects of global change manipula-

tions on P limitation or demand

Effect on P

limitation

or demand

# Measures of

P limitation

or demand # Studies # Ecosystems

CO2

Increase 3w 2w 1

No effect 10 5 2

Decrease 2 0 0

% that increased 20 29 33

N

Increase 16*** 10*** 6***

No effect 11 7 5

Decrease 0 0 0

% that increased 59 59 55

Temperature

Increase 1 0 0

No effect 12 2 3

Decrease 1 0 0

% that increased 7 0 0

‘Increase’ and ‘decrease’ indicate significant effects of the

relevant variable on a measure of P limitation or demand, as

reported in the source. Study effects were deemed significant if

a majority of the measures in a study were significant; simi-

larly, ecosystem effects were deemed significant if a majority of

the studies in that ecosystem were significant. Ties (an equal

number of significant and nonsignificant effects) were split

between ‘no effect’ and ‘increase’ or ‘decrease.’ Although some

studies manipulated more than one variable, only main effects

are shown.

***Po0.001; wPo0.05 on one tail; P40.05 for all other num-

bers.

P, phosphorus; CO2, carbon dioxide.
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(including P), alleviating any potential limitation by

these nutrients.

Increasing N deposition in the JRGCE pushed the

ecosystem toward P limitation, probably as a conse-

quence of decreased N limitation. This shift is one

manifestation of N saturation (Aber et al., 1989). Chronic

exposure to increased N deposition can cause a shift

from N to P limitation in multiple European systems

(Aerts & Chapin, 2000) and annual grassland on ser-

pentine-derived soil in California (Huenneke et al., 1990;

Joel et al., 2001), as well as the annual grassland on

sandstone-derived soil in this study, suggesting a gen-

eral trend. Results from our meta-analysis support

this general trend: six of the 11 previously N-limited

ecosystems (in 10 of 17 studies) responded to N fertili-

zation with increased P limitation or demand. These

studies come from biogeographically diverse locations

(there were P-limited and non-P-limited ecosystems

from almost all the geographic areas of study: Califor-

nia, Hawaii, Sweden, and Northern Europe), suggest-

ing that local controls on P cycling – soil type, recent

disturbance, etc. – are important. This analysis indi-

cates that globally increased N deposition (Vitousek

et al., 1997) may shift many ecosystems toward P

limitation, potentially causing N saturation and its

associated problems (Aber et al., 1989) in many loca-

tions worldwide.

Conclusions

The treatments in the JRGCE simulate a range of

possible futures. Only N deposition increased plant

growth, and it increased P limitation to the dominant

grass and ecosystem-level P demand. Precipitation de-

creased P demand, possibly by increasing P supply or

by increasing N loss more than P loss (or both). Neither

CO2 nor temperature affected P demand or limitation. If

P supply is just sufficient for normal NPP, future NPP

increases, from any source, could be constrained by P

availability. A meta-analysis revealed that N deposition

is the most likely such source, causing increases in P

limitation or demand in six of 11 ecosystems from

across the world.
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