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Bet-hedging—a strategy that reduces fitness variance at the expense of lower
mean fitness among different generations—is thought to evolve as a biologi-
cal adaptation to environmental unpredictability. Despite widespread use
of the bet-hedging concept, most theoretical treatments have largely made
unrealistic demographic assumptions, such as non-overlapping generations
and fixed or infinite population sizes. Here, we extend the concept to
consider overlapping generations by defining bet-hedging as a strategy
with lower variance and mean per capita growth rate across different envi-
ronments. We also define an opposing strategy—the rising-tide—that has
higher mean but also higher variance in per capita growth. These alternative
strategies lie along a continuum of biological adaptions to environmental
fluctuation. Using stochastic Lotka–Volterra models to explore the evolution
of the rising-tide versus bet-hedging strategies, we show that both the mean
environmental conditions and the temporal scales of their fluctuations, as
well as whether population dynamics are discrete or continuous, are crucial
in shaping the type of strategy that evolves in fluctuating environments.
Our model demonstrates that there are likely to be a wide range of ways
that organisms with overlapping generations respond to environmental
unpredictability beyond the classic bet-hedging concept.
1. Introduction
Temporal fluctuation of environmental conditions is a universal feature in nearly
every ecosystem on Earth [1,2]. In fluctuating environments where the intensity
and direction of natural selection are likely to vary unpredictably over time [3–5],
organisms have adopted a wide range of evolutionary strategies to maximize
long- term fitness of populations [6]. Theoretical studies have long shown that
both the mean and variance of fitness are critical in driving biological adaptation.
Although many biological adaptations increase mean fitness while also decreas-
ing fitness variation in fluctuating environments [7,8], there are also favoured
traits that reduce the mean. To understand these types of seemingly counterintui-
tive strategies, a great deal of theoretical work has focused on evolutionary bet-
hedging [1,9,10], which reduces variance in fitness at the expense of a lower
mean. Empirically, many known biological adaptations to environmental fluctu-
ation—as diverse as seed production in annual plants [11], phenotypic
polymorphisms in bacteria [12,13] and altruistic behaviour in social animals
[14]—are considered to be forms of bet-hedging. There are two general types
of bet-hedging: conservative bet-hedging describes a consistent but low risk phe-
notype within a genotype, whereas diversified bet-hedging depicts the case
when a genotype produces diverse phenotypes to reduce fitness variance
[9,15,16]. Under either bet-hedging scenario, based on the concept of the geo-
metric mean of fitness, either fitness variance minimization or the arithmetic
mean fitness maximization (or both) will be favoured by natural selection [10].

In contrast with bet-hedging strategies, other forms of biological adaptation
may be favoured under some forms of environmental fluctuation, despite leading
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Figure 1. A schematic comparison of the demographic settings used in different bet-hedging models. (a) Many existing models either consider biological systems
near an equilibrium state or largely ignore changes in population size, which is represented by the grey rectangles showing that population size remains largely
constant through time. These models often focus on dynamics in terms of frequencies or the proportions of different strategies, such as whether one strategy is
invading or prevailing within the population. Although the frequencies can vary, one crucial parameter—the extent of generational overlap—is often assumed to
be fixed. That is, some models assume mortality in the previous generation, which creates a constant degree of generational overlap, whereas other models assume
non-overlapping generations in which all parents simultaneously die as offspring mature (generations are labelled in numbers). (b) An alternative approach to
modelling evolutionary processes is through selection dynamics under fluctuating population sizes. These types of models allow population size to rise and
fall in response to environmental conditions. Although these models often assume variable degrees of generational overlap, something that is more applicable
to most organisms, they can show more ‘non-overlapping’ characteristics under discrete-time population dynamics. (c–f ) For example, while continuous dynamics
let populations react to every change in environmental state (c), discrete dynamics take the temporal average fitness response before calculating the change in
population size (d ). Per capita growth rate, one measure of fitness, shows similar distinctions under both types of dynamic models where (e) continuous dynamics
act instantly and ( f ) discrete dynamics calculate the average of a period of time. (Online version in colour.)
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to high variance in fitness across environments. For example,
studies exploring thermal niche evolution at different temporal
scales of environmental fluctuation have demonstrated that
although greater long-term environmental variation (e.g. seaso-
nal variation in temperature) favours the evolution of thermal
generalists, short-term variation (e.g. daily temperature vari-
ation) has an opposite effect by selecting for thermal
specialists [17,18]. In other words, a specialist strategy adapted
to short-term environmental fluctuation—which differs funda-
mentally from a bet-hedging strategy—can be shown to be
more advantageous than a generalist strategy by using the
approximation for geometric mean fitness, which increases
with higher arithmetic mean fitness and lower fitness variance
[19–21]. Essentially, these empirical results hint at the theoreti-
cal possibility that the temporal scale of environmental
variation might play a critical yet largely unexplored role in
shaping biological adaptation to fluctuating environments.

Most published studies on biological adaptation to fluctu-
ating environments (e.g. [1,9,10,15,22]) are based on the
geometric mean of fitness, which assumes that the fitness con-
sequences of environmental variation within a generation are
additive within an organism’s lifetime, but multiplicative
across generations [23–25]. However, the concept of geometric
mean fitness relies on the restrictive assumptions of (1) non-
overlapping generations and (2) externally set fixed or infinite
population sizes (figure 1a), both of which do not apply to
many prokaryotic and most eukaryotic species [26]. In fact,
fluctuation in population size—which when environmentally
driven is analogous to a population going through a bottle-
neck in low quality environments and an expansion in high
quality environments [27]—can have substantial effects on
the strength and direction of selection in populations of
externally set finite size [28]. Moreover, the assumption of
non-overlapping generations—which is typically used in
most models of this sort (e.g. the grain-size model [22])—cre-
ates a distinction between within- and among-generation
selection and only applies to a very limited number of real-
world organisms, such as some microbes and annual plants
that do not produce a seed bank [14,29]. Indeed, theoretical
studies have shown that the geometric mean is not what natu-
ral selection maximizes in the case of density-dependent
selection and variable population sizes [16,30]. Previous
studies have demonstrated that, in contrast with the non-over-
lapping generation setting, fluctuating selection can lead to
the coexistence of polymorphic strategies that are inconsistent
with the bet-hedging strategy in an overlapping generation
setting [31]. However, the properties of these other strategies
that are selected for in an overlapping generation setting
aremostlyderived from the assumptionof relatively small vari-
ation inpopulationsize [31–33]. Since environmentally induced
changes in birth and death rates may greatly alter population
size and the level of generational overlap, identifying general
rules of biological adaptation to environmental fluctuation—
particularly for species with overlapping generations and
finite population sizes—remain elusive.

To achieve a more comprehensive understanding of bio-
logical adaptation to environmental fluctuation that applies
to organisms without having to evoke restrictive demographic
assumptions that are biologically unrealistic for most animal
species, we use stochastic Lotka–Volterra models to examine
the impact of differential selective forces with varying popu-
lation sizes, different temporal scales of environmental
fluctuation (electronic supplementary material, figure S1)
and distinctive temporal patterns of population dynamics
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Figure 2. Definitions of the bet-hedging and rising-tide strategies in the
overlapping generation model. The average fitness across all environments
can be obtained by integrating the performance curve across the environ-
mental condition axis, whereas variance in fitness can be calculated as the
variance of the performance curve along the environmental condition axis.
Thus, we expand the definition of bet-hedging to be a strategy with
lower variance at the cost of lower average fitness along an environmental
gradient. Similarly, the rising-tide strategy can be defined as a strategy
with higher variance and a higher mean. (Online version in colour.)
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(figure 1). We use a competitive Lotka–Volterra model as our
basic framework for exploring a range of biological adap-
tations to fluctuating environments because this approach
restricts population size through competition, rather than
externally setting an absolute boundary on population size.
In other words, population size is dynamically regulated by
the fitness of each strategy, which in turn is affected by
environmental conditions and population size itself. Moreover,
Lotka–Volterra models can be used to explore natural selec-
tion, as in the case of Moran models that incorporate birth
and death processes [34], without the unrealistic assumption
of a fixed population size [35]. We also compare our continu-
ous-time population dynamics model to one that uses discrete-
time population dynamics to approximate the commonly used
but less realistic non-overlapping generations models (e.g.
[1,9,15,22]; figure 1). In addition, we use Gillespie’s algorithm
[35,36] to explore the effects of demographic stochasticity in
finite populations to more broadly test the generality of our
model (see electronic supplementary material). Fundamen-
tally, our model always allows for competition to reduce
population size, yet the direction of selection may not be
the same at each moment because environmental conditions
fluctuate (i.e. we explicitly model fluctuating selection).

We begin by exploring the selection dynamics of a bet-
hedging strategy that has lower fitness variation, represented
by variance in the per capita population growth rate, across all
environmental conditions, as well as what we call the ‘rising-
tide strategy’, which has higher fitness than the bet-hedging
strategy under benign conditions, but lower fitness than the
bet-hedging strategy under harsh conditions (figure 2). We
refer to this strategy as the ‘rising tide’ because, since it performs
well under benignenvironmental conditions, its numberswithin
thepopulationcan increase rapidly, just like the riseof the tide.To
represent the lowermean fitness criteria of the bet-hedging strat-
egy relative to the rising-tide strategy, we assume that there is
a smaller total area beneath the performance curve of the
bet-hedging strategy than the rising-tide strategy (figure 2).
Importantly, the bet-hedging and rising-tide strategies are
defined relatively such that bet-hedging represents a strategy
with lower mean and variance in fitness compared to a rising-
tide strategy. In other words, the bet-hedging and rising-tide
strategies lie along a continuum of biological adaptations to
environmental fluctuation that differ only in their degree of
specialization to benign environments, which ultimately leads
to different fitness variances in fluctuating environments. In
many ways, the rising-tide strategy is analogous to a specialist
strategy (i.e. specialized to benign conditions in fluctuating
environments),whereas the bet-hedging is similar to a generalist
strategy (i.e. adapted tobothbenignandharsh conditions in fluc-
tuating environments). However, while the generalist strategy
does not necessarily need to have a lower mean fitness than a
specialist in a classic generalist–specialist framework [18], bet-
hedging is defined as a strategy with lower mean fitness and
lower variance in fitness than the rising-tide strategy.
2. An environment-dependent competitive
Lotka–Volterra model

To investigate how different temporal scales of environ-
mental fluctuation—often referred to as the grain of the
environmental variation (sensu [10])—influence the evolution
of the bet-hedging and rising-tide strategies, we employ con-
tinuous versions of the two strategies (figure 2; see electronic
supplementary material, §S1 for additional combinations of
strategies). We allow the values of the environmental con-
ditions E to vary continuously—just as temperature and
rainfall do in nature—and influence the intrinsic growth
rate b(E), environment-dependent death rate d(E) and carry-
ing capacity K(E) of each strategy (see equation 2.2). Thus,
we build a continuous-time model with probabilistic environ-
mental settings. We also employ fast Fourier transformation
(FFT) for easy visualization and quantification of the patterns
of short- and long-term environmental variation (electronic
supplementary material, figure S1b–g). The dynamics of the
rising-tide, dNR=dt, and bet-hedging strategies, dNB=dt, in
the stochastic Lotka–Volterra competitive model are

dNR

dt
¼ bR(E)NR 1� NR

KR(E)
� aBRNB

KR(E)

� �
� dR(E)NR ð2:1aÞ

and

dNB

dt
¼ bB(E)NB 1� aRBNR

KB(E)
� NB

KB(E)

� �
� dB(E)NB, ð2:1bÞ

where the capital subscripts R and B represent the parameters
for the rising-tide and bet-hedging strategies, respectively.
We also provide a simplified version of the model to
explore the role of temporal and demographic stochasticity
(electronic supplementary material, §4).

(a) A continuous-time population dynamics model
We first derive the continuous-time population dynamics
model (equation (2.1)) by employing the concept of biologi-
cal performance curves [37]. Specifically, the carrying
capacity of a strategy (i, represented by R: rising-tide or B:
bet-hedging) contains a beta probability distribution func-
tion (hereafter referred to as beta function) fbeta(x; a, b))
and several coefficients,

KiðEÞ ¼ cKgifbeta
E

crange
; si,si

� �

¼ cKgi
ðE=crangeÞsi�1ð1� E=crangeÞsicsk�1

ðGðsiÞGðsiÞÞ=ðGðsi þ siÞÞ , ð2:2aÞ
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where the shapeparameters (s) determine thewidth and height
of each performance curve, E stands for environmental con-
ditions and Γ denotes the gamma function ðGðnÞ ¼ ðn� 1Þ!Þ.
In addition, two coefficients describe the interaction of
performance curves and the environment: the range of respon-
sive environmental conditions (crange) and the amplitude
of those responses (cK). Lastly, the scaling coefficient for
each strategy (γi) allows the bet-hedging strategy to have a
smaller area beneath its performance curve than the rising-
tide strategy (i.e. smaller average fitness). We chose to use a
beta function to describe each performance curve because
a beta function retains the response in finite and constant
regions with boundaries (see electronic supplementary
material, table S1, for details of each parameter), whereas in
the more commonly used Gaussian distribution function,
environmental conditions range from positive infinity to nega-
tive infinity. However, using a Gaussian distribution function
in our model produces qualitatively similar results (electronic
supplementary material, §3).

The intrinsic growth rate and environment-dependent
death rate also follow beta functions with primarily the
same parameters described above, though with different
amplitudes (cb and cd),

bi(E) ¼ cbgifbeta
E

crange
; si,si

� �
ð2:2bÞ

and

di(E) ¼ cd dmax � gifbeta
E

crange
; si,si

� �� �
: ð2:2cÞ

Note that the death rate generates opposite responses
to the environmental conditions: Ki(E) and bi(E) are maxi-
mized at E ¼ crange=2, but the death rate is minimized
under such conditions. We set this rate as the maximal
response of the beta function of the rising-tide strategy
ðdmax ¼ fbetað1=2; sR,sR ÞÞ minus the current response of the
beta function. We also add an additional death rate to let
the environment regulate population size more directly
than through density dependence. In short, changes in
environmental conditions (e.g. temperature or precipitation)
influence the growth rate, carrying capacity and death rate.
Through these environmentally influenced parameters, each
strategy can increase in population size under favourable
conditions and decrease in population size under unfavour-
able conditions or through density regulation. To test the
generality of our model, we further independently varied
the population growth rate, death rate and carrying capacity
as a function of changing environmental conditions, all of
which produced qualitatively similar results (see electronic
supplementary material, §S2).

The above section dealt with biological responses to
different environmental conditions. Now let us explain how
the environment changes in the model. Although we con-
sider different time scales of environmental variation by
modelling both short- and long-term variation, we recognize
that natural environmental variation could have other com-
ponents, something to be modelled in future studies. We
assume that the two scales of environmental variation (Elong

and Eshort) vary within constant ranges (clong and cshort) and
follow beta distributions with given sizes of variation:

Elong

clong
� betaðslong, slongÞ ð2:3aÞ
and

Eshort

cshort
� beta(sshort, sshort), ð2:3bÞ

where beta(slong, slong) and beta(sshort, sshort) represent beta dis-
tributions with shape parameters, slong and sshort, respectively.

The short-term environmental variation (Eshort) is
resampled in each time unit, whereas the long-term variation
(Elong) is resampled once in m time units. The current
environmental condition (E) is the sum of the deviations of
the two sampled environmental variations:

E ¼ Emean þ Elong �
clong
2

þ Eshort � cshort
2

, ð2:4Þ

where the mean of the two distributions is in the middle of
the environmental ranges (i.e. clong=2 and cshort=2), since
both distributions are symmetrical. We validated the behav-
iour of the environmental fluctuations through fast Fourier
transformation (electronic supplementary material, figure S1).

(b) The discrete-time population dynamics model
Based on the continuous-time population dynamics model
described above, we then derive the discrete-time population
dynamics model. Instead of changing parameters instantly
according to changes in the environment (e.g. bi(E)), the dis-
crete model takes the arithmetic mean from several (m)
environmental inputs before calculating changes in population
dynamics. The parameters include

Ki ¼
Xm
j¼1

Ki
Ej

m
, ð2:5aÞ

bi ¼
Xm
j¼1

bi
Ej

m
ð2:5bÞ

and di ¼
Xm
j¼1

di
Ej

m
, ð2:5cÞ

where i specifies the strategy and j denotes the index of environ-
mental condition. Hence, the population dynamics follow

NR,tþ1 ¼ NR,t þ bRNR,t 1�NR,t

KR
� aBRNB,t

KR

� �
� dRNR,t ð2:6aÞ

and

NB,tþ1 ¼ NB,t þ bBNB,t 1� aRBNB,t

KB
�NB,t

KB

� �
� dBNB,t, ð2:6bÞ

where t stands for the index of calculations. Note that each
calculation is based on the average of m environmental con-
ditions. Because the environment resamples in the same
way as the continuous-time population dynamics model,
each calculation has one sample of long-term variation and
m samples of short-term variation. Thus, the long-term
environmental variation represents among-calculation vari-
ation and the short-term environmental variation represents
within-calculation variation in the discrete-time population
dynamics model (figure 1d–f ). We set this to approximate
the within- or among-generation variation design in most
common bet-hedging models [9,10,15].
3. Results
We find that the effect of different temporal scales of environ-
mental fluctuation on the evolutionary outcome strongly
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depends upon whether the mean environmental conditions
match the optima of the performance curves. When the mean
condition is at the optimum of the performance curves of the
rising-tide and bet-hedging strategies (figures 3a–g and 4a),
it is common for the rising-tide strategy to exclude the
bet-hedging strategy (figure 4d ). Yet, larger long-termenviron-
mental variation favours the bet-hedging strategy (figures 3a,d,
e and 4g), whereas greater short-term environmental variation
leads to the coexistence of the bet-hedging and rising-tide strat-
egies (i.e. a polymorphism of strategies) (figures 3a–c and 4j ).

Next, we show that if the mean environmental condition
deviates from the optimum of both strategies (figures 3h–m
and 4c), environmental variation can have complex and coun-
terintuitive effects on adaptive evolutionary responses. Since
the rising-tide strategy is more specialized to the optimal
environment, the bet-hedging strategy dominates when
both long- and short-term environmental variation are low
(figures 3h and 4i). Interestingly, if long-term variation
increases, the rising-tide strategy sometimes excludes the
bet-hedging strategy (figures 3h,k,l and 4f ). Similarly, the
rising-tide strategy coexists with the bet-hedging strategy
when there is higher short-term environmental variation
(figures 3h–j and 4l ). When both short- and long-term
environmental variation are relatively high, the bet-hedging
strategy again becomes more dominant (figure 4i). In other
words, increasing short- or long-term environmental vari-
ation can favour the evolution of specialization because the
rising-tide strategy is likely to experience its optimal environ-
mental conditions more frequently, even when the variance in
fitness or variation in the population size of the rising-tide
strategy is higher than that of the bet-hedging strategy
(figure 3h–l). Therefore, we suggest that the relative effects
of short-term environmental variation, long-term environ-
mental variation and the mean environmental condition are
non-uniform and may change according to the relative
magnitude of each factor.

To more directly determine how our theoretical framework
performs relative to previous approaches modelling
bet-hedging, we compared our continuous-time population
dynamicsmodel with one that utilizes discrete-time population
dynamics (sensu [38]) in order to approximate the commonly
used but less realistic non-overlapping generation models
(e.g. [1,9,15,22]) (figure 1c–f; see equations (2.5) and (2.6) for
more details). In most of these models, the temporal scale of
environmental fluctuation is often classified as either (1)
coarse grain, which describes among-generation variation in
environmental conditions, or (2) fine grain, which describes
within-generation variation in environmental conditions
[10,22]. In our comparison, we find that whether population
growth is continuous or discrete is crucial for the evolution
of the bet-hedging versus the rising-tide strategy (figure 5;
see electronic supplementary material, table S1, for parameter
values). In this discrete-time population dynamics model,
when long-term environmental variation is high—which is
similar to coarse grain variation in discrete-population
dynamics models—the bet-hedging strategy dominates the
rising-tide strategy (figure 5g–i). In other words, bet-hedging
is likely to be selected for under discrete-population dynamics,
which is similar to our previous finding that the non-overlap-
ping generation setting favours a bet-hedging strategy [9,10].
By contrast, polymorphic strategies are more likely to be
selected for in the overlapping generation model [31,39].
Nevertheless, a polymorphism is only favoured when both
long- and short-term environmental variation are relatively
low and the mean environment deviates from the optimum
(figure 5l ).
4. Discussion
Here, we expand the biological relevance of bet-hedging,
which we define as a strategy with lower variance and
mean per capita growth rate along an environmental gradi-
ent, by explicitly considering overlapping generations and
flexible population sizes. Previously, bet-hedging has been
based on the concept of geometric mean fitness for organisms
with non-overlapping generations [9,10,15,25] and, conse-
quently, the original definition of lower variance and mean
fitness among generations cannot be applied to many prokar-
yotes and most eukaryotes because they exhibit overlapping
generations. Since there is no clear boundary for any gener-
ation under an overlapping generation setting in most
existing theoretical treatments, we overcame this problem
by establishing a continuum of biological adaptations to
environmental fluctuation that includes bet-hedging (low
mean and low variance of fitness) and the rising-tide (high
mean and high variance of fitness). We use these alternative
strategies to explore how the environmental mean and var-
iance over different temporal scales influence biological
adaptation to fluctuating environments.

Importantly, we found that the influences of different
temporal scales of environmental variation on biological
adaptation are strongly modulated by the mean environ-
mental conditions relative to the performance curve optima.
However, combinations of environmental mean and variance
can result in rich and unexpected patterns of adaptation. For
example, small, but not large, long-term environmental vari-
ation can favour the evolution of bet-hedging over rising-tide
when the mean environmental condition deviates from the
optimal environment of the two strategies. We also show
that whether population size changes continuously or discre-
tely, such as in species that are continuous versus seasonal
breeders [40,41], can also impact biological adaptation
because the rising-tide strategy is selected for under a broader
range of environmental conditions than the bet-hedging strat-
egy under continuous dynamics, whereas bet-hedging
dominates under discrete dynamics. Thus, our model results
are consistent with previous analytic models, which find that
natural selection maximizes a compromise between a high
growth rate and a small environmental variance in popu-
lation growth rate in the continuous-time setting, provided
that fluctuations in population size around carrying capacity
are relatively small [16,30,32]. Here, we further develop a
general framework for understanding the impacts of different
temporal scales of environmental variation on organisms,
one that can easily be applied to real-world climatic data
for species living in fluctuating environments (see electronic
supplementary material, figure S2, for an empirical example).

By extending the concept of bet-hedging to consider
overlapping generations and variable population sizes, our
model relaxes the previous restrictive assumptions of
bet-hedging theory. Crucially, the distinction between
within- and among-generation bet-hedging that results from
the non-overlapping generation assumption of the geo-
metric mean of fitness is clearly not applicable to many
organisms, especially for relatively long-lived species.
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Figure 4. The proportion of simulations where the rising-tide strategy reaches fixation, the bet-hedging strategy reaches fixation or a polymorphism exists under
continuous-time population dynamics. (a–c) We consider three scenarios where the mean environmental conditions (i.e. EMean) move from the optimum (a) to
harsher environmental conditions (b,c) and explore the outcome of the selection dynamics under each scenario. (d–f ) The proportion of selection dynamic models
where the rising-tide strategy excludes the bet-hedging strategy. (g–i) The proportion of selection dynamic models where the bet-hedging strategy excludes the
rising-tide strategy. ( j–l) The proportion of polymorphisms where both strategies coexist until the termination of simulations. Note that larger shape coefficients of
beta functions (i.e. sshort and slong) represent narrower distributions and smaller variability. Panels in the same column (e.g. (d ), (g), ( j )) represent the same dataset.
In addition, each proportion value is calculated from 1000 repeated simulations where one simulation lasts 20 000 time units (including 20 000 short-term and 1000
long-term variations), unless any strategy dies out before termination. (Online version in colour.)
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Although within-generation bet-hedging has generally been
assumed to be rare in nature [42–44], we believe that the con-
cept can still be used to explain many forms of adaptation to
fluctuating environments. Our model shows that lowering
the variation in fitness at the expense of a lower mean fitness
in fluctuating environments within the lifetime of an
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organism—but not within a generation of a population,
which represents a non-overlapping generation setting—can
still be favoured by natural selection and constitutes a form
of bet-hedging. This is because the strength of natural selec-
tion also varies according to the environment through
changes in population size [45]. As population size increases
in high-quality environments (e.g. good years), the strength
of selection will be weaker, similar to cases of genetic surfing
(i.e. genotypes can increase their size in the population
quickly during population expansion [46,47]), ultimately
selecting for the rising-tide strategy. By contrast, when popu-
lation size decreases in low-quality environments (e.g. bad
years), the strength of selection will be stronger, similar to a
population going through a bottleneck [48,49], ultimately
selecting for the bet-hedging strategy. Thus, a strategy that
can have higher relative fitness in bad years can increase its
frequency in the population substantially. All else being
equal, producing an offspring when a population is small
(e.g. in a bad year) contributes more to the long-term fitness
of a genotype than doing so when a population is large
because it increases the frequency of the focal genotype
more. To illustrate this, consider that producing one individ-
ual in a population of 10 000 contributes a 0.01% increase in
the focal genotype, compared with a 1% increase of the gen-
otype if the population size is only 100 [21]. Therefore, simply
summing the number of offspring produced is not a proper
fitness measure of what natural selection maximizes in
cases of fluctuating population size with overlapping genera-
tional life histories [21,50]. Thus, the contrasting selection
forces between good and bad years will jointly determine
where the biological adaption occurs along the continuum
of adaptations to environmental fluctuation.

Similarly, life-history theory predicts that higher long-
term environmental variation selects for survival generalists
[51] and for reproduction generalists [18], but that higher
short-term environmental variation selects for survival gener-
alists [51] and reproduction specialists [18]. However, these
predictions are based on (1) the geometric mean of fitness
with a non-overlapping generation assumption and (2)
fixed or infinite population sizes, which assumes that
within-generation reproduction is additive and among gener-
ation reproduction is multiplicative. By contrast, for
organisms with overlapping generations and variable popu-
lation sizes, birth and death events can occur at the same
time intervals, which also means that fitness can no longer
be partitioned into within- and among- generation com-
ponents and thus the additive and multiplicative fitness
calculation are invalid. Instead, population dynamics need
to be considered when calculating individual reproductive
values, something that theoreticians have only just begun to
address [16,52–54]. Nevertheless, as we have shown in our
model (and in the electronic supplementary material), the
effect of temporal scales of environmental variation and
their interactions with the mean condition can result in
diverse reproductive and survival strategies, most of which
are still largely unexplored. Furthermore, previous studies
have shown that biological adaptations to fluctuating
environments will also depend on how mean environmental
conditions have changed in the past (e.g. speed, predictabil-
ity, frequency) [55,56]. Although we do not consider these
factors here, we believe that doing so will be fruitful for
future studies.

In conclusion, we suggest that researchers should move
beyond viewing environmental variation as discrete classes
of coarse (among-generation) and fine grain (within-
generation), and instead begin investigating the existence of
a potentially rich suite of adaptations to diverse environ-
mental scenarios—those that vary in intensity, frequency,
and duration—in an ever-changing world. Ultimately, our
study not only helps bridge the apparent gap between theor-
etical and empirical studies of biological adaptation in
a volatile world, but it also develops a synthetic theoretical
framework that links seemingly distinct fields, such as
life-history evolution [18,49], macrophysiology [57] and
species distribution modelling [17,58].
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