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Significance

Numerous studies have shown 
that climate change has altered 
avian timing of breeding. 
However, little is known about 
climate-driven changes in 
offspring production. We 
collected long-term breeding data 
on 201 populations of 104 bird 
species (N = 745,962 clutches) 
from all continents, between 1970 
and 2019, to assess temporal 
changes in annual offspring 
production by female breeders in 
relation to changes in local 
temperatures and species’ life 
history traits. Overall, offspring 
production declined over time, 
but responses of different 
populations to rising 
temperatures were diverse. Our 
analyses suggest that negative 
effects of rising temperatures on 
offspring production will mainly 
affect migratory and larger-
bodied species, whereas smaller-
bodied sedentary species may 
benefit from warmer climate.
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Climate change affects timing of reproduction in many bird species, but few stud-
ies have investigated its influence on annual reproductive output. Here, we assess 
changes in the annual production of young by female breeders in 201 populations 
of 104 bird species (N = 745,962 clutches) covering all continents between 1970 
and 2019. Overall, average offspring production has declined in recent decades, 
but considerable differences were found among species and populations. A total of 
56.7% of populations showed a declining trend in offspring production (significant 
in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results 
show that climatic changes affect offspring production through compounded effects 
on ecological and life history traits of species. Migratory and larger-bodied species 
experienced reduced offspring production with increasing temperatures during the 
chick-rearing period, whereas smaller-bodied, sedentary species tended to produce 
more offspring. Likewise, multi-brooded species showed increased breeding success 
with increasing temperatures, whereas rising temperatures were unrelated to repro-
ductive success in single-brooded species. Our study suggests that rapid declines in 
size of bird populations reported by many studies from different parts of the world 
are driven only to a small degree by changes in the production of young.

climate change | birds | offspring production | meta-analysis

Global temperatures have been rising significantly during the 20th and 21st centuries (1). 
Higher temperatures and changes in precipitation patterns have resulted in shifts of cli-
matic zones, altering the conditions that animals experience on their breeding grounds, 
their wintering grounds, and during migration (2). Such climate changes have multiple 
effects on populations of diverse organisms, including birds (3, 4).

Most studies analyzing the effects of climate change on birds have focused on changes 
in timing of migration and breeding. In many cases, these studies have found that migra-
tory species arrive earlier on their breeding grounds, and that many birds start to lay their 
eggs earlier in the season in response to higher temperatures (4–6). This is not surprising 
given that many species of birds exhibit phenotypic plasticity and breed earlier during 
warm springs (7, 8).

Less well explored, and more difficult to predict, are consequences of climate-driven 
advancements in laying dates (9, 10). In particular, few studies have investigated the 
production of offspring in avian populations in relation to climate change. Work that has 
been conducted indicates that responses vary enormously. Some show advanced laying 
dates, but other breeding parameters, including offspring production, are unchanged 
(8, 11). Other studies have found a decline in the production of young (10, 12). Such a 
decline may be a result of mismatch between time of peak food availability and time of 
maximum energetic requirements of the offspring (13, 14), but also more frequent adverse 
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weather and weather extremes (10, 15, 16), higher predation (17, 
18), or a decline in food (19). However, it is also possible that 
some species may benefit from breeding earlier as temperatures 
increase. Several studies have found increased fledgling production 
in warmer breeding seasons (20–22), or after warm winters (23).

We used a meta-analysis to assess changes in offspring pro-
duction in avian populations worldwide over the last 50 y 
(Fig. 1 and SI Appendix, Table S1), a period over which global 
temperatures have risen by about 1 °C (1). We controlled for 
possible effects of phylogeny (24), life history of a species (9), 
migratory habits (25), latitude (26), direct human impacts (27), 
and changes in local temperature and precipitation as compo-
nents of climate (15, 20). Our analyses complement prior studies 
that have investigated climate-driven changes in timing of 
egg-laying and related breeding parameters (26, 28, 29).

Based on earlier research (28, 30), we hypothesized that 
multi-brooded species would increase the annual number of 
fledged young, because they are able to take advantage of pro-
tracted food resource availability (13), whereas single-brooded 
species would fledge fewer young per year, because they may have 
problems synchronizing timing of breeding with peak food avail-
ability (12, 25). Because larger-bodied species usually adapt more 
slowly to environmental changes due to their slower “pace of life” 
(31), we anticipated that declining trends in annual offspring pro-
duction would be observed more often in larger-bodied than in 
smaller-bodied species. Finally, we predicted that declines in off-
spring production would be observed less often in sedentary species 
than in migrants, because the latter are more likely to be con-
strained in their phenological response to climate change (32, 33).

Results

Overall Trends. Changes in offspring production were normally 
distributed and varied between −0.171 and 0.196 SDs per 
year from the long-term averages (Fig. 2). The funnel plot was 
symmetrical (Kendall’s rank test: tau = 0.002, P = 0.97), and 
trim-and-fill analysis indicated no directional bias in the sample 
of studies included in the analyses.

In 114 of 201 (56.7%) populations, offspring production decreased 
over time; 17.4% of these did so significantly. Conversely, in 87 pop-
ulations (43.3%), offspring production increased over time, 10.4% 
significantly. The grand effect size was slightly, but significantly, less 
than zero, suggesting an overall reduction in offspring production 
(Table 1). An analysis of spatial autocorrelation of population effect 
sizes yielded a Moran I of −0.003 (95% bootstrap percentile interval: 

−0.110 to 0.107), which was close to the value of −0.005 expected 
under the null hypothesis of no effect, indicating that directional 
changes in offspring production were not spatially clustered across 
geographical regions. The analyses of other life history and demo-
graphic traits indicated that nest success decreased and egg-laying 
started progressively earlier. Changes in clutch size and changes in 
duration of egg-laying periods were nonsignificant (Table 1).

Correlates of Offspring Production. We conducted univariate 
meta-regressions to assess the effects of life history and ecological 
characteristics of populations and their environments on changes 
in annual offspring production (Fig.  3). Changes in offspring 
production were positively associated with changes in clutch size and 
nest success. We also found a negative relationship between temporal 
changes in offspring production and body mass, with relatively 
larger species performing worse. None of the remaining life history 
traits produced a significant beta coefficient. The effect of nesting in 
nest-boxes was marginally positively significant. Ecological factors, 
including absolute latitude, environment type, protection status 
of the study area, and a Human Footprint Index (HFI), were not 
associated with changes in offspring production. Similarly, long-
term trends in temperature and precipitation at different periods of 
the breeding season did not explain variation in changes in offspring 
production. In particular, changes in offspring production in relation 
to changing rainfall were consistently negligible.

Interactive Effects on Offspring Production and Nest Success. 
In the next step, we used multivariate generalized linear mixed 
models (GLMMs) to model changes in offspring production and 
its two proxies: changes in clutch size and changes in nest success. 
In all models, we used the same sets of random effects (population, 
species, and phylogeny), and fixed predictor variables: log body 
mass, number of broods in a breeding season, migratory habits, 
and temporal change in local ambient temperatures. We considered 
two types of models: one that included all possible interactions 
between predictors and a simpler model including only two-way 
interactions of change in ambient temperature with the remaining 
fixed factors. For rate of change in local ambient temperature, we 
sequentially substituted measures taken in five phenological periods 
(enumerated in Fig.  3). Models were compared using Akaike’s 
information criterion (AIC) (SI  Appendix, Table  S2). Models 
with only two-way interactions outperformed the model with all 
possible interactions. With respect to temperatures, temperature 
trends in the nestling period produced the best model of changes 
in offspring production. Temperature trends in the prelaying period 

Fig. 1. Distribution of sampling study areas around the world. Overlapping study areas result in darker dots.D
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yielded the best model of changes in nest success, and temperature 
trends in laying period yielded the best model of changes in clutch 
size. Raw data and interactions between predictors in the model 
of changes in offspring production and model of changes in nest 
success are visualized in Fig. 4.

The final model of changes in offspring production (left section 
of Table 2 and Fig. 4B) revealed that increasing ambient temper-
atures during the chick-rearing period were associated with 

increased offspring production in small and/or sedentary birds, 
whereas most migratory birds (except for the smallest ones) expe-
rienced declines in offspring production in warming climates. 
Increasing offspring production tended to correlate with nesting 
in nest-boxes (Fig. 3). Therefore, we added nest-boxes as a fixed 
factor to test its effect in combination with other predictors. It 
was insignificant (beta = −0.003, 95% c.l.: −0.022 to 0.016), and 
the resulting model (SI Appendix, Table S3) had ΔAIC = 6.2, 
indicating a poorer fit.

The final model of changes in nest success (middle section of 
Table 2 and Fig. 4C) suggested that the proportion of fledged nests 
declined in larger-bodied species. In single-brooded species, nest 
success was independent of climate changes. In multi-brooded bird 
species, nest success improved with increasing temperatures.

The final model of changes in clutch size (right section of 
Table 2) did not include significant interactions between predictor 
variables. The only important predictor was body mass, with large 
species producing smaller clutches.

The results of a sensitivity analysis (bar graphs in Fig. 4) showed 
that body mass alone captured around 40% of the uncertainty in 
trends of offspring production and nest success. Body mass also 
explained 60% of the uncertainty in the model of changes in clutch 
size. The other predictors had minor first-order effects. In particular, 
first-order sensitivity indices of changes in local temperatures were 
negligibly small in all final models. However, coupled effects of 
climate variability and life history traits were influential.

Discussion

Our meta-analysis shows that overall production of young in bird 
populations has been declining over the past 50 y across the globe 
and across species. This effect is significant even though it appears 
small: The decline is about 0.01 standard deviations per year in 
long-term mean offspring production. Over the course of decades, 
however, this can lead to a large reduction in the number of pro-
duced young. We also found substantial differences among sampled 
populations: 56.7% showed a declining trend in offspring produc-
tion, and 43.3% of populations tended to produce more offspring. 
Generally, bird species whose offspring production declined were 
relatively large and migratory, whereas species whose production 
increased were small bodied and sedentary. This is a rough gener-
alization, as some species do not fit this pattern. Additionally, in 
5 of 35 species (14.3%) represented by more than one population, 
we found significant, but opposite trends in offspring production. 
This large variation suggests that reasons for changes in offspring 

34
160

52
159
18

94
87

187
42
129
106

93
123

148
157
197
85

124
91
195
20
92

127
108
38

189
66
193
152
199
194
190
156
36
110

128
167
3

6
135
119
161
153
61

107
47

11
31

22
30
69
168

32
145

37
143
105
44
175

176
200
164
9
169

147
99
117
19
144

26
130
73
125

132
12
48
1
95

109
57
88
68
179
186
15

25
72

174
14
5
104

114
46
86
79
173
89
134

29
100

35
39

181
28

77
84

162
141

198
126
154
8

67
80

17
41
40

172
165

51
55

81
98

16
118

122
10
188
113

185
112
182
90
178
96

196
191
149
71
13
192

131
43
21

76
24

74
201

111
78

50
150
2
75
7
97
63
27
60
155
183
151
163

49
102

70
33
184
62

177
45
171
103
133
170

146
166
56
101

121
59
53
136
142

180
64

158
116
120

65
139
137

58
140
138

115
4

54
82
83

23

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

Fig. 2. Change (±95% confidence limits) in mean number of offspring per 
female, measured in SD per year, in 201 populations of 104 species. Results 
were ranked from most negative to most positive. Numbers on the graph refer 
to population identifiers in SI Appendix, Table S1. The inset shows the frequency 
distribution of the effect sizes with a normal curve overlay.

Table 1. Phylogenetically corrected grand effect sizes 
and their 95% bootstrap percentile confidence inter-
vals of annual changes in demographic and life history 
traits of bird species around the world over the period 
1970 to 2019
Trait Grand ES 95% c.l.

Changes in offspring production 
(SDs), N = 104 species

−0.012 −0.019, −0.005

Changes in clutch size (SDs),  
N = 63

0.006 −0.001, 0.012

Changes in nest success (%p),  
N = 100

−0.026 −0.054, −0.008

Changes in date of first egg 
(days), N = 104

−0.066 −0.093, −0.039

Changes in duration of laying 
period (days), N = 104

0.009 −0.058, 0.066

Grand effect sizes with 95% confidence intervals not covering a value of zero are in bold.
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production reflect, at least to some extent, some differences in local 
conditions. However, the change in offspring production was not 
associated with protection status of study areas or with anthropo-
genic transformation of their habitats.

Body mass, both as a stand-alone predictor and in relation to 
climate change, was the most important correlate of temporal 
changes in clutch size and offspring production. Our model suggests 
that larger species are more vulnerable to declines in offspring pro-
duction and nest success (Fig. 4A), and that body mass exceeding 

1 kg for sedentary species, and 50 g for migratory species, is associ-
ated with negative trends in offspring production for climate warm-
ing at a rate of 0.1 °C per year (Fig. 4B). Larger-bodied species may 
be slower in responding to changing environmental and climatic 
conditions due to their lower fecundity, extended maturation, and 
longer generation time (34, 35). Recent analyses suggest that selec-
tion favoring smaller body size under warming condition operates 
at the within-species, as well as among-species, level (36).

Sensitivity analysis of the final models indicates that climate 
change does not correlate with avian offspring production directly, 
but through complex interactions with their life history and eco-
logical traits. Thus, climate variability is an influential factor when 
coupled with migratory habits and number of broods raised in the 
breeding season.

Our results suggest that nonmigratory species, especially smaller 
ones, are usually able to adjust to changes in local conditions and 
may benefit from climate warming (20, 37, 38), whereas migratory 
species, with the exception of the smallest, may suffer (25). This 
corroborates the phenology-mismatch hypothesis, which proposes 
that a lack of correlation between rate of warming in breeding and 
wintering areas causes a phenological mismatch on breeding 
grounds, resulting in population declines (32).

Previous research has provided evidence that an increase in local 
temperatures (both mean temperatures and extremes) may be cor-
related with changes in nest success (16, 17, 20, 22), a pattern found 
only for multi-brooded species in our analysis (Fig. 4C). As we did 
not have information on causes of nest losses, we cannot assess 
whether this reflects changes in predation pressure or some other 
factor. Multi-brooded birds often experience selection pressure for 
early breeding (39). A warming climate may be beneficial for such 
species, because earlier development of vegetation allows for better 
nest concealment, thereby reducing the risk of nest depredation and/
or resulting in more food at the beginning of the season (13, 22). 
Nevertheless, nest-site selection may involve trade-offs between 
reduced risk of detection versus enhanced escape opportunities and 
information about approaching predators (40), which may result in 
selection for intermediate nest concealment (41, 42).

Several recent studies have provided evidence that populations of 
birds are severely declining on different continents (43–45). However, 
we found a relatively small overall decline in offspring production of 
avian populations across the globe. This suggests that recent popu-
lation declines may reflect changes in adult and juvenile survival 
(10, 43, 46), and, to a lesser degree, changes in offspring production. 
It is also possible that habitat loss and deteriorating conditions make 
a higher proportion of the total population of declining bird species 
unable to breed, a hypothesis that remains to be tested.

Our dataset was biased in terms of the geographic location of 
populations, as we collected few data from the tropics and central 
parts of continents. Tropical regions host a large proportion of 
avian diversity and are experiencing rapid anthropogenic change, 
whereas areas inside continents usually undergo stronger climatic 
changes than areas affected by marine conditions (1). We therefore 
expect that the heterogeneity in our sample may be lower than 
the true global heterogeneity.

In conclusion, analyses based on 201 wild bird populations from 
all continents reveal that offspring production has declined during 
recent decades, but with considerable variation among species and 
populations. Species with relatively large body mass are the most 
vulnerable to decline in offspring production. Climate change 
appears to influence changes in offspring production through com-
plex interactions with ecological and life history traits of species. 
Future studies should identify the reasons for nest failures to under-
stand better the factors underlying declines in offspring production 
in avian populations.
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Fig. 3. Beta coefficients (±95% confidence limits) of univariate meta-regressions 
in which standardized change in mean annual number of offspring per female 
was predicted by life history, demographic, ecological, and climatic variables. 
In all models, phylogenetic correlations along with identifiers of populations 
and species were included as random effects. Predictors expressed as a rate of 
change per year are shown as Δ. Note the different scales on each part of the plot.
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Materials and Methods

Definitions. We defined offspring production as mean annual number of fledg-
lings produced by a breeding female in a population monitored throughout the 
breeding season. Mean clutch size was calculated for all clutches (first, replacements 
and second clutches) laid by females. We defined nest success as the proportion 
of successful clutches (producing at least one fledgling) out of all clutches moni-
tored across a breeding season. Second broods were defined as those initiated after 
successfully fledging young from a first clutch. We classified a species’ population 
as single-brooded or multi-brooded depending on the presence and frequency of 
second broods in a population (SI Appendix, Table S1 and SI Text S1). We created three 
environmental categories, dividing species into land birds (not associated with water), 
freshwater species (breeding and foraging in inland water bodies), and seabirds. For 
each study population, we also calculated the temporal trend in the number of breed-
ing females present at a study area. We divided study sites into protected and nonpro-
tected; if >50% of a study area was under some forms of legal protection (national 
parks, nature reserves, etc.), we classified it as protected, otherwise as nonprotected. 

Similarly, we divided studies with nests protected against predators and nests non-
protected; if >50% of nests were protected (e.g., concrete nest-boxes, fences around 
nests), we classified the population as nest-protected. Finally, we divided studies into 
those using nest-boxes (if >50% of clutches were laid in nest-boxes) and those using 
natural nest sites (monitoring open-nesting and cavity-nesting species).

Criteria for Data Inclusion. The criteria for a dataset to be included in our project 
were: 1) a minimum study period of 15 y, during which data were collected for at 
least 10 breeding seasons; 2) average seasonal number of breeding females was 
greater than 10; 3) in multi-brooded species, females were individually marked; 
and 4) research had to be conducted for the whole breeding season to determine 
accurately the fate of successive broods, and annual offspring production of each 
breeding female.

Data Collection. Data were obtained from two major sources: 1) published infor-
mation and 2) unpublished data from authors conducting long-term studies on the 
breeding biology of single species. 1) To locate information published in the current 

A

B

C

Fig. 4. Trends in offspring production and nest success. Some redundant axis labels have been pruned to reduce visual clutter. (A) Raw data of change in 
the number of offspring female−1 season−1 in standard deviations per year and change in nest success (percentage points per year) regressed on life history 
traits and changes in local temperatures. Temperatures refer to the nestling period (upper plot) and prelaying period (lower plot). (B) Heatmaps visualizing the 
interactive effect of body mass and changes in local temperatures on the predicted change in mean number of offspring per female, expressed in SD per year, 
and represented by contours and colors. The bar graphs show the results of a sensitivity analysis. (C) Heatmap of predicted change in nest success, expressed 
in percentage points per year, with the results of a sensitivity analysis. The models in B and C are described in Table 2.
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century concerning long-term changes in offspring production of avian populations, 
we undertook an exhaustive literature search in Google Scholar using the following 
key words: breeding, nesting, breeding success, offspring production, population 
productivity, climate change, and laying dates. Because we wanted to use standard-
ized estimates of changes in offspring production across time (see below), we looked 
for publications that included original data. From published literature, we collected 
data on 72 bird populations representing 28 species (SI Appendix, SI Text S2). 2) Our 
literature search enabled us to identify researchers who potentially had long-term 
data on annual production of young in the bird populations they studied. Between 
October 2018 and April 2019, we contacted 313 authors of long-term studies asking 
them whether they would like to collaborate in our meta-analysis project. A total of 
101 authors shared their data on 86 species and 129 populations (for details on 
searching process, see SI Appendix, SI Text S3). From both data sources, we collected 
a total of 201 datasets on 104 bird species (for problems with species number, 
see SI Appendix, SI Text S4) covering the histories of 745,962 clutches. The data 
were gathered in both hemispheres between 1970 and 2019 (Fig. 1), and different 
populations were sampled over a period ranging from 15 to 49 breeding seasons 
(median 26; interquartile range 20 to 35) (SI Appendix, Table S1). Literature sources, 
including descriptions of field methods used in the studies included in the analyses, 
can be found in SI Appendix, Table S4.

In addition to the data on offspring production, we collected data on laying 
dates, clutch size, nest success, breeding density, and proportion of females 
with second broods or replacement clutches. These data were not provided by 
all researchers, and not found in all literature sources.

Meteorological, Body Mass, and Migratory Data. Meteorological data for 
the study areas, including mean monthly temperatures and total monthly pre-
cipitation, were provided by authors or, for published data, obtained from the 
National Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov/
cdo-web/datatools/findstation) or Tutiempo.net (https://en.tutiempo.net/climate/
europe.html). We used data from meteorological stations closest to study areas 
with complete records across study years. For each area, we calculated mean 
temperatures (oC) and total precipitation (mm) corresponding with each of the 
five breeding periods: 1) prelaying (a month preceding commencement of egg 
laying); 2) egg laying; 3) egg laying and incubation; 4) nestling period; and 5) 
whole breeding season (from the commencement of egg laying until the end 
of parental care). The information about timing and duration of these periods 
was obtained from main investigators or extracted from the literature (47, 48). 
We subsequently calculated the rate of change in mean temperature and total 
precipitation over the study period using linear regressions as an index of climate 
change intensity.

Data on mean female body mass for each species were obtained from Handbook 
of Avian Body Masses (49). The distribution of body masses was strongly skewed; 
therefore, we ln-transformed it for our analyses. Migratory status (full migrant vs. 
sedentary/partial migrant) followed the International Union for Conservation of 
Nature classification (50).

HFI. For each study area, we calculated a Human Footprint Index (HFI), which quan-
tifies the degree to which humans have impacted the landscape (on 1 km2 grid 
cells) by combining measures of human population density, buildings, crop land, 
pasture land, night-time lights, railways, roads, and navigable waterways (27). 
Values of the index range from 0 to 50. HFI data were extracted from ref. 51 using 
QGIS software (version 3.22.11). For each study area, we calculated a mean HFI 
score by overlaying the HFI raster layer with a site raster layer. Because HFI data 
are not available for islands, we were able to calculate the index for only 114 
continental bird populations.

Statistical Analysis. Analyses were conducted using R version 4.2.2 (52) and 
Phylometa version 1.3 (53). They were carried out in two steps: 1) we estimated 
grand effect sizes for a group of variables describing changes in species’ parame-
ters and 2) using metaregression, we looked for factors explaining heterogeneity 
in effect sizes (hereafter ESs) from the first step.

A list of all variables used in the analysis (including the species’ parameters) 
is provided in SI Appendix, Table S5. All ESs studied were slopes of linear regres-
sions, in which response variables were regressed on time (years). Slopes are 
intuitively interpreted as changes per annum. Annual production of offspring 
per female and clutch size were standardized and expressed as the number of 
standard deviations from the long-term mean measured across all study years 
of a particular population. This allowed comparison across species whose mean 
offspring production and clutch sizes differed.

Because of between-study heterogeneity due to variation in local environ-
mental conditions, life histories of study species, and research methods, we used 
random-effects models in all meta-analyses. Sensitivity of the model due to pub-
lication bias was assessed using funnel plots and a trim-and-fill method (54).

We controlled for a potential bias due to phylogenetic relatedness among spe-
cies (SI Appendix, Table S1 and SI Text S4) using a set of 5,000 equally plausible 
trees, downloaded from birdtree.org (55, 56). Grand ESs of changes in species’ 
parameters were calculated by an iterative procedure with original phylogenetic 
trees. For meta-regression modeling, we built a 50% majority-rule consensus tree 
(56) using the R package “ape,” version 5.5 (57).

Grand ESs in Table  1 were calculated using Phylometa software. We reran 
5,000 iterations, each time using a different phylogenetic tree, and a subset of 

Table 2. Final meta-regression models of annual changes in fitness-related traits

Term
Changes in offspring production 

[104, 201]
Changes in nest success 

[100, 190]
Changes in clutch size 

[63, 108]
Estimate 95% c. l. Estimate 95% c. l. Estimate 95% c. l.

Intercept 0.002 −0.043, 0.047 0.567 0.130, 1.003 0.065 0.015, 0.115

Ln (body mass) −0.003 −0.009, 0.003 −0.080 −0.139, −0.020 −0.011 −0.017, −0.004
Migratory habits  

(sedentary vs.  
migratory)

0.012 −0.010, 0.034 −0.191 −0.374, −0.009 −0.019 −0.045, 0.007

Number of broods  
(single- vs.  
multi-brooded)

−0.021 −0.055, 0.014 −0.457 −0.695, −0.219 0.001 −0.031, 0.033

Change in  
temperature*

1.260 0.254, 2.267 −1.768 −7.110, 3.574 −0.348 −0.981, 0.285

Ln(body mass) ×  
change in temp.

−0.139 −0.271, −0.007 0.078 −0.749, 0.905 0.037 −0.051, 0.125

Migratory habits ×  
change in temp.

−0.620 −1.174, −0.066 1.363 −1.226, 3.951 0.324 −0.101, 0.749

Number of broods ×  
change in temp.

0.006 −0.727, 0.739 7.381 3.069, 11.693 −0.340 −0.828, 0.149

In all models, phylogenetic correlations between species and identifiers of populations and species were included as random effects. Beta coefficients whose 95% confidence limits do 
not include zero are shown in bold. The number of species and populations is in square brackets. Models of changes in offspring production and nesting success are visualized in Fig. 4.
*At the laying period in the model of clutch size, prelaying period in the model of nest success, and nestling period in the model of offspring production.
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ESs in question, which included only a single record for each species. If a species 
was represented by several local populations, one was selected at random for 
each iteration. Grand ESs were means across all resamples, with 95% confidence 
limits represented by the 2.5th and 97.5th percentiles.

Meta-regression models (Fig. 3, Table 2, and Fig. 4) were run using R package 
“metafor”, version 3.4 (54). Each model included the same set of random effects: 
species and study identification (to control for nonindependence of multiple 
studies of the same species) and species identity associated with phylogenetic 
correlations (to control for nonindependence due to common ancestry).

In analyses where changes in offspring production and nest success were 
regressed upon different sets of climate variables, we used Akaike’s informa-
tion criterion to assess the performance of competing models (58) (SI Appendix, 
Table S2) and to select climate variables for final meta-regression models (Table 2).

For sensitivity analysis of the final models, we used Sobol’s global variance decom-
position method (59) implemented in R package “sensobol” version 1.1.3 (60). This 
procedure decomposes variance into fractions (Sobol’s indices), which isolate effects 
of predictor variables and their interactions. Pseudo-random samples for the model’s 
predictions were generated using a Latin hypercube sampling design. Estimates of 
Sobol’s indices were based on Azzini’s algorithm, using 10,000 bootstrap iterations, 
which guaranteed convergence under the criterion that the 95% confidence interval 
around the most sensitive predictor was less than 5% of its sensitivity index. For 
each predictor variable, we reported first-order and total-order indices. The former 
measures the fraction of the output variance explained by a respective predictor 
alone, whereas the latter includes effects of its interactions with other predictors.

Data, Materials, and Software Availability. All data and R scripts relevant 
to the article are available at Figshare (61). Other study data are included in the 
article and/or SI Appendix, Tables S1–S3.
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