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1  |  INTRODUC TION

A major challenge in biology is uncovering general principles 
through the study of specific organisms (Travis, 2006). It helps to 
study a diversity of species, but not all species are amenable to 

detailed studies. One of the advances of recent science is the de-
mocratization of “model” species, made possible by technological 
advances applied to a wide variety of taxa. We now have many 
more organisms than “the worm” (Caenorhabditis elegans), “the 
fly” (Drosophila melanogaster), “the plant” (Arabidopsis thaliana), or 
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Abstract
Investigating fundamental processes in biology requires the ability to ground broad 
questions in species- specific natural history. This is particularly true in the study of 
behavior because an organism's experience of the environment will influence the ex-
pression of behavior and the opportunity for selection. Here, we provide a review of 
the natural history and behavior of burying beetles of the genus Nicrophorus to pro-
vide the groundwork for comparative work that showcases their remarkable behav-
ioral and ecological diversity. Burying beetles have long fascinated scientists because 
of their well- developed parenting behavior, exhibiting extended post- hatching care of 
offspring that varies extensively within and across taxa. Despite the burgeoning suc-
cess of burying beetles as a model system for the study of behavioral evolution, there 
has	not	been	a	review	of	their	behavior,	ecology,	and	evolution	in	over	25 years.	To	ad-
dress this gap, we leverage a developing community of researchers who have contrib-
uted to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus 
for investigating the causes and consequences of social and behavioral evolution.
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“the mouse” (Mus musculus), that have tractable physiology, ecol-
ogy, development, genetics, and phylogenetics. This has opened 
the possibility of addressing broad questions in biology by using 
biodiversity to understand fundamental biological principles 
(Travis, 2006). Model organisms develop when a cohesive research 
community addresses multiple problems at multiple levels within 
a taxon (Brenner, 2009).	Such	a	model	has	developed	 in	burying	
beetles (Nicrophorus spp.), which are notable for their extensive 
parental care. Here, we highlight the utility of this group of insects 
to address a diversity of biological phenomena, in particular the 
ecology and evolution of parental care.

The parental behavior of burying beetles (Coleoptera: 
Staphylinidae:	subfamily	Silphinae;	tribe	Nicrophorini;	Cai	et	al.,	2022; 
Sikes	et	al.,	2024) has long fascinated biologists (Fabre, 1918; Milne 
&	Milne,	1944; Pukowski, 1933). Nicrophorus show unusually com-
plex parental care for an insect—composed of multiple behaviors 
including direct interactions with offspring—where parents se-
quester and prepare carrion nests to provision their larvae (Royle 
et al., 2012, 2016). Understanding the evolution of parental care is 
often difficult, as systems that have evolved parental care are often 
so reliant on care that it is not possible to manipulate care or place it 
into a comparative framework. For this reason, burying beetles are 
an excellent model system for the evolution of behaviors like parent-
ing because they are amenable to experimentation and their behav-
ior varies among species; some species raise offspring uniparentally, 
biparentally,	 or	 even	 communally	 (Bartlett	 &	 Ashworth,	 1988; 
Conley, 1982; Eggert, 1992; Halffter et al., 1983; Müller et al., 2007; 
Scott	&	 Traniello,	 1990;	 Sun	 et	 al.,	2014;	Wilson	&	 Fudge,	 1984). 
Females and males often show a subset of parental care behaviors 
when they have a partner but will show the full repertoire of paren-
tal	care	when	rearing	offspring	uniparentally	(Cotter	&	Kilner,	2010; 
Scott	&	Traniello,	1990;	Smiseth	&	Moore,	2004). Duration of care 
differs	between	 individuals,	 sexes,	populations,	 and	species	 (Scott	
&	Traniello,	 1990;	 Smith	 et	 al.,	2014;	Wilson	&	Fudge,	 1984), and 
offspring differ in how dependent they are on parental care (facul-
tative	versus	obligate	care;	Jarrett	et	al.,	2017, 2018). Beetles of the 
genus Ptomascopus are also of the tribe Nicrophorini and use similar 
resources yet lack direct offspring feeding and other care behav-
iors exhibited by Nicrophorus (Peck, 1982;	Suzuki	&	Nagano,	2006b; 
Trumbo et al., 2001). Together, this variation provides a rich experi-
mental and comparative framework to study the causes and conse-
quences of social and behavioral evolution.

All behavior is a response to an organism's experience of a par-
ticular context. Thus, an understanding of natural history is cen-
tral to the investigation of behavior because it allows for tests to 
be grounded in species- specific data (Tewksbury et al., 2014). 
Scott's	 (1998) review of the ecology, evolution, and behavior of 
Nicrophorus has informed the work of many researchers studying 
burying beetles. However, there has not been an updated synthesis 
of Nicrophorus ecology and behavior that highlights what we have 
learned	over	the	past	25 years	(Eggert	&	Müller,	1997;	Scott,	1998). 
Moreover, most research has focused on relatively few North 
American,	European,	and	Japanese	species	and	the	natural	history	

of these taxa has been extrapolated to other members of the genus. 
Yet, with over 70 extant species of Nicrophorus in temperate regions 
worldwide	 (Sikes	 &	 Venables,	2013), it is clear that “The sanitary 
officers of the fields are legion” (Fabre, 1918) and most species re-
main virtually unknown. Here, we extend previous reviews (Eggert 
&	Müller,	1997;	Royle	&	Hopwood,	2017;	Scott,	1998) to provide the 
groundwork for comparative studies that leverage the remarkable 
behavioral and ecological diversity of Nicrophorus, highlighting natu-
ral and life- history data for these species across their life cycle. We 
then review the current understanding of the evolution of parental 
care in Nicrophorus and suggest some directions for future research.

2  |  BEHAVIOR AL ECOLOGY AND LIFE 
HISTORY

The most notable aspect of burying beetles is their elaborate paren-
tal care. Parental care includes multiple behaviors that support the 
development of offspring, the functions of which differ across the re-
productive cycle (Figure 1;	Eggert	&	Müller,	1997; Royle et al., 2016; 
Scott,	1998). These behaviors can be partitioned into those where 
parents directly interact with offspring (e.g., offspring provision-
ing) and those that influence offspring development indirectly (e.g., 
carcass preparation and maintenance; Duarte et al., 2021; Walling 
et al., 2008). Below, we briefly discuss the ecology of Nicrophorus 
in five broad categories across the life cycle, including breeding re-
source acquisition, egg laying and nesting, larval stages on the car-
cass (nesting resource), post- parenting offspring development, and 
adult ecology as it relates to and influences parental care.

2.1  |  Breeding resource acquisition

2.1.1  |  Finding	carcasses

Most burying beetles depend on fresh carrion to breed, an ephem-
eral resource that is coveted by a wide diversity of vertebrate 
and invertebrate species (Trumbo, 1992;	Wilson	 &	 Fudge,	 1984). 
Decomposition rate is not constant but depends on microbial and 
insect activity, both of which can vary with temperature, season, 
and habitat (Babcock et al., 2020;	 Esh	&	Oxbrough,	2021; Farwig 
et al., 2014; Ito et al., 2023;	Kočárek,	2003; Matuszewski et al., 2010; 
Müller et al., 2024;	Parmenter	&	MacMahon,	2009;	Shean	et	al.,	1993; 
von Hoermann et al., 2018, 2022). As a result, Nicrophorus may have 
as	 little	as	1–5 days	to	find	a	carcass	before	 it	becomes	unsuitable	
for	breeding	(Kočárek,	2003;	Smith	&	Heese,	1995). Nicrophorus are 
thus dependent on strategies that allow them to quickly find and 
secure fresh carcasses.

Nicrophorus	are	capable	fliers	(Attisano	&	Kilner,	2015; Merrick 
&	Smith,	2004). Even species that are very large relative to other 
Nicrophorus, like N. americanus (Potticary, Belk, et al., 2024), move 
long distances relative to their body size in search for carrion (Bedick 
et al., 1999;	Creighton	&	Schnell,	1998;	Jurzenski	et	al.,	2011; Raithel 
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et al., 2006). For example, mark–recapture studies of N. americanus 
found	that	individuals	searching	for	carrion	traveled	1.23 km	a	night	
on	 average	 (Creighton	 &	 Schnell,	 1998) and another study docu-
mented	an	individual	that	traveled	7.2 km	in	a	single	night	(Jurzenski	
et al., 2011). Individuals are thought to find carcasses by detecting 
the volatile organic compounds that are emitted by microbial me-
tabolism during decomposition (Cernosek et al., 2020;	 Kalinová	
et al., 2009; Paczkowski et al., 2012;	 Shubeck,	 1975). Burying 
beetles sense volatile organic compounds using receptors in the 
antennomeres of their antennal clubs for long- distance detection 
(Boeckh, 1962; Dethier, 1947), and potentially a combination of 
their antennae and chemosensory centers on their legs at shorter 
distances (Böhm, 1995; Dethier, 1947;	 Heinzel	 &	 Böhm,	 1989; 

Kalinová	et	al.,	2009). Once a carcass has been found, burying bee-
tles evaluate the suitability of the carcass using a combination of 
mechanosensory and gustatory cues (Trumbo et al., 1995).	Sensory	
processing appears to vary according to movement strategy, as bee-
tles searching while walking will accept carcasses at different stages 
of decay or different types of carcasses than free- flying beetles 
(Kalinová	et	al.,	2009; Rozen et al., 2008;	Smith	et	al.,	2007; Trumbo 
&	 Steiger,	 2020). Little is known about the movement strategies 
that enable burying beetles to find carcasses, and how movement 
strategies influence carcass selection, although some species dif-
fer in their preferred flying height while foraging (Ikeda et al., 2011; 
LeGros	&	Beresford,	2010;	Lowe	&	Lauff,	2012; Ulyshen et al., 2007; 
Wettlaufer et al., 2018).

F I G U R E  1 Nicrophorus life cycle. (1) Individuals are attracted to carcasses or pheromonally calling males to find a suitable breeding 
resource, which is (2) often a small vertebrate. (3) Burying beetles work alone or coordinate with one or more individuals to bury the 
carcass and defend it from potential competitors, parasites, or predators. During burial, adults remove the external covering of the carcass, 
such as fur, and form the carcass into a brood ball. Parents then cover the carcass with oral and anal secretions—exudate—that regulate 
microbial communities. (4) Females lay eggs in the soil, and parents spend the embryonic period defending and maintaining the brood ball. 
Parents eventually cut an incision into the brood ball to create a larval cavity. (5) When the larvae hatch, they crawl to the carcass where 
parents provision them through oral trophallaxis or larvae self- feed from the larval cavity. Parents will also regulate brood size through the 
consumption of some larvae, or filial cannibalism. Larvae remain on the brood ball until dispersing during the third instar stage. (6) Following 
dispersal, larvae wander to find a location to pupate in the soil. After pupation, they eclose into their adult form (7) and either stay in their 
underground pupation chamber or emerge from the soil as teneral adults; at this stage, their exoskeleton has not hardened, and they appear 
light brown in coloration. Eclosed beetles seek food to support sexual maturation. Once their exoskeleton has sclerotized and they have 
achieved adult coloration, adults become sexually mature within a couple of weeks or longer depending on (8) developmental timing relative 
to	breeding	season,	overwintering	stage,	and	whether	reproductive	diapause	is	needed.	Stages	1–2	are	nesting	resource	acquisition,	3–4	are	
nesting and egg- laying stages, 5 includes larval stages on the nest, 6–7 post- parenting offspring development, and 8 is adult natural history. 
Artwork	produced	by	Kathryn	Kollars.
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The strength and composition of volatile organic compounds 
vary across decomposition, resulting in stage- specific odor bou-
quets (Recinos- Aguilar et al., 2019;	Trumbo	&	Newton,	2022; von 
Hoermann et al., 2013, 2016). Nicrophorus and other carrion bee-
tles use variation in the emission of sulfur- containing volatiles to 
inform	 searching	 behavior	 (Trumbo	 &	 Dicapua,	 2021;	 Trumbo	 &	
Steiger,	 2020). Nicrophorus orbicollis and N. tomentosus cue in on 
dimethyl	 disulfide	 (DMDS),	 methyl	 thiocyanate	 (MeSCN),	 and	 di-
methyl	trisulfide	(DMTS)	as	simple,	long-	distance	cues	to	differenti-
ate	stages	of	carcass	decomposition	(Trumbo	&	Steiger,	2020).	Small,	
fresh	carcasses	emit	DMDS	and	MeSCN,	while	bloating	carcasses	
and	those	with	higher	maggot	activity	emit	more	DMDS	and	DMTS	
(Armstrong et al., 2016; Chen et al., 2020; Paczkowski et al., 2012; 
Recinos- Aguilar et al., 2019;	 Trumbo	&	Newton,	2022;	 Trumbo	&	
Steiger,	 2020; von Hoermann et al., 2016). Reproductively active 
beetles seek fresh carcasses while those seeking food prefer car-
casses	in	bloated	or	active	decay	stages	(Chapman	&	Sankey,	1955; 
Kalinová	 et	 al.,	 2009;	 Kočárek,	 2003; Matuszewski et al., 2010; 
Peschke	&	Fuldner,	1987; Reed, 1958;	Urbański	&	Baraniak,	2015; 
von Hoermann et al., 2013;	Wilson	&	Knollenberg,	1984).

Searching	behavior	in	Nicrophorus may be influenced by cues that 
indicate whether fly larvae are present or absent (Putman, 1978), 
depending on reproductive state. Nicrophorus are not exclusively 
necrophagous—that is, they do not exclusively eat carrion—and are 
much better described as necrophilous, or preferring to associate 

with dead tissue (Fichter, 1949). Adult Nicrophorus are known to 
hunt for invertebrate larvae or adults (Pukowski, 1933), and some 
Nicrophorus species prefer eating fly larvae over carrion when 
given a choice (Chen et al., 2020;	 Steele,	 1927). A preference for 
eating invertebrate larvae may explain why Nicrophorus are asso-
ciated with decomposing materials such as dung and fungi, as well 
as carrion (Balduf, 1935; Clark, 1895;	De	 Jong	&	Chadwick,	1999; 
Dekeirsschieter,	 Verheggen,	 Lognay,	 &	 Haubruge,	 2011a; 
Elton, 1966; Fichter, 1949; Matuszewski et al., 2010; Pukowski, 1933; 
Steele,	1927). A cursory review of iNaturalist reveals Nicrophorus on 
dung, fungi, compost, eggs, a potted pitcher plant full of dead flies 
(Figure 2), and in other kinds of microhabitats that include larvae, 
such as wasp nests (Potticary, Belk, et al., 2024). Artist Abraham 
Mignon even depicted burying beetles in multiple still- life paint-
ings of fruit in the mid- 1600s (Mignon 1640–1679a, 1640–1679b). 
Moreover, Nicrophorus can be captured in traps baited with many 
kinds of carrion (Bedick et al., 2004), and other distinctly non- carrion 
substances	 like	 vinegar	 (Nishikawa	 &	 Sikes,	 2008) and molasses 
(Katakura	&	Fukuda,	1975). That Nicrophorus are attracted to such 
a diversity of substances likely reflects that the volatile cues used 
by Nicrophorus to find feeding resources are simple and common to 
decomposing	materials.	For	example,	fungi	can	also	emit	DMDS	and	
DMTS	(Borg-	Karlson	et	al.,	1994; Lemfack et al., 2014) and are often 
infested with fly larvae. Hunting larvae is a common behavior to other 
Silphinae	 and	 Staphylinidae;	 these	 groups	 are	 largely	 predacious	

F I G U R E  2 Nicrophorus hunt on decomposing carrion, fungi, and dung. Credits for each image are provided in parentheses. Nicrophorus 
eat fly larvae on carrion, as seen by this (a) N. tomentosus as it consumes a fly larva (Cheri Phillips). In addition, burying beetles forage on 
both carnivore and herbivore feces, such as this (b) N. interruptus (Fabien Piednoir), and (c) Nicrophorus	sp.	(Sue	Elwell).	Some	Nicrophorus 
have been observed to hunt adult dung beetles (Pukowski, 1933) like (d) this Geotrupes on dung (Alexander Goncharov). Nicrophorus also 
are found on various decomposing fungi, such as N. vespilloides	(e)	(Sasha	Uhnivenko),	and	(f)	N. defodiens (Allison Formica). Nicrophorus are 
drawn	to	a	diversity	of	decomposing	substrates,	including	this	(g)	potted	pitcher	plant	full	of	dead	insects	(Patrick	Strzalkowski).	Images	were	
collected from iNaturalist observations, without modification, and all permissions for imagery were solicited directly from citizen scientists. 
Data on observations are provided in Dryad (Potticary, Belk, et al., 2024).
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and hunt on decomposing materials (Figure 2d; Young, 2015), as 
well as in the nests of birds, reptiles, mammals, and insects, such as 
ants,	 termites,	bees	and	wasps	 (reviewed	 in	Voris,	1934). As such, 
Nicrophorus searching behaviors differ across their lifespan based on 
the likelihood that fly larvae are present, such that breeders prefer 
materials where flies are absent and feeding adults prefer materials 
where larvae are likely to be present.

2.1.2  |  Breeding	carcass	identity

Little is known about carcass choice in the wild except that breed-
ing Nicrophorus typically breed on small, relatively fresh vertebrate 
carcasses of a preferred size range for their species. Carcass selec-
tion behaviors of free- living Nicrophorus are generally cryptic as it 
is rare and difficult to find carcasses naturally colonized by burying 
beetles before they are buried. Most experiments place carcasses 
in the field, using small native mammal and bird species (Lowe 
&	 Lauff,	 2012;	 Smith	 &	 Merrick,	 2001) or commercially sourced 
mice,	rats,	and	poults	(LeGros	&	Beresford,	2010; Park et al., 2023; 
Schwindt	 et	 al.,	2013). Thus, whether individuals or species differ 
in their carcass preferences under natural conditions is an open 
question.

There is some evidence suggesting intra-  and interspecific vari-
ation	 in	 carcass	 use.	 Stable	 isotope	 signatures	 of	 several	 sympat-
ric Nicrophorus assemblages differed, suggesting differentiation in 
resource use (Ikeda et al., 2006; Quinby, Feldman, et al., 2020b). 
Nicrophorus vespilloides that bred successfully on mice were more 
likely to choose to breed on mice in the future (Park et al., 2023), and 
wild N. vespilloides showed seasonal differences in whether individu-
als were trapped on mice or chicks, though this could reflect differ-
ences in age structure across the breeding season (Issar et al., 2024). 
In addition, the size of the carcass N. vespilloides develops on, and 
the amount of care it receives during larval development, influence 
adult body size and the ability to exploit large carcasses in later life 
(Schrader	 et	 al.,	 2022). Nicrophorus investigator shows no prefer-
ence	between	five	different	rodent	species	(Smith	&	Merrick,	2001). 
However, in other parts of its range, N. investigator breed on large 
carrion that are too large to bury such as salmon, and in still other 
parts of their range, they breed on birds (Hocking et al., 2006, 2007; 
Peck, 1986; Wilhelm et al., 2001). Nicrophorus carolina will use 
snakes (Arnett, 1946), and N. pustulatus often breeds on snake eggs 
(Blouin- Demers et al., 2004;	Blouin-	Demers	&	Weatherhead,	2000; 
Smith	 et	 al.,	2007). Even a single, industrious N. orbicollis was ob-
served to use a broken open snake egg for reproduction in the labo-
ratory	(Smith	et	al.,	2007). Indeed, if it were not for the observation 
that wild N. pustulatus do not prepare mice placed on the ground—
but	will	prepare	bird	carcasses	in	nests	off	the	ground	(DeMarco	&	
Martin, 2020)—their natural history would be assumed to be the 
same as other Nicrophorus	based	on	their	behavior	in	captivity	(Smith	
et al., 2007). Publicly available data such as iNaturalist sightings can 
improve our understanding of the taxonomic identities of carcasses 
naturally colonized by various Nicrophorus species.

Research has largely focused on the breadth of carcass size that 
Nicrophorus species will use for breeding because carcass size im-
pacts parental egg- laying and larval strategies (see Egg and Larval 
stages). The size of a suitable breeding carcass is expected to reflect 
trade- offs in a beetle's ability to find, sequester, and prepare it rela-
tive to intra-  or interspecific competitors, producing either species 
differences in carcass size preference or temporal, habitat, or spatial 
niche differentiation (Anderson, 1982b; Belk et al., 2021;	Eggert	&	
Müller, 1997; Hopwood et al., 2016b; Ohkawara et al., 1998; Royle 
&	Hopwood,	2017;	Scott,	1998). For example, N. orbicollis with larger 
carcasses are more likely to have conspecific intruders than those 
with smaller carcasses (Trumbo, 1991) and broods fail on carcasses 
that	are	not	of	the	appropriate	size	(Smith	&	Heese,	1995). The pref-
erence for fresh carcasses may reflect the diminishing nutritional 
value of carcasses as they decompose and greater consumption of 
the	carcass	by	other	insects	like	flies	(Kočárek,	2003). Thus, securing 
a fresh carcass improves nutrient availability and quality for larvae 
across developmental stages (Rozen et al., 2008; Trumbo, 2016) and 
reduces the threat of predation to young (see Larval stages).

2.2  |  Securing the carcass: competition, burial, and 
preparation

2.2.1  |  Competitive	behavior

Competition for breeding carcasses is likely a major driver in the 
evolution of parental care in burying beetles. Intra-  and interspecific 
competitors reduce the availability of breeding carcasses through 
exploitation—by reducing the quantity or quality of carcasses—or 
by interference competition—by hindering access to the carcass 
through fighting or behaviors that decrease the salience of cues that 
may allow other individuals to find the carcass. Both intraspecific 
and interspecific competition are important in the burying beetle 
system. For example, the range limits of N. nepalensis are defined 
by exploitative competition with blowflies at their cool, upper el-
evation boundary, and by interference competition with blowflies 
at the warm, lower elevation boundary (Chan et al., 2019). Larger 
individuals typically win in direct contests among burying bee-
tles	 over	 carcasses	 (Bartlett	 &	 Ashworth,	 1988; Lee et al., 2013; 
Otronen, 1988; Pukowski, 1933;	Scott,	1994a;	Smith	&	Belk,	2018a; 
Steiger	 et	 al.,	 2012), although nutritional status also influences 
contest outcomes (Hopwood et al., 2014). The role of body size 
in	 fights	has	been	well	 described	 (Eggert	&	Müller,	 1997;	Royle	&	
Hopwood, 2017;	Scott,	1998).

However, body size is relative and thus the importance of body 
size depends on the competitive environment that a beetle en-
counters, such as the size and relative condition of other burying 
beetles in the population (Creighton, 2005; Hopwood et al., 2014, 
2016b). For Nicrophorus studied thus far, both sexes will fight for 
breeding carcasses, but the outcome of contests based on body size 
can	differ	between	sexes	(Smith	&	Belk,	2018a). Whether a contest 
will occur depends on the sex and size of the beetle that finds the 
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carcass. For example, previously mated females can immediately 
bury a carcass, reducing the likelihood of a contest, whereas a male 
that discovers a carcass often emits pheromones to call for females, 
increasing opportunities for a fight as other beetles are drawn to 
the carcass (Haberer et al., 2008; Hopwood et al., 2016a;	Royle	&	
Hopwood, 2017).

Intraspecific fights can result in injuries such as lost legs 
and	 antennae,	 and	 even	 death	 (Komdeur	 et	 al.,	 2013;	 Scott	 &	
Traniello, 1990; Trumbo, 1990c, 1992, 2007). Fighting behaviors 
include pushing, biting, flipping an opponent over, and in the most 
intense cases, mounting/grappling that superficially resembles cop-
ulatory behavior, and death by dismemberment (Otronen, 1988; 
Suzuki,	2000). The nicrophorine Ptomascopus morio also fights near 
carcasses, including pushing, biting, and male–male mounting, al-
though	 only	 males	 compete	 in	 this	 species	 (Suzuki	 et	 al.,	 2005; 
Suzuki	 &	 Nagano,	 2006b). Body size varies extensively within all 
Nicrophorus studied to date (Otronen, 1988), and thus, it is likely that 
beetles often employ alternative seeking or sequestering strategies 
that do not depend on combat (Ohkawara et al., 1998) because com-
petition may also include non- aggressive behaviors like finding and 
burying carcasses quickly.

2.2.2  |  Burial

Why do burying beetles bury carcasses? Burial serves multiple pur-
poses, such as protecting the brood ball from intruders, regulating 
temperature, and as a defense against desiccation. Early coloniz-
ing Nicrophorus can secure a carcass by finding it quickly, moving 
and burying it, and reducing the salience of the microbial cues 
that	allowed	them	to	find	the	carcass	 (Milne	&	Milne,	1944, 1976; 
Trumbo, 2023). These activities are types of interference com-
petition that do not require fighting and thus are suitable strate-
gies for beetles of all sizes to secure a breeding resource (Bartlett 
&	 Ashworth,	 1988; Duarte et al., 2018;	 Shubeck	 &	 Blank,	 1982; 
Shukla,	Vogel,	 et	 al.,	2018b;	 Smith,	Bonilla,	 et	 al.,	2000a;	 Smith	&	
Merrick, 2001;	Trumbo	&	Sikes,	2021), although beetles of different 
sizes	may	differ	in	how	deep	they	can	bury	(Eggert	&	Sakaluk,	2000). 
While burial greatly reduces the likelihood of discovery of the brood 
ball by intruders, it does not preclude it (Hopwood et al., 2015; 
Payne et al., 1968;	Rodriguez	&	Bass,	1985;	Shubeck	&	Blank,	1982; 
Trumbo	&	Sikes,	2021), and consequently, intrusions, takeovers, and 
brood parasitism are common in some species (Niida et al., 2024; 
Scott,	 1994b;	 Suzuki,	2000, 2004, 2006a; Trumbo, 1990c, 1994). 
Burial depth (Potticary, Belk, et al., 2024) affects whether intrud-
ers	 can	 find	 brood	balls	 (Shubeck,	 1985;	 Shubeck	&	Blank,	 1982), 
with fewer intrusions by other beetles, flies, and vertebrate scav-
engers	 the	 deeper	 a	 carcass	 is	 buried	 (Rodriguez	 &	 Bass,	 1985; 
Scott	 &	 Traniello,	 1990; Trumbo, 1990c; Wilson, 1983;	Wilson	 &	
Knollenberg,	1987; Zou et al., 2022).

Moreover, burial creates a crypt with a less variable tempera-
ture	than	at	the	soil	surface	(Rodriguez	&	Bass,	1985). Growth rates, 
adult body size, and fecundity are all influenced by temperature 

(Angilletta et al., 2004; Atkinson, 1994;	Kingsolver	&	Huey,	2008; 
Meierhofer et al., 1999). Higher temperatures increase egg mortality 
in N. quadripunctatus (Nisimura et al., 2002). Nicrophorus orbicollis, 
for instance, bury carcasses deeper when ambient surface tempera-
tures are higher, and deeper crypts have dampened temperature 
fluctuations (Harrison, 2021). Average larval mass decreases as the 
temperatures become more variable in N. orbicollis (Harrison, 2021), 
at warmer temperatures for N. marginatus	(Keller	et	al.,	2021), and at 
lower elevations in N. investigator	(Smith,	Hines,	et	al.,	2000b). Even 
short heat waves impact parenting and offspring development in N. 
vespilloides (Pilakouta et al., 2023). Finally, microhabitat selection in-
fluences larval development; N. investigator parents prefer to bury 
carcasses in sunny alpine meadows where larvae develop faster than 
in shaded forests, even though adults forage in both habitat types 
(Smith	&	Heese,	1995).

Temperature and competition as drivers of burying behavior are 
not mutually exclusive. Ambient temperature variation influences 
the likelihood and diversity of intruders by altering the release of 
volatiles from the carcass (Potticary, Otto, et al., 2023b;	 Shean	
et al., 1993; Wilson et al., 1984). Temperature can also change the 
nature of competitive interactions between burying beetles and 
other species at the carcass, such as phoretic mites and blowflies 
(Chen et al., 2020;	Sun	&	Kilner,	2020), and perhaps even microbes 
and burying beetle larvae (Grew et al., 2019). Given the hypothesized 
importance of reducing opportunities for competition at the brood 
ball, it is unclear why burial depth varies so much within and across 
Nicrophorus; ranging from shallow crypts that do not cover the car-
cass, to deep burials several centimeters below the surface, to no 
burial at all (e.g., when the carcass is too large to bury). This variation 
may reflect a trade- off between environmental context (e.g., burial 
substrate and abundance of competitors), physiology, and the en-
ergetic costs of burial (Wilson, 1983;	Wilson	&	Knollenberg,	1987). 
For example, smaller species may not be able to bury carcasses as 
deep as larger species or are unable to sequester a larger carcass 
when competition is high, although this is a hypothesis that requires 
testing.

2.2.3  |  Preparation	of	the	brood	ball:	Shaving,	
rounding, incisions, and exudate

Throughout the burial process, Nicrophorus parents perform a com-
plex series of activities to prepare the carcass, including rounding, 
removing the external covering (e.g., fur or feathers), and coating 
the carcass in exudate secretions, and cutting an incision in the 
carcass (Duarte et al., 2018;	Hwang	&	Lin,	2013; Pukowski, 1933; 
Wang	&	Rozen,	2017).	 Similar	 to	negotiations	between	parents	 at	
larval stages (see Larval stages), male N. orbicollis modulate their car-
cass preparation activity in response to female activity (Creighton 
et al., 2015). These activities are expected to mitigate the costs of 
developing on carrion, a microbe- rich and potentially putrefying 
resource	 much	 coveted	 by	 other	 organisms	 (reviewed	 by	 Körner	
et al., 2023). Carcass preparation can reduce the discovery of the 
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brood ball by other insects (Chen et al., 2020; Trumbo et al., 2021; 
Trumbo	&	Sikes,	2021) and can support offspring development by 
managing	 the	 microbial	 community	 (Shukla,	 Plata,	 et	 al.,	 2018a; 
Trumbo, 2017).

How do carcass preparation behaviors accomplish these tasks? 
Parents remove the external coverings of the carcass and round 
the carcass, resulting in a clean meatball with the skin intact ex-
cept for an incision cut on top in which Nicrophorus larvae congre-
gate (Figure 3). Parents often do not shape large carcasses into a 
ball. However, even an N. investigator breeding on a rabbit carcass 
cleaned and maintained the area around their brood (Peck, 1986). 
Such	“shaving”	behavior	may	serve	multiple	purposes,	including	re-
ducing volatile cues and fly eggs, as well as facilitating the applica-
tion of exudate that slows decomposition. Decomposing proteins, 
like	the	keratin	of	fur	and	feathers,	can	produce	DMDS	and	DMTS	as	
byproducts (Dekeirsschieter et al., 2009) and removing these struc-
tures could reduce the emission of volatiles that are attractive to 
other necrophilous organisms (Woodard, 2006). However, removed 
fur and other external coverings are often present, lining the crypt, 
so it is unclear how this would reduce volatile emission. Moreover, 
fly eggs are often laid on the external coverings of carcasses, such 
as fur or feathers. Wilson (1983) never observed several North 
American burying beetle species specifically hunt or destroy fly 
eggs, and hypothesized that removing the external covering was an 
indirect mechanism to reduce dipteran infestation.

Carcass rounding could be an artifact of how burying beetles 
bury carcasses and develop the crypt (Pukowski, 1933), yet burying 
beetles sometimes round carcasses even in the absence of burial or 

a full crypt. A rounder carcass may lower the cost of producing an-
timicrobial exudates for parents by reducing the area to be covered 
(Duarte et al., 2021). Moreover, rounder N. vespilloides brood balls 
are	less	hospitable	to	blowfly	larvae	(Sun	&	Kilner,	2020). However, 
carcass roundness did not affect offspring outcomes like brood size 
of N. vespilloides (Duarte et al., 2021), and N. orbicollis, N. pustulatus, 
and N. vespilloides larvae can survive on unprepared carcasses in a 
laboratory (Capodeanu- Nägler et al., 2016; Trumbo, 2017). Carcass 
rounding could reduce cues to potential intruders, as areas of greater 
volatile release (e.g., the mouth of the carcass) and any incisions in 
the carcass are either placed in the interior of the brood ball or are 
actively covered by parents (Trumbo, 2017).

There may be a trade- off between the creation of the larval cav-
ity to support larval growth and the release of microbial compounds 
that attract other insects (Trumbo, 2017), as incisions in the skin of 
a carcass increase the rate of decomposition and release of volatiles 
(Brodie et al., 2014; Ito et al., 2023; Recinos- Aguilar et al., 2019). 
Nicrophorus vespilloides larvae depend on an incision in the carcass 
to self- feed (Duarte et al., 2021; Eggert et al., 1998) and N. pustula-
tus will cut an incision in otherwise unprepared snake eggs for their 
larvae	(Smith	et	al.,	2007). In the absence of parents, N. vespilloides 
larvae are much more successful with an incision (Eggert et al., 1998; 
Jarrett	et	al.,	2018). Parents mediate this trade- off by changing the 
timing of when they place the incision; only 26% of N. vespilloides 
parents place an incision in the carcass before larvae hatch (Duarte 
et al., 2021), and N. orbicollis parents will patch any incisions that 
occur before hatching (Trumbo, 2017). Together, these data support 
the idea that rounding and shaving reduce the potential for intruders 

F I G U R E  3 Parenting	of	Nicrophorus. Credits for each image are provided in parentheses. Reproductive activity is initiated when a 
Nicrophorus finds a suitable breeding carcass, like this (a) N. tomentosus on a mouse (Diane Pfeiffer). Parents then remove the external 
covering of the carcass, like these (b) N. vespilloides shaving a small mammal (Thierry Arbault). The carcass is then (c) rounded, and a small 
incision is made in the skin of the brood ball (Paul Hopwood). Once larvae hatch, parents (d) like this N. vespilloides will regurgitate carrion 
to their offspring (Nick Royle). Larvae are fed by parents and/or self- feed from the brood ball until (e) it has been completely consumed 
in the third larval instar, when larvae disperse (Paul Hopwood). Images collected from iNaturalist observations were not modified and 
all permissions for imagery were solicited directly from citizen scientists. Data on observations are provided in Dryad (Potticary, Belk, 
et al., 2024).
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at the carcass, rather than directly benefiting offspring development 
(Capodeanu- Nägler et al., 2016; De Gasperin et al., 2016; Duarte 
et al., 2021), while incisions in the carcass support larval self- feeding 
and aggregation (Duarte et al., 2021;	 Smith	 et	 al.,	2007). Tests of 
these hypotheses are needed in the wild.

Carcasses are rapidly colonized by bacteria on the surface and 
burial itself increases microbial diversity (Duarte et al., 2018). High 
microbial loads on older carcasses can negatively affect offspring 
development and the absence of carcass preparation can lead to 
total brood failure (Arce et al., 2012; McLean et al., 2014; Rozen 
et al., 2008; Trumbo, 2016), but larvae can survive without any car-
cass preparation in some situations (Capodeanu- Nägler et al., 2016, 
Trumbo, 2017). Nicrophorus actively mitigate microbial challenges 
on	 the	carcass	 that	offspring	would	otherwise	experience	 (Körner	
et al., 2023). When N. vespilloides discovers a carcass, parents alter 
the composition and function of their anal secretions, or exudate, 
from defense- only in non- breeding individuals to a parental func-
tion in breeders (Arce et al., 2012;	 Cotter	&	Kilner,	2010; Palmer 
et al., 2016;	Steiger	et	al.,	2011). Exudate production is considered 
costly because it trades off fecundity and aspects of personal im-
munity (Cotter et al., 2010, 2013;	 Cotter	 &	 Kilner,	 2010; Reavey 
et al., 2014). Nicrophorus vespilloides parents alter the antibacterial 
activity of their exudate when another parent is present, also sug-
gesting	that	exudate	is	costly	(Cotter	&	Kilner,	2010).

The exudates of both parents and larvae contain antimicrobial 
compounds, including lysozymes, antimicrobial peptides, and mi-
crobes that can inhibit some bacteria and fungi (Arce et al., 2012, 
2013;	Cotter	&	Kilner,	2010; Duarte et al., 2018; Hall et al., 2011; 
Hwang	&	Lin,	2013;	Jacobs	et	al.,	2016; Palmer et al., 2016; Parker 
et al., 2015;	Steiger	et	al.,	2011;	Suzuki,	2001;	Vogel	et	al.,	2017). 
When placed on the skin of the brood ball, these secretions can 
act as a defense against microbial challenge and decomposition 
(Arce et al., 2012; Hoback et al., 2004; Rozen et al., 2008;	 Vogel	
et al., 2017), and reduce volatile cues other organisms use to locate 
carcasses (Duarte et al., 2018, 2021;	 Shukla,	 Plata,	 et	 al.,	 2018a; 
Trumbo et al., 2021;	Trumbo	&	Sikes,	2021;	Trumbo	&	Steiger,	2020). 
Parents mediate the microbial community by weeding—that is, re-
ducing the abundance of some microbes—and seeding, or increasing 
the abundance of other microbes relative to unprepared carcasses 
(Duarte et al., 2018; Miller et al., 2019). Both methods of mediating 
the microbial community can support larval development. For ex-
ample, parental seeding of Yarrowia species can produce a biofilm- 
like matrix that supports larval growth by forming an interface 
between	larvae	and	the	brood	ball	(Shukla,	Plata,	et	al.,	2018a;	Vogel	
et al., 2017). Larvae acquire the microbiota and antimicrobial pep-
tides of their parents from the brood ball and parental regurgitations 
to larvae, which serve as inocula for larval digestive tracts (Miller 
et al., 2019;	Shukla,	Vogel,	et	al.,	2018b;	Vogel	et	al.,	2017;	Wang	&	
Rozen, 2017; Ziadie et al., 2019).

Microbial communities may reasonably be expected to differ 
across habitats and substrates, and species differ in how carcasses 
are prepared which could affect how well offspring acquire nutri-
ents from the brood ball. For example, N. vespilloides that usurped 

N. quadripunctatus carcasses were not as successful as individuals 
raising	larvae	on	a	carcass	they	prepared	themselves	(Suzuki,	2004). 
Furthermore, the antimicrobial exudate compounds of N. margina-
tus and N. carolina differed—even though they were captured in the 
same habitat (Woodard, 2006)—depending on temperature and 
food	 source	 (Jacques	 et	 al.,	 2009), perhaps reflecting differences 
in resource use. However, how parents mitigate microbial variation 
across ecological contexts to support offspring development has not 
been examined. There is some evidence from laboratory studies that 
parents alter exudate production in response to variable social and 
ecological conditions. For example, female N. vespilloides increase 
the antibacterial activity of their exudate in response to bacte-
rial challenge on the brood ball (Cotter et al., 2010), and decrease 
antibacterial activity when phoretic mites are present (Duarte 
et al., 2017). Future research may investigate how variation in mi-
crobial environment influences parental behavior and how parents 
mitigate the costs of their offspring growing up on carrion, such as 
by	mitigating	microbial	challenge	(Körner	et	al.,	2023).

2.3  |  Mating, oviposition, and eggs

Mating in Nicrophorus	occurs	at	carcasses	(Sakaluk	&	Müller,	2008) 
or females may be attracted to males emitting pheromones on or 
off a carcass (Figure 4; Beeler et al., 1999; Chemnitz et al., 2015; 
Eggert, 1992;	Eggert	&	Müller,	1989a, 1989b;	Müller	&	Eggert,	1987; 
Smith	 et	 al.,	2007). Females that appear at carcasses often carry 
viable	 sperm	 (Müller	&	Eggert,	 1989), though sperm stored in the 
spermatheca of N. vespilloides	start	to	become	infertile	3 weeks	after	
insemination (Eggert, 1992). For cases where males are present 
when females are laying eggs, mating is frequent during egg laying 
but ceases when larvae arrive (Engel et al., 2014).	Juvenile	hormone	
(JH)	in	females	of	N. vespilloides and N. orbicollis increases from car-
cass discovery until larvae hatch (Engel et al., 2016; Trumbo, 1997), 
triggering the production of an anti- aphrodisiac that reduces male 
mating behavior during larval stages (Engel et al., 2016, 2019).

Even females with viable sperm stored do not mature eggs 
until they have found and assessed a suitable breeding carcass 
(Huerta, 1991;	Scott	&	Traniello,	1987; Trumbo et al., 1995;	Wilson	&	
Knollenberg,	1984). Female condition and assessment of the carcass 
influence the number of eggs that females lay, and the eventual reg-
ulation of brood size, which together serve to regulate the amount 
of	 carrion	 available	 to	each	offspring	 (Bartlett	&	Ashworth,	1988; 
Creighton, 2005; Müller et al., 1990;	 Nagano	 &	 Suzuki,	 2007; 
Scott,	1997;	Smith	et	al.,	2015;	Steiger,	Richter,	et	al.,	2007b; Trumbo 
&	Fernandez,	1995; Wilson, 1983). Nicrophorus pustulatus produces 
the largest clutches observed in Nicrophorus—which can be upwards 
of 150 eggs versus the usual range of 20–75—which may reflect an 
adaptation to using clusters of reptile eggs for reproduction (Blouin- 
Demers	&	Weatherhead,	2000;	Smith	et	al.,	2007; Trumbo, 1992). 
The number of eggs laid can greatly exceed the number of larvae 
that eventually leave the carcass (Bartlett, 1987), and while filial can-
nibalism of larvae can regulate larval numbers, it is also possible that 
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parents lay additional eggs because not all eggs survive to hatch; for 
example,	due	to	predation	by	phoretic	mites	(Beninger	&	Peck,	1992; 
Wilson, 1983). Indeed, when parents of N. vespilloides were inhib-
ited from committing filial cannibalism of larvae in experimental 
evolution, egg hatchability increased, suggesting that parents typ-
ically produce extra infertile eggs (Rebar et al., 2022). Parents may 

produce extra, infertile eggs to reduce the likelihood of fertile eggs 
being eaten. Other factors like social environment influence egg lay-
ing; for example, N. vespilloides females lay more, and larger, eggs 
when breeding jointly with another female than when breeding on 
their own (Eggert et al., 2008;	Richardson	&	Smiseth,	2020). How 
variation in egg laying relates to ecological pressures like predation, 
phoretic mite load, desiccation, or other threats is unknown.

Egg	 laying	 can	 occur	 over	 30 h	 in	 N. vespilloides, leading to 
asynchronous	 hatching	 (Smiseth	 et	 al.,	 2008), although the last 
laid	eggs	develop	slightly	faster	 (Smiseth,	Ward,	&	Moore,	2006b). 
Embryonic developmental rates are influenced by egg size and tem-
perature though few data are available on the embryonic periods of 
Nicrophorus (Table 1), or how ecological conditions alter aspects of 
embryonic	development.	Species	vary	in	where	they	lay	eggs	rela-
tive to the carcass (Anduaga, 2009; Pukowski, 1933), so it is possible, 
but not yet shown, that females can influence embryonic develop-
ment based on egg placement.

2.4  |  Larval stages on the brood ball

Once larvae hatch, they crawl to the carcass and group in the larval 
cavity made by parents. How larvae find their nest is unknown, es-
pecially in instances where carcasses are large and multiple groups 
are breeding (Hocking et al., 2006). Larvae can be drawn to parental 
stridulations, produced by rubbing elytra on the abdomen (Niemitz 
&	Krampe,	1972). However, larvae can also locate a brood ball when 
parents are absent. In this case, larvae are perhaps also drawn to 
the cues of decay emitted from the incisions that parents create 
(Smith	et	al.,	2007; Trumbo, 2017). Nicrophorus parents cannot rec-
ognize their larvae and instead employ temporal cues, where any 
larvae arriving on the carcass at the time that the parents expect 
their offspring are accepted and fed, whereas those that appear 
too early are eaten (Benowitz et al., 2015;	Eggert	&	Müller,	2000; 
Komdeur	et	al.,	2013;	Müller	&	Eggert,	1990; Oldekop et al., 2007; 
Potticary,	McKinney,	et	al.,	2023a). This lack of offspring recognition 

F I G U R E  4 Calling	and	mating	in	Nicrophorus. Credits for each image are provided in parentheses. (a) Males like this N. defodiens may 
call for females by releasing pheromones in a distinctive, abdomen- up position (Matthias Morse). Mating then occurs either on a breeding 
carcass or (b) in another location, like these N. tomentosus copulating on a fern (Mauro Brum). Images collected from iNaturalist observations 
were not modified and all permissions for imagery were solicited directly from citizen scientists. Data on observations are provided in Dryad 
(Potticary, Belk, et al., 2024).

TA B L E  1 Life-	history	transitions.

Species
Embryonic 
period

Hatch to 
dispersal

Dispersal to 
eclosion

N. concolor 3–4 8–9 29–34

N. defodiens 2–4 6–7 25–37

N. guttula 4–7 7–14 29–40

N. investigator 5–6 10–11 Overwinter

N. marginatus 3–5 7–14 30–40

N. mexicanus 2–5 10–13 37

N. nepalensis 2–3 11–13 30–45

N. nigrita ~12 ~68

N. orbicollis 4 7–9 30

N. pustulatus 3–4 7–9 28–30

N. quadripunctatus 3 6 37

N. sayi 8 13–14 55

N. vespilloides 2–3 5–7 14–20

Ptomascopus morio 4–7 10 58–70

Note: Nicrophorus species and close relative Ptomascopus morio show 
wide variation in the length of developmental periods. These data were 
collected in laboratories that differ in their rearing temperatures, which 
is expected to influence life- history transitions. These data are primarily 
from species that overwinter as adults rather than other stages (e.g., 
prepupae). Developmental periods are presented as the number of 
days of the embryonic period (egg laying to hatch), hatch to dispersal 
from the carcass (first, second, and part of third instar), and dispersal to 
eclosion (conclusion of third instar and pupal period). The pupal period 
is not parsed out because the length of this stage is rarely reported. 
The period from eclosion to sexual maturity is rarely reported and is 
unknown for most taxa. References are provided in Appendix S1.
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can be taken advantage of by intra-  and interspecific brood parasites 
(Eggert	&	Müller,	2000;	Müller	&	Eggert,	1990;	Scott,	1997;	Smith	
&	Belk,	2018b; Trumbo, 1994). The cue that “starts the clock” for 
temporal recognition is egg laying for females (Oldekop et al., 2007) 
and probably the frequency of copulation for males, since these ac-
tivities coincide and both parents begin to accept larvae at roughly 
the same time in N. vespilloides and N. orbicollis (Oldekop et al., 2007; 
Potticary,	McKinney,	et	al.,	2023a).

The brood ball is the only source of nutrition for developing 
young until they have eclosed into their adult form. Consequently, 
carcass size relative to brood size is interconnected with brood mass 
and beetles that receive poor nutrition or poor parental provisioning 
during larval stages are smaller as adults (Bartlett, 1987;	Bartlett	&	
Ashworth, 1988;	Jarrett	et	al.,	2017;	Kozol	et	al.,	1988; Lock, 2012; 
Potticary, Cunningham, et al., 2024;	 Schrader	 et	 al.,	2018;	 Scott	
&	Traniello,	1990;	Sikes,	1996;	Smiseth	et	al.,	2014;	Smith,	2002; 
Trumbo	&	 Xhihani,	2015;	Wilson	 &	 Fudge,	 1984), a pattern also 
observed in other non- parental silphines (Ratcliffe, 1972). Parents 
commit infanticide to alter offspring number relative to carcass vol-
ume (Bartlett, 1987;	Smith	&	Belk,	2018b; Trumbo, 1990b; Trumbo 
&	Fernandez,	1995).	Such	filial	cannibalism	may	be	released	by	off-
spring begging; in N. vespilloides, begging larvae were more likely to 
be	eaten	by	parents	(Andrews	&	Smiseth,	2013), perhaps indicating 
that the degree of offspring begging is an indirect cue to parents 
that there are too many larvae relative to carcass volume. Filial 
cannibalism mediates larval competition by influencing the trade- 
off	 between	 the	 number,	 size,	 and	 survival	 offspring	 (Bartlett	 &	
Ashworth, 1988; Creighton, 2005; Creighton et al., 2009; Potticary, 
Cunningham, et al., 2024;	Scott	&	Traniello,	1990; Trumbo, 1990b; 
Wilson	&	Fudge,	1984), though the sexes can differ in how effec-
tively they mediate this trade- off. For example, male N. orbicollis 
cull proportionally more larvae across carcass sizes than females, 
while females are better able to match brood size to carcass size 
(Smith	 et	 al.,	 2015). Parents also mediate brood size relative to 
ecological conditions; for example, N. orbicollis adjust brood num-
ber and offspring body size in anticipation of how competitive 
the environment may be, such as due to burying beetle density 
(Creighton, 2005).

Larval development depends on how efficiently the developing 
beetle acquires nutrients, involving a combination of direct care—
the social interaction where parents regurgitate to offspring—and 
indirect care—parental processing and maintenance of the brood 
ball (Walling et al., 2008). In some species, larvae require at least 
some post- hatching care (obligate care), whereas in other spe-
cies, larvae do not require parents because they are equipped 
to	 self-	feed	 upon	 hatching	 (Milne	&	Milne,	 1976, facultative care, 
Figure 5; Capodeanu- Nägler et al., 2016;	 Jarrett	et	al.,	2017). The 
parenting that larvae receive changes not only whole- body devel-
opmental metrics like offspring growth rate and body size but also 
induces changes in the timing of development of larval systems on 
ecological	 and	 evolutionary	 timescales	 (Attisano	 &	 Kilner,	 2015; 
Benowitz, Amukamara, et al., 2019a; Meierhofer et al., 1999; Rauter 
&	Moore,	2002). For example, N. vespilloides larvae downregulate 
genes associated with immune defenses when parents are present, 
potentially as a response to social immunity conferred by parents 
(Ziadie et al., 2019).	Variation	 in	 the	 family	 environment	 can	 alter	
the timing of larval behavior; parents with larger broods provide 
less direct care to individual larvae, and as a result, larvae in large 
broods switch to predominantly self- feeding earlier than larvae in 
small	broods	(Smiseth	et	al.,	2007). Parenting can produce changes 
in developmental timing over evolutionary time as well. For example, 
serrations on larval mandibles are thought to facilitate self- feeding 
and these are present at hatching for multiple facultative care spe-
cies, but missing until the second instar in obligate care species 
(Benowitz et al., 2018). Nicrophorus larvae are less sclerotized in 
early instars than Ptomascopus	and	far	less	sclerotized	than	Silphini	
larvae (Anderson, 1982a), which likely results from a decreased need 
to invest in larval traits involved in predator defense due to parental 
guarding.

The outcome of social interactions between parents and off-
spring depends on the degree of correspondence between their 
physiology and behavior. At minimum, the nature of this interac-
tion differs based on variation in larval begging (Bladon et al., 2023; 
Capodeanu- Nägler, Eggert, et al., 2018a;	Smiseth	et	al.,	2003, 2007; 
Smiseth	&	Moore,	2008), offspring dependency on parent feeding 
(Capodeanu- Nägler et al., 2016,	 Jarrett	 et	 al.,	 2017), timing and 

F I G U R E  5 Natural	history	of	Nicrophorus. Partial phylogeny of subfamily Nicrophorus	modified	from	Sikes	and	Venables	(2013).	Key	to	
fields in each column of data is provided on the left. Missing squares indicate species for which data are unknown. Care is the dependency 
of offspring on post- hatching parental care, with species that require post- hatching care (obligate) and do not require post- hatching care 
(facultative). Burial refers to the burial depth of carcasses during breeding, including burials below leaf litter or <2 cm	below	the	soil	surface	
(shallow), >2 cm	below	the	soil	surface	(deep), or not buried at all (none). These categories only include burials where the beetles inter the 
carcass from the soil surface, excluding those that were dragged into burrows. Body size was determined by parsing data from all species 
worldwide into three separate categories based on quartiles, 1%–25% (small), 26%–75% (medium), and 75%–100% (large). Only studies 
where body size was measured using pronotum width as a proxy were included. Given the breadth of habitat types occupied by Nicrophorus 
worldwide, Habitat data were defined as open or closed. Open habitats are those with minimal or absent canopy cover (e.g., steppe and 
meadows), while closed habitats are those that have moderate to extensive canopy (e.g., forests). Data reflect locations where Nicrophorus 
have been documented but are not necessarily exclusive associations, particularly since Nicrophorus seeking food may use a broader range 
of	habitats	than	beetles	will	breed	in.	Daily	activity	includes	species	that	are	diurnal,	nocturnal,	or	crepuscular.	Seasonal	activity	includes	
species that are active in the spring, summer, fall, or year- round. As seasonal activity differs depending on the location of sampling, these 
data represent seasonal associations observed for each taxon across its range, which obscures local variation in seasonality. References are 
provided in Appendix S1. Body size and iNaturalist data are included in Dryad (Potticary, Belk, et al., 2024).
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frequency of parental regurgitations (Benowitz et al., 2016;	Smiseth	
et al., 2007), duration of post- hatching care (Bladon et al., 2023; 
Scott	 &	 Traniello,	 1990), the number, sex, age, size, and condi-
tion	 of	 parents	 present	 (Bartlett	 &	 Ashworth,	 1988; Benowitz 
et al., 2013;	Jarrett	et	al.,	2018;	Lambert	&	Smiseth,	2024;	Scott	&	
Traniello, 1990;	Smith	et	 al.,	2014;	 Steiger,	2013), and the time of 
year	(Scott	&	Traniello,	1990). There are strong indirect genetic ef-
fects and covariances between parents and offspring coordinating 
their social interactions (Head et al., 2012; Lock et al., 2007; Parker 
et al., 2015; Walling et al., 2008).

That parental care is an interacting phenotype between par-
ents and offspring is well illustrated by the result that in some 
species, larvae are larger when raised by their parents, while in 
others, larvae are larger when raised by another species (Benowitz 
et al., 2015; Capodeanu- Nägler, Ruiz de la Torre, et al., 2018b; 
Jacques	 et	 al.,	 2009;	 Smith	 &	 Belk,	 2018b). While this pattern 
could reflect species differences in the number of offspring 
raised or social interactions between parents and larvae, parents 
within and across species may prepare the carcass differently or 
exude different compounds, perhaps altering offspring develop-
ment independently of direct care (Bladon et al., 2023; Duarte 
et al., 2021;	Suzuki,	2004; Woodard, 2006). Lastly, developmen-
tal rates differ between taxa, independently of the care received 
(Benowitz et al., 2015). Parental care and life history are intri-
cately connected (Belk et al., 2021; Billman et al., 2014; Creighton 
et al., 2009; Wang et al., 2021), which makes the lack of life- history 
transition data for most Nicrophorus species unfortunate (Table 1). 
It would be a valuable avenue for future research to determine 
the reciprocal interaction between parental care and life- history 
evolution	in	other	species	of	Silphinae.

Burying beetles are usually described as having biparental care 
(Milne	&	Milne,	1976), but this is an oversimplification as within 
a species parents can successfully raise offspring uniparentally 
(either by a single female or male), biparentally, or even com-
munally	 (Bartlett	 &	 Ashworth,	 1988;	 Benowitz	 &	Moore,	 2016; 
Conley, 1982; Eggert, 1992; Halffter et al., 1983;	 Komdeur	
et al., 2013; Ma et al., 2022; Müller et al., 2007; Pukowski, 1933; 
Scott	 &	 Traniello,	 1990; Tsai, Rubenstein, Chen, et al., 2020a; 
Wilson	&	 Fudge,	 1984). The frequency of these different social 
contexts varies both across and within Nicrophorus species. For 
example, in N. vespilloides, offspring can develop in any of the 
above social contexts, from biparental to uniparental to communal, 
or even without parents (Ma et al., 2022;	Schrader	et	al.,	2015a, 
2015b;	Smiseth	et	al.,	2005). Wilson and Fudge (1984) found that 
mid- larval stages in N. orbicollis and N. defodiens were more likely 
to have a single parent present (48% and 60%, respectively) than 
have biparental care (16% and 18%, respectively). Even in the lab-
oratory, when N. orbicollis parents were allowed to “choose,” only 
66%	 remained	 biparental	 (Benowitz	&	Moore,	2016). Indeed, N. 
orbicollis in the laboratory produce fewer offspring over their life-
time when breeding biparentally compared with beetles breeding 
uniparentally, with uniparental females raising the largest number 
of	 offspring	 over	 a	 lifetime	 (Smith	 et	 al.,	2017). Parents can be 

redundant (Müller et al., 1998;	Smiseth	et	al.,	2005); for example, 
N. orbicollis males often reduce their activity and duration of care 
when females are present, but will transition to a female- like state 
when	the	female	is	removed	(Benowitz	&	Moore,	2016; Fetherston 
et al., 1994;	Moss	&	Moore,	2021;	Rauter	&	Moore,	2004;	Smith	
et al., 2014). Consequently, offspring outcomes do not depend on 
the number or sex of the parent because parents trade off ac-
tivities when both are present and the other parent compensates 
when	one	is	gone	(Bartlett	&	Ashworth,	1988; Parker et al., 2015; 
Smiseth	et	al.,	2005;	Smiseth,	Musa,	&	Moore,	2006a).

Uniparental male N. orbicollis typically do not compensate fully 
for female loss or absence (Creighton et al., 2015) and as a result 
they successfully raise fewer offspring over a lifetime compared 
with	uniparental	 females	 (Smith	et	al.,	2017). Thus, rather than bi-
parental care evolving as a backup plan, it may evolve as a division 
of labor where females provide most of the direct larval care, and 
the	male's	role	is	primarily	carcass	and	larval	defense	(Scott,	1990; 
Trumbo, 1991, 2007), and switch to direct interactions with the lar-
vae if the female is absent. Males may remain with the family be-
cause the opportunity to find additional carcasses is low, carcasses 
provide nutrition to males, and intra-  and interspecific competition 
for carcasses is high (Chemnitz et al., 2017; Hopwood et al., 2015; 
Keppner	&	 Steiger,	2021;	 Scott,	 1990). That male body size influ-
ences the decision to stay at the carcass provides some support for 
this hypothesis. For example, N. orbicollis abandoned larvae earlier 
than	small	males	(Smith	et	al.,	2014) and smaller males breed bipa-
rentally more often than larger males (Hopwood et al., 2016a), pre-
sumably because larger males are better able to compete for new 
carcasses.

Guarding by parents is critical to larval survival, and appears 
to be the main role for the male when both parents are present 
(Scott,	1998; Trumbo, 1991). There are multiple threats to larvae, 
including competitors, parasites, and predators. Brood guarding 
against competitors has been hypothesized to be the primary 
force for a prolonged residency by one or both parents (Eggert 
&	Müller,	 1997), as parents guard even in species where larval 
survival is higher without parents present (e.g., N. pustulatus; 
Capodeanu- Nägler et al., 2016;	Rauter	&	Moore,	2002). Flies and 
nematodes strongly reduce the reproductive success of burying 
beetles	(Sikes,	1996;	Trumbo	&	Fiore,	1994;	Wang	&	Rozen,	2019; 
Wilson, 1983),	particularly	 in	the	absence	of	phoretic	mites	 (Sun	
&	 Kilner,	 2020; Wilson, 1983;	 Wilson	 &	 Knollenberg,	 1987), 
though	mites	 can	 also	 negatively	 impact	 larvae	 (De	 Gasperin	 &	
Kilner,	 2016). Other burying beetles can usurp the brood ball 
and often kill larvae that are present and then start a new brood 
(Trumbo, 1990a, 2007). The threat imposed by congeners likely 
explains why species like N. vespilloides have evolved recogni-
tion mechanisms that allow discrimination between conspecific 
intruders	and	breeding	partners	 (Steiger	&	Müller,	2010;	Steiger,	
Peschke, et al., 2007a).

Guarding behavior can also deter predators, yet predation is 
relatively unexplored as an evolutionary mechanism that impacts 
parental care in Nicrophorus. Predation has a strong impact on 
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    |  13 of 28POTTICARY et al.

parental care variation and evolution across vertebrate and inver-
tebrate	taxa	(Ghalambor	&	Martin,	2002; Martin et al., 2000, 2011; 
Tallamy, 1984; Wilson, 1975). Both larvae and their parents are 
eaten by many foraging organisms (Coutts et al., 1973; Farriester 
et al., 2021;	Jurzenski	&	Hoback,	2011; Offner et al., 2021; Potticary, 
Belk, et al., 2024; Reed, 1958;	Scott,	1990). In the nest, parents may 
use anal exudate to deter predators and ants (Lindstedt et al., 2017). 
Adult Nicrophorus also decrease predation risk to themselves in 
several ways. Adults generally have orange and black aposematic 
coloration, produce anal exudate, and diurnal species like N. tomen-
tosus may mimic bumblebee coloration and flight (Heinrich, 2012). 
However, the role of predators in the Nicrophorus system remains 
understudied.

2.5  |  Post- parenting development: wandering 
larvae, pupae, and eclosion

Larvae disperse from the brood ball and enter a short period of 
wandering to find a location to bury themselves and form a cham-
ber in which they pupate (Table 1). While post- hatching parental 
care on the carcass can allow larvae to grow large quickly (see 
Larval stages), larger larvae of N. orbicollis and N. sayi take longer 
to develop once they have departed the carcass than smaller lar-
vae (Benowitz, Amukamara, et al., 2019a; Potticary, Cunningham, 
et al., 2024). Following the pupal stage, individuals eclose into 
their adult form as a teneral adult. Teneral adults can remain un-
derground or emerge from the soil, although they are sensitive to 
disturbance at this stage because their exoskeleton has not yet 
hardened, and they have not attained adult coloration. It is rarely 
reported how long it takes for adults to reach sexual maturity after 
eclosion.

Burying beetles can enter a seasonal diapause in prepu-
pal, pupal, or adult stages (Anderson, 1982b; Anduaga, 2009; 
Pukowski, 1933;	Smith,	2002), though some species like N. nigrita 
do	not	appear	to	enter	a	seasonal	diapause	(Sikes,	1996), and oth-
ers can enter diapause in multiple developmental stages like N. 
vespillo (Meierhofer et al., 1999). Adults of some species also enter 
a reproductive diapause; for example, N. quadripunctatus and 
N. nepalensis have a summer reproductive diapause when tem-
peratures	are	beyond	a	certain	threshold	(Hwang	&	Shiao,	2011; 
Nisimura et al., 2002). Interestingly, even within the same species, 
different populations of burying beetles may exhibit variation 
in reproductive diapause timing due to local adaptation to their 
specific environments. For example, there is evidence that pop-
ulations of N. nepalensis breed in the winter at lower elevation, 
year- round at high elevations, and in the summer at high latitudes 
(Tsai, Rubenstein, Fan, et al., 2020b). These differences in repro-
ductive phenology were attributed to local adaptation in repro-
ductive photoperiodism rather than phenotypic plasticity. Little is 
known about how seasonal or reproductive diapause behavior is 
mediated in Nicrophorus beyond that species vary in whether, and 
when, they enter diapause.

2.6  |  Adult ecology

Despite being a small and specialized group, Nicrophorus species 
have been documented across a wide variety of habitat types, from 
forest and grassland to desert and bogs (Figure 5; Appendix S1), 
and often have large ranges that encompass a diversity of social 
and ecological contexts. The species richness and abundance of 
Nicrophorus increase in more temperate habitats, with the great-
est diversity observed at northern latitudes and higher eleva-
tions	 (Sikes	 &	 Venables,	 2013; Trumbo, 1990c). Lower diversity 
or absence of burying beetles in warmer latitudes and lower el-
evations is thought to result from competition imposed by other 
necrophilous species like ants, flies, and other Coleoptera (Chan 
et al., 2019; Cornaby, 1974;	Scott	et	al.,	1987;	Stone	et	al.,	2021; 
Sun	 et	 al.,	 2014; Tsai, Rubenstein, Chen, et al., 2020a; von 
Hoermann et al., 2020). Human disturbance and climate change 
provide examples of temperature change that may alter range 
limits of burying beetles through their effects on the competitive 
community. For example, deforestation increased daily tempera-
ture at elevations used by N. nepalensis, which enhanced the com-
petitiveness of blowfly maggots and led to a higher failure rate of 
carcass burial (Chan et al., 2023).

Habitats associations, seasonal and daily activity of adult 
Nicrophorus, are thought to reflect an evolved response to suitable 
breeding conditions. Consequently, Nicrophorus are often hypoth-
esized to show temporal or spatial partitioning of habitats to avoid 
competition for limiting carrion resources (Anderson, 1982b; Burke 
et al., 2024; Otronen, 1988; Wettlaufer et al., 2021).	 Species	 can	
also be partitioned by elevation; for example, N. nepalensis occupies 
distinct elevational breadths in China (Liu et al., 2020). Few species 
have been demonstrated to prefer a single habitat type (Garfinkel 
&	McCain,	2023; Lomolino et al., 1995), particularly when habitat 
preferences are documented across their range. For example, N. 
vespilloides have nearly circumnavigated the globe, from Europe 
through	Asia	and	 into	western	Canada	 (Kocárek,	2001; Ohkawara 
et al., 1998;	Sikes	et	al.,	2016;	Sun	et	al.,	2020), and populations dif-
fer in their habitat preferences across this range (Aleksandrowicz 
&	 Komosinski,	 2005;	 Katakura	 &	 Ueno,	 1985;	 Kozminykh	 &	
Esyunin, 1994;	Sikes	et	al.,	2016).

Habitats differ in their structure, abiotic conditions, and abun-
dance and diversity of necrophilous insects and scavengers (De 
Jong	&	Chadwick,	1999;	Dekeirsschieter,	Verheggen,	Haubruge,	&	
Brostaux, 2011b;	Katakura	&	Ueno,	1985; Trumbo, 1990c; Trumbo 
&	Bloch,	2000; Tsai, Rubenstein, Fan, et al., 2020b), all of which in-
fluence	the	degree	of	competition	for	breeding	resources.	Variation	
in Nicrophorus habitat preference across a range could reflect local 
adaptation or flexible responses to prevailing environmental con-
ditions. Moreover, reproductive state can influence habitat prefer-
ence, as some species are captured in a broader range of habitats 
than	are	used	for	breeding	(Smith	&	Heese,	1995). For example, N. 
americanus has greater reproductive success in forests than fields 
(Lomolino	 &	 Creighton,	 1996)	 but	 forages	 in	 both	 (Creighton	 &	
Schnell,	1998).
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Daily and seasonal activity patterns differ across Nicrophorus 
species (Figure 5). On ecological timescales, variation in activity 
periods reflects flexible responses to social or ecological condi-
tions. Over evolutionary time, activity periods are expected to 
reflect evolved differences in thermal tolerance and/or environ-
ments created by species interactions (Benowitz, Amukamara, 
et al., 2019a; Cook et al., 2019;	Merrick	&	Smith,	2004; Quinby, 
Belk,	 &	 Creighton,	 2020a;	 Scott,	 1998; Trumbo, 1990c; Wilson 
et al., 1984). For example, N. nepalensis differ in their periods of re-
productive activity depending on what mountain range and eleva-
tion they occupy, even though thermal tolerance is similar across 
populations, reflecting local adaptation to abiotic conditions (Tsai, 
Rubenstein, Fan, et al., 2020b). Across a latitudinal gradient, pop-
ulations of N. orbicollis show local adaptation to temperature in 
their willingness to initiate breeding and brood sizes (Quinby, Belk, 
&	Creighton,	2020a). Ecological pressure arising from the social 
environment, particularly from competitors, is also expected to in-
fluence Nicrophorus activity (Anderson, 1982b) and social behav-
ior	(Sun	et	al.,	2014).

Food is not thought to be limiting for adult Nicrophorus, as 
species are less discerning in their feeding resources than their 
breeding ones (Figure 2). For this reason, competition for breed-
ing resources is thought to influence seasonal activity. Central to 
the hypothesis that competition influences the evolution of ac-
tivity patterns is the assumption that competition is predictable 
to some extent. How can predictable activity periods arise from 
a seemingly unpredictable and ephemeral resource? One possi-
bility is that activity periods are driven by the strength of com-
petition imposed by the necrophilous community, perhaps with 
temperature as a cue. Temperature and competition are tightly 
aligned; the phenology of necrophilous species differs based on 
season	and	habitat	(Anderson	&	Peck,	1985; Wilson et al., 1984). 
Alternatively, Nicrophorus may time their activity to capitalize on 
periods where carrion can be anticipated (e.g., salmon spawning; 
Hocking et al., 2006, 2007). Among- population variation in factors 
like temperature and the composition of the necrophilous com-
munity has the potential to drive local adaptation in Nicrophorous 
beetles. For example, two recently separated populations of N. 
vespilloides show evidence for local adaptation in response to vari-
ation	 in	 local	 burying	beetle	 guilds	 (Sun	 et	 al.,	2020). It remains 
unknown whether other kinds of ecological pressures, like para-
sitism and predation, influence Nicrophorus activity and whether 
populations are locally adapted to these pressures.

3  |  E VOLUTION OF PARENTAL C ARE IN 
N ICROPHORUS

Burying beetles have attracted the attention of ecologists, geneti-
cists, behavioral and evolutionary biologists because of their ex-
traordinary parenting behavior. As such, Nicrophorus has provided 
insights into how parental care may evolve, the changes required, 
and the selection pressures driving such changes.

3.1  |  Behavioral precursors for parental care

Selection	 for	 a	 trait	 can	 only	 occur	 after	 that	 trait,	 or	 its	 compo-
nents, exists. Because behavior is context- dependent, ecology 
determines both the opportunities for behaviors to be expressed 
and the availability of those behaviors to selection. For this reason, 
complex behaviors are expected to evolve when behavioral pre-
cursors	are	expressed	in	a	new	context	(Moore	&	Benowitz,	2019; 
Tallamy, 1984; West- Eberhard, 2003). To investigate this hypothesis, 
we looked for the existence of behavioral precursors and scenarios 
where these behavioral precursors are expressed in the situation 
into which they will eventually be co- opted. In the case of parental 
care, this requires that behavioral precursors transition from a his-
torically	non-	parental	function	to	a	parental	care	function	(Moore	&	
Benowitz, 2019). Below, we describe potential behavioral precursors 
for the parenting behaviors in Nicrophorus described above, mecha-
nistic evidence for co- option, and conclude with a hypothesized 
order of co- option for parental care of Nicrophorus.

3.1.1  |  Nesting	resource	acquisition:	carcass	
seeking and preference

Carrion beetles broadly use sulfur- containing volatiles to locate 
carrion (Cammack et al., 2015;	Trumbo	&	Newton,	2022), and non- 
parental silphines also use carcasses at specific stages of decay 
(Anderson	 &	 Peck,	 1985;	 Byrd	 &	 Castner,	 2001; Lis et al., 2024; 
Martin et al., 2020; Matuszewski et al., 2010; Müller et al., 2024; 
Ratcliffe, 1996;	Trumbo	&	Newton,	2022;	Watson	&	Carlton,	2003, 
2005). Attraction to small fresh carcasses is not unique to Nicrophorus 
in	 the	 Silphinae;	 Necrophila are also attracted to fresh carcasses 
(Ito, 2020, 2022; Ito et al., 2023;	Trumbo	&	Dicapua,	2021). While 
the carcass decomposition stage used for breeding sometimes dif-
fers	 across	 Silphinae,	 the	main	 takeaway	 is	 that	 the	 ability	 to	 dis-
tinguish and find carcasses at different stages of decomposition is 
common to all carrion beetles. Thus, carcass finding behavior in bur-
ying beetles likely involved an evolutionary change in the preference 
for the stage of carcass decomposition rather than the de novo abil-
ity to interpret stage- specific cues of carrion decomposition during 
searching. This change in preference may have been due to selection 
imposed by necrophilous predators or competitors, which increase 
after	 the	 early	 stages	 of	 decomposition	 (Byrd	 &	 Castner,	 2001; 
Kočárek,	2003; Matuszewski et al., 2008).

3.1.2  |  Securing	the	carcass:	burial	and	carcass	
preparation

Burial behavior requires not only the act of burying but also a prefer-
ence for concealing the resource, with the preference for carcasses 
underground preceding burial behavior itself. One possibility is that 
the preference for carcasses underground arose from either find-
ing or dragging carcasses to pre- existing holes, from which burial 
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behavior secondarily evolved. Representatives from nearly every 
group of Nicrophorus, including N. concolor, N. defodiens, N. gut-
tula, N. hybridus, N. investigator, N. orbicollis, and N. marginatus, have 
been observed to either drag carcasses into mammal burrows or to 
breed using carcasses discovered in burrows (Ito, 2021;	Parmenter	&	
MacMahon, 2009;	Scott,	1990;	Smith,	Bonilla,	et	al.,	2000a; Wilson 
&	Fudge,	1984). Nicrophorus pustulatus does not bury breeding re-
sources that are typically discovered underground, that is, reptile 
eggs,	but	will	bury	mammals	(Smith	et	al.,	2007). While P. morio does 
not bury carcasses experimentally placed on the ground (Peck, 1982; 
Suzuki	&	Nagano,	2006b), P. morio will use buried carcasses (Trumbo 
et al., 2001), and P. plagiatus finds and breeds on carrion buried at 
30 cm	(Zou	et	al.,	2022). If breeding on buried carrion provides a sub-
stantial fitness benefit, then a preference for buried carrion could 
have been extended to the active burying of carrion in Nicrophorus.

Components of carcass preparation like removing the external 
covering, guarding, and creation of incisions are exhibited by rela-
tives of Nicrophorus and may have been co- opted from aspects of 
adult foraging behavior. For example, removing fur is thought to 
be a tactic for hunting fly larvae (Ratcliffe, 1972). Multiple non- 
parental silphines also demonstrate these behaviors. Ptomascopus 
morio removes fur, guards, opens feeding holes where larvae aggre-
gate, and makes abdomen movements on the carcass like they are 
depositing exudate, yet they do not deposit exudate or ball up the 
carcass,	and	feeding	holes	do	not	 improve	 larval	growth	(Suzuki	&	
Nagano, 2006b; Trumbo et al., 2001). Necrodes surinamensis strips 
fur from carrion, and larvae form communal aggregations in inci-
sions in multiple Necrodes species (Lis et al., 2024; Ratcliffe, 1972). 
Therefore, these behaviors likely existed in the most recent common 
ancestor of Necrodes and Nicrophorus and were co- opted into par-
enting by Nicrophorus.

Parental mediation of the microbial community on carcasses 
involves both the mechanisms of mediation—the compounds and 
microbes—and the behavior of exuding these compounds in the ap-
propriate context. It has been broadly hypothesized that the com-
pounds Nicrophorus parents apply to carcasses were co- opted from 
common mechanisms of personal immunity and digestive function 
used by insects that frequent microbe- rich environments like car-
rion (Otti et al., 2014;	Van	Herreweghe	&	Michiels,	2012). Lysozymes 
and small antimicrobial peptides, like those secreted by Nicrophorus 
parents, are broadly reported across taxonomic groups (Bulet 
et al., 1999; Hall et al., 2011;	 Van	Herreweghe	&	Michiels,	2012; 
Zasloff, 2002). The lysozymes that parents apply to carcasses are 
also upregulated in Nicrophorus following infection and immunosup-
pression occurs during the provisioning of parental care, consistent 
with a trade- off between personal immunity and carcass prepara-
tion (Cotter et al., 2013;	Cotter	&	Kilner,	2010; Palmer et al., 2016; 
Reavey et al., 2014). Components of the secretions produced by 
parent and larva Nicrophorus, like Yarrowia	fungi	(Vogel	et	al.,	2017), 
have been detected in other non- parental silphines (reviewed in 
Körner	et	al.,	2023). Necrodes surinamensis produce anal exudate for 
defense	that	has	antimicrobial	properties	(Eisner	&	Meinwald,	1982; 
Hoback et al., 2004) and Necrodes littoralis adults and larvae use anal 

exudates to create a feeding matrix that benefits larval development 
(Lis et al., 2024;	Matuszewski	&	Mądra-	Bielewicz,	2021). Necrophila 
japonica also places exudate on carcasses (Ito et al., 2023). The use 
of anal exudate in defense against predators and intruders is com-
mon in silphines (Lindstedt et al., 2017; Ratcliffe, 1972). Trumbo and 
Sikes	(2021) hypothesized that the use of anal exudate as a defense 
against predation (containing microbiota from the digestive tract 
and common components of the insect immune system (Cotter 
et al., 2013;	Kaltenpoth	&	Steiger,	2014; Miller et al., 2019;	Shukla,	
Vogel,	et	al.,	2018b;	Steiger	et	al.,	2011;	Wang	&	Rozen,	2017) en-
abled the evolution of carcass preparation. Predation of both larvae 
and parents occurs on carcasses. As such, excreting exudate as an 
anti- predator device on carcasses may have been an initial step in 
the evolution of carcass preparation, and then the use of exudate 
to hide the carcass by reducing the emission of volatiles evolved 
secondarily.

3.1.3  |  Larval	stages	on	the	brood	ball:	direct	
care and associations with larvae

The evolution of interactions between parents and offspring is com-
plex. A transition to expressing parental care towards larvae requires 
adults to recognize and tolerate a larva- like form. Once tolerance 
has evolved, then recognition of larval begging, and regurgitation 
of carrion and other social fluids (Hakala et al., 2023) by connect-
ing mouthparts is possible. Because larval care in Nicrophorus can 
involve multiple adults, post- hatching care can also require toler-
ance between adults at the breeding carcass. The ability to recog-
nize larvae and tolerate other adults in the presence of larvae may 
have been co- opted from components of parental foraging behavior. 
Foraging Nicrophorus and relatives are well- known to hunt larvae on 
a	diversity	of	substrates	(see	Section	2.1.1). Post- hatching parental 
care primarily involves an inhibition of infanticide at a particular time 
rather than the ability to recognize a particular set of larvae, which 
may indicate that attraction to larvae, albeit as food, was a behavio-
ral precursor for direct parental care. Indirect support for this idea 
comes from the observation that many Nicrophorus parents will ac-
cept any larvae that appear at the correct time and congregate in the 
larval cavity, and larvae will accept any parent, regardless of species 
(Benowitz et al., 2015; Bladon et al., 2023;	Eggert	&	Müller,	2000; 
Müller	&	Eggert,	1990; Oldekop et al., 2007;	Scott,	1997;	Smith	&	
Belk, 2018b; Trumbo, 1994), although there are some exceptions 
to this (Capodeanu- Nägler, Ruiz de la Torre, et al., 2018b;	Smith	&	
Belk, 2018b). Furthermore, parents are not adept at removing blow-
fly larvae that appear in later stages of the parental care cycle, that 
is,	once	their	larvae	have	appeared	(Springett,	1968; Wilson, 1983).

That genes associated with adult feeding behavior have also been 
associated with the acceptance of larvae during temporal kin recog-
nition (Cunningham et al., 2016;	Potticary,	McKinney,	et	al.,	2023a) 
provides support for the idea that aspects of foraging behavior have 
been co- opted to enable the evolution of larval recognition and af-
filiation. Moreover, the evolution of multiple individuals exhibiting 
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parental care requires a transition from competition to cooperation 
between adults. A transition to parenting that involves more than 
one individual requires parents tolerating one another and excluding 
other beetles in response to a particular resource type—or ability 
to differentiate between partner and non- partner (e.g., differentiat-
ing	based	on	cuticular	hydrocarbons;	Steiger,	Peschke,	et	al.,	2007a). 
Foraging Nicrophorus are not aggressive to other Nicrophorus on 
unsuitable breeding substrates, and high blowfly maggot activity 
on breeding carcasses can induce N. nepalensis to transition from 
intraspecific competition to cooperation against blowflies (Chen 
et al., 2020). Together, these data support the hypothesis that for-
aging behaviors on carcasses have been co- opted and modified to 
produce contemporary parental care.

3.2  |  Mechanisms of parental care

Novel behaviors are thought to evolve when behavioral precursors 
and their underlying mechanisms are expressed in new situations or 
different ways (Cunningham et al., 2017;	Moore	&	Benowitz,	2019; 
Tallamy, 1984; West- Eberhard, 2003). Moreover, the creation of a 
complex behavior like parental care also requires mechanisms that 
can	link	component	behaviors	together.	Such	integration	allows	for	
suites of behaviors to be expressed together when an organism in-
teracts with a specific context. For Nicrophorus, what is the mecha-
nistic evidence that behavioral precursors have been co- opted and 
linked to generate complex parental care?

Nicrophorus species have a small genome (~200 MB;	Cunningham	
et al., 2015) and few chromosomes (1N = 6 + X;	 Smith,	 1953). This 
has facilitated the development of molecular tools including tran-
scriptomes (Ayala- Ortiz et al., 2021; Palmer et al., 2016; Parker 
et al., 2015;	 Vogel	 et	 al.,	 2017; Won et al., 2018) and genomes 
(Benowitz et al., 2017; Cunningham et al., 2015) with more genomes 
to	come	(Benowitz,	pers.	comm.,	Shen,	pers.	comm.).	Genetic	data	
provide support for the hypothesis that behavioral precursors ex-
pressed in non- parental contexts were co- opted into parenting. 
One of the best examples is the relationship between feeding and 
parental care. It has been hypothesized that the systems influenc-
ing self- feeding and parental care are coregulated and that parental 
care evolves through co- option and modification of feeding systems 
(O'Rourke	&	Renn,	2015; West- Eberhard, 2003). Gene expression of 
neuropeptide F receptor, a pathway associated with the motivation 
to eat, decreases when parents are feeding larvae in N. vespilloides 
(Cunningham et al., 2016). In N. vespilloides, several genes involved 
in feeding are differentially expressed in both sexes in the transi-
tion to parenting from non- parenting (Parker et al., 2015) and are 
associated	with	variation	of	active	larval	care	(Benowitz,	McKinney,	
et al., 2019b). The gene takeout is differentially expressed during a 
transition to parenting in N. vespilloides (Parker et al., 2015) and N. 
orbicollis (Moss et al., 2022), and has been associated with coordi-
nated feeding and time of day across a variety of insect taxa, sup-
porting the idea that takeout has been co- opted for parenting (Moore 
et al., 2010;	 Potticary,	 McKinney,	 et	 al.,	 2023a). Neuropeptides 

associated with parenting states in female N. vespilloides are also 
associated with feeding, social interactions, aggression, and re-
source defense in non- parental contexts (Cunningham et al., 2017). 
Moreover, similar mechanisms can influence the expression of the 
behavioral components of parental care in both sexes of N. orbicollis 
and N. vespilloides (Benowitz et al., 2017; Cunningham et al., 2017; 
Moss et al., 2022; Parker et al., 2015). That these mechanisms are 
not sex- specific provides indirect support for the hypothesis that 
parental behaviors evolved from behaviors common to both sexes, 
such as foraging behavior.

Nicrophorus parents show a suite of behaviors that must be 
expressed together relative to a particular functional context—the 
presence of a suitable breeding resource. Carcass availability is 
unpredictable, and mating can occur on or off the carcass. Thus, 
physiological transitions to a parental care state require a flexible 
mechanism that is responsive to an unpredictable resource and 
can impact multiple behaviors simultaneously. Regulation of these 
behavioral	 components	 could	 be	 accomplished	 hormonally	 by	 JH	
(Panaitof et al., 2004;	 Scott	 et	 al.,	2001; Trumbo et al., 1995).	 JH	
biosynthesis is sensitive to nutritional cues across insect taxa, and 
thus,	the	involvement	of	JH	in	a	transition	to	parental	care	relative	
to	 a	 feeding	 resource	 is	 intuitive.	 JH	 has	 been	 broadly	 implicated	
in both care and feeding behaviors, and mediating transitions be-
tween	them,	across	insects	(O'Rourke	&	Renn,	2015). In N. orbicollis, 
JH	surges	correspond	to	both	non-	parenting	feeding	roles	and	feed-
ing	that	occurs	in	a	parental	context.	JH	increases	when	the	beetles	
emerge as adults from the soil and begin the search for food during 
sexual maturation, as well as in parental contexts, such as upon dis-
covery and assessment of a breeding carcass, and when the young 
larvae arrive at the carcass (Panaitof et al., 2004; Trumbo, 1997; 
Trumbo et al., 1995).	It	is	unclear	whether	JH	ancestrally	had	gonad-
otropic and non- gonadotropic functions, or if a gonadotropic func-
tion in Nicrophorus was co- opted to integrate parenting behaviors 
across the reproductive cycle (Trumbo, 2018).

Indirect and direct care behaviors have been associated with 
JH	in	Nicrophorus	of	both	sexes.	Juvenile	hormone	influences	the	
transition from mating to a parental care state in N. vespilloides 
(Engel et al., 2016), regulation of direct provisioning of larvae in 
N. vespilloides, N. orbicollis, and N. pustulatus (Engel et al., 2016; 
Trumbo	&	Rauter,	2014), and potentially the upregulation of lytic 
activity in anal exudates that are involved in carcass preparation 
in N. vespilloides	 (Cotter	 &	 Kilner,	 2010). Males of N. orbicollis 
and N. vespilloides are known to show a subset of parental care 
behaviors when the female parent is present but will transition 
to a full suite of parental care behaviors when the female is re-
moved, produced through coordinated changes in many genes 
such that transcription profiles become more similar to parenting 
females	 (Benowitz	&	Moore,	2016;	Moss	&	Moore,	2021; Parker 
et al., 2015). Concomitant with an involvement in organizing pa-
rental care behaviors, uniparental N. orbicollis males show higher 
JH	titers	 than	males	breeding	biparentally	 (Panaitof	et	al.,	2004; 
Trumbo	&	Rauter,	2014). Overall, the mechanisms supporting par-
enting in Nicrophorus are complex but provide evidence for the 
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co- option of genes that underlie behavioral expression in other 
contexts, like feeding, and hormonal integration of these behav-
iors relative to an ephemeral resource.

3.3  |  Hypothesized evolutionary trajectory for 
parental care in Nicrophorus

Complex behaviors like parental care are constructed of mul-
tiple behaviors that can function independently or together as 
an	 integrated	 suite.	 Stabilizing	 selection	 is	 expected	 to	 produce	
greater integration between behaviors, leading to initially dispa-
rate components becoming phenotypically, developmentally, and 
genetically linked (Cheverud, 1996). Integration requires mecha-
nisms that can link behaviors together, and as a result, integration 
is expected to limit flexibility and evolvability across timescales 
(Coss	&	Goldthwaite,	 1995;	Kauffman	&	 Levin,	 1987;	Wagner	&	
Altenberg, 1996). Integration can occur within behavioral modules 
that accomplish specific tasks—for example, carcass preparation 
(Duarte et al., 2021)—or at the level of a complex behavior as a 
whole (i.e., parental care). Thus, understanding how component 
behaviors relate to each other and how quickly they can be lost 
may provide insight into how complex behaviors like parenting are 
assembled.

Hypotheses about the early stages of parental care evolu-
tion in Nicrophorus have been informed by comparisons between 
Nicrophorus spp. and P. morio. Ptomascopus is not the closest extant 
genus to Nicrophorus, a category restricted to the virtually unstud-
ied and monotypic genus Eonecrophorus, but Ptomascopus is the 
sister genus to the clade containing Eonecrophorus and Nicrophorus. 
Ptomascopus morio parental care behaviors represent a subset of 
the parental behaviors of Nicrophorus and include (a) preference 
for breeding on small fresh carcasses, (b) defense of the carcass 
and brood, (c) partial carcass preparation, including some shaving 
and cutting of incisions, (d) abdomen movements that look like ex-
udate laying, without secretion deposition, (e) tolerance of larvae, 
and (f) one or multiple other Ptomascopus adults on or near the car-
cass. Ptomascopus plagiatus will also breed on carrion found under-
ground (Zou et al., 2022), as will P. morio when it acts as a brood 
parasite of Nicrophorus (Trumbo et al., 2001). Little is known about 
the behavior of other Ptomascopus species besides P. morio. There 
are two main possibilities for how the parental care of Ptomascopus 
and Nicrophorus relate. Ptomascopus may be an example of how 
early parenting looked in ancestral Nicrophorini. However, behav-
iors of extant species are not necessarily representations of early 
evolutionary stages because behaviors are routinely deleted or sub-
sumed by new functions over time (West- Eberhard, 2003). Thus, 
an alternative explanation is that Ptomascopus has lost components 
of parental care that were historically present in the most recent 
common ancestor of Nicrophorus and Ptomascopus. Regardless of 
whether Ptomascopus demonstrates early care or has lost com-
ponents of care, applying an integration perspective can provide 
insight into the history of co- option in this group. An integration 

perspective predicts that behaviors that are shared by Nicrophorus 
and Ptomascopus are more developmentally and phylogenetically 
entrenched, reflecting either stronger selection and/or inheritance 
from their common ancestor.

It is probable that some of the earliest innovations in nicrophorine 
parenting were guarding, carcass preparation, recognition, and tol-
erance of larvae. Guarding is apparent across Nicrophorus and in P. 
morio, including species that breed on small, defensible resources, 
and also species like N. investigator that sometimes breed on car-
casses that are too large to bury (Hocking et al., 2006). Nicrophorus 
pustulatus parents guard larvae even though larvae are nutritionally 
independent (Capodeanu- Nägler et al., 2016). Ptomascopus morio 
not only guards the carcass from competitors but also defends 
against	predators	(Suzuki	&	Nagano,	2006b). Other staphylinids also 
demonstrate guarding behavior, even in post- hatching stages (Wyatt 
&	Foster,	1989), perhaps indicating that guarding behavior occurred 
early in the evolution of parenting. That adults recognize and ap-
proach larvae- like forms is likely to be ancestral to the Nicrophorini, 
based on the widespread prevalence of silphines adults predating 
larvae	(see	Section	2.1.1). If this is the case, tolerance of, rather than 
preying upon, larvae on the carcass must have been an early step in 
the transition to extended parental care.

Carcass preparation has been observed in all Nicrophorus species 
studied to date. Activities like shaving the carcass and cutting inci-
sions are components of foraging ecology that are present in many 
Silphinae	and	other	staphylinids	(see	Section	2.1.1). Exudate is pro-
duced as an anti- predator mechanism across taxa, and early carcass 
preparation could have emerged as a byproduct of parents guarding 
carcasses from potential intruders. Moreover, P. morio demonstrates 
abdomen movements on the carcass that resemble the exudate- 
laying behavior of Nicrophorus, although they do not place secretions 
on the carcass. This behavior resembles other systems where “ves-
tigial” behaviors outlast the morphological traits they accompanied 
(Coss et al., 1999;	Coss	&	Goldthwaite,	1995; Rayner et al., 2022), 
which may indicate that P. morio historically prepared carcasses and 
has lost components of carcass preparation over time.

Burial is the most variable of the indirect care behaviors across 
Nicrophorus (Figure 5). Ptomascopus morio and other non- parental sil-
phines do not bury at all. Despite this, all Nicrophorus and P. plagiatus 
will use carcasses that they find that are already underground, and 
P. morio will parasitize Nicrophorus	broods	that	are	buried	(Suzuki	&	
Nagano, 2006a; Trumbo et al., 2001). Based on this variability, burial 
may be a more recent innovation in the evolution of parental care.

Direct provisioning of larvae is likely to be the most recently 
evolved parental care behavior. There is extreme variation in 
the flexibility and duration of larval care, as well as the depen-
dence of larvae on parental regurgitations across taxa (Figure 5). 
Direct provisioning could have arisen from the parents partially 
digesting the carcass and providing a “soup” from which the lar-
vae feed in the cavity. This puts parents and larvae in direct con-
tact from which both mouth- to- mouth contact and begging can 
evolve. In other insect species that beg, such as honeybees and 
ants, trophallaxis appears to have arisen prior to begging. During 
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experimental evolution, the propensity of larvae to beg is one of 
the first behaviors that is lost when direct care is removed for mul-
tiple generations in N. vespilloides (Bladon et al., 2023), perhaps 
suggesting that larval begging is one of the more recently evolved 
behaviors in this taxa.

4  |  CONCLUSION AND FUTURE 
DIREC TIONS

Burying beetles provide a rich experimental system for understand-
ing the evolution of social behaviors like parental care. The strength 
of the research community investigating burying beetle biology and 
ecology has provided a wealth of information on which to build. 
There is clearly considerable variation that can be leveraged to un-
derstand how various levels, from physiology to development to ge-
netics to ecology to phylogeny, influence the evolution of complex 
traits such as parenting. In addition, there are many areas we have 
tried to highlight that would benefit from more research, particularly 
documenting inter-  and intraspecific variation in behavior and ecol-
ogy via the inclusion of more Nicrophorus species that have received 
little	attention	to	date.	Study	of	the	virtually	unknown	sister	taxon	
to Nicrophorus, Eonecrophorus, and the subgenus Necroxenus, should 
be high priorities for understanding the origin of parental care in the 
genus.
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