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Artificial intelligence reveals environmental
constraints on colour diversity in insects
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Explaining colour variation among animals at broad geographic scales remains challenging.

Here we demonstrate how deep learning—a form of artificial intelligence—can reveal subtle

but robust patterns of colour feature variation along an ecological gradient, as well as help

identify the underlying mechanisms generating this biogeographic pattern. Using over

20,000 images with precise GPS locality information belonging to nearly 2,000 moth species

from Taiwan, our deep learning model generates a 2048-dimension feature vector that

accurately predicts each species’ mean elevation based on colour and shape features. Using

this multidimensional feature vector, we find that within-assemblage image feature variation

is smaller in high elevation assemblages. Structural equation modeling suggests that this

reduced image feature diversity is likely the result of colder environments selecting for darker

colouration, which limits the colour diversity of assemblages at high elevations. Ultimately,

with the help of deep learning, we will be able to explore the endless forms of natural

morphological variation at unpreceded depths.

https://doi.org/10.1038/s41467-019-12500-2 OPEN

1 Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan. 2 Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan.
3 Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA. 4 Center for Integrative Animal Behavior,
Columbia University, New York, NY 10027, USA. 5 Taiwan Endemic Species Research Institute, Nantou 552, Taiwan. 6These authors contributed equally:
Shipher Wu, Chun-Min Chang. *email: swc@iis.sinica.edu.tw; shensf@sinica.edu.tw

NATURE COMMUNICATIONS |         (2019) 10:4554 | https://doi.org/10.1038/s41467-019-12500-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2264-7238
http://orcid.org/0000-0003-2264-7238
http://orcid.org/0000-0003-2264-7238
http://orcid.org/0000-0003-2264-7238
http://orcid.org/0000-0003-2264-7238
http://orcid.org/0000-0001-6688-9576
http://orcid.org/0000-0001-6688-9576
http://orcid.org/0000-0001-6688-9576
http://orcid.org/0000-0001-6688-9576
http://orcid.org/0000-0001-6688-9576
http://orcid.org/0000-0002-4999-3723
http://orcid.org/0000-0002-4999-3723
http://orcid.org/0000-0002-4999-3723
http://orcid.org/0000-0002-4999-3723
http://orcid.org/0000-0002-4999-3723
http://orcid.org/0000-0002-9730-7986
http://orcid.org/0000-0002-9730-7986
http://orcid.org/0000-0002-9730-7986
http://orcid.org/0000-0002-9730-7986
http://orcid.org/0000-0002-9730-7986
http://orcid.org/0000-0003-1156-0583
http://orcid.org/0000-0003-1156-0583
http://orcid.org/0000-0003-1156-0583
http://orcid.org/0000-0003-1156-0583
http://orcid.org/0000-0003-1156-0583
http://orcid.org/0000-0002-0631-6343
http://orcid.org/0000-0002-0631-6343
http://orcid.org/0000-0002-0631-6343
http://orcid.org/0000-0002-0631-6343
http://orcid.org/0000-0002-0631-6343
mailto:swc@iis.sinica.edu.tw
mailto:shensf@sinica.edu.tw
www.nature.com/naturecommunications
www.nature.com/naturecommunications


S ince Wallace1 and the early fascination with the biology of
colours, research on animal colouration has become
increasingly interdisciplinary through the integration of

studies examining the relationship between the colour of an
organism and its social or ecological environment with those of
the proximate physiological and genetic mechanisms that gen-
erate these colours2,3. Such integrative studies of animal col-
ouration have largely been driven by advances in technologies,
such as spectrophotometry, digital imaging, computational neu-
roscience and large-scale comparative analyses2. Yet, explaining
colour variation among animals at broad geographic scales even
using these tools remains challenging4 due to the inherent diffi-
culties of extracting informative colour and shape pattern features
objectively5–7, a problem also faced in computer vision studies8.
With the rapid rise of computer vision research and application—
namely, the development of deep convolutional neural networks
(CNN), a form of artificial intelligence (AI) that can learn dense
and often abstract image features from millions of training ima-
ges9—we are poised for a new generation of ecological and evo-
lutionary studies of animal colouration. The key breakthrough of
the deep learning method10 is that instead of relying on humans
to teach computers to quantify human-defined image features
(e.g. spatial distributions of the colours), the computer can learn
on its own in an objective way which features to optimally place
in which level of the model to achieve a desired task, such as
object and pattern recognition, classification or prediction8. To
the best of our knowledge, no animal colouration study has yet
employed the deep learning method, which can potentially
complement and improve upon the recent progress on colour
pattern quantification11–17.

Here we use deep learning to obtain the key image features that
can predict the elevational distribution of moth species in order to
explore both how and why subtle differences in colouration vary
with temperature along an elevational gradient. Unlike traditional
approaches that are prone to human biases and constraints in our
visual system8, the CNN of the deep learning approach enables
objective description and comparison of local and global image
features, including colour composition or pattern (e.g. spots,
edges and stripes, wing and body shapes or other unknown subtle
image features), although we acknowledge that the technique
used to generate digital images can also be a source of bias12.
First, we employ a transfer learning method and adopt the resi-
dual network (ResNet18, which uses residual mapping to reduce
training errors in deep neural networks; see Methods for details)
with 50 layers pre-trained on ImageNet—a dataset of over 15
million labelled high-resolution images in more than 22,000
categories—as the convolutional part of our model. We then use a
global average pooling layer to obtain a 2048-dimension feature
vector. Finally, we design a regressor consisting of two fully
connected layers to learn the mapping between the key image
feature vector and elevational distributions (see Supplementary
Fig. 1 for a visual representation of the complete model archi-
tecture). Images of the target animal group (moths) are randomly
partitioned into training (80%) and validation (20%) datasets. We
then train our model using an Adam optimizer, which adapts the
learning rate for every parameter with consideration of the first
and second moments of gradients during optimization. Since
most moth species had multiple images in the validation dataset,
we feed all of a species’ images into the model, and then average
the predictions as the finalized result (see Methods for details).

Since our deep learning model generates a 2048-dimensional
feature vector that accurately predicts the average elevation of
moth species, we can be certain that this multidimensional feature
vector represents image features that vary along the elevational
gradient. Accordingly, we find that there is higher image feature
variation in lower elevation assemblages than higher ones. We

further use structural equation modelling to show that this
reduced image feature diversity is the result of darker coloration
in colder environments, which limits the diversity of image fea-
tures in high elevation regions. Our study demonstrates that deep
learning can help define image features more objectively than
humans by revealing subtle differences of animals that are diffi-
cult to detect by subjective feature definition, such as elevational
colour diversity patterns.

Results
Deep learning predicts elevational ranges. To investigate how
colour traits vary with the elevational distribution of moths, we
first established the relationship between moth images and each
species’ mean elevation. Our final deep learning model produced
highly accurate predictions of a species’ mean elevation based
only on moth images (Fig. 1a, GLM, R2= 0.86, p < 0.001). The
results remained robust after controlling for phylogenetic history
by including family and genus as random effects in our model
(generalized linear mixed-effect model (GLMM), X2= 6163.6,
R2= 0.86, p < 0.001, n= 1047). We also tested for a sample size
effect during training by separating moth species into those with
large (>10 images) and small sample sizes (≤10 images). Our
model generated accurate predictions about the mean elevation
for those species with either large (Fig. 1b, GLMM, X2= 9436.7,
R2= 0.95, p < 0.001) or small sample sizes (Fig. 1c, GLMM, X2=
2133.9, R2= 0.81, p < 0.001) as well as for widely distributed
(Fig. 1d, GLMM, X2= 4240.7, R2= 0.86, p < 0.001) or narrowly
distributed species (Fig. 1e, GLMM, X2= 2114.9, R2= 0.90, p <
0.001; see also Supplementary Figs. 2, 3 for variations of predicted
elevations of individual images within a species without averaging
the predicted elevations of individual images; GLMM, X2=
12163.0, R2= 0.82, p < 0.001) or excluding species that only
appeared in one location (GLMM, X2= 6543.2, R2= 0.88, p <
0.001, Supplementary Fig. 4). Together, these results suggest that
the 2048-dimension feature vector of our final model, which
represents the colour traits of a species, accurately identified key
moth image features that corresponded to a speciesʼ mean ele-
vation (see Fig. 2 and Supplementary Fig. 5 for samples of image
features identified by the deep learning model and our GitHub
repository, https://github.com/twcmchang/colorful-moth, for the
full dataset of image features). To further understand the image
features used by the deep learning model, we retrained the models
with greyscale and silhouette images to distinguish shape and
greyscale patterns from colour-related image features. We found
that the elevation predictions based on the greyscale and sil-
houette images were both substantially lower than models based
on the colour images (greyscale images: Supplementary Fig. 6,
GLMM, X2= 559.8, R2= 0.36, p < 0.001; silhouette images:
Supplementary Fig. 7, GLMM, X2= 563.3, R2= 0.38, p < 0.001,
compared with R2= 0.86 based on the colour images). These
results further suggest that colour features (e.g. colour composi-
tion and patterns) contribute more than half of the explained
variance, and that both colour and shape information (and their
interaction, e.g. the line, shape and form of colours) are important
for predicting the mean elevation of a species.

Colour diversity varies with elevation. To explore how moth
colouration varies with temperature along the elevational gra-
dient, we selected one specimen image for each species whose
sampled elevation was closest to that species’mean elevation as its
representative image. By feeding a representative image into the
trained ResNet model, we extracted the 2048-dimension output at
the ResNet’s global average pooling layer as the species feature
vector. We then quantified the trait distance between any two
species as the cosine distance of their 2048-dimension feature
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vectors. Next, we projected the extracted 2048-dimension features
into a two-dimensional map via multidimensional scaling (MDS)
for visualization purposes (Fig. 3a). We found that a species’
distribution in two-dimensional trait space was largely based on
its elevational distribution, which suggested that moth image
features varied along the elevational gradient. We then conducted
an assemblage-level analysis by grouping species according to
their elevational distribution such that there was one assemblage
per hundred metres (Fig. 3b). Each assemblage contained 11 to
324 species. We found that image feature diversity at the
assemblage level—defined as the cosine distance of the 2048-
dimensional feature vectors among species in an assemblage—
was higher at low elevations (Fig. 3b, GLM, F1,17= 122.2, R2=
0.88, p < 0.001). To estimate the potential effect of different
sample sizes among assemblages, we constructed 95% confidence
intervals of the regression coefficients by bootstrapping with 5000
repeats19. In each repeat, we randomly resampled pairwise cosine
distance from each assemblage to the size of assemblage M (with
minimum number of species 11; therefore, 55 samples of pairwise
cosine distance) with replacement. The estimations were close to
our original result (GLM, intercept= [0.47, 0.50], elevation=
[−0.00014, −0.00012], R2= [0.78, 0.90], F1,17= [52.5, 148.4], p <
0.001). To control for the potential effect of an elevational trend
in β-diversity (Supplementary Fig. 8), we used the same resam-
pling method described above in which we bootstrapped samples
from four randomly selected families in each assemblage with
1000 repeats. The result remained qualitatively similar (GLM,
intercept= [0.40, 0.46], elevation= [−0.00016, −0.00012], R2=
[0.71, 0.91], F1,17= [30.7, 145.22], p < 0.001). To understand what
information contributes more in explaining the elevational trend
of image features, we used only greyscale images for the same
analysis. We found that there was no significant elevational
trend of image feature diversity in greyscale using the same
resampling procedure (GLM, intercept= [0.26, 0.30], elevation=

[−0.000048, −0.000020], R2= [0.08, 0.57], F1,17= [0, 23.07], p=
[0, 0.12]), suggesting that colour-related image features are indeed
the main features varying with the change of elevation in the
2048-dimensional feature vector. Finally, we grouped species with
different elevational intervals and the trend remained the same
(Supplementary Fig. 9a, GLM, F1,24= 95.9, R2= 0.80, p < 0.001;
Supplementary Fig. 9b, GLM, F1,10= 106.1, R2= 0.91, p < 0.001).

Biotic and abiotic factors drive image feature distributions. To
determine how biotic and abiotic factors drive the trends in image
feature distributions among assemblages observed along the ele-
vational gradient, we performed a variance partitioning analysis
to determine the percentage of variance of the image features that
is attributed to differences across nested scales (i.e. population,
assemblage and regional pool)20,21. A lower ratio of community/
assemblage-wide trait variance to total variance in the regional
pool suggests stronger external than internal (i.e. within-assem-
blage) filtering in shaping the trait assembly, and vice versa21–23.
For example, if individuals need to adapt to cold temperatures at
high elevations, we would expect to see lower variance of cold-
adapted traits in high elevation assemblages compared to the
regional pool. In contrast, a lower ratio of within-population
variance to the total within-community/assemblage variance
would be a signature of stronger internal filtering (e.g. inter-
specific competition). Specifically, we compared the intra- and
interspecific variances of image features across organizational
levels using T-statistics (‘T’ for trait)20,21. Since T-statistics
require using a one-dimensional feature, we projected the 2048-
dimension feature vector to a one-dimensional MDS map with
precomputed cosine distance. MDS is a distance-based dimension
reduction algorithm that tends to preserve the relative distances
and overall structure of data points from the original space to
the projected space of lower dimension, and is relatively free
of distributional assumptions. Since we want to explore the
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inter-species feature distances of assemblages along elevation,
MDS is a suitable dimension reduction tool.

Our T-statistics showed that the TIC/IR, which is the ratio of
community/assemblage-wide variance (individual within-com-
munity/assemblage) to total variance in the regional pool
(individual within-region), decreased with increasing elevation
(Fig. 4a, F1,17= 41.03, R2= 0.69, p < 0.001). This result indicates
that external filtering limits image feature variation of moth
assemblages at high elevations. Using the WorldClim v2
database24 to extract climatic data, we further found that
temperature (Fig. 4b, F1,17= 42.2, R2= 0.70, p < 0.001), but not
precipitation (Fig. 4c, F1,17= 0.03, R2=−0.06, p= 0.86), is the
key external filter driving the pattern of lower image feature
variation at high elevations. In contrast, TIP/IC, which is the ratio
of within-population variance (individual within-population) to
total within-community/assemblage variance (individual within-
community/assemblage), decreased with decreasing elevation.
This result suggests that assemblages at low elevations experience
stronger internal filtering, which results in lower species overlap
within an assemblage in image feature space (Fig. 4d, F1,17= 8.6,
R2= 0.30, p= 0.009). Again, we found that temperature (Fig. 4e,
F1,17= 10.11, R2= 0.34, p= 0.006), but not precipitation (Fig. 4f,
F1,17= 0.08, R2=−0.05, p= 0.78) contributed to the lower
species overlap within an assemblage in image feature space. In
other words, internal filtering (interspecific competition) is
stronger at low elevations with higher temperatures.

Thermal melanism underlies elevational variation in colour
diversity. To achieve a better mechanistic understanding of why
image feature variation was higher at low elevations, we tested the
thermal melanism hypothesis25–28, which predicts that darker
individuals (i.e. individuals that have higher saturation and lower
brightness) do better in cooler climates because they can absorb
heat more quickly. We converted images from the original RGB

colour space to the HSV colour space, where H, S and V stand for
hue, saturation and value (also known as brightness), respectively.
Based on a previous study showing that moths usually expose
their body and forewings during rest29, we analysed the colour
saturation and brightness of body and forewings, and then
compared them to other body regions. For each species, we cal-
culated the mean saturation (S) and brightness (B) of each spe-
cies’ representative image for (i) the whole specimen (Sw and Bw)
and (ii) the body and forewing (Sf and Bf). Furthermore, to
normalize individual differences, we quantified the brightness
index as the ratio of brightness of body and forewing to that of
the whole specimen, B= Bf/Bw. We used the same method to
calculate the saturation index, S= Sf/Sw. At the assemblage level,
we calculated the average brightness and saturation indices for all
species in each assemblage. We note that since hue represents
categorical spectrum colours (such as red and yellow), its average
cannot be calculated and, thus, is not included in the analysis.

We found that the assemblage-level brightness index decreased
with increasing elevation (F1,17= 53.6, R2= 0.75, p < 0.001) and
decreasing temperature (Fig. 4, F1,17= 87.7, R2= 0.83, p < 0.001).
Moreover, the assemblage-level colour saturation index also
significantly increased with increasing elevation (Fig. 4a, F1,17=
7.22, R2= 0.26, p= 0.016) and decreasing temperature (Fig. 4b,
F1,17= 12.76, R2= 0.40, p= 0.002). These findings demonstrate
that species tend to have lower brightness and higher saturation
in colder environments, as predicted by the thermal melanism
hypothesis25–28.

Based on our finding that cold temperatures are likely to be the
key environmental factor selecting for darker colouration, we
explored the potential relationship between colour darkness and
colour variation in moths. Structural equation modelling, which
can structure the multiple pathways to help infer the causal
relationships among variables, showed that lower temperatures
did indeed lead to lower relative brightness, which in turn caused
lower within-assemblage image feature variation, represented by
TIC/IR (Fig. 5). Similarly, relative colour saturation also influenced
the within-assemblage image feature variation such that higher
colour saturation caused lower within-assemblage image feature
variation, as predicted by our model (F1,17= 6.3, R2= 0.23, p=
0.02). In other words, temperature is likely to be the key
environmental filtering force that generates low image feature
variation in high elevation assemblages because the need for
thermal regulation in colder environments constrains the colour
space of moths. Indeed, our simulation analyses further
confirmed that darker colour space (i.e. low brightness and high
saturation in HSV colour space) leads to lower colour variation in
RGB colour space (see Supplementary Note 1).

Discussion
We have shown how deep learning provides a new approach for
overcoming the difficulties often associated with quantifying
complex properties of colour patterns. The high-dimensional
image feature vector generated by deep learning provides an
accurate and comprehensive representation of colour and shape
traits and, thus, is especially suitable for studying visual pheno-
type diversity. Based on this breakthrough, we uncovered a sur-
prisingly simple mechanism that colour diversity at the
assemblage level is higher when environmental constraints on
colour are lower in warmer environments. Many studies have
demonstrated that colder environments select for darker col-
ouration in ectotherms because dark colours can absorb heat
faster25,30. Here we found similar patterns and show that this
constraint on thermal regulation not only has pronounced effects
on patterns of colouration at the assemblage level, but that it
ultimately underlies broad-scale biogeographic patterns of colour

AVG CAM AVG CAM

Parasa shirakii

Pseudomiza aurata

Dudusa nobilis

Erebus ephesperis

Churinga virago

Eoophyla gibbosalis

Percnia longitermen

Bastilla praetermissa

Fig. 2 Class activation mapping generated localized discriminative visual
features of arbitrarily selected images of eight species of moths. CAM
represents class activation mapping, which is a method of localizing the
discriminative image regions59. AVG shows the mean RGB of each pixel
from images of all individuals of a species
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variation. Previous studies have looked at colour diversity pat-
terns at the individual level in butterflies, birds and flowers,
showing that colour diversity is either not correlated with latitude
or is higher at high latitudes4,5. However, these studies only
measured relatively conspicuous colour patches in their organ-
isms. Using deep learning, we demonstrate that patterns of subtle
colour variation—as examples shown in our saliency maps31

(Supplementary Fig. 5), which are traits that are often difficult to
define by human eyes—are likely to be more common in nature
than previously realized. An obvious limitation of using the deep
learning approach, however, is that we cannot know exactly
which traits the feature vector encodes. Yet, by using image fea-
tures to predict the elevational distribution of moths, we can
study how colour diversity changes with elevation. Nevertheless,
the selective pressure of this change is more difficult to determine
directly, which is why we used structural equation modelling to
assist in inferring how the environment shapes animal colours. It
will be interesting to see if the simple rule about colour diversity
we found here applies more generally to these and other organ-
isms over broad geographic regions. Similarly, we believe that our
deep learning approach—which allows AI to determine what the
key traits or characters are rather than subjective human infer-
ence—can also be applied effectively to animal colouration used
in other contexts, such as signalling, mimicry1,32 and camou-
flage33. Then, carefully interpreting the functional meanings and
selective pressures of these potentially complex traits that deep
learning encodes would be a fruitful and challenging step forward.

Our study further demonstrates that AI will likely facilitate the
application of functional trait analysis to a wide range of ecolo-
gical and evolutionary phenomena. For example, our analysis
showed that simply by using functional traits, in this case moth

colouration, the elevational distribution of rare species can be
predicted with extremely high accuracy. Accordingly, we envision
that our deep learning approach can be used to incorporate
functional trait analysis with species distribution modelling34,35,
which will be especially valuable for rare species in highly diverse
taxa, particularly those experiencing changes in range size due to
anthropogenic climate change. Ultimately, deep learning can help
us decipher complicated natural phenomena at unpreceded
depths and serve as a starting point for future exploration of the
endless forms of natural morphological variation.

Methods
Specimen sampling and depository. Although the majority of specimens were
collected through light trapping at night using a 400W/220 V mercury lamp, a few
were sampled by hand during the day or night. In total, we sampled specimens
from September 2011 to September 2016 in 457 collection events at 55 localities
(see map in Supplementary Fig. 10), ranging from 23 to 2470 m above sea level
along an elevational gradient within a geographic range that included about 10
vegetation types of zonal forests and seven types of azonal forests36. All sampled
specimens were deposited in Taiwan Endemic Species Research Institute, Nantou.
During the 6-year collection period, we obtained 66 research permits from 23
institutions, including national parks and different forest district offices of Forestry
Bureau, as well as county and city governments in Taiwan (Supplementary Note 2).

Species identification. The identity of all specimens was confirmed by the authors
with expertise in moth taxonomy. The sources for identification were based on
original and subsequent references and type specimen examination, if available. For
species group that are difficult or impossible to identify by appearance (e.g. the
geometrid genera Abraxas Leach, Lomographa Hübner, Maxates Moore, the noc-
tuid genera Mythimna Ochsenheime, Callopistria Hübner, Ctenoplusia Dufay, the
erebid Miltochrista Hübner, Simplicia Guenée, etc.), additional morphological
characters (e.g. antennal, leg, abdominal and genitalia characters), were carefully
dissected for identification. Twenty-two sampled species that have not yet been
formally recorded in the Taiwanese fauna or that have not yet been described as
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and so on, until 2400 to 2500m. Since some intervals have no collection event, we acquired 19 species assemblages in total. Within-assemblage image
feature diversity was defined as the cosine distance of their 2048-dimension feature vectors between any two species within the same assemblage.
Warmer colours correspond to lower elevations, and cooler colours to higher elevations. In box-and-whiskers diagrams, boxes indicate median and upper
and lower quartile and whiskers indicate range of data. Source data are provided as a Source Data file
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new species were identified as “sp” with additional number (1, 2, 3…) given if there
is more than one species in the sampled genus. In total, we compiled a dataset
including a total of 43 families, 1047 genera, 1951 species and 23,194 specimens of
moths native to Taiwan. Family and genus levels follow van Nieukerken et al.37 and
TaiCOL—Catalogue of Life in Taiwan (http://taibnet.sinica.edu.tw/home.php),
respectively. The sample size distribution of elevational range size of a species is
shown in Supplementary Fig. 11, and sampled species based on the number of
specimen images per species in our dataset are shown in Supplementary Fig. 12.

Image digitization and initial processing. Colour images of all (dead, spread)
specimens were taken by Nikon D200/D700 with a Nikon AF Micro-Nikkor 60
mm f/2.8D/Nikon 60 mm f/2.8 G ED AF-S Micro-Nikkor (setting information:
manual mode aperture as F16, speed as 1/8–1/25, ISO as 100–400/auto white
balance/JPG format/ highest pixel: 10.2 and 12.1 megapixel for D200 and D700,
respectively) on standardized backgrounds under the lighting of a pair of 5500 K
high-frequency fluorescent luminaires. We standardized images by using the
boundaries of the moth wings and body to determine the image boundaries in
order to control for the potential effect of different body sizes of different species.

Image calibration. To ensure the consistency of image quality during the acqui-
sition of specimen images, we examined whether a sort of normalization is
necessary for our colour trait analysis. We tried to equalize photography conditions
among individual specimens by normalizing the brightness and saturation of a
specimen by the average brightness and saturation of its background. All images
were taken with the same white grid background so that we could use it for
normalization. However, we found that image normalization did not significantly
influence the results of trait analyses, relative to the unnormalized images, sug-
gesting that photography conditions of all images were similar and have little
impact on the results.

Background removal. The background removal task can be essentially formulated
as a kind of semantic segmentation task that aims to label every pixel in an image
with a predefined category38–40. Recent approaches have applied CNNs to this

pixel-level labelling task and achieved remarkable success in the supervised man-
ner40–44. We trained a U-Net45 on 80% of the gold standard dataset, achieving 0.98
of mean intersection over union (mIoU) on the remaining 20% of the data.
However, the U-Net’s performance degraded when applied to the TESRI dataset
because of heterogeneous image backgrounds, as shown in Supplementary Fig. 13.
In addition, we tried another method, Mask R-CNN, in the same setting, but the
performance on our gold standard dataset was only 0.92, which was worse than an
unsupervised segmentation algorithm46 that achieved 0.95 of mIoU. Thus, we
proposed a new approach that combined an unsupervised segmentation algorithm
and pseudo-labelling method to deal with the background removal task on the
TESRI dataset directly. The complete process flow is summarized in Supplementary
Fig. 14.

Gold standard dataset for image segmentation. In addition to our primary
dataset, we acquired another dataset, DearLep (dearlep.tw), that includes 16
families, 570 genera and 1147 species of moths in Taiwan. However, there were
only 1909 available specimen images, which hindered the learning of complex
colour trait patterns even though all of them have been processed in detail. Most
importantly, the DearLep dataset contains the human-annotated labels of the area
of the complete specimen and five dorsal parts (left and right of forewing and
hindwing, respectively, and body), and we regard it as the ‘gold standard dataset’ in
the following segmentation tasks.

Unsupervised segmentation. We adopted an unsupervised segmentation algo-
rithm that proposes a CNN to group similar pixels together with consideration of
spatial continuity46. Regarding this background removal task, we set the number of
groups at two, one for background and the other for foreground. Even though the
unsupervised algorithm performs well on most images, there are still several
defects, such as (i) hollow holes on wings, (ii) stains around specimen, and (iii)
incompleteness due to transparent or white wings, as shown in Supplementary
Fig. 15. We believe that such defects are mainly the result of shortcomings of the
unsupervised algorithm, which considers RGB-based information and ignores
either texture or shape information. As long as similar colours appear in both the
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foreground and background, defects inevitably occur. For example, if the back-
ground is white and there is a white spot on the forewings, then the spot would be
recognized as background, causing a hollow hole on the output mask. To correct
such defects, we retrieved the outer contours from the resulting binary mask, which
works for the first two types of defect.

Supervised segmentation based on pseudo-labels. Pseudo-labelling, which
assumes those masks generated by the unsupervised method are true labels, enables
us to train a background removal model in a supervised manner. Even though
pseudo-labels may not be as accurate as human-annotated ones, most still provide
trustworthy results. We trained a U-Net47 based on the pseudo-labels, since U-Net
outperformed Mask R-CNN on the golden standard dataset. Learning from the
pseudo-labels, U-Net successfully captured the common shape information and
thus removed the background more accurately. Furthermore, this supervised model
enabled us to remedy the defect of incompleteness due to transparent or white
wings, as shown in Supplementary Fig. 16.

Post-processing and manual selection. We applied a conditional random field48

in the post-processing step to further refine the background removal results. Lastly,
we manually selected the best mask for every specimen image, resulting in a total of
23,194 background-well-removed images.

Part model. Since most moth species expose dorsal parts of forewings and other
body parts during resting, we conducted segmentation of each moth specimen
image to five dorsal regions (left and right of forewing and hindwing, respectively,
and body, including a pair of antenna, head, thorax and abdomen; see also ref. 29

for a similar approach). We used the gold standard dataset as the training dataset,
with manual labelling of complete specimen images and their corresponding five
parts, to segment each dorsal part out from the background-removed specimen
images, as shown in Supplementary Fig. 17.

Here we implemented and compared the following three known network
architectures: FC-DenseNet5649, DeepLabV3_plus-Res5050 and U-Net, all of which
allowed us to segment an input image by pixel level. The comparative results are
summarized in Supplementary Fig. 18, showing that U-Net achieves a higher mIoU
value than the other two networks. This may be attributed to the compactness of
U-Net, which avoids overfitting the model to the data and thus has better
generalization performance. Ultimately, we kept 23,194 specimen images with both
background removed and parts segmented.

Problem formulation. To explore how patterns of moth colouration change with
elevation, we framed the problem into a regression task that aims to predict the

average elevation of every moth species. Specifically, the species average elevation
prediction task took a specimen image as input X and outputs a real value Y, such
that Y was the predicted average elevation of that species. Each species corre-
sponded to an average elevation in the hope of establishing the relation between the
colour traits of moth species and their elevational distribution. We optimized the
model by the objective function of mean square error (MSE) between actual and
predicted values:

MSE ¼ 1
n

Xn

i¼1

ðYi � YiÞ2; ð1Þ

where Yi is the actual average elevation of the ith specimen image and Yi is the
predicted mean elevation.

Model architecture. Transfer learning has been shown to be successful in many
computer vision tasks since common knowledge acquired from a source domain
is useful to other relevant domains. Therefore, we adopt the residual network
(ResNet)18 with 50 layers pre-trained on ImageNet as the convolutional part of
our model. After the last convolutional layer of ResNet, a global average pooling
layer was used to obtain a 2048-dimension feature vector. Then, a fully con-
nected layer of 1024 neurons and a batch normalization layer were followed.
Lastly, the output layer was a fully connected layer of a single neuron. Although
the output layer used the linear activation function, the other layers adopt
rectified linear unit as their activation function. We implemented this ResNet-
based network by Keras51 in Python. The complete model architecture is
visualized in Supplementary Fig. 1.

Training details. All images were randomly partitioned into training (80%) and
validation (20%) datasets by scikit-learn 0.20.1 module in Python 3.6.852, on the
condition that those images of species with only one specimen are all arranged in
the training dataset. Before feeding images into our model, we resized the images to
256 by 256 pixels to unify the size of input images. Each pixel was normalized by
the mean and standard deviation of images in the ImageNet dataset. During
training, various data augmentation schemes—namely shifting along the x- and
y-axis (±10%), scaling (±10%), rotating (±30°) and horizontal flipping—were
applied independently, with each scheme having a 50% probability of occurrence,
to produce additional data variety.

Our model was trained by an Adam optimizer53, which automatically adapts
the learning rate for every parameter with the consideration of the momentum of
gradients during optimization. We updated network parameters with a small initial
learning rate of 5 × 10−5 to ensure the availability of knowledge transfer. Except for
the initial learning rate, other Adam optimizer’s hyper-parameters remained as
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default settings in Keras. The total number of training epochs was 200, and we only
retained the model at the epoch of overall minimum validation loss. We used batch
normalization—which causes small deviations among different data batches that
has been proven to improve the generalization of the data—to normalize the
data53. The saliency maps were obtained by computing the gradient of outputs with
respect to input images in order to highlight input regions that cause the most
change in the outputs. This method enables the highlighting of salient image
regions that most contribute towards the outputs.

Statistical analyses. We assessed whether moth specimen images predicted the
elevational distribution after controlling for phylogenetic effects (family and genus
of species) using GLMM implemented in the R package lme454. The R2squared
value was calculated in reference to Nakagawa and Schielzeth55 with the imple-
mentation in R package MuMIn56. In each GLMM model, we used analysis of
variance implemented in the R package car57 to determine whether the mixed
effect had a significant effect on the predictions, and then reported the χ2 statistic
and P value. We also assessed the intra- and interspecific variances of colour traits
on individuals and assemblages using T-statistics implemented in the R package
cati20. We conducted our structural equation modelling analysis in the R package
Lavaan58.

Climatic data. We used average monthly climatic data (i.e. only months that a
given species was sampled) as a proxy for local climate for the species. The average
temperature (°C) and precipitation (mm) were used to represent local climate and
extracted from WorldClim v2 (30 s spatial resolution; records from 1970 to
200024): http://worldclim.org/version2.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All original images and relavant metadata are available in the Dataset of Moth Specimens
from the Taiwan Endemic Species Research Institute (TESRI) published on the GBIF
website (https://doi.org/10.15468/kjjlnf) under license CC BY 4.0. The polygons of
administrative area of Taiwan used in Supplementary Fig. 10 are published on http://
data.gov.tw/dataset/7442 under Open Government Data License, version 1.0. The source
data underlying Figs. 1 and 3–5 and Supplementary Figs. 2–4 and 6–9 are provided as a
Source Data file.

Code availability
Fully-functional and executable codes are published on our GitHub repository (https://
github.com/twcmchang/colorful-moth). We not only demonstrate how to remove
heterogeneous backgrounds in specimen images, but also show how to segment each
moth specimen image into five dorsal parts, including forewings, hindwings and body.
The sample results are shown in the repository, and the well-trained models were
uploaded for future research. See the ‘readme file’ in this repository for additional details.
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