Over the years, we have worked on a number of topics—ranging from migratory connectivity to foraging behavior to systematics—using an assortment of integrative tools and techniques. Currently, we are primarily focused upon two major research themes that integrate animal behavior, molecular genetics, neuroendocrinology, and evolutionary ecology: 

understanding the causes and consequences of sociality 

determining the behavioral, physiological, and molecular adaptations used to cope with environmental change

We use a variety of genomic and physiological tools to ask evolutionary and ecological questions that span levels from molecules to populations. We do extensive field work locally and around the world using both long-term studies of marked social groups, as well as short-term sampling of populations along environmental gradients. To generate and test novel hypotheses, we also use mathematical modeling and comparative methods with large trait and biogeographic databases. Our study systems, which span invertebrates to vertebrates, are chosen for the specific questions that we ask. Although open to other systems, questions, and methods, most lab members employ an integrative approach to ask related questions in our primary study systems. However, in addition to working on topics related to the major research themes of the lab, previous lab members have also worked on projects in disease ecology, life history evolution, and more. Below are the animal models with which we work (and have worked with in the past) and the research areas thats we are currently studying.

wrens

starlings

snapping shrimps

warblers

starlings

burying beetles

marine igaunas

hummingbirds

weavers

pebble-mound mice

past systems

current systems

SOCIAL EVOLUTION

environmental uncertainty and animal societies

Our work in cooperatively breeding starlings and weavers examines how variable and unpredictable climates influence social evolution. Using game theory, comparative analyses, and empirical tests, we are exploring how cooperative breeding behavior may be a bet-hedging strategy to reduce environmentally-induced fecundity variance

sexual selection and social competition

We are studying inter and intra-sexual competition and social signaling (song, plumage) in starlings and hummingbirds. Using theoretical models and empirical tests, we are exploring the interactions between dominance rank, social structure, and stress physiology in starlings and weavers. Finally, we are studying female-female competition in pebble-mound mice.

evolution of social diversity

We are examining the evolution of social diversity in Synalpheus shrimps—which range in social complexity from pairs, to colonies of pairs, to eusocial societies—by quantifying life history variation and exploring the key evolutionary transition, the differentiation of castes, suggested to uniquely define eusocial species.

comparative social evolution across lineages

We are comparing social structures and patterns of reproductive skew across taxonomically diverse animals by examining the distinction between societies with a single reproductive female and those with multiple reproductive females, a divide that exists in both social vertebrates and invertebrates. We also explore social diversity in snapping shrimps.

genomic architecture of social phenotypes

We are studying the mechanistic basis of caste differentiation and social phenotypes in eusocial snapping shrimp and cooperative burying beetles by examining role- and population-specific patterns of gene expression and patterns of genetic variation.

social network structure in fluctuating environments

We are exploring how the social dynamics (cooperation and conflict) and stability of complex weaver societies are influenced by annual variation in precipitation, and how network dynamics relate to stress physiology.

ENVIRONMENTAL COPING

a framework for environmental coping

We are developing a theoretical framework that predicts evolutionary responses to environmentally-driven fluctuating selection, and using it to explore the evolution of physiological coping mechanisms, as well as their genetic and epigenetic architectures.

adaptation along environmental gradients

We are examining stress physiology, immune function, and patterns of genetic and epigenetic variation in different populations of starlings along temperature and precipitation gradients in the tropics and temperate region.

epigenetics, plasticity and environmental variation

We are examining how developmental conditions (both social and environmental) influence social phenotypes, stress physiology, and fitness later in life, and we are exploring DNA methylation as one potential mechanism underlying this relationship in starlings.

cooperation and ecological dominance

We are exploring how cooperative breeding behavior in burying beetles and eusociality in snapping shrimps influences competitive ability against conspecifics, niche breadth and range expansion, ecological generalism vs. specialism, and ecological dominance.

​

     Columbia University, Department of Ecology, Evolution and Environmental Biology, 10th Floor Schermerhorn Extension, MC5557, 1200 Amsterdam Avenue, New York, NY 10027

     Office: 90 Morningside Drive, Basement #3 • Lab: 851-854 Schermerhorn Extension

     Tel: 212-854-4881 • Fax: 212-854-8188 • Lab Tel: 212-854-5330 • Email: dr2497[at]columbia.edu • Twitter: @DustRubenstein