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abstract: Nutrient availability often limits primary production, yet
the processes governing the dynamics of nutrient limitation are
poorly understood. In particular, plant-available (e.g., nitrate) versus
plant-unavailable (e.g., dissolved organic nitrogen) nutrient losses
may have qualitatively different impacts on nutrient limitation. We
examine processes controlling equilibrium and transient nutrient dy-
namics at three separate timescales in a model of a nutrient cycling
through plants and soil. When the only losses are from the plant-
available nutrient pool, nutrient limitation at a long-term equilib-
rium is impossible under a wide class of conditions. However, plant
biomass will appear to level off on a timescale controlled by plant
nutrient turnover (years in grasslands, decades to centuries in for-
ests), even though it can grow slowly forever. Primary production
can be nutrient limited in the long-term when there are losses of
plant-unavailable nutrients or when the mineralization flux saturates
with increasing detrital mass. The long timescale required for soil
nutrient buildup is set by the plant-unavailable loss rate (centuries
to millennia). The short timescale (hours to days) at which available
nutrients in the soil equilibrate in the model is controlled by biotic
uptake. These insights into processes controlling different timescales
in terrestrial ecosystems can help guide empirical and experimental
studies.

Keywords: nitrogen limitation, model, forest, grassland, quasi equi-
librium, dissolved organic nitrogen.

Introduction

The idea that a nutrient can limit primary production has
been a fixture of ecology since at least 1840, when von
Liebig (1840) suggested that the nutrient in shortest supply
relative to plant demand limits plant growth. Myriad fer-
tilization studies in agricultural and natural ecosystems
since that time have revealed that nutrients can limit pri-
mary production, but most of these studies have consid-
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ered only a single point in time. The dynamics of nutrient
limitation through succession in natural ecosystems have
been studied only more recently, and the interplay between
nutrient losses and nutrient limitation through time has
been a subject of increasing interest in the past few decades
(e.g., Vitousek and Reiners 1975; Gorham et al. 1979; He-
din et al. 1995, 2003; Vitousek et al. 1998). Understanding
nutrient limitation is now more important than ever, be-
cause human activities are altering nutrient conditions
worldwide (Vitousek et al. 1997a, 1997b; Smil 2000). Nu-
trient-limited ecosystems will respond to increases in the
availability of the limiting nutrient by removing it (and
atmospheric CO2) from circulation, mitigating global
changes, whereas ecosystems that are not nutrient limited
do not have this buffering capacity.

Until relatively recently, losses of plant-available nutri-
ents (e.g., nitrate or phosphate) were the only losses con-
sidered in studies of nutrient limitation and balances in
terrestrial ecosystems (e.g., Vitousek and Reiners 1975;
Gorham et al. 1979). As an example of this traditional
view, Vitousek and Reiners (1975) posited that nutrient
losses in terrestrial ecosystems are linked to succession:
when plants are actively growing, they assimilate and retain
the nutrient that is most limiting to them, effectively pre-
venting losses of that nutrient. Because there are always
nutrient inputs from the atmosphere and/or from weath-
ering, preventing losses would result in a buildup of this
nutrient in the ecosystem as it is retained in the biomass
(like a slow trickle of water into a bucket). As succession
proceeds, this nutrient buildup continues until supply ex-
ceeds demand, at which point the nutrient no longer limits
production, inorganic nutrients accumulate, and the
bucket overflows (fig. 1A in Vitousek and Reiners 1975).
Thus, according to the traditional view, a nutrient can limit
primary production during succession but cannot do so
indefinitely in the absence of a disturbance.

Nitrogen (N) loss data from forests in the northeastern
United States reveal much higher nitrate losses in unlogged
(old-growth) forests than in logged (successional) forests,



Nutrient Limitation at Three Timescales 165

which seems to support the traditional view (Vitousek and
Reiners 1975). However, data from unpolluted old-growth
ecosystems reveal very low losses of (Hedin et al. 1995;
Perakis and Hedin 2002) and a high capacity for retention
of (Perakis and Hedin 2001; Perakis et al. 2005) plant-
available nutrients, suggesting that a nutrient (in this case,
N) can limit primary production indefinitely. These data,
although by no means conclusive, call into question
whether the traditional view captures all the relevant nu-
trient dynamics.

In 1995, Hedin and colleagues described a new hy-
pothesis—the leaky-bucket hypothesis—that accounts for
the low losses of plant-available nutrients in old-growth
ecosystems. This hypothesis states that, whereas losses of
plant-available forms of a nutrient cannot maintain nu-
trient limitation in old-growth ecosystems, losses of plant-
unavailable forms (e.g., dissolved organic forms of N
[DON] or phosphorus [P; DOP]) of that nutrient can
(Hedin et al. 1995). The idea was that losses of plant-
unavailable forms are independent of biological demand
(“demand independent”) and act as an unavoidable leak
in the system that, over time, could limit the availability
of that nutrient, and thus limit primary production, even
at steady state. This differs from losses of plant-available
forms, which are demand dependent because plants take
up available forms when they need them, preventing losses.
Hedin and colleagues provided a mechanism for the un-
avoidable loss on the basis of their data from old-growth
forest streams in Chile: DON, which is lost from ecosys-
tems via leaching from the soil into streams, constituted
the vast majority (∼95%) of hydrological N losses from
the system. Losses of nitrate and ammonium—the plant-
available forms of N—were miniscule, indicating that
plants continued to assimilate as much N as possible and
that N continued to limit production in these old-growth
ecosystems. Further research has revealed that DON losses
are ubiquitous in forest ecosystems, ranging from 0.2 to
7 kg N ha�1 year�1 (Perakis and Hedin 2002; Hedin et al.
2003; Houlton et al. 2006).

In addition to DON, other chronic losses may also be
demand independent, such as temporal asynchrony in nu-
trient supply versus demand, soil erosion, occlusion (Vi-
tousek 2004), or potentially, N gas losses (Houlton et al.
2006; but see Hedin et al. 2003). However, in this article
we focus on the distinction between demand-dependent
versus demand-independent nutrient losses in general,
rather than specific loss vectors.

The topic of nutrient limitation at successional steady
state is an intriguing one, but it covers a small part of
successional nutrient dynamics. The concept of steady
state (which we consider to be synonymous with equilib-
rium) depends on the processes considered, and processes
in terrestrial ecosystems occur at many different timescales

(Levin 1992; Hedin et al. 2003; Vitousek 2004). For ex-
ample, microbe growth is much faster than plant growth,
which in turn is much faster than nutrient release from
rock weathering. Considering only the soil microbial com-
munity, steady state may be reached in a matter of days,
whereas it takes years to decades or more for nutrients in
plants to equilibrate. Although such differences in time-
scale in terrestrial ecosystems are well known, their effects
on nutrient dynamics through the course of succession
have only recently been probed (Baisden and Amundson
2003; Vitousek 2004). Understanding nutrient dynamics
at multiple timescales is key to understanding nutrient
cycles in a global-change world, and it remains an open
challenge that is particularly amenable to mathematical
models.

Here we examine steady-state and transient nutrient
dynamics at three timescales in a model that includes nu-
trient pools in plants and the soil, with the soil pool divided
into plant-unavailable (e.g., large organic molecules) and
plant-available (e.g., inorganic or small organic molecules)
nutrients. Our model includes nutrient-limited plant
growth, turnover to the soil, net mineralization, abiotic
inputs of the available form, and losses of both the avail-
able and the unavailable forms. In this framework, we ask
the following questions: (1) Under what conditions can
chronic losses of an available nutrient maintain limitation
by this nutrient at equilibrium? (2) Under what conditions
can chronic losses of an unavailable nutrient, with or with-
out losses of the available form, maintain nutrient limi-
tation at equilibrium? (3) What are the dynamics of the
limiting nutrient at three timescales—those of the available
nutrient in the soil (short), plant biomass (medium), and
soil organic matter (long)—and how do these depend on
the different types of nutrient loss?

Although our model is general in the sense that it con-
tains no assumptions that are specific to one particular
nutrient (similar to DeAngelis 1992), and thus it might
be applied to other nutrients up to the longest timescale
we consider (millennia), we hereafter focus on N, one of
the most important elements in ecosystems and one that
often limits primary production (Chapin 1980; Vitousek
and Howarth 1991). That N could be the sole limiting
resource early in primary succession is easy to understand
(at least in mesic sites), because there is little N in most
rocks (but relatively plentiful amounts of P, calcium, po-
tassium, and other nutrients), plenty of available light, and
a rapidly growing plant community. Because there are al-
ways atmospheric N inputs, however, as well as the pos-
sibility of biologically controlled N inputs (from biological
N fixation [BNF]), sustained limitation by N through an
old-growth system is perhaps the most intriguing nutrient
limitation phenomenon (Vitousek and Howarth 1991; Vi-
tousek and Field 1999; Rastetter et al. 2001; Vitousek et
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Figure 1: Model system described in equations (1)–(3). Boxes are the
nutrient pools in the system: living plant biomass (B), plant-unavailable
soil nutrients (D), and plant-available soil nutrients (A). Within-system
fluxes include plant uptake (Bg(A)), turnover (mB), and net minerali-
zation (m(D)). The fluxes into and out of the model ecosystem are an
abiotic input to the available pool (I), losses of plant-unavailable nutrients
(f(D)), and losses of plant-available nutrients (k(A)). The general func-
tions g(A), m(D), f(D), and k(A), which we assume intersect the point
(0, 0) and increase monotonically, are shown in the diagram. Some of
our analyses are performed with the general functions, but when nec-
essary we use linear (in the text) or saturating (in “Saturating Functions”
in the appendix in the online edition of the American Naturalist)
functions.

al. 2002; Menge et al. 2008). For these reasons, and because
there are many N-related data, we use N cycling data to
parameterize our model, and we often refer to the limiting
nutrient as N.

Model Description, Analysis, and Simulations

Following other ecosystem models (e.g., DeAngelis 1992;
Vitousek et al. 1998), our model includes plant N (B for
“biomass,” synonymous here with “plant”), plant-un-
available soil N (D for “detritus,” synonymous with “or-
ganic” and “unavailable”), and plant-available N (A for
“available,” such as nitrate, ammonium, and small organic
molecules), all in mass N area�1 (fig. 1). We use “un-
available” and “organic” interchangeably, as well as “avail-
able” and “inorganic,” even though plants can access some
organic molecules (e.g., Näsholm et al. 1998). Because we
are concerned with single-nutrient limitation, we consider
only one resource. Our model satisfies the equations

dB
p B(g(A) � m), (1)

dt

dD
p mB � m(D) � f(D), (2)

dt

dA
p I � m(D) � k(A) � Bg(A). (3)

dt

The growth function g depends only on A, so relative plant
growth can be limited only by available N (as in consumer-
resource theory, e.g., Tilman 1982). This differs from some
models (e.g., Clark et al. 2005) where relative plant growth
depends on plant biomass. Allowing to be a(1/B)(dB/dt)
function of B, that is, allowing relative growth or mortality
to be directly density dependent, implicitly introduces
other limitations, but we are interested in modeling single
limitation. Plant N is transferred to organic N at the rate
m. Soil organic N is mineralized to available N (as defined
by the function m(D)) and is lost as f(D). There are abiotic
inputs of available N (I), losses of available N (k(A)), and
plant uptake (Bg(A)). All parameters are assumed to be
positive unless otherwise stated, and the functions g(A),
m(D), f(D), and k(A) are assumed to intersect the origin
and increase monotonically. At present, we leave the
growth, mineralization, and loss functions unspecified to
show that some results do not depend on specific func-
tional forms.

Inputs and losses are the abiotic inputs, available losses,
and unavailable losses ((dB/dt) � (dD/dt) � (dA/dt) p

). Abiotic inputs in the model representI � k(A) � f(D)
atmospheric deposition (wet and dry deposition, cloud
and fog inputs of available forms) and weathering inputs

from bedrock for rock-derived nutrients (e.g., P). The ma-
jor nutrient input excluded by this model is BNF, which
is specific to one nutrient (N) and which we treat elsewhere
(Menge et al. 2008). We interpret available losses as any-
thing leaving the available pool, including leaching
through the soil and (for N) gas losses through denitrifi-
cation, nitrification, or ammonium volatilization. A major
set of fluxes omitted by this model are those due to dis-
turbances, because we are primarily interested in the dy-
namics of an ecosystem in the absence of disturbance. We
will, however, discuss how disturbance would affect our
results.

We analyze this model in two ways. First, we look for
stable, steady-state solutions of equations (1)–(3) in dif-
ferent scenarios (available losses and/or unavailable losses).
If a finite, locally stable equilibrium exists, it is possible
for the plant population to be limited by one nutrient at
steady state. This does not guarantee that a plant popu-
lation will be limited by that nutrient, because no other
resources are included in the model and some other re-
source may cap growth below the limit allowed by the
availability of the nutrient, but we are interested in de-
termining which mechanisms can allow a plant population
to be limited by a single nutrient. Alternatively, if no such
equilibrium exists and the plant pool increases forever, a
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Table 1: Parameter definitions, units, and values for the model simulations

Parameter Definition Units Grassland Forest

g N uptake rate kg N�1 ha year�1 4.0 .15
m Biomass N turnover rate year�1 1.0 .019
m Net N mineralization rate year�1 .0091 .0076
f Unavailable N loss rate year�1 .0027 .00089
I Abiotic N input flux kg N ha�1 year�1 15 2.0
k Available N loss rate year�1 1.0 1.0

Note: Grassland parameter values for m, f, and I are from Baisden et al. (2002) and Baisden and

Amundson (2003). Other grassland parameter values come from assuming annual turnover (m), the

same as forest (g), or the same loss rate as forest (k). Forest parameter values come from HedinA

et al. (1995), Perakis and Hedin (2001), Vann et al. (2002), and Perakis et al. (2005). N p nitrogen.

single nutrient cannot limit primary production. We do
not explicitly include another resource, but our interpre-
tation of this perpetual growth is that some other resource
(e.g., light, space, or water) or factor (e.g., top-down con-
trol) must ultimately limit plant production in the absence
of disturbance. A final alternative is that plant N is capped
but total ecosystem N increases forever, in which case a
nutrient can limit plant production indefinitely but not
total N accumulation.

Second, we assume that the three components of the
system change on different timescales (aka return times;
DeAngelis 1992), and we investigate the transient and
quasi-equilibrium dynamics at each timescale. Quasi equi-
libria—states that do not change appreciably on the time-
scale of interest—are useful for understanding systems
with different timescales because they reduce the com-
plexity of the system, often permitting further insight (e.g.,
Ludwig et al. 1978).

At the shortest timescale, we assume that available N
in the soil changes so rapidly that it comes to a quasi
equilibrium instantaneously relative to changes in biomass
N or soil organic N. On the intermediate timescale, we
look at changes in plant N, assuming that available N keeps
pace instantaneously with plant N and that soil organic N
changes so slowly that it is relatively constant. On the
longest timescale, we examine the dynamics of soil organic
N, assuming that both available N and plant N keep pace
instantaneously.

The assumption of separate timescales is generally sup-
ported by the literature. Tracer studies with 15N show that
nitrate and ammonium are taken up very rapidly in N-
poor ecosystems (hours to days in grasslands and forests;
Jackson et al. 1989; Schimel et al. 1989; Zak et al. 1990;
Perakis and Hedin 2001; Providoli et al. 2006). In grass-
lands, it seems reasonable that the timescale of biomass
N is short (a year to a decade) relative to that of soil
organic N (decades to centuries; Brenner et al. 2001). In
forests, total biomass takes longer to equilibrate, but be-
cause leaves and fine roots often contain more N than
wood does (Binkley et al. 1992), it is reasonable that the

timescales of plant N (years to decades or perhaps cen-
turies, assuming that plant N is proportional to leaf area
index; Uhl and Jordan 1984; Aber and Melillo 1991; Ka-
shian et al. 2005) and soil organic N (centuries to millen-
nia; Crews et al. 1995; Richardson et al. 2004) are separate.

We subject our model ecosystem (with linear functions)
to two perturbations to reveal the three timescales and the
accuracy of our quasi-equilibrium approximations. Start-
ing from equilibrium, we numerically solve equations (1)–
(3) (using MATLAB 7.4.0, R2007a’s ode45), first stopping
at 0.001 years (approximately half a day) to fertilize with
30 kg of available N ha�1. Second, we simulate a distur-
bance that causes N loss (e.g., fire) at 0.1 years (∼1 month),
setting biomass and detritus N levels to 5% and 50%,
respectively, of their predisturbance values. We run this
system for 10,000 years for both grassland and forest
parameters.

We also simulate the model with different rates of or-
ganic N loss to illustrate the effect of this loss rate on plant
N dynamics. Using the N loss disturbance as our starting
condition, we run the model without perturbation for
1,000 years, showing the first 10 years (grassland) or 100
years (forest) on a yearly scale and the rest on a century
scale.

Grassland parameters come from the youngest site on
a well-studied chronosequence of annual grasslands in the
San Joaquin Valley, California (see Baisden et al. 2002 for
site descriptions). Forest parameters come from well-stud-
ied, unpolluted, mixed angiosperm-conifer forests on the
Isla de Chiloé, Chile (see Hedin et al. 1995; Vann et al.
2002 for site descriptions), which have more N in wood
than most forests, thereby allowing a conservative test of
timescale separation. Parameter values are presented in
table 1.

Results

Equilibrium Analysis

We examine two cases of N loss in our model ecosystem.
The first case permits only losses of available forms of N
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(traditional view, and ), whereas thef(D) p 0 k(A) 1 0
second case permits losses of both available and unavail-
able forms of N (leaky-bucket hypothesis, andf(D) 1 0

). For both cases, there is a trivial equilibriumk(A) 1 0
where plant and soil organic N masses are both equal to
0, but we do not consider this trivial equilibrium in our
analysis.

Traditional View: Losses of Available N Only. Under what
conditions can losses of available N alone sustain N lim-
itation at equilibrium? From equations (2) and (3), the
equilibrium plant N value when isf(D) p 0

I � k(A)
B p , (4)

g(A) � m

where a bar denotes the equilibrium value of a variable.
For plant N to be at equilibrium, N uptake must equal
turnover ( , from eq. [1]), so in equation (4)∗g(A ) p m B
is undefined. For the ecosystem to be at steady state, inputs
must equal losses ( ), so the numerator of equa-†I p k(A )
tion (4) is also 0. The value of the available N pool that
equilibrates plant growth ( ) is not the same as the value∗A
that causes inputs to equal losses ( ). Therefore, if†A

, plant biomass (B) grows to infinity (linearly when∗ †A ! A
time is large), whereas if , plant biomass shrinks∗ †A 1 A
to 0. Although shrinkage is possible, we hereafter ignore
it, assuming that plants can inhabit the site. Because we
have not yet specified functional forms for plant N uptake
or available N losses, the result that plants can grow forever
holds for any uptake and loss functions subject to the
conditions above.

This result agrees with those of other studies (e.g., fig.
3.4 in DeAngelis 1992), and it supports part of both the
traditional view and the leaky-bucket hypotheses: losses of
available N alone cannot maintain a long-term N-limited
steady state of the full ecosystem under a wide range of
conditions. Importantly, it is not necessary for plants to
take up all available N (as in some models, e.g., Vitousek
et al. 1998; Vitousek and Field 1999; Vitousek 2004) to
overcome N limitation: in this model there are available
N losses ( ), but plants can still grow withoutk(A) 1 0
bound.

One main assumption on which this result depends is
that the mineralization function m(D) does not saturate.
When it does, there is still no equilibrium of the full eco-
system, but in the long term the subsystem with plants
and plant-available nutrients approaches an asymptote (as
we show in the quasi-equilibrium analysis below), thereby
sustaining N limitation and capping plant biomass.

Leaky-Bucket Hypothesis: Losses of Unavailable N or Both.

When losses of unavailable nutrients are included, stable
equilibria are possible whenever (1) plants can inhabit the
ecosystem and (2) organic losses can exceed the difference
between inputs and steady-state inorganic losses (see
“Conditions under Which Organic Nitrogen Losses Allow
a Positive Equilibrium” in the appendix in the online edi-
tion of the American Naturalist). When such an equilib-
rium exists, it is locally stable, given our assumptions about
g(A), m(D), f(D), and k(A) (see “Local Stability Analysis”
in the appendix). This confirms the second part of the
leaky-bucket hypothesis: losses of unavailable N can main-
tain N limitation at equilibrium under a wide range of
conditions. This remains true even if plants take up all
available N ( , as in Vitousek et al. 1998; Vitousekk p 0
and Field 1999).

Quasi-Equilibrium Analysis

In this subsection, we take advantage of the natural time-
scale separation in terrestrial ecosystems to simplify our
model. At each timescale—available soil N (hours to days),
plant N (years to centuries), and soil organic N (centuries
to millennia)—we assume that slow variables are constant
and fast variables have quasi-equilibrated. To examine the
three timescales of the system (eqq. [1]–[3]), we specify
linear functions for growth and inorganic loss, (g(A) p

and , as in Menge et al. 2008), which aregA k(A) p kA
decent approximations of saturating functions when A is
small. In “Saturating Functions” in the appendix, we show
that the qualitative results are identical with saturating
functions.

Short Timescale. From equation (3), with linear k(A) and
g(A) and treating B and D as constants, the exact and
approximate (see “Assumptions about Flux Magnitudes”
in the appendix) quasi equilibria ( ) and short-timescaleÂ
solutions are

I � m(D)
Â p , (5)

k � gB

m(D)
Â ≈ , (6)

gB

�(k�gB)tˆ ˆ( )A(t) p A � A(0) � A e , (7)

where A(t) is the value of A at time t. The function A(t)
starts at A(0) and approaches asymptotically. The rateÂ
at which it approaches (i.e., the timescale) is controlledÂ
by the exponent (DeAngelis 1992), . When plantk � gB
uptake of available N is much greater than losses of avail-
able N (“Assumptions about Flux Magnitudes”), equation
(7) says that the time it takes for soil available N to ap-
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proach its equilibrium is controlled almost exclusively by
plant N uptake, gB. The function f(D) does not appear
in equations (5)–(7), so unavailable N losses have no effect
on the quasi-equilibrium value of soil available N. Fur-
thermore, soil available N will equilibrate on its timescale
(hours to days) independent of whether there are organic
losses.

Intermediate Timescale. Substituting equation (5) into
equation (1) and setting yields the quasi equi-dB/dt p 0
librium of plant N mass ( ). Using equation (6), equationB̂
(1) can be solved to yield plant N at time t as a function
of soil organic N (see “Differential Equations from Time-
scale Analysis” in the appendix). These are

I � m(D) k
B̂ p � , (8)

m g

�mtˆ ˆ( )B(t) ≈ B � B(0) � B e . (9)

Plugging equation (8) into equation (5) reveals that isÂ
controlled by plant parameters ( ) beyond shortÂ p m/g
timescales, as in classical consumer-resource theory (Til-
man 1982). In equation (8), is finite regardless of theB̂
value of f(D), provided that m(D) is finite. Therefore,
when the plant N timescale is shorter than the soil organic
N timescale, plant N approaches the quasi equilibrium

at the plant turnover rate (m; see “Eigenvalue Calcula-B̂
tions” in the appendix), regardless of whether there are
organic N losses. In annual grasslands, m is approximately
uniform across tissue types and typically has a value of 1
year�1 or faster. In forests, m is composed of litterfall and
mortality rates (years to centuries), but it is dominated by
whichever N pool (foliar or stem) is larger. In forests where
there is more N in foliage than in stems, the timescale of
plant biomass N is on the same order as litterfall.

Long Timescale. Because total N in the full model grows
indefinitely without organic losses, and the short and in-
termediate timescales reach quasi equilibria, detritus N
(and thus, total N) must grow indefinitely on the long
timescale when there are no organic N losses. This can be
illustrated with a linear soil organic N loss function
( ) (which we use for the remainder of “Re-f(D) p fD
sults”), which gives the equilibrium value of soil organic
N ( ) and D at time t (from eq. [2]) on the long timescale,D

I � (km/g)
D p , (10)

f

�ft( )D(t) p D � D(0) � D e . (11)

When , soil organic N is undefined at equilibriumf p 0

(see also “Saturating Functions” and “Differential Equa-
tions from Timescale Analysis”). If m(D) does not saturate,

also grows without bound (eq. [8]), but if m(D) doesB̂
saturate, , and thus , is bounded. When soil organic NB̂ B
is lost, D goes from D(0) to at a timescale controlledD
by the organic N loss rate, f. However, linearization
around the equilibrium shows that the true return rate for
the longest timescale is closer to , and f is themf/(m � m)
approximation when (see “Eigenvalue Calcula-m k m
tions” for links between timescales and eigenvalues of the
linearization matrix).

Simulations

Three Separate Timescales. The three timescales of the
model are apparent in our first simulations, which show
plant N (B), detritus N (D), and available N (A) in the
grassland (fig. 2) and forest (fig. 3), with time on a log-
arithmic scale. The full system (eqq. [1]–[3], with func-
tions and parameters listed in table 1) is in solid black in
each figure, starting at equilibrium (dotted lines). Timescale
approximations (eqq. [7], [9], [11]) are thick dashed lines,
and quasi equilibria (eqq. [5], [8]) are dashed-dotted lines.

At 0.001 years, we fertilize with 30 kg available N ha�1,
which is rapidly taken up by plants, revealing the shortest
timescale. The available N pool quasi-equilibrates within
a few days (figs. 2C, 3C). When the forest takes up the
pulse of N fertilizer (fig. 3A), biomass N stays relatively
constant because the plant N pool is large relative to the
fertilizer pulse, supporting our assumption of constant
plant N mass on the short timescale. In the grassland, the
biomass N increase is more apparent (fig. 2A) because the
plant N stock is smaller than it is in the forest. The short-
timescale approximation of available N, equation (7) (figs.
2C, 3C, thick dashed lines), fits the full system excellently
for the forest (diverging by !0.2 kg N ha�1 from the full
simulation; fig. 3C) and still fits quite well for the grassland
(diverging by !2 kg N ha�1; fig. 2C).

To reveal the intermediate timescale, we simulate a dis-
turbance (such as fire) at 0.1 years, removing 95% of plant
N (figs. 2A, 3A) and 50% of detritus N (figs. 2B, 3B). With
the biomass crash, available N uptake decreases, so avail-
able N increases (figs. 2C, 3C). In the grassland, plants
quasi-equilibrate in a few years (fig. 2A). Although plants
remove N from the detritus pool (by way of the available
pool) to fuel their growth, the detritus N pool is much
larger than the plant N pool, so it remains effectively con-
stant over the intermediate timescale (fig. 2B). The inter-
mediate-timescale approximation of grassland biomass N,
equation (9), is indistinguishable from the full system ap-
proximation, differing by !2 kg N ha�1.

In the forest, it takes much longer for plants to regrow
to their quasi equilibrium (∼200 years; fig. 3A) because
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Figure 2: Three timescales of the model grassland with time on a logarithmic scale. The numerically integrated system (eqq. [1]–[3] with linear
functions, using grassland parameter values in table 1) is represented by solid lines, equilibria by dotted lines, quasi equilibria by dashed-dotted
lines, and timescale approximations by thick dashed lines. Stocks of (A) biomass N, (B) available nitrogen (N), and (C) detritus N are shown. The
system starts at equilibrium, and then at 0.001 years we fertilize with 30 kg available N ha�1 to illustrate the short timescale. The quasi equilibrium
(eq. [5], the same here as the equilibrium) and timescale approximation (eq. [7]) for available N are shown from 0.001 to 0.1 years in C. At 0.1
years, 95% of biomass and 50% of detritus N are removed to simulate a disturbance such as fire and reveal the intermediate timescale (plant
regrowth). From 0.1 to 10 years, the quasi equilibria (eq. [8]) and timescale approximation (eq. [9]) of biomass N are shown in A. Starting at 10
years, when plant biomass has approached its quasi equilibrium, the long timescale begins, and the timescale approximation of detritus N (eq. [11])
is shown in B. The long timescale constitutes rebuilding total N stocks. Equilibria are shown at all times.

much of the plant N is locked up in stems and thus turns
over slowly (table 1). Because the plant N pool is on the
same order of magnitude as detritus N in the forest, the
transfer of N from detritus to plants makes an appreciable
dent in the detritus N pool (fig. 3B). Therefore, the as-
sumption of constant detritus N on the intermediate time-
scale is not as good in the forest, as reflected by the di-
vergence (∼80 kg N ha�1) of the plant N approximation
(eq. [9]; thick dashed lines in fig. 3A) from the true value
(solid lines in fig. 3A). However, this difference is only a
maximum of 20% off from the true value.

Losses of N from this disturbance are substantial, and
the rebuilding of total N constitutes the longest timescale.
Starting at 10 years (grassland) or 200 years (forest), or-
ganic N begins to increase noticeably, and it nears its equi-
librium after ∼2,000 years (grassland; fig. 2B) or ∼7,000
years (forest; fig. 3B). Available N and plant N track the
changes in organic N almost instantaneously. The long-
timescale approximation (eq. [11]; thick dashed lines in

figures) starts at 10 years (grassland; fig. 2B) or 200 years
(forest; fig. 3B). The approximation for the grassland is
nearly perfect, diverging by !10 kg N ha�1 (!1% diver-
gence), whereas the approximation for the forest diverges
by !150 kg N ha�1 (!10% divergence). This divergence in
the forest simulation stems from the breakdown of the
assumption that in the forest (table 1; “Eigenvaluem k m
Calculations”).

Effect of Organic Losses. Our final simulations display the
effects of organic N losses on grassland (fig. 4A) and forest
(fig. 4B) biomass N on intermediate and long timescales.
We run the full system with four organic N loss rates
( , , , andf p 0 f p f /4 f p f /2 f p f1 2 max 3 max 4 max

years�1, where fmax is the f value for each ecosystem from
table 1), starting directly after the disturbance. In the grass-
land, plant N increases rapidly in the first few years and
then levels off on the yearly timescale. At 10 years, plant
N is indistinguishable for the four f values. In contrast,
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Figure 3: Three timescales of the model forest, with time on a logarithmic scale. The only differences from figure 2 are that forest parameters (table
1) are used and that the cutoff between the intermediate and long timescales is 200 years instead of 10 years.

the differing organic loss rates are quite important on the
long timescale (after the vertical line). With fmax, the sys-
tem approaches equilibrium at 1,000 years, whereas for

and , plant N will grow appreciably for mil-f /2 f /4max max

lennia, and for , plant N will grow linearly forever.f p 0
In the long term, N limitation cannot be maintained when

(when m(D) is linear), but on the timescale of yearsf p 0
to centuries, N could limit plant growth and appear to
cap plant biomass, even without organic N losses. In the
forest, the story is similar, except it takes decades for plant
N to appear to saturate, and thus we display the timescale
break at 100 years (when plant N values are still nearly
indistinguishable).

Discussion

Answers to the first two questions posed in “Introduction”
are clear. First, under a large class of conditions, chronic
losses of plant-available forms of a nutrient alone cannot
maintain limitation by that nutrient at a long-term equi-
librium, supporting part of both the traditional (Vitousek
and Reiners 1975) and the leaky-bucket (Hedin et al. 1995)
hypotheses. This is apparent from equation (4), which
shows that plants can grow indefinitely when there are
losses of available forms only (and therefore it implies that

some other factor, such as light, must ultimately limit plant
production in this scenario). This result is robust to a large
class of functions for plant uptake, mineralization, and
available nutrient loss, with a key exception.

When net mineralization is a saturating function of de-
tritus N, plant biomass approaches an asymptote, so long-
term nutrient limitation to plants occurs despite the con-
tinual accumulation of soil organic N. A saturating
mineralization function is no less plausible than a linear
form, and it could result from many mechanisms, such as
decomposition being limited by something other than sub-
strate (e.g., grazing) or a simple inability to process a large
amount of detritus (sensu handling time). This would re-
sult in detritus accumulation and burial. Unfortunately,
experiments testing the functional form are lacking, so we
cannot rule out or fully embrace this mechanism. How-
ever, although it does not imply a loss in the same sense
as DON leaching because the N is still physically in the
ecosystem, saturating mineralization is similar to losses of
unavailable N from the plants’ perspective. As detritus N
increases, proportionately less N is mineralized and thus
proportionately more N is effectively lost to plants.

Second, losses of a plant-unavailable form of a nutrient
can maintain limitation by that nutrient at an equilibrium
of the full ecosystem under a large class of conditions,
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Figure 4: Effect of organic nitrogen (N) losses on (A) grassland and (B) forest biomass N over medium and long timescales. Starting the full model
from right after the disturbance, biomass N stocks are shown on two timescales, for (A) the first 10 years or (B) 100 years and the following 1,000
years, both of which have a linear scale. Each separate run differs in the loss rate of unavailable N: , , , andf p 0 f p f /4 f p f /2 f p1 2 max 3 max 4

year�1, where fmax is the value listed for the respective ecosystem type in table 1. All other parameters are as in table 1 for each ecosystemfmax

type. Note that when , N cannot limit plant growth at equilibrium.f p 0

confirming the second part of the leaky-bucket hypothesis
and generalizing previous simulation studies (Vitousek et
al. 1998; Vitousek and Field 1999). Specifically, organic
losses can maintain nutrient limitation when two condi-
tions are met: (1) plants can inhabit the ecosystem and
(2) the organic loss flux can exceed a threshold set by the
difference between inputs and steady-state inorganic losses
when the detritus pool is sufficiently large. The first con-
dition is true in any environment we are considering. The
second condition is more interesting, and it highlights the
importance of the relationship between the detritus N pool
and organic N loss fluxes. The most straightforward re-
lationship is that a constant fraction of the detritus N pool
is lost per unit time (as in the linear function we use), in
which case a stable, single-nutrient-limited equilibrium
exists. However, many nonlinear relationships also allow
for such an equilibrium. The only relationships that would
violate the second condition (and render sustained N lim-
itation impossible) are those that specify that organic N
losses saturate below as the detritus N pool grows.I � k(A)
Although we feel that these are less likely than proportional
relationships, studies examining the relationship between
the soil organic N pool size and organic N loss fluxes are
needed.

The fact that a loss from either the detritus or the bio-
mass pool (or both) must be included to allow an equi-
librium to exist has been recognized in many nutrient cycle
models (e.g., DeAngelis 1992; DeAngelis et al. 1995; Dauf-
resne and Hedin 2005; Ballantyne et al. 2008). However,
to our knowledge, only one other model similar to ours
has considered this result in light of the leaky-bucket hy-
pothesis. Vitousek et al. (1998) used difference equation
simulations to show that nutrient limitation could not be
maintained when plants take up all available nutrients (i.e.,
losses of the limiting nutrient are 0), but first-order losses
of plant-unavailable soil nutrients could maintain nutrient
limitation indefinitely. Our results agree with this study,
but they generalize it to a much larger class of models.

Taken together, our equilibrium results shed light on
the importance of biotic control on nutrient losses in nu-
trient limitation in very old ecosystems. When plants have
a chance to assimilate the nutrient that limits their growth
before it is lost, they will not be limited by that nutrient
indefinitely, which supports the traditional view. Impor-
tantly, they do not have to assimilate every molecule (as
in Vitousek et al. 1998; Vitousek and Field 1999). In con-
trast, when there are losses from a pool that plants cannot
control or from a continual accumulation of detritus N
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that cannot be broken down, a nutrient can limit primary
production indefinitely.

Although a lack of biotic control on nutrient losses can
maintain nutrient limitation, biotic control on nutrient
inputs may counteract this effect (Vitousek and Howarth
1991; Vitousek and Field 1999; Rastetter et al. 2001; Vi-
tousek et al. 2002; Menge et al. 2008). For example, BNF
is under biotic control and can be a large N input. The
model we present here omits BNF, but we have shown
elsewhere that adding BNF to the model used in this study
(using linear functions and assuming that N fixers have
access to the same available N pool as nonfixers) changes
the condition that renders equilibrium N limitation pos-
sible from organic N losses exceeding 0 to organic N losses
exceeding BNF inputs. This would make sustained N lim-
itation harder to explain, although physiological and eco-
logical trade-offs with BNF could select against N fixers
(Menge et al. 2008).

The answer to our third question (about nutrient dy-
namics at different timescales) is less concise because there
is a rich array of dynamics in even this simple model
ecosystem. For the most part, our assumptions of complete
timescale separation are justified (figs. 2, 3). The available
form of the nutrient is taken up very quickly after the
fertilization, on the order of days (figs. 2C, 3C). After the
disturbance, plants regrow and approach their quasi equi-
librium in a matter of years in the grassland (fig. 2A) or
decades to centuries in the forest (fig. 3A). On the longest
timescale, the unavailable form of the nutrient increases
slowly, approaching its equilibrium on the order of cen-
turies to millennia (figs. 2B, 3B), and it is tracked by nu-
trient stocks in the biomass (figs. 2A, 3A).

This separation means that our analyses can help us
understand the dynamics of the system, but it does not
mean that the components of the different timescales are
independent of one another. In fact, they depend heavily
on each other. For example, at the fast timescale, the quasi
equilibrium of available N in the soil depends on both the
detritus and the plant N pools (eq. [5]).

Each of the timescales is controlled by the loss rate from
the nutrient pool of interest. Plant uptake controls the
short timescale (eq. [7]), plant turnover controls the in-
termediate timescale (eq. [9]), and organic losses control
the long timescale (eq. [11]). Because plants have evolved
in a competitive environment where nutrients are often
in short supply, it makes sense that uptake from the avail-
able pool is rapid. Nutrient uptake helps a plant and hurts
its competitors, so it should be under strong selection.

Plant turnover controls the intermediate timescale, as
presented in figures 2A and 3A. The turnover rate is high
in grasslands (table 1; fig. 2A) because all plant stocks
(leaves, roots, reproductive structures) turn over quickly,
whereas it is lower in forests (table 1; fig. 3A) because

some nutrients are locked up in slower pools. A more
realistic forest model would include at least two plant nu-
trient pools—one for rapid-turnover pools (foliage and
fine roots) and one for slower pools (wood, stems, and
coarse roots)—which would make the timescale approx-
imations fit better.

The organic N loss rate controls the longest timescale,
but it has a negligible effect at shorter timescales. The quasi
equilibria of available N (eq. [5]) and plant N (eq. [8])
do not depend on the organic loss rate (f), but the equi-
librium plant and detritus pool sizes and the longest time-
scale do (eq. [8] when ; eqq. [10], [11]; fig. 4).D p D
This result agrees with a study by Rastetter et al. (2005),
who used the multiple element limitation (MEL) model
to show that, when carbon (C) and N colimit plant growth,
DON losses have a larger effect on the amount of C and
N stored at long timescales (160 years) than plant-available
N losses do. Importantly, they found that the functional
form of DON loss was also important to the magnitudes
of C storage. Their interpretation of these results, similar
to ours, is that the degree of plant control on nutrient loss
is the key distinction. Our model shows that this result
does not depend on the complexities of the MEL model
(which includes many aspects that our model omits, such
as stoichiometric differences, multiple element limitation,
and many more pools), and it makes explicit the effect of
the parameters on the equilibrium values and timescales
(albeit for a simpler, and thus less realistic, model than
the MEL model).

Together, these studies indicate that studies of organic
loss rates in intact, old-growth ecosystems are crucial to
understanding nutrient limitation over timescales of cen-
turies to millennia. For example, Hedin et al. (2003) use
their DON loss data to calculate when N sufficiency sets
in across a long-term soil chronosequence in Hawaii. Em-
pirical studies quantifying the relationship between soil
organic nutrient pools and organic loss fluxes (i.e., the
form of the function f(D) and its parameters) will go a
long way toward understanding nutrient limitation at long
timescales. Our work shows that low-saturating loss func-
tions cannot allow for a nutrient-limited equilibrium, and
it shows exactly how the parameters of f(D) affect the
sizes of pool and timescales given certain assumptions
about the shape of f(D). The work of Rastetter et al. (2005)
shows substantial effects of the functional form of f(D)
on C storage. Given the importance of these different out-
comes (nutrient limitation vs. no nutrient limitation, C
storage capacity, and the rate of C storage) on issues of
global change, understanding the shape of f(D) is
important.

These multiple-timescale dynamics also have important
implications for nutrient limitation at shorter timescales,
particularly in experimental studies. In grasslands, plant
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N appears to saturate at its quasi equilibrium (figs. 2A,
4), well before it reaches equilibrium, and it even appears
to saturate when it will never equilibrate (when ;f p 0
fig. 4, solid line). With even a small amount of noise in
the system (whether experimental error or true noise due
to something like climate variability), the values of plant
N at 10 years and 50 years would be indistinguishable.
Furthermore, the values of plant biomass for the four dif-
ferent organic loss rates, even at 50 years, would be in-
distinguishable. Therefore, on the timescale of any typical
experiment (less than a few decades), differences in organic
losses have little to no effect on experimental results (as
long as the treatments start at the same state).

Along with BNF, which we discuss above, our model
omits other biogeochemical processes, trophic levels, and
timescales (such as extremely rapid microbial activity
[Jackson et al. 1989; Schimel et al. 1989; Zak et al. 1990;
Perakis and Hedin 2001; Providoli et al. 2006] and slow
geological processes [Walker and Syers 1976; Hedin et al.
2003; Vitousek 2004]). Furthermore, we do not explicitly
treat disturbances such as fire, storms, or landslides in the
analytical model, but these can remove nutrients or trans-
fer plant biomass to the soil (Uhl and Jordan 1984; Yanai
1998; Houlton et al. 2003; Burns and Murdoch 2005;
DeLuca and Sala 2006; Gray and Dighton 2006). An il-
lustration of this effect is displayed in figures 2 and 3 when
a disturbance removes plant and soil N; these large N losses
take centuries to millennia to replenish. In many real eco-
systems, disturbances occur on much shorter return in-
tervals and thus could easily maintain nutrient limitation
indefinitely, even without chronic losses (as in Vitousek et
al. 1998; Vitousek and Field 1999; Vitousek 2004) or burial
of organic nutrients.

Even without disturbance, our model shows that nu-
trient limitation can be maintained for a long time, with
or without losses of plant-unavailable nutrients. On time-
scales of years (for grasslands) to centuries (for forests),
biomass N can approach a quasi equilibrium that would
be indistinguishable from a true equilibrium in a real eco-
system, even when nutrient limitation at steady state is
impossible.
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Herbert, and G. I. Ågren. 2001. Resource optimization and sym-
biotic nitrogen fixation. Ecosystems 4:369–388.

Rastetter, E. B., S. S. Perakis, G. R. Shaver, and G. I. Ågren. 2005.
Terrestrial C sequestration at elevated CO2 and temperature: the
role of dissolved organic N loss. Ecological Applications 15:71–86.

Richardson, S. J., D. A. Peltzer, R. B. Allen, M. S. McGlone, and R.
L. Parfitt. 2004. Rapid development of phosphorus limitation in
temperate rainforest along the Franz Josef soil chronosequence.
Oecologia (Berlin) 139:267–276.

Schimel, J. P., L. E. Jackson, and M. K. Firestone. 1989. Spatial and
temporal effects of plant-microbial competition for inorganic ni-
trogen in a California annual grassland. Soil Biology and Bio-
chemistry 21:1059–1066.

Smil, V. 2000. Phosphorus in the environment: natural flows and
human interferences. Annual Reviews of Energy in the Environ-
ment 25:53–88.

Tilman, D. 1982. Resource competition and community structure.
Princeton University Press, Princeton, NJ.

Uhl, C., and C. F. Jordan. 1984. Succession and nutrient dynamics
following forest cutting and burning in Amazonia. Ecology 65:
1476–1490.
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Appendix from D. N. L. Menge et al., “Emergence and Maintenance of
Nutrient Limitation over Multiple Timescales in Terrestrial
Ecosystems”
(Am. Nat., vol. 173, no. 2, p. 164)

Supporting Analyses, Conditions, Equations, and Assumptions
Conditions under Which Organic Nitrogen Losses Allow a Positive Equilibrium

From setting in equation (1), is positive wheneverdB/dt p 0 A

lim g(A) 1 m, (A1)
Ar�

that is, whenever plants with access to plenty of nutrients grow enough to overcome losses from plant turnover.
The steady-state condition from equation (2) is , so is positive whenever is positive.B p (m(D) � f(D))/m B D
Finally, the steady-state condition for the whole system is , so is positive wheneverI � k(A) � f(D) p 0 D I 1

andk(A)

lim f(D) 1 I � k(A). (A2)
Dr�

When there are losses of organic nitrogen (N; ), is set by , corresponding to in∗
f(D) 1 0 A g(A) p m A

“Equilibrium Analysis, Traditional View” in “Results.” Therefore, nutrient inputs exceed abiotic losses at
equilibrium ( ) whenever plants can inhabit the site without organic losses ( ). Assuming that this is∗ †I 1 k(A) A ! A
true, condition (A2) says that is positive when organic nutrient losses can exceed the difference betweenD
inputs and steady-state inorganic losses.

Local Stability Analysis

Local stability of the internal equilibrium of equations (1)–(3) is given by the Jacobian matrix of this system,
evaluated at equilibrium, which is

′0 0 Bg (A) 
′ ′m �(m (D) � f (D)) 0 , (A3) ′ ′ ′�g(A) m (D) �(k (A) � Bg (A)) 

where a prime indicates a derivative. As long as the equilibrium is positive and finite, and under the assumptions
we made about the functions in the text, matrix (A3) satisfies the Routh-Hurwitz conditions for all eigenvalues
having a negative real part (trace ! 0, trace # sum of principal minors ! determinant, determinant ! 0),
guaranteeing local stability of the equilibrium (for details of this analysis, see May 1973). Because this analysis
did not depend on specific functional forms of g(A), m(D), f(D), or k(A), it holds for any such functions that
intersect the origin and increase monotonically, such as the familiar linear, Michaelis-Menten, or logistic forms.

Saturating Functions

In this article, we use linear functions for g(A), k(A), m(D), and f(D) when a specific functional form is
necessary. Many fluxes in nature (particularly biologically controlled ones) are saturating functions of their
arguments, and the linear functions we used in the text are decent approximations of saturating fluxes when the
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arguments are small. However, D in particular can become large, so we now examine how explicitly treating the
functions as saturating affects the results of the timescale analysis (note that the equilibrium analysis, including
the linearization analysis around equilibrium in “Local Stability Analysis” and “Eigenvalue Calculations,” is
independent of functional form, hence our focus on the timescale analysis here).

At the short timescale, let and . The value for the quasi equilibriumk(A) p kA/(K � A) g(A) p gA/(K � A)k g

of available soil N is now

�Y � X
Â p , (A4)

( )2[I � m(D) � k � Bg ]

2X p Y � 4(I � m(D))K K [k � Bg � (I � m(D))], (A5)k g

Y p kK � BgK � (K � K )(I � m(D)). (A6)g k k g

Only the branch of listed in equation (A4) is positive because when andÂ k � Bg 1 I � m(D) dA/dt p 0
. Unlike the linear case, an explicit solution for A(t) is not possible with saturating functions, but isˆK , K 1 0 Ak g

globally stable on its timescale, so the behavior is qualitatively identical to the linear case.
At the intermediate timescale, the quasi-equilibrium value for plant N is now

I � m(D) (g � m)kKgB̂ p � , (A7)
m g[mK � (g � m)K ]g k

which, similar to the text, is finite whenever m(D) is finite. As well, is globally stable on its timescale, as inB̂
the linear case.

At the long timescale, the differential equation for soil organic N (assuming that and ) is nowˆ ˆA p A B p B

dD (g � m)kKgp I � � f(D), (A8){ }dt g[mK � (g � m)K ]g k

regardless of the functional form of m(D). Note that this is very similar to equation (A14), with the only
difference found in the constant term. Therefore, if f(D) is linear, the solution of equation (A8) is equation (11).
However, if ,f(D) p fD/(K � D)f

K (I � [(g � m)kK ]/{g[mK � (g � m)K ]})f g g kD p , (A9)
f � (I � [(g � m)kK ]/{g[mK � (g � m)K ]})g g k

and there is no simple solution for D(t). However, like and , is globally stable on its timescale, yieldingˆ ˆA B D
the same qualitative behavior as the linear case. The only qualitative difference with saturating functions is the
change noted in the main text: when m(D) saturates and , plant N does not grow without bounds, butf(D) p 0
soil organic N still does on the long timescale.

Assumptions about Flux Magnitudes

The mineralization fluxes of N (m(D)) are typically on the order of 10–100 kg N ha�1 year�1 (Bormann et al.
1977; Vann et al. 2002). This is much greater than abiotic N inputs (I ) in unpolluted ecosystems, which are on
the order of 0.1–1 kg N ha�1 year�1 (Hedin et al. 1995). Polluted systems can receive atmospheric N inputs on
the order of 10–100 kg N ha�1 year�1 (Chapin et al. 2002). Plant N uptake (Bg(A)) is typically on an order
similar to N mineralization, 10–100 kg N ha�1 year�1 (Bormann et al. 1977; Whittaker et al. 1979; Binkley et al.
1992; Perakis and Hedin 2001; Vann et al. 2002), and is typically greater than losses of plant-available N (k(A)),
which are on the order of 0.1–10 kg N ha�1 year�1 (Bormann et al. 1977; Whittaker et al. 1979; Binkley et al.
1992; Hedin et al. 2003) in pristine ecosystems.

When mineralization fluxes are much greater than abiotic inputs ( ) and the plant N uptake rate ism(D) k I
much greater than the available N loss rate ( ), or when , equation (8) reduces tog k k k p 0
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m(D)
B̂ ≈ . (A10)

m

Thus, the approximate plant biomass N quasi equilibrium is the ratio of the mineralization flux (which is a
function of the soil organic N pool size) and the biomass turnover rate.

Differential Equations from Timescale Analysis

On the short timescale, the differential equation for the available N pool is

dA
p I � m(D) � k(A) � Bg(A), (A11)

dt

where B and D are constants. When k(A) and g(A) are linear functions, can be solved to obtain equationdA/dt
(7).

On the intermediate timescale, the differential equation for plant N is

dB I � m(D)
p B g � m , (A12)[ ( ) ]dt k � gB

where D is a constant. Under the assumptions detailed in “Assumptions about Flux Magnitudes” (i.e., using eq.
[6] instead of eq. [5]), and when g(A) is linear,

dB ≈ I � m(D) � mB. (A13)
dt

Equation (A13) can be solved, and the solution is equation (9).
The differential equation for the long timescale (soil organic N), assuming that A is given by equation (5) and

B by equation (8), is

dD m
p I � k � fD. (A14)( )dt g

When , soil organic N grows linearly over time (as long as ; otherwise, it shrinks). Fromf p 0 I 1 k(m/g)
equation (8), is a function of D, so on the long timescale, plant N grows over time proportional to m(D).B̂

Eigenvalue Calculations

The Jacobian matrix (in “Local Stability Analysis”) gives the characteristic equation

3 ′ ′ ′ ′ 2 ′ ′ ′ ′ ′ ′ ′l � (m � f � k � Bg )l � Bg A g � m � f k � Bg l � Bg A g f p 0, (A15)[ ( ) ( )( )] ( ( ) )

where f ′ is shorthand for the derivative of the function f with respect to its argument, evaluated at the internal
equilibrium; indicates the equilibrium value of B; and the l values are the eigenvalues of the Jacobian matrix.B
“Local Stability Analysis” shows that all eigenvalues have a negative real part, guaranteeing local stability. The
magnitudes of the roots of equation (A15) control the three timescales near equilibrium: l1, the dominant
eigenvalue, controls the long timescale; l2 controls the intermediate timescale; and l3 controls the short
timescale.

When l1 is very small (i.e., when the longest timescale is very long), the cubic and quadratic terms in
equation (A15) can be ignored, so

′ ′�Bg A g f( )
l ≈ . (A16)1 ′ ′ ′ ′ ′Bg A g � m � f k � Bg( ) ( )( )
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At equilibrium, , and using the flux magnitude assumptions in “Assumptions about Flux Magnitudes”g A p m( )
( and ),′ ′ ′ ′m k f Bg k k

′�mf
l ≈ . (A17)1 ′m � m

Therefore, the assumption of the separation between the B and the D timescales (with B being faster) is
equivalent to assuming that , which simplifies equation (A17) to . For the parameters in table 1,′ ′m k m l ≈ �f1

these assumptions are met for the grassland, but the separation is not as clear for the forest, hence the divergence
in the long timescale approximation from the numerical integration in figure 3.

The approximate values of l2 and l3 can be found by recognizing that the intercept in equation (A15) is
approximately 0 (because ) and by factoring out l1. Thus,′f ≈ 0

1 2′ ′ ′ ′ ′ ′ ′ ′ ′�l ≈ �(m � f � k � Bg ) � (m � f ) � (k � Bg ) � 4Bmg , (A18)[ ]2 { }2

1 2′ ′ ′ ′ ′ ′ ′ ′ ′�l ≈ � m � f � k � Bg � m � f � k � Bg � 4Bmg . (A19)( ) [( ) ( )]3 { }2

These are different from the timescales shown in equations (7) and (9), and the necessary assumptions to
simplify them to those timescales reveal the parameter assumptions that correspond to the separation of
timescales. For l2, assuming that and (as in “Assumptions about Flux Magnitudes”)′ ′ ′ ′ ′ ′Bg � k k m � f Bg k k
yields

1 2′ ′ ′�l ≈ �Bg � Bg � 4Bg m . (A20)( )2 [ ]2

Assuming that , and by Taylor expanding around m (ignoring higher-order terms),′Bg k m

l ≈ �m, (A21)2

which is the timescale presented in equation (9). Assuming that is approximately equivalent′ ′ ′ ′Bg � k k m � f

to assuming that , and assuming that is approximately equivalent to assuming that , both′¯A K D Bg k m A K B
of which are generally true in all forests and grasslands.

For l3, assuming that and yields′ ′ ′ ′ ′Bg � k k m � f Bg k 1

′ ′l ≈ � k � Bg , (A22)( )3

which differs from the timescale in equation (7) only in that it is evaluated at equilibrium. Assuming that ′Bg k

is equivalent to assuming that the residence time of an available nutrient molecule is much less than 1 year,1
which is generally true for all forests and grasslands.
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