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Abstract

We document the predictions of a broad class of existing price setting models
on how various statistics of the price change distribution change with the rate
of aggregate inflation. Notably, menu cost models uniformly feature the price
change distribution becoming less dispersed and less skewed as inflation rises,
while in the Calvo model both relations are positive. Using a novel data set,
the micro data underlying the U.S. CPI from the late 1970’s onwards, we
evaluate these predictions using the large variation in inflation over this period.
Price change dispersion does indeed fall with inflation, but skewness does not,
meaning that none of the existing models can fit these patterns. We then
present a model that does, in addition to matching the price change moments
that existing models do. Our model features random menu costs, and we
show that with a menu cost distribution that gives a significant probability
to free price changes, and a high probability to very high menu costs, the
model predicts a flat inflation-skewness relation. This menu cost distribution
moves the model close to a Calvo model, and the model therefore exhibits a
much higher degree of monetary non-neutrality than the Golosov and Lucas
(2007) model, and higher even than in the subsequent menu cost models such
as Midrigan (2011).
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1 Introduction

The dynamics of price changes (when, how, and why firms change the prices of the
goods and services that they sell) have been a major focus of the study of monetary
economics for the past several decades. It is indeed well known that monetary vari-
ables have no influence on real economic activity (monetary neutrality) if all prices
can be freely re-set at any point in time. This has drawn attention to the study of
frictions in the price-setting process for a long time: Barro (1972) and Sheshinski
and Weiss (1977) characterized the pricing behavior of a firm that faces a fixed price
adjustment cost, while Calvo (1983) did so for a firm facing the random opportunity
to change its price. What has also become well established is that the distinction
between these two approaches in modeling price change dynamics matters greatly
for monetary non-neutrality. While central banks have widely adopted Calvo-style
staggered price setting into the models that they use to evaluate the effects of their
policies, much of the literature has highlighted how this considerably over-states the
effectiveness of monetary policy, compared to what it would be if prices are set based
on adjustment (or menu) costs.

The literature has emphasized that monetary non-neutrality depends not only
on how often prices change, but also crucially on which prices change. Caplin and
Spulber (1987) and especially Golosov and Lucas (2007) demonstrated this by
showing that if prices are sticky because of menu costs, money is close to neutral.
These seminal studies showed that in the presence of menu costs, only relatively large
price changes will justify the payment of the cost and occur at all, which makes the
aggregate price level considerably more reponsive to nominal shocks than in the Calvo
model. This mechanism came to be known as the selection effect, and much research
has been devoted to re-evaluating the results of Golosov and Lucas (2007), and the
strength of the selection effect, in light of new empirical findings established with
price micro data sets (most notably, Nakamura and Steinsson (2010) and Midrigan
(2011)).

Understanding the selection effect, and to what extent it plays an important
role, is necessary to determine the true degree of monetary non-neutrality, but this
mechanism cannot be observed directly. It would be very difficult to observe whether
the prices that change are those predicted by the selection effect, so its presence and
strength must be inferred indirectly from observeable price change statistics. The
existing work in the field has done this primarily by bringing quanititative price
setting models together with the price data that has become available in the past
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decade. However, an important limitation with these studies is that they have, for
the most part, only used unconditional moments of the price change distribution
(such as the frequency or size of price changes, averaged over time) to discipline
the models used. In this paper, we show that conditional moments, which have
been seldom used, are extremely informative and yield new insights on the selection
effect. In particular, we find that the selection effect makes very strong predictions
about how the shape of the price change distribution should change with aggregate
inflation. Using a new data set, the price data underlying the U.S. CPI from 1977
onwards, we show that these predictions are not supported empirically. Finally, using
a flexible model in which the strength of the selection effect can be freely set, we show
that the selection effect has to be much weaker than assumed by the existing menu
cost models to match the empirical facts that we present. This, in turn, indicates
that monetary non-neutrality is higher than these models predicted, and similar in
magnitude to what is predicted by the Calvo model.

In menu cost models, the presence of a fixed adjustment cost induces a selection
effect: only price changes that are large enough to justify the cost occur, leaving
an inaction region of changes (centered at zero) that are too small to be justified.
A positive monetary shock (raising nominal demand) will induce prices that were
otherwise already strongly mis-aligned to change, meaning that average price changes
would respond relatively strongly to such a shock. This implies, in turn, that the
aggregate price level will be very responsive to monetary shocks, eliminating much
of the effect of the monetary shock on real activity (money is close to neutral). We
exploit the fact that this logic also has strong implications for how the distribution
of price changes responds to such shocks: an inflationary shock will push more price
changes out of the inaction region to the positive side, and into the inaction region
from the negative side. There will therefore be more price changes concentrated on
the positive side of the inaction region, leaving a price change distribution that is
less dispersed and more asymmetric (negatively skewed). Indeed, all existing menu
cost models, because of the selection effect created by the presence of an adjustment
cost, imply a very strong negative correlation between inflation and both dispersion
and skewness of price changes, and these are implications that can be empirically
tested.

The literature on sticky prices has faced thus far been unable to test these types
of predictions because the kind of price data that is necessary has only been available
for periods of low and stable inflation. Although some studies (such as Alvarez et al.
(2011a); and Gagnon (2009)) have used price data from countries that experienced
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high inflation, they used this data to determine how the frequency of price change
behaves at high inflation, without considering the higher moments of the price change
distribution. For the U.S., the main source of price data in this line of work, the
micro data underlying the Consumer Price Index, was, until recently, only available
going back to 1988 (while other commonly used data sets go back even less far).
However, we use the data set recently presented in Nakamura et al. (2015), which
extends the C.P.I micro data back to 1977, to evaluate whether the dispersion and
skewness of price changes do indeed fall with inflation. Since the newly recovered
period includes the highest inflation episodes in the post-war U.S., as well as the
disinflation period initiated by the Federal Reserve under Paul Volcker, our data set
is particularly well suited for the tests that we propose.

We find that while the dispersion of price changes does go down considerably in
high inflation periods, the skewness does not, contrary to the strong predicitons of
menu cost models. Since the counter-factual predictions are driven by the mechansim
behind the selection effect, we modify the menu cost model in a way that weakens this
mechanism: introducing random, heterogeneous menu costs that add randomness to
whether the firm will have an opportunity to change its price. We find that if
the probability that firms face a very high menu cost (such that it would almost
never choose to change its price) is high, the model no longer predicts the negative
inflation-skewness correlation, while still matching all the facts matched by previous
models. In addition, such a model features a much higher level of monetary non-
neutrality than any of the exisiting menu cost models: around six times higher than
in a standard menu cost model, and 70% as high as in a Calvo model.

The rest of the paper is organized as follows. In what remains of the introduc-
tion we provide a more detailed overview of the work done in this branch of the
literature. In section 2, we present the predictions of a large class of sticky price
models, and explain why time- and state-dependent models give such different pre-
dictions. Section 3 describes the data set that we use and evaluates the predictions
of the different models based on the data. Section 4 presents the generalized menu
cost model, comparing predictions to what is observed in the data and shows the
degree of monetary non-neutrality exhibited by the different models. Finally, Secion
5 provides some concluding remarks.

Literature Review

While a few empirical studies of price stickiness in certain industries have been
around for some time (e.g. Cecchetti (1986); Carlton (1986); Kashyap (1995)), it
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is only starting with Bils and Klenow (2004) that monetary economists have been
able to start measuring statistics related to price stickiness for the economy as a
whole. The facts established by Bils and Klenow and the subsequent empirical studies
on price stickiness (most notably, Klenow and Kryvstov (2008); and Nakamura
and Steinsson (2008)) have enriched the discussion on monetary non-neutrality by
providing the models that evaluate monetary non-neutrality with a standard by
which to be measured.

Caplin and Spulber (1987)had used a very stylized model to show that if prices
are sticky, state-dependent pricing implies that monetary shocks can still have little
or no effect on economic activity. Golosov and Lucas (2007) then incorporated
this mechanism into a quantitative menu cost model that was calibrated to match
the new empirical facts of the sticky price literature, and they confirmed that under
state-dependent pricing, monetary policy is close to neutral. The model matched the
fraction of prices that change (frequency of price change) estimated by the empirical
papers, but also the observation that when prices do change, the changes tend to
be large. Since, under menu costs, firms will only change their prices when they
really need to, and so will not bother incurring a menu cost for a small price change,
this latter fact in particular lent credibility to the adoption of a menu cost as the
foundation of price stickiness.

Since then, the literature has continued to combine quantitative, micro-founded,
price setting models with empirical facts from micro price datasets, and in this
way the non-neutrality debate has advanced. While the Golosov and Lucas model
matched the frequency and average size of price changes, much subsequent work
has modified the model to match other aspects of the distribution of price changes,
generally finding that the degree of monetary non-neutrality predicted ends up being
much larger than in the original model (for example, Nakamura and Steinsson (2010);
Midrigan (2011); Alvarez et al. (2014)). In a slightly different style, Vavra (2013)
showed that the frequency and dispersion of price changes are counter-cyclical in the
U.S., and introduced counter-cyclical dispersion shocks to match this.

With the exception of Vavra (2013), however, the papers mentioned thus far
match moments that are price change statistics averaged across time. Yet all the
statistics that they consider can be computed period by period, as they pertain
to a distribution of price changes, which is observed period by period. Obviously,
focusing on averages across time abstracts from the time series variation in these
statistics, which is observed to be quite significant in the data, and this misses out
on potentially informative paterns. Our paper departs from most of the existing
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literature by focusing on the variation of price change statistics over time to evaluate
sticky price models. These models are aimed at understanding how the dynamic
pricing behavior of firms aggregates up to the response of aggregate inflation to
monetary shocks. A natural way to use the time series variation of price stickiness
statistics is therefore to see how they co-move with inflation, both in models and
empirically. However, as mentioned earlier in this section, most existing studies have
faced the limitation of working with price data sets that only cover periods of low
and stable inflation. It is in this way that our data set is novel, as it makes it possible
to measure price stickiness statistics at high and low inflation.

Nevertheless, evaluating sticky price models with this kind of time series variation
is not unprecedented. For example, Gagnon (2009) and Alvarez et al. (2011a) use
price data from high inflation episodes in Mexico and Argentina, respectively, to
show that the frequency of price change rises with inflation. This fact is consistent
with menu cost models, but it goes against the core assumption of the Calvo pricing
model, that firms face a constant probability of changing their prices over time. Our
paper confirms this result, but documents more patterns based on other statistics
that paint a more nuanced picture. While the relation between the frequency of price
change and inflation provides strong evidence against the strict assumptions of the
Calvo model, changes in the shape of the price change distribution (measured by its
dispersion and skewness) are also informative to distinguish between the models.

Ultimately, we find that neither menu cost nor Calvo models are able to match
all the patterns in the data that we present. In particular, the menu cost model
makes very strong predictions about the shape of the price change distribution: the
dispersion and the skewness fall sharply with inflation. In the data the disperson of
price changes does fall with inflation, but the skewness does not. We are not the first
to find empirical failures of this model: Nakamura and Steinsson (2010) and Midrigan
(2011) had already pointed out problems with some of the predictions of the Golosov
and Lucas model, and shown that changes to the model that corrected these problems
overturned the result of low monetary non-neutrality. However, we show that even
these modifications to the Golosov and Lucas model, though they reconcile the menu
cost framework with the data in some ways, are also inconsistent with the facts that
we present. Finally, we also consider models of imperfect information in which firms
adjust their prices infrequently (Alvarez et al. (2011b), Woodford (2009)), and find
that these also fail to match the data, although each in different ways.

Based on these findings, and in search of a model that is consisent with our
empirical results, we present a generalized menu cost model in which the size of the
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menu cost (the cost paid to change one’s price) is random, and changes across firms
and time. This generalizes a common theme in the approach taken by Nakamura
and Steinsson (2010) and Midrigan (2011): to incorporate heterogeneity of menu
costs, and in so doing making the firm’s decision of whether to change its price more
exogenous to the firm. These models therefore include some of the features of the
Calvo model, and can be thought of as hybrids between state- and time-dependent
models. Our model builds on this by introducing a distribution of menu costs that
gives it the flexiblity to behave like a Calvo model, a menu cost model, and to cover
the spectrum in between. By working with random menu costs, we follow the example
of Dotsey et al. (1999), and our generalization of the Calvo-menu cost dichotomy is
closely related to Caballero and Engel (1993)’s approach. They proposed modelling
sticy prices with a continuous probability of price adjustment, as a function of the
gap between the firm’s current and optimal price. Our random menu cost model
maps naturally into their price adjustment hazard function approach. We adjust the
distribution of menu costs in our generalized model to fit the new correlations that
we report, and find that, especially to match the non-negative inflation-skewness
correlation, the distribution of menu costs needs to feature a positive probability
of price changes being free, and a high probability of menu costs being very high.
These correlations allow us to restrict the menu cost distribution in a way that neither
Dotsey et al. (1999) nor Caballero and Engel could, with important implications for
monetary non-neutrality. Indeed, the real effects of monetary shocks in our model
are considerably higher than in the Golosov and Lucas model, and higher even than
in Midrigan (2011).

2 The Skewness of Price Change in Sticky Price

Models

We begin by presenting the models that we will be evaluating, and describing the
predictions that we will focus on testing. Our analysis will consider the models that
have been used in the sticky price literature, including the Calvo model, the Golosov
and Lucas menu cost model and the variants of it that have appeared since. First,
we describe the set-up of the various models, both the common framework and the
differences that set them apart, before explaining how we derive the predictions, and
we finally summarize the predictions.
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2.1 General Set-Up

All the sticky price models that we consider have certain features in common, that
are also used in the sticky price literature in general. First, households maximize
expected discounted utility of the following form:

Et

∞∑
τ=t

βτ−t [logCτ+t − ωLτ+t]

All our analysis will focus on the firm’s dynamic price setting, so the set up of the
household problem matters for our purposes insofar as it determines the relationhsip
between agreggate consumption and the real wage, which will be the firm’s main
cost. There is then a continuum of monopolistically competitive firms, indexed by
z, producing a differentiated product, and aggregate consumption is given by a con-
stant elasticity of substitution aggregator, meaning that each firm faces the standard
demand function for its good:

ct(z) =

(
pt(z)

Pt

)−θ
Ct

, where θ is the elasticity of demand, and Pt is the CES price aggregator. Firms
produce output based on a linear production function, with labor as the only input:

yt(z) = At(z)Lt(z)

Productivity is subject to idiosyncratic shocks, which have been an important
feature of sticky price models since Golosov and Lucas (2007). Large idiosyncratic
shocks make it possible for such models to match the large heterogeneity and high
average size of price changes observed in the data, which was documented notably
by Nakamura and Steinsson (2008) and Klenow and Kryvstov (2008). These shocks
are typically modelled as first-order autoregressive processes with normal innovations,
but Midrigan (2011) argues that such a process yields a disribution of price changes
with tails that are too thin, relative to what is observed in the data. He therefore
introduces Poisson shocks in the productivity process in the following way:

logAt(z) =

ρlogAt−1(z) + εt, P robability = pε

logAt−1(z), P robability = 1− pε
, εt

iid∼ N(0, σ2
ε )

This set-up nests the standard AR(1) productivity, which can be obtained by
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simply setting the probability of a shock occurring (pε) to 1. Since we will consider
various models with AR(1) productivity, as well as Midrigan’s model with Poisson
shocks, we maintain this set-up, and cover the different models by adjusting the
relevant parameters.

In order to generate aggregate fluctuations, the sticky price models that we look
at incorporate a stochastic process for nominal aggregate demand. Again, we stick
to what is most often used in the literature by modelling nominal output as a log
random walk with drift:

logPtCt = logSt = µ+ logSt−1 + ηt, ηt
iid∼ N(0, σ2

η)

This process stands in for monetary policy in these models: nominal output is
determined exogenously, and firms’ price responses to these shocks determine how
inflation, and how real output respond. We will use the same parameter values for
this process (to match the behavior of US aggregate activity) across the different
models, and we define monetary non-neutrality as the variation in aggregate real
consumption induced by the nominal shocks. This has become the main way of
introducing monetary variables in the menu cost literature because it lends itself
much more easily to the global solution methods that are used for such models
than explicitly incorporating systematic monetary policy. Although Blanco (2015)
developed a menu cost model with a Taylor-type policy rule, we do not attempt this
for the models in this section. Our goal is to show how the price change distribution
changes with inflation under different sticky price models, and the aggregate demand
process that we use enables us to do this. Next, we describe the price setting problem
faced by firms, which is the main dimension along which the different models vary.

2.2 Price-Setting

In the standard Golosov and Lucas (2007) menu cost model, firms must pay a fixed
cost (in units of labor) whenever they change their price. The period profit function
therefore takes the following form:

Πt(z) = pt(z)yt(z)−WtLt(z)− χWtI{pt(z) 6= pt−1(z)}

The menu cost (χ) can then be calibrated to match the frequency of price changes,
while the standard deviation of the idiosyncratic shocks can be set to match the
average size of price changes (we also set the probability of an idiosyncratic shock
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occurring, pε, to 1 to make the process an AR(1), as in the original model). This is, in
a way, the most “state-dependent” model, as under the fixed menu cost firms are fully
in control of the decision of when to change the price for each good (subject to the
constant menu cost). It is this feature that makes prices very responsive to aggregate
demand shocks, and that famously yields very low monetary non-neutrality.

The first extension to the menu cost model that we consider is the Nakamura and
Steinsson (2010) multi-sector menu cost model. The only change here is that firms
are separated into sectors, with firms in different sectors facing different menu costs,
and a different variance of idiosyncratic shocks. This reflects the fact, documented
in the paper and in Nakamura and Steinsson (2008), that the frequency of price
change varies considerably across sectors, as does the average size of price changes.
Golosov and Lucas (2007) calibrated their model to match the average frequency
of price changes across sectors, and Nakamura and Steinsson show that calibrating
sector by sector makes a major difference for the degree of monetary non-neutrlity
in the models, as the multi-sector model predicts much higher non-neutrality than
the standard model.

Midrigan (2011) modified the standard menu cost model in two ways: first by
changing the idiosyncratic shock process so that it would feature fat tails (which we
described above), and giving firms a motive the make small price changes. In the
standard model, since a firm always has to pay a fixed cost to change its price, there
will be a threshold for the size of the price change, such that changes below a certain
size are not profitable and do not occur. Midrigan (2011) models multi-product
firms that can change the prices of all their products for the payment of the menu
cost. Because of this, a firm might choose to pay the menu cost to change the product
of a particularly mis-aligned product price, and then also take the opportunity to
change the price of another product by a small amount. This enables the model to
match the considerable fraction of small price changes that are observed in the data,
but it also makes the model much more difficult to solve. We therefore follow Vavra
(2013) in simplifying the Midrigan model by assuming that, instead of producing
multiple products, firms each period are randomly given the possibility of changing
their price for free (with a low probability), or by paying a menu cost. This adds,
as an additional parameter to calibrate, the probability of drawing a zero menu cost
(free price change): pz. With the additonal parameters in this model, we target the
fraction of price changes that are small, as in Midrigan (2011).1

1Midrigan (2011) defines a small price change as a price change that is less than half, in absolute
value, of the average size of price change. Due to the variation in the average size of price changes
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We also consider a Calvo model, which has the set-up described above, except
that firms, instead of facing a menu cost, have a fixed probability every period of
receiving the opportunity to freely change their price (otherwise, they do not get to
change price). This is equivalent to the simplified Midrigan model that we describe,
but with the high menu cost set to infinity, and the probability of a free price change
set to equal the average frequency of price change in the data. This model includes
idiosyncratic shocks to obtain a distribution of price changes, and we also set the
variance of these shocksto match the average size of price changes. The variance needs
to be higher than in menu cost models, because menu costs induce the selection effect
that naturally leads to large price changes to be more likely.

Finally, we also include two models involving imperfect information: the Alvarez
et al. (2011b) model of observation and menu costs, and the rational inattention
model of Woodford (2009). In the former, firms must pay a fixed cost to observe
the relevant state (or conduct a “price review”), and a menu cost to change their
price. Facing such costs, firms conducting a price review choose the date of the next
review, and a price plan until that date. Woodford (2009) considers the same type
of price-setting problem, but within the rational inattention framework proposed by
Sims (2003): firms face a cost based on how much information they process, and
therefore choose to receive limited information based on which they choose when
to review prices. In this model, the cost of processing information is a crucial pa-
rameter, and both the Calvo model and standard menu cost model are nested as
extreme cases of the information cost in this set-up (infinite and zero, respectively).
Furthermore, intermediate values of the information cost result in what is described
as a “generalized Ss model”: while a simple Ss model involves a threshold rule for
price adjustment, a generalized Ss model features a probability of price adjustment
as a function of the degree of price mis-alignment. This is the kind of model that we
work with in section 4, and we view the rational inattention framework as a potential
micro-foundation for this.

over time and across sectors, we prefer to use an absolute measure, and focus instead on the
fraction of price changes that are smaller than 1% in absolute value. Finally, Midrigan (2011) also
emphasized the failure of the Golosov and Lucas model to match the kurtosis of the price change
distribution, and the introduction of Poisson idiosyncratic shocks helps to get the kurtosis in the
model closer to what it is in the data. However, it turns out to be very difficult to match (it seems
to be very high in the data), and Midrigan (2011) does not achieve it completely. We therefore do
not match the kurtosis either.
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2.3 Solution and Simulation

We solve each of the models mentioned above by value function iteration, mostly with
the parameter values used by the original authors, which were set for the models to
match various features of the micro price data. One difficulty in solving these models
is that in all of them the price level (Pt) is an aggregate endogenous variable whose
evolution depends on the behavior of all firms. This means that, in principle, every
firm’s relevant state should include the state of every other firm, which makes for an
infinitely large state space. As done elsewhere in the literature, we use an approach
analogous to Krusell and Smith (1998) to solve the model assuming a relationship
between the price level and a small number of variables, and to then verify that the
resulting solution is consitent with the assumed relationship. In the appendix, we
provide more details about the procedure, as well as the calibration of the different
models. The parameters of the process for nominal aggregate demand, described
above, are calibrated to match the average growth and volatility of U.S. nominal
GDP, and the same values are used for all the models.

The first aim of our paper is to document what these different models imply
for the price change distribution at different inflation rates. Our approach is to
simulate each model, for 1,000 periods (months) and 40,000 firms. From these,
we obtain a simulated series for aggregate inflation (determined by the endogenous
response of prices to the nominal aggregate demand shocks) and a distribution of
price changes for each period. Since the models are calibrated to match the frequency
of price change that is observed emprically, the vast majority of prices do not change
every period. Our analysis is therefore based on the distribution of price changes,
conditional on a non-zero price change, and this applies for the rest of the paper,
including in our empirical work. We compute various moments of each period’s
price change distribution, giving us a time series for each moment, and compute
correlations between inflation and each of the moments, and this is how we determine
how the price change distribution changes with inflation.

As mentioned in the introduction, the studies that have examined price change
statistics in high inflation environments have mostly focused on whether the fre-
quency of price change rises with inflation, as the menu cost model predicts. We
present the correlation between frequency and inflation in the models, but also con-
sider other correlations with other moments: the standard deviation of price changes,
and the skewness of price changes. As we will show, the menu cost models have very
strong and clear implications for these correlations that are markedly different from
those of the Calvo model. Furthermore, as seen in Midrigan (2011), the shape of
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the price distribution can be very informative about the imortance or presence of
the mechanisms that weaken the role of monetary shocks, and it is therefore to be
expected that the way in which the shape of this disbtribution changes (as described
by the dispersion and skewness) with inflation would also be informative about these
mechanisms.

We present a summary of these theoretical results in Table 1, indicating whether
each correlation is postive (+), close to zero (0), or negative (-) in the different
models:

Table 1: Correlation of Inflation and
Model Frequency Std. Deviation Skewness
Calvo 0 + +

Golosov and Lucas + - -
Nakamura and Steinsson + - -

Midrigan + - -
Alvarez et al. + 0 -
Woodford + 0 +

In order to further illustrate these results, we present scatter plots between infla-
tion and the different moments from the simulations (in which one point represents
one period in the model simulations). Figure 1 shows the correlations for the fre-
quency of price change, while Figures 2 and 3 do so for the dispersion and skewness
of price changes, respectively. These bring out the fact that in the menu cost models,
the relationships between inflation and dispersion and skewness are very clear and
strong (especially in the Golosov and Lucas model for the dispersion). In contrast,
the same relations in the Calvo and imperfect information models are not so strong.
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Figure 2: Price Change Dispersion & Inflation
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Figure 3: Price Change Skewness & Inflation
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Although the relationships come out very clearly in these simulations, it could
be a concern that the higher moments that we are estimating might not be well
defined in the distributions that we are working with. In addition, estimates of higher
moments are very sensitive to outliers, which would be of concern particularly when
we estimate from the data. That is why we also consider alternative measures for
the dispersion and skewness of price change: the inter-quartile range (for dispersion)
and Kelly’s coefficient of skewness2(as opposed to “moment skewness”, which is what

2These statistics are defined as follows, with Qi representing the ith percentile. Inter-quartile
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we have been estimating so far). Since these statistics are quantile-based, they
are well-defined for any distribution, and they are also less sensitive to outliers.
The correlations are similar for all the models (inter-quartile range compared with
standard deviation, and moment skewness with Kelly Skewness). Figure 4 below
shows scatter plots of Kelly Skewness in the different models.
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Figure 4: Kelly Skewness & Inflation

Another concern could be that these simulations all assume that the value of
steady-state inflation is held constant throughout the simulated time period. This
could be problematic in terms of testing the predictions on data, as the U.S. clearly
went from a moderate to a low inflation regime over our sample period. To address
this, we also conduct the following exercise: we solve each model for different values
of the trend inflation parameter (µ), and for each solution compute the average
dispersion and skewness of price change (either from the stationary distribution of
price changes, or averaging over simulated time periods; they are almost the same).
In Figure 6, we plot the results.

range = Q75 − Q25. Kelly Skewness = (Q90−Q50)−(Q50−Q10)
Q90−Q10

. Kelly skewness essentially measures
the degree of asymmetry in a distribution, comparing the size of the right and left tails.
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Figure 5: Steady-State Correlations

What the scatter plots show is that, as in the “short-run” analysis, the dispersion
and skewness of price changes fall with trend inflation in the menu cost model (we are
only plotting results for the Golosov and Lucas model, but the same pattern holds
for the other menu cost models). Here too, the Calvo model predicts weak positive
relations for both moments. This will be important when comparing the skewness
of price change between the low and high inflation periods in the data.

To conclude our theoretical analysis, we emphasize that the correlations that we
consider all have the same sign in the four menu cost models (Golosov and Lucas,
Nakamura and Steinsson, Midrigan, and observation costs). The scatter plots show
that the values taken by moments we report do vary across the models (for example,
in the Golosov and Lucas model the skewness of price changes takes a wider range of
values than in the other models), but the fact that the sign and strength of the corre-
lations across the models are similar is notable. Indeed, the Nakamura and Steinsson
and Midrigan menu cost models were developed as extensions of the Golosov and
Lucas model to make it match new empirical facts, and the changes made consider-
ably weakened the selection effect that reduces the importance of monetary shocks.
However, what we find here is that, despite the important changes made to the base-
line menu cost model, they all have the same implications along the dimensions that
we are considering. Next, we discuss the intuition behind these theoretical results.
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2.4 Intuition for the Menu Cost Model

Menu cost models are often also known as “Ss” models, due to the fact that they tend
to feature an inaction region for price changes (the edges of which can be labelled
with “S” and “s”), and this makes it easier to understand the theoretical correlations
between inflation and the moments of the price change distribution that we find in
this section. Price change dynamics in the menu cost model can be thought of in the
following way: both idiosyncratic and aggregate nominal shocks give a distribution
of desired price changes (the price change a firm would choose if it changed its price,
or in the absence of price change frictions). The presence of a menu cost means that
only desired prices above a certain size (positive and negative) will actually occur,
as only those will yield a benefit to the firm big enough to compensate for the menu
cost. The realized price change distribution in this model is therefore the underlying
distribution with a band containing 0 removed, as illustrated in Figure 6 below.

Figure 6
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The presence of idiosyncratic shocks yields variation in firms’ desired prices, and
nominal aggregate shocks move the position (average) of the underlying distirbution.
For example, a positive aggregate shocks moves the distribution to the right, which
also leads to realized prices being higher on average, resulting in higher inflation (the
reverse is true for negative aggregate shocks). Such shocks also result in a higher
fraction of price changes being poisitive, which are separated from the negative ones
by the inaction region. This reduces the dispersion of price changes because a bigger
fraction of them are on one side of the inaction region, and therefore relatively close
to each other. It is when the share of price changes on either side of the inaction
region is equal that the dispersion is highest, and by the same logic, higher than when
inflation is negative (when more price changes are decreases), which is what we see
in the dispersion plots for the menu cost model: dispersion decreasing with inflation
in the positive region, and increasing in the negative region, with the maximum
attained at zero inflation.

The logic for why the skewness falls with inflation is related. The skewness, as
a statistic, measures the asymmetry of a distribution, or the relative sizes of the
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right and left tails. As a positive aggregate shock raises the average desired price
change, and the average realized price change, some negative price changes (to the
left of the inaction region) remain and form the left tail. This makes the skewness
negative: the resulting distribution has a left tail (price decreases relatively distant
from the average price change, which is positive), without a corresponding right tail
(as price increases are to the right of the inaction region and relatively close to each
other). Furthermore, for the range of values that inflation takes in our simulations
(which corresponds roughly to the historical range for inflation since the late 1970’s),
there is always a significant proportion of negative price changes. This means that as
inflation rises (due to larger positive aggregate shocks), these negative price changes
form a left tail in the price change distribution that is further and further (to the
left) of the average of the price change distribution, leading to a skewness that is
more negative.3 What this also implies is that the relationship between skewness
and inflation is monotonic, decreasing for positive and negative values of inflation.

It is important to emphasize that these correlations have to do with the central
mechanism of the menu cost model: the selection effect. When firms face a fixed cost
to changing their price, only relatively large price changes will occur, leading to the
presence of the inaction region. As the average of the underlying distribution rises
(moved by aggregate shocks), there is a large response of inflation because there is
a large share of price increases that are marginal: without the shock they would not
occur, but are pushed outside the inaction region (and many marginal price decreases
do not occur with the shock), leads to a relatively large rise in inflation, muting the
real effect of the aggregate shock. This is the logic for why state-dependent models
are known to imply low levels of monetary non-neutrality.

However, what we show is that this same mechanism leads to predictions that
are in principle observeable: the presence of an inaction region means that positive
aggregate shocks should lead to not only more price increases, but to a distribution
with price changes more concentrated on the right, leading to a declining dispersion
and skewness. This does not occur in a Calvo model: in such a model every de-
sired price change has a fixed probability of being realized, so as the desired price
changes rise, the shape of the realized price change distribution does not change in
a meaningful way.

3This also means that if the aggregate shock were so high that all price changes were positive
(to the right of the inaction region), the relationship would break down, as price decreases would
no longer be separated from price increases. However, this would also mean that all prices would
change, and that inflation would be extremely high. This kind of situation, or anything ressembling
it, never occurs in the period we are considering.
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The intuition for this theoretical result is easiest to explain in the case of the
“standard” Golosov and Lucas model, or in general any menu cost model with a
single fixed menu cost. The other menu cost models that we consider feature a
richer structure of menu costs that led to some very different empirical predictions.
However, we have shown that these models also imply negative correlations for the
dispersion and skewness of price changes, and the intuition for this is the same as
for the standard model. In the multi-sector menu cost model, different sectors face
different menu costs, and this can be thought of as sectors facing different inaction
regions, with each sector behaving as described for the standard menu cost model.
Therefore, the aggregate price change distribution behaves similarly to how each
sector’s distribution does.

The Midrigan model involves firms randomly facing either a positive or zero menu
cost. This weakens the selection effect, because there is now a positive probability
that a firm will change its price even if it will be a small change, so that price changes
are no entirely “selected” based on how out of line the original price is. However,
the selection effect is still present to a certain extent, because it is only relatively
large price changes that will happen with certainty (as those will be the only ones for
which a firm will be willing to pay the positive menu cost, when it faces the positive
menu cost). It is this difference between small and large price changes that makes
the same mechanism present in this model and drives the correlations, even though
small price changes do occur (as they do in the data, but do not in the Golosov and
Lucas model).

We have shown that menu cost models, under the assumptions commonly made
in the literature, make clear, consistent predictions about how the shape of the price
change distribution changes with inflation, and that these do not change much based
on the type of menu cost model in question, and that the predictions are strikingly
different from those of the Calvo model. Furthermore, these are predictions that can
be tested with the price data available to us, which enables us to evaluate this broad
class of sticky price models. In the following section, we do this by presenting the
empirical counterpart to the correlations presented in Table 1, and we discuss how
each of the models falls short of matching the data.

3 Empirical Evidence from High Inflation Periods

In the previous section, we documented the predictions made by various sticky price
models on the behavior of price changes at different inflation rates. In this section,
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we describe the data set that we will use to test these predictions, and report that
while the inflation-dispersion correlation is consistent with the empirical evidence,
the inflation-skewness correlation is not.

3.1 Previous Empirical Work

The micro data that underlies the U.S. Consumer Price Index (CPI), gathered by the
Bureau of Labor Statistics, is one of the most widely used data sets in the literature
on monetary price-setting models. Bils and Klenow (2004) were the first to use this
data set to provide estimates for the frequency of price change. Since then, other
studies have documented additional features of the price change distribution using
this data set (e.g. Nakamura and Steinsson (2008); Klenow and Kryvstov (2008)).
The availability of a large, representative data set that makes it possible to observe
the price changes of very specific products has lead monetary economists to develop
models that match the behavior of price changes as closely as possible.

The data set that has been used in this line of work covers the period 1988 to
the present, as 1988 marked a major revision of the structure of the CPI. However, a
limitation of the data used thus far is that throughout this period, aggregate inflation
has been relatively low and stable, especially compared to the years before. Since
1988, the maximum twelve month change in the headline CPI has been 6.2% (4.6%
for the Core PCE), and the average has been 2.8% (2.2% for the Core PCE). Partly
because of this, most research on sticky price models up until now has focused on
matching moments of the price change distribution that are averaged over time (the
main exception beingVavra (2013), who uses the CPI micro data to investigate the
cyclicality of price change moments). But as we showed in the previous section,
the models imply that these moments would change over time, and in a way that
is closely related to aggregate inflation, with implications that differ strongly across
models.

Motivated by this, a few studies have used data from other countries that expe-
rienced episodes of high inflation, such as Argentina (Alvarez et al. (2011a)) and
Mexico (Gagnon (2009)). These studies also used the micro data that underlies the
CPI’s of these countries, and reported how various price change statistics change as
inflation goes from low, to moderate, to high. They find that the frequency of price
change is fairly constant, and not very reponsive to inflation, at low levels of infla-
tion (below 10% annual). Once inflation rises even higher, however, the frequency
of price change begins to rise sharply with inflation. In addition, they show that
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a standard menu cost model matches this relationship very well. What this shows
is that, first, the Calvo (1983) assumption of a constant frequency, while possibly
approximately valid for low inflation, becomes problematic when inflation rises be-
yond a certain level. Second, the evidence presented in these papers is shown to be
consistent with standard menu cost models, suggesting that they better explain the
behavior of price changes when inflation is high. However, Alvarez et al. (2011a) and
Gagnon (2009) do not look at the higher moments of the price change distribution
that we emphasized in the previous section, which is what we do in this paper.

3.2 Data Set and Construction of Statistics

The CPI Research Database collected and maintained by the U.S. BLS containts
about 80,000 monthly prices collected from around the U.S, classified into about 300
categories called Entry Level Items (ELI’s). As mentioned before, the data going
back to 1988 has been available for a little over a decade. The data going back to
1977 has recently become available, and this is the novel part of the data set that
we use extensively. This new data set has thus far only been used by Nakamura et
al. (2015), and that paper also describes in detail just how the data set was made
available. As explained in the BLS handbook of Methods (BLS, 2013), there were
several changes made to how the BLS samples prices and computes the CPI. While
there are many variables present in the post-1988 data set that are not available for
the older period, we are able to study the price change distribution in a way that
is consistent throughout the whole period, and with the theoretical framework that
we are testing. First, we have access to the variables that identify specific products,
and that reveal when a substitution has occurred (when a new version of a product
has replaced the old one). Second, the data set contains information on when any
given price is a temporary sale, or imputed (or not properly collected). Because of
this, we are confident that we are observing the price changes of identical products
and services, with the price being actually observed; and all of this with the same
standards throughout the sample period.

The empirical literature on price setting has emphasized the importance of iden-
tifying “pure” or regular price changes, as opposed to price changes coming from
temporary sales or substitutions. The reason is that sales and substitutions have
features that make them different in terms of their relevance for the study of the role
of monetary policy and aggregate shocks. Indeed, when a product goes on sale, its
price will change, but it is not clear that this happens in repsonse to any changes
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in aggregate conditions. What’s more, products on sale tend to revert back quickly
to their pre-sale price. This distinction was pointed out notably by Nakamura and
Steinsson (2008), and Anderson et al. (2015) document the ways in which sale
prices behave differently from regular prices. In a similar way, the distinction be-
tween regular price changes and substitutions is made because a price change coming
from a product substitution could reflect the changes in product characteristics or in
quality that could be behind the substitution. Although it is possible in some cases
to estimate the contribution of quality or characteristic changes to a substitution
price change (and the BLS does for certain products), we prefer to use the product
identifiers to focus on price changes involving identical products.

In order to test the predictions that we presented in the previous section, we use
the data set to construct distributions of price changes for each month, and a few
observations on how these are constructed are in order. First, since the vast majority
of prices do not change in any given month, these distributions only include non-
zero price changes (which corresponds to what we look at in the theoretical results).
Second, because estimates of higher moments are very sensitive to outliers, we follow
other empirical work in excluding price changes whose absolute value is above a
certain value (e.g. Klenow and Kryvstov (2008); Alvarez et al. (2014)), (our
threshold is one log point). Third, Eichenbaum et al. (2013) have shed light on
problems with the methods of reporting and collecting prices in some of the product
categories of data sets such as the CPI. They show that this leads to erroneous
small price changes appearing in the data, price changes that come from the price
collection methods, and that do not reflect actual price changes. This is particularly
important for us, as estimates of dispersion and skewness will be sensitive to the
relative amounts of small and large price changes. We deal with this by constructing
statistics that exclude very small price changes (<1% in absolute value) in the ELI’s
that Eichenbaum et al. flagged as problematic as a robustness check.

Finally, it has been pointed out by Nakamura and Steinsson (2008 and 2010)
that there is significant heterogeneity of price change statistics across sectors. To
report the average overall frequency of price change, they estimate the frequency for
each ELI, and then take a weighted average of each frequency (with the expenditure
weights that go into the CPI). The same method is used by many of the other
cited empirical studies. For the frequency of price change, we use the same method,
considering both the weighted median and mean frequency4. For the dispersion and

4Nakamura and Steinsson (2008)highlight the difference between the mean and the median,
arising from the fact that the distribution of frequencies by ELI is very skewed to the right, with
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skewness, we follow a similar approach: we first estimate each moment by sector-
month. However, as ELI’s are fairly narrow categories, most of them have a handful
of price change observations in any given month, fewer than would be necessary to
estimate higher moments with any precision. We therefore do not use ELI’s as our
definition of sectors, but instead separate products into 13 “major groups”, which are
listed in the appendix. While this sectoral classification is fairly broad, it allows us to
separate goods and services into similar categories, while leaving enough observations
in each sector-month to obtain good estimates of the dispersion and skewness., and
then for each month take weighted averages of the statistics.

This approach then leaves us with monthly series of the different moments of
the price change distribution. We believe that our approach, following the empirical
price setting literature, gives us the most valid estimates to compare with those
from model simulations. Indeed, the models that we are testing involve “pure” price
changes, and abstract from temporary sales and product substitutions, which is why
we try as much as possible to include only regular price changes in our empirical
estimates. Perhaps more importantly, the models do not allow for differences across
sectors. Such differences, such as sector-specific shocks, have the potential to strongly
affect the shape of the overall price change distribution (when all price changes across
sectors are pooled together), in turn affecting the higher moments of the distribution.
Because of this, we might see the moments of the “pooled” distribution of price
changes vary over time due to such sector-specific shocks, which would be unrelated
to the mechanisms that are behind the predictions of the models that we described
in the previous section. For this reason, we attempt to “control for” these kinds of
effects by computing statistics sector by sector.

3.3 Results

The goal of our empirical work is to determine whether the theoretical patterns
documented above are borne out by the data. As in the theoretical section, we
focus on the correlations between aggregate inflation and price change dispersion,
and between inflation and price change skewness. The price change moments are
calculated as described above, and our preferred measure for aggregate inflation is

a few ELI’s having very high frequencies. They argue that the median is a better measure of the
average frequency in the sense that a single-sector menu cost model calibrated to match the median
frequency is a much better approximation of a multi-sector model, of the kind described in Section
2. In this way, the median frequency is a statistic that better describes the degree of price stickiness
(as it relates to monetary non-neutrality). This is also why we calibrate all the single sector models
to match the median frequency.
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monthly core PCE inflation. We prefer to use core inflation because the sharp changes
in headline inflation tend to be driven by changes in the global market prices of food
and commodities, which would not be well described by the price-setting models
that we are working with. However, we will also compute correlations with headline
inflation as a robustness check (as well as using estimates of the moments excluding
price changes from food and energy categories). Finally, to control for seasonality in
the inflation and moment series, we calculate the correlations after removing month
dummies from the series, and after applying a moving average smoother to them.

The price data is monthly, and inflation series are monthly, so we can compute
the correlations at a monthly frequency. However, the drawback of using monthly se-
ries is that each period’s moment estimates are based on relatively few observations,
making them less precise (this is especially important for higher moments such as
the dispersion or skewness). The alternative is to group price change observations by
quarters or years (but still separating them by sector) and to estimate the moments
from these samples, which gives us more precise estimates (as they are based on
distributions with more observations), but only quarterly or annual moment series.
Since quarterly and annual inflation averages also have the advantage of containing
less noise than monthly inflation series, we consider monthly, quarterly, and annual
correlations. We present the results in two ways: first, with raw correlations and scat-
ter plots, as with the models, to give a simple illustration of the signs and strength of
the relationships in the data, and a qualitative comparison with the models. which
we correlate with inflation series of the corresponding frequency. Secondly, we esti-
mate these relationships with regressions. This allows us to more formally test for
significance, and to control for other variables that might conceivably affect the price
change distribution.

3.3.1 Correlations

Our sample period for the price data is 1977-2014, and the early, high inflation, part
of the period is particularly important. We want to answer whether the dispersion
and skewness of price changes move inversely with aggregate inflation, as predicted
by most sticky price models, and in order to do this it is very helpful to see how the
statistics change when inflation was high. However, we first verify that the frequency
of price change rises with inflation, as found by Gagnon (2009) and Alvarez et al.
(2011a). Table 2 reports correlations between the frequency of price change and
inflation, and Figure 6 is the empirical counterpart to Figure 1 from the simulations
(scatter plots of the average frequency and inflation for the months in the sample,
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for both the weighted mean and median frequency).
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Table 2: Corr(Frequency, Inflation)
Weighted Median

Monthly Quarterly Annual
1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014

Raw 0.575 0.399 0.671 0.536 0.764 0.618
Smoothed 0.769 0.552 0.785 0.628 -

Weighted Mean
Raw 0.311 -0.019 0.314 -0.216 0.374 -0.243

Smoothed 0.371 -0.337 0.36 -0.295 -

The table and figure confirms that there is a positive association between the
frequency and inflation, althought this is considerably clearer for the median than the
mean frequency. As argued in the previous studies that had looked into this relation,
this provides strong evidence against the Calvo assumption of time-dependent price
setting. Figures 7 and 8 illustrate the other correlations that are presented in Table
2: those involving quarterly and annual averages of inflation and the frequency, and
here the same patern holds.
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Figure 8: Frequency of Price Change & Inflation, Quarterly
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Figure 9: Frequency of Price Change & Inflation, Annual

Next, we look at the results for the moments that our discussion has focused on:
the dispersion and skewness of price changes. Tables 3 and 4 report the correlations
for the dispersion and skewness respectively. Our main results is that while there does
seem to be a clear negative relationship between inflation and dispersion, there is no
such relation between inflation and skewness. Indeed, for both measures of skewness
(moment skewness and Kelly skewness; “Skewness” in the tables and graphs refers to
moment skewness), the correlation is either strongly positive (over the whole sample
period) or close to zero (post-1984). This can also be seen in Figures 9 and 105,
which are scatter plots illustrating the correlations (with each period corresponding
to a month).

5In the following figures, the left panel uses the statistics estimated using all available obser-
vations, while the right panel uses the estimates that exclude price changes below 1% in absolute
value in ELI’s deemed problematics by Eichenbaum et al. (2013) (EJRS).
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Figure 10: IQR & Inflation, Monthly
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Figure 11: Skewness & Inflation, Monthly

Table 3: Corr(IQR, Inflation)
All Observations

Monthly Quarterly Annual
1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014

Raw -0.602 -0.446 -0.716 -0.665 -0.776 -0.751
Smoothed -0.675 -0.706 -0.719 -0.742 -

EJRS
Raw -0.666 -0.434 -0.711 -0.689 -0.775 -0.779

Smoothed -0.792 -0.701 -0.709 -0.769 -
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Table 4: Corr(Skewness, Inflation)
All Observations

Monthly Quarterly Annual
1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014

Raw 0.265 0.084 0.345 0.067 0.473 0.122
Smoothed 0.506 0.136 0.474 0.133 -

EJRS
Raw 0.272 0.068 0.327 0.053 0.447 0.102

Smoothed 0.462 0.144 0.452 0.105 -

Table 5: Corr(Kelly Skewness, Inflation)
All Observations

Monthly Quarterly Annual
1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014

Raw 0.584 0.069 0.674 -0.106 0.744 -0.165
Smoothed 0.696 -0.067 0.697 -0.199 -

Figures 11-14 show these correlations with the quarterly and annual measures
(including the Kelly Skewness correlation using annual data), illustrating how the
same patterns hold.
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Figure 12: IQR & Inflation, Quarterly
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Figure 13: Skewness & Inflation, Quarterly
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Figure 14: IQR & Inflation, Annual
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Figure 16: Kelly Skewness & Inflation, Annual; Corr = 0.744

To summarize, we find first that the dispersion of price changes falls sharply
with inflation throughout the sample period. Second, the skewness, while varying
over time, does change with inflation in a systematic way for low levels of inflation.
However, there does seem to be a positive relationship when inflation is high. We see
this from the different correlations for the different sample periods (which roughly
correspond to the high and low inflation periods). Finally, all these patterns hold
true regardless of whether we exclude potentially spurious small price changes or
apply seasonal adjustment and smoothing to the data series. Next, we formalize this
analysis with linear regressions.

3.3.2 Regressions

Although the correlations and scatter plots provide a general picture of what the
data shows on the relationships in question, we turn to regressions to determine
whether these correlations are statistically significant, and to consider different con-
trol variables. However, the question of interest for us is not merely whether they
are statistcally significant from zero, but also whether they are significantly different
from what the models predict. To do this, we estimate regressions of the frequency,
dispersion (inter-quartile range) and skewness (both moment and Kelly skewness) of
the price change distribution on inflation, with different specifications allowing for
different sets of controls and sample periods. As before, we run the regressions both
on the whole sample period and on only after 1984. This allows us to see if the rela-
tionship looks different between the low and high inflation periods. The regressions
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all take the following form:

yt = α + βπt + γControlst + et

yt denotes the different price change moments (frequency, dispersion, and skewness).
Controls are included to address the fact that many important changes occurred
in the U.S. monetary environment over our sample period, which could conceivably
have a direct effect on the price change distribution. Since expected inflation could
affect firms’ price setting decisions separately from present realized nominal shocks,
we inlcude expected inflation (measured by the University of Michigan Survey of
Consumers) as a control. We also inlcude dummy variables for the different Federal
Reserve chair’s times in office, to control for differences in the conduct of monetary
policy. The different specifications cover different combinations of controls (no con-
trols, Fed dummies only, or Fed dummies with expected inflation) and the different
periods. Tables 6 to 9 show the estimates for β from these different specifications,
with the standard errors below them. All standard errors are calculated according
to Newey and West (1987), and allow for serial correlation in the residuals.
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Table 6
Coefficients for Frequency Regressions

Weighted Median Weighted Mean
Specification 1977-2014 1985-2014 1977-2014 1985-2014
All 0.708*** 0.777*** 0.164 0.018

(0.071) (0.224) (0.203 ) (0.196 )
Fed Dummies 0.728*** 0.810*** 0.686*** 0.339**

(0.095) (0.208) (0.104 ) (0.167 )
Inflation Only 0.771*** 0.587** 0.438*** -0.087

(0.237) (0.252) (0.108 ) (0.236 )

Notes. *** Significant at 1% level (** at 5% level; * at 10% level. )

This table reports the correlation coefficients from regressions of the weighted av-

erage (median and mean) frequency of price changes on aggregate CPI inflation.

The regressions are run using quarterly series, where quarterly inflation is defined

the mean of the 12-month log changes in the CPI for the three months in every quar-

ter. The different cells indicate different specifications, which change with respect

to the sample period used and inclusion exclusion of small price changes (column-

s), and what controls are used. Standard errors that are consistent for heteroskeda-

sticity and auto-correlation of the residuals (Newey-West) are reported. The same

observations apply to the other regression tables, which report coefficients on infl-

ation in regressions with other dependent variables.

Table 7
Coefficients for IQR Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only -0.296*** -0.428*** -0.327*** -0.491***

(0.042) (0.070) (0.046) (0.082)
Fed Dummies -0.186*** -0.414*** -0.204*** -0.476***

(0.038) (0.077) (0.044) (0.089)
Fed & Expected Infl -0.257*** -0.222** -0.261*** -0.224***

(0.089) (0.086) (0.095) (0.092)
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Table 8
Coefficients for Skewness Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only 3.936*** 1.732 3.501*** 1.108

(0.827 ) (1.641 ) (0.828) (1.534)
Fed Dummies 4.309*** 1.541 3.928*** 1.130

(1.012 ) (1.857) (0.966) (1.705)
Fed & Expected Infl 2.665 3.634 1.947 2.963

(2.788 ) (3.279) (2.538) (2.985)

Table 9
Coefficients for Kelly Skewness Regressions

All Observations
Specification 1977-2014 1985-2014
Inflation Only 2.499*** 0.320

(0.354) (0.454)
Fed Dummies 2.439*** 0.710*

(0.363) (0.423)
Fed & Expected Infl 1.658 0.942

(0.948) (0.595)

These results confirm what the correlations showed: the frequency of price change
rises with inflation (although for the mean frequency this is not so clear), the rela-
tionship between dispersion and inflation is negative and statistically significant in all
specifications and sample periods. The skewness correlation, however, is significantly
positive for the whole sample, but sot significantly different from zero when the early,
high-inflation period is excluded (and this applies for both measures of skewness).
This indicates (as we can also see from the scatter plots), that this relation is close
to flat for low inflation periods, but clearly positive for high inflation periods. The
fact that the skewness of price change is higher on average in high inflation periods
is important, because it also goes against the menu cost models’ predicitons at high
values of steady-state inflation, as we showed in Figure 6. It is also notable the that
the skewness coefficients change considerably when expected inflation is included as
a regressor. Since expected inflation is very highly correlated with realized inflation,
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the estimates are much less precise (as shown by the high standard errors), so this
is not surprising. However, this makes little difference to the comparisons with the
coefficients predicted by the models, which we turn to with Table 10.

Table 10
Coefficients on Inflation for Price Change Moment

Model Frequency IQR Skewness Kelly Skewness
Golosov & Lucas 0.139 -0.937 -17.7 -0.40

Multisector Menu Cost 0.143 -0.218 -5.39 -4.33
Midrigan 0.348 -0.896 -9.84 -6.53

Observation and Menu Costs .268 -0.071 -4.32
Calvo -0.003 0.040 2.93 1.00

Rational Inattention 0.001 0.007 3.03

The table presents the coefficients on inflation from regressions of the same type,
but run on simulated data from the different models. The first four models (menu
cost models) have negative coefficients for the inter-quartile range, although for all
but the multi-sector model, they are outside the 95% confidence intervals of the
coefficients that we estimate. However, the disagreement with the data is much
starker with the skewness coefficients. These are all very far outside the confidence
intervals that we estimate for the skewness coefficients under all specifications, and
the same is true for Kelly skewness6. We summarize our findings in Table 11 below,
which “updates” Table 1 by adding the signs of the correlations in the data to those
predicted by the models.

6The one exception is the coefficient for the Golosov and Lucas model, which is much smaller
in magnitude than in the other menu cost models, and is marginally accepted in the specification
that restricts the sample to the post-1984 period and uses only Fed chair controls. It appears
that the value of the Kelly Skewness is extremely sensitive to the unusual shape of the price change
distribution (bi-modal) in this model, leading to this weak relationship. The model’s Kelly Skewness
coefficient is still rejected in all the other specifications, however.
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Table 11: Correlation of Inflation and
Model Frequency Std. Deviation Skewness
Calvo 0 0 +

Golosov and Lucas + - -
Multi Sector Menu Cost + - -

Midrigan + - -
Observation and Menu Costs + 0 -

Rational Inattention + 0 +
Data + - +

For each model, the signs that match the data are colored in blue, while those
that do not are red. We do this to highlight the fact that in the broad class of state-
dependent price setting models that we consider, none match the data in all the
dimensions that we have presented. In particular, this highlights the usefulness of
the inflation-skewness correlation as a statistic to test the existing menu cost models.
As we have already argued, these models make a counterfactual prediction with
this statistic because of the state-dependence that underlies them. It is also worth
noting that the Calvo and rational inattention models have the same predictions, and
therefore disagree wtih the data in the same ways. In the next section, we consider
a menu cost model that weakens state-dependence and can be reconciled with the
empirical correlations that we find.

4 A Generalized Menu Cost Model

We present a model that fits into the general framework of Section 2: the demand
system and technology faced by the firm is the same, but we generalize the price
setting problem in the following way: the menu cost faced by each firm every period
is random. Formally, the period profit function of the firm takes on this form:

Πt(z) = pt(z)yt(z)−WtLt(z)− χt(z)WtI{pt(z) 6= pt−1(z)}, χt(z)
iid∼ G(χ)

The difference with the Golosov and Lucas model is that now the menu cost
can vary over time and across firms, the difference with the Midrigan model is that
the distribution of menu costs is generalized, and as opposed to the Nakamura and
Steinsson model, the menu cost for any given firm here varies over time. 7The

7This set-up can replicate the Golosov and Lucas model, if the menu cost distribution is degen-

37



assumption of random menu costs is similar to that made by Dotsey et al. (1999),
but we present it within the framework we have been using until now8.

4.1 Background on Random Menu Costs

We choose to modify the model in this way for several reasons. The first is that it
gives us a very general model that nests the menu cost models we have considered, as
described above. In addition, this approach has a close relation to another, even more
general approach already pursued by Caballero and Engel in a series of papers (1993,
2006a, 2006b). They propose thinking about price adjustment through the price
adjustment hazard function9, which is the probability of a price change occurring as
a function of the deviation of the current price from its optimal value (p∗):

H(x) = P (∆p| p∗ − p = x)

Any of the models we have considered will imply a price adjustment hazard
function, so the hazard function can be a helpful object to summarize the important
features of each model. This function also describes the degree of the selection effect,
as it indicates to what extent prices have a higher chance of adjusting the more mis-
aligned they are. Caballero and Engel (2006a) show that, within this framework,
aggregate price flexbility (or the inverse of monetary non-neutrality) can be expressed
as the sum of two components:

ˆ
H(x)f(x)dx+

ˆ
xH ′(x)f(x)dx

where f(x) is the probability density of the desired price gap, x. The first term
in this sum is the frequency of price change, and the second is what Caballero and

erate, and the Midrigan model, if the distribution is discrete with two support points (one being
zero, the other being positive). The Calvo model is replicated when the higher support point is
infinite. Since the Nakamura and Steinsson model inolves different firms facing different menu costs
that are fixed over time, it is not encompassed by our set-up.

8The key differences with Dotsey et al. (1999) are that their model does not include idiosyncratic
shocks, that it does include capital as an input to production, and that they did not have a way of
using information from price micro data to place restrictions on the menu cost distribution, which
is what the present exercise is about.

9It must be noted that this is distinct from the hazard function of price change estimated by
Nakamura and Steinsson (2008) and Klenow and Kryvstov (2008), which is the function λ(t)
that gives the probability that a price will change after t periods, given that it has already stayed
constant for t periods. This function gets at timing of price changes, and at whether prices become
more likely to change the longer they have stayed constant. While this can also help to distinguish
between models, we do not estimate the timing hazard function in this paper.
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Engel refer to the extensive margin, which incorporates the selection effect. To
illustrate how this works, the hazard function corresponding to the Calvo model is
a constant (the average frequency of price change), so that the first term is equal to
that constant, and the second is zero. This shows that in general, and as long as the
hazard function is increasing in the absolute value of the price gap (which is true
for all models considered), the Calvo model gives a lower bound on the degree of
flexibility. In our random menu cost model, a particular menu cost distribution will
imply a particular hazard function, and will therefore determine aggregate flexibility
(and monetary non-neutrality) as shown by the expression above. In this way, there
is a very tight relation between these approaches10.

A more structural approach to price stickiness that is also related to ours is Wood-
ford (2009)’s model of rational inattention. He shows that by varying the cost of
processing information, price setting under rational inattention in the style of Sims
(2003) can also nest, as extreme cases, the single menu cost model (free informa-
tion) and the Calvo model (infinitely costly information), as well as the spectrum
in between, which he also describes with the adjustment hazard function implied by
different information costs. In addition, there will also be a mapping between the
value for the cost of information in that framework, and a specific distribution of
menu costs in ours. While we do not derive this mapping, we do believe that the
rational inattention framework (or another type of informational constraint) could
provide a micro-foundation for the distribution of menu costs that we assume to be
general at first, and then adjust to allow the model to fit the empirical facts that we
have presented11.

10It would naturally also be interesting to directly estimate this hazard function. In this paper
we continue to work in the menu cost framework to maintain the structure of a General Equilibrium
model and obtain a quantitative response to the question of monetary non-neutrality. However,
Caballero and Engel (2006b) attempt to do this, although the price change moments that they
had access to were limited in the informational value they provided for this. By the same logic we
have put forth in this paper, the higher moment price change correlations will be very informative
to estimate the hazard function, and we do this in a separate paper (Luo and Villar, 2015).

11As Woodford (2009) also points out, the direct empirical evidence on the actual costs of
price adjustement put forth by Zbaracki et al. (2004) indicates that the most important part of
those costs are related to the process of gathering the necessary information for a price review.
In addition, Anderson and Simester (2010) give evidence on how price changes can antagonize
consumers, which introduces costs to changing prices. To the extent that the menu costs in the
menu cost framework represent these costs, we believe that it is plausible that the menu costs are
random to some extent, and vary across firms and time. This lends plausibility to our random
menu costs assumption, although we leave the explicity modelling of the informational constraints
or consumer considerations that underly it to future research.
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4.2 The Distribution of Menu Costs

Introducing random menu costs allows us to determine the extent of state-dependence
present in the model, or to what extent firms choose when to change their prices. One
extreme case of this is of course perfect price flexiblity, or firms being free to change
their prices every period without facing any kind of cost for doing so (although this is
inconsistent with the fact that most prices do not change on any given month). But
right after this comes a menu cost environment such as the one in Golosov and Lucas:
firms are still able to choose when to change their prices, but are subject to a fixed
cost (that is small in typical calibrations, to match the frequency of price change in
the data). Adding randomness to the menu cost makes the price change decision
more exogenous to the firm, as an additional dimension of the problem (how much
changing the price will cost) is now outside the firm’s control (with the extreme being
the Calvo model, where the opportunity to change price is completely exogenous).
The Midrigan model (both inMidrigan (2011), and the simplification of it that we
present) goes in this direction, and as a result the degree of monetary non-neutrality
in that model is much higher. We interpret our results so far as indicating that a
model would need even more exogeneity (but less than the Calvo model) to match the
empirical facts that we have presented. Therefore, we parametrize the distribution
of menu costs in a way that enables us to do this.

There are two important features that the menu cost distribution will need in
order to achieve this: a positive probability of the menu cost being zero (of a free
price change), which eliminates the “Ss” band or inaction region in the price setting
problem, as some firms, facing a free price change, will choose to change their prices
even if it is by a small amount. However, the Midrigran model already includes this,
and as we have shown it also predicts a counterfactual inflation-skewness correlation.
The other feature is that there must also be a positive and considerable probability
that the menu cost will be very high, so high that firms will not choose to change their
price when faced with these menu costs. This is important, because in the existing
models, the skewness of price changes falls with inflation because a positive aggregate
shock induces more firms that face a positive menu cost to pay it, effectively pushing
them over a threshold, leading to an important shift in the shape of the distribution.
Having a positive probability of very high menu costs means that fewer firms will
be pushed over this threshold, weakening this effect. It is also helpful to note that
the Calvo model contains both of these features in the extreme, as it gives a positive
probability of a free price change, and in all other cases the menu cost is infinite.
Because of this, we say that the menu cost distribution in our generalized model will
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incorporate a strong “Calvo feature”, without going all the way to the Calvo extreme.
In order to achieve this, we present a relatively flexible distribution for menu costs.

We assume that menu costs are iid across time and firms, so that every period each
firm draws a menu cost χ from a mixed distribution. First, with a certain probability,
the menu cost is zero, and otherwise it is drawn from a continuous distribution:

χ =

0, P rob = pz

χ̃, P rob = 1− pz
, where F (k) = P (χ̃ ≤ k) = 1− e−λkα

In our version of the Midrigan model, the menu cost was either zero or a fixed
positive value. The difference here is that instead of the positive value being fixed, it
is drawn from a non-degenerate distribution. This distribution is a transformation of
the exponential distribution (it is the same when α = 1), and shares the important
feature that the random variable is always positive. The difference is that α governs
the curvature of the distribution function, which roughly corresponds to the fatness
of the tails. Figure 16 shows how the shape of the cumulative distribution function
changes with α:

@

0 0.5 1 1.5 2 2.5 3 3.5 4

F
(@

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 17: Shape of Menu Cost CDF for Different ,

, =0.25
, =0.5
, =1
, =5

For our purposes, what is important is that for low values of α, the probability
of very low values is relatively high, but the probability of very high values is also
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quite high. When α is high, these extreme probabilities are low, and as α rises, the
density concentrates on one value, approximating the case of a unique menu cost.

4.3 Calibration and Results

Our set-up has introduced new parameters, relative to the models we have been
considering: the inverse of the average menu cost (λ), and the curvature of the menu
cost distribution (α). The other parameters important for the firm’s price setting
problem are the variance of the idiosyncratic shocks (σ2

ε ), the arrival probability of
the shocks (pε), and the probability of a free price change (pz) which was used in the
Midrigan model. We set these parameters so that the model can match the empirical
facts that we have discussed so far, which we divide into two categories:

1. From existing models: although these have not been the focus of our discussion,
all the existing models match the average monthly frequency of price change
and the average size of price change. Our model therefore matches the median
of these statistics measured in our data. In addition, our empirical work has
confirmed that, as previous studies had shown, the correlation between inflation
and the frequency of price change is positive, so our model also matches this
fact.

2. New moments: like the existing menu cost models, and consistent with the
data, our model will imply a strongly negative correlation between inflation and
the dispersion of price changes. The novelty will be that the implied correlation
between inflation and the skewness of price changes will be non-negative, as in
the data.

Table 12 presents the parameter values that we choose to match these moments, and
Table 13 shows the moments attained by the model, compared to their empirical
values.

Table 12
Parameter Description Value

λ Inv. average menu cost 0.1925
α Fatness of tails of MC 0.27
pz P(zero MC) 0.056
pε P(idio. shock) 0.345
σε Size of idio. shocks 0.101
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Table 13
Moment Model Data

Avg. Frequency 11.3% 11.3%
Avg. Size 8.0% 8.0%

Corr(IQR,π) -0.59 -0.70
Corr(Skew,π) 0.05 0.39
Corr(Freq,π) 0.58 0.63

The first two moments are matched almost exactly. For the empirical value of
the correlations, we present the results for the quarterly correlations involving the
raw data, including all time periods, and excluding suspicious small price changes
(for dispersion and skewness), and the weighted median for the frequency. The
model matches the dispersion and frequency correlations quite closely. However, the
skewness correlation in the model is close to zero, while it is clearly positive in the
data for the whole sample. Before explaining this in more detail, we illustrate these
correlations with scatter plots for the generalized model under the calibration above
in Figures 17-19.
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While the skewness correlation in this model is lower than in the data, for the
range of inflation that occurs in the simulations (0-6%)12, the correlation also ap-

12Inflation is less volatile and moves within a narrower range in our generalized model than in
the other menu cost models, even though the parameters of the nominal aggregate demand process
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pears to be close to zero in the data. We carry out the same “long-run” analysis as in
Figure 5 above: solving the model for different values of trend inflation. We find that
for higher steady-state inflation, the average level of skewness in the price change dis-
tribution rises, and the correlation between period-by-period price change skewness
and inflation (the same correlations we have been focusing on so far) also rises. This
result makes our model even more consistent with the data, as it shows that when
steady-state inflation is higher (as it surely was in the early, high-inflation part of
our sample), we should expect to see the skewness rising with inflation. In addition,
this also makes our model stand out even more from the existing ones, as the other
menu cost models feature a declining average price change skewness as steady-state
inflation rises (and a period-by-period skewness correlation that is always negative).
Figure 20 below shows this clearly by plotting the steady-state skewness correlations
for the Midrigan model and our heteroegenous menu cost model separately.

7

0 0.002 0.004 0.006 0.008 0.01

A
vg

 P
ric

e 
C

ha
ng

e 
S

ke
w

ne
ss

-1

-0.8

-0.6

-0.4

-0.2

0
Midrigan Model

7

0 0.002 0.004 0.006 0.008 0.01

A
vg

 P
ric

e 
C

ha
ng

e 
S

ke
w

ne
ss

-0.1

0

0.1

0.2

0.3

0.4
Generalized MC Model

Figure 21: Steady-State Skewness Correlation

This pattern highlights how the steady-state (or trend) inflation plays an im-
portant role behind our model’s non-negative skewness correlation. Indeed, posi-
tive trend inflation leads firms to expect positive future inflation when considering
whether to re-set their prices. This will lead them to be less likely to cut their prices,
even when facing an idiosyncratic (or aggregate) shock that would reduce their cur-
rent desired price. This asymmetry in firms’ willingness to cut prices also means
that the left tail of the price change distribution will be less responsive to aggregate

are the same. This is a direct result of the differences in monetary non-neutrality in the models, as
higher non-neutrality means that the same nominal shocks have a greater effect on real consumption
(and induce greater real variation), leading to less varation in inflation. This is shown below.

45



shocks, weakening the mechanism that led to the negative skewness correlation in
the existing models.

What these results and figures make clear is that the generalized menu cost model
that we presented, in making menu costs random in a way that weakens the selection
effect, matches the important empirical facts that have been the focus of previous
work on sticky prices as well as the existing models, and overturns the counterfactual
prediction of these models that we have emphasized. We now show what this means
for the degree of monetary non-neutrality.

4.4 Monetary Non-Neutrality

Monetary non-neutrality in these models is defined as the variation in real consump-
tion induced by the nominal aggregate demand shocks, which are the only aggregate
shocks, and we compare this statistic for the Calvo model, the Golosov and Lucas
and Midrigan menu cost models, and our generalized menu cost model. As we have
explained, making the menu cost distribution random in the way that we have pro-
posed weakens the selection effect that is at work in menu cost models, so it is to be
expected that this model would imply a greater degree of monetary non-neutrality.
Table 14 below provides a quantitative illustration of this.

Table 14: Monetary Non-Neutrality
Model Var(Ct) ∗ 104

Golosov and Lucas 0.05778
Midrigan 0.17588

Generalized Menu Cost 0.33617
Calvo 0.47696

As Golosov and Lucas (2007) had famously shown, their model feauteres a trivial
amount of monetary non-neutrality compared to the Calvo model. Between the menu
cost models, the major difference is between the baseline (Golosov and Lucas) and
the others. Allowing for small price changes, as the Midrigan model does, leads
to a very large increase in monetary non-neutrality, and this was emphasized by
Midrigan (2011). However, our generalized model goes further by giving firms a
large probability of effectively not being able to change their price, and yields an
even higher level of non-neutrality. The Calvo model still has a higher degree of
monetary non-neutrality, but our model gets significantly closer than the others. To
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further illustrate the differences between the models, in Figure 21 we plot the impulse
response of real aggregate consumption to a one percentage point increase in nominal
aggregate demand in the same four models:
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Not only is the effect on real activity greater on impact in our random menu cost
model, but the effect is also considerably more persistent than in the existing menu
cost models. It is clear that while in the Golosov and Lucas model the real effect of
a nominal shock is small and transient, it is not so in our model, which has used the
inflation-skewness correlation to evaluate the strength of the selection effect. Finally,
the Calvo model gives a closer approximation to monetary non-neutrality than the
other menu cost models.

5 Conclusion

The literature on sticky prices has made extensive use of price micro data to discipline
models of price setting, and in this way the models have conformed more and more
to important aspects of the dynamics of price changes. This line of work has notably
enabled the study of monetary non-neutrality to be more grounded in data. However,
an important limitation of the work done so far is that it has mostly used data for
low inflation environments. Since the models in question are designed to study how
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prices respond to aggregate shocks, it is helpful to be able to observe the behavior
of price changes under large aggregate shocks and high inflation.

Our paper contributes to this by using price data from the U.S. going back to
the late 1970’s to compare how the price change distribution changes with inflation,
to the predictions of a wide range of sticky price models. Our main finding is that
the menu cost models that have been most used in the literature fail to match the
positive relationship between inflation and the skewness of price changes in the data,
because they uniformly predict a sharp negative relationship. In addtion, we argue
that this relationship, although not obvious at first site, follows very intuitively from
the selection effect that is central to menu cost models. We also show how a model
with random menu costs can overcome this problem when the distribution of menu
costs features a significant probability of very high and very low menu costs, making
it ressemble a Calvo model and weakening the selection effect. Finally, this model
predicst a degree of monetary non-neutrality that is considerably higher than what
is predicted by the Golosov and Lucas model, and higher still than the Midrigan
model.

The distinction between menu cost and Calvo models, or between state- and time-
dependent pricing models has taken an important place in this literature. Much
work has been done to show how these two ways of modelling pricing stickiness
yield such different implications on monetary non-neutrality, and to determine which
models are best at matching empirical facts. Our paper contributes to this line
of work by introducting statistics not previously considered that are very useful
to discriminate between the different models. In addition, we follow Woodford
(2009) in presenting the distinction between time- and state-dependent models as
a continuum, or spectrum. Woodford (2009) shows how different values for the
firm’s cost of processing information leads to a different point on this spectrum. In
contrast, our approach is agnostic as to what ultimately underlies the randomness of
menu costs that allows our model to span the time versus state dependent spectrum.
Instead, we determine what point on the spectrum is most consistent with the data.
Future research could combine these two approaches to gain a better understanding
into the nature and importance of the informational constraints that underly price
rigidity. For now, along with Nakamura and Steinsson (2010) and Midrigan (2011),
we show that the assumption made by Golosov and Lucas (2007) of firms facing a
single, constant menu cost is starkly at odds with many aspects of the price data,
and that monetary policy can be expected to have substantial and persistent effects
on real economic activity.
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Appendix

A Data Set and Statistics

As mentioned in the main text, the data set we use for our empirical analysis is the
micro data underlying the U.S. CPI for the period 1977-2014, with the previously
unavailable period being 1977-1986. One of us (Daniel Villar) worked intensively in
the process of re-constructing this data set from the micro film made available by
the Bureau of Labor Statistics. This process is described in detail in Nakamura et
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al. (2015), and it leaves us with a large data set that tracks the prices of individual,
narrowly-defined products in a monthly or bi-monthly frequency. We then combine
this data set with the existing CPI data (1987 onwards), and that forms the data
set for our analysis. Figure A1 below shows the size of our sample month by month.
We plot both the number of non-missing available prices each month, as well as the
number of price change observations available. The distinction is important, because
we are always interested in price change statistics. The number of price observations
is greater than the number of price change observations because for the price change
to be observed in a particular month, we need both the current month’s price, and
last month’s price. So when a product has a missing price for some month, the price
change will be missing for that month and the following month.
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Figure A1: Number of Observations by Month

The BLS makes a considerable effort to ensure that the prices of individual prod-
ucts are tracked, so that the price changes cannot be attributable to changes in any
product characteristics. This conforms with our goals very well, as we are also only
interested in price changes of identical products. An individual product could be,
for example, a two quart bottle of Diet Coke in a particular supermarket location in
New York City, or a specific futon model in a particular furniture store in Los Ange-
les. The BLS also identifies whenever a product substitution occurs, or when a new
“version” of a particular product is introduced. Since a change of version indidcates
that some characteristic of the product has changed, we treat a new version as an
entirely new product, and only compute price changes by comparing price changes
within identical versions. We compute price changes as the difference of the log price,
or:

∆pit = log(
Pit
Pit−1

)
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As discussed in Section 3, we exclude observations for which there is any in-
dication that the price was not actually observed but imputed, and for which the
product was on sale. There are therefore missing observations in the price spells that
we use. To compute the price change for any given month, we compare the price for
that month to the previous month’s price, when it is available. When the previous
month’s price is not available, we compare the current price to the price from two
months before. Without this, we would have to drop a significant amount of data, as
many prices are only sampled every two months. Since price changes are relatively
infrequent, we believe that it is overwhelmingly likely that if a price changed between
any two months, it only changed once, which means that we are observing the true
price change, whether it occurred in the current or previous month. This is then not
extremely important, as for much of our analysis we combine the price changes by
quarter or year.

With the price change observations, we then form distributions of these price
changes, keeping only the non-zero changes, for each period (either month, quarter,
or year). For the dipserson and skewness statistics, we first separate observations
into categories that we label major groups. There are thirteen of these, and table A1
below provides a list, along with the share of expenditure weight that they represent.

Table A1
Major Group Weight (%)

Processed Food 8.2
Unprocessed Food 5.9
House Furnishings 5.0

Apparel 6.5
Transportation 8.3
Medical Care 1.7
Recreation 3.6

Edu. Supplies 0.5
Miscellaneous 3.2

Services 38.5
Utilities 5.3
Gasoline 5.1

Travel Services 5.5

Services represent the lion’s share of the weight. We then compute the dispersion
and skewness statistics from each major group, and for each time period we then take
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an expenditure-weighted average of the statistics, which represents the value of the
statistics that we will use. If, for example, Skewkt is the skewness of the distribution
of price changes in major group k and period t, then the value of skewness that we
use in our analysis, Skewt, is given by:

Skewt =
∑
k

wkSkewkt

We follow the same method for the dispersion, and thus obtain time series for the
skewness and dispersion of price changes. This also applies for the frequency, but
there we calculate the frequency first by ELI, which is a much narrower category.
That is because the frequency is merely an average of the dummy variable indicating
whether a price has changed or not, and it is calculated based on the number of price
change observations (zero or non-zero), while the other moments are only calculated
based on the non-zero changes (which gives fewer observations). This means that the
frequency can be estimated with reasonable precision by ELI. Finally, the expenditure
weights that we use are those from the 1998 revision of the CPI, which are the latest
ones available. Different weights were used for 1977-1987 and 1988-1997, but we keep
the weights constant throughout the sample so that changes in the weights do not
induce changes in the statistics that we estimate.

B Computational Procedure and Calibration

We solve the sticky price models in this paper by value function iteration, following
the method described in Nakamura and Steinsson (2010). The main difficulty with
this method applied to this type of problem is that an important variable entering the
firm’s profit function is the aggregate price level. Since its future evolution depends
on each firm’s price, every firm’s current state is, in principle, a state variable for all
firms, making the problem intractable. To get around this, we follow the example of
Krusell and Smith (1998) and approximate the law of motion of the price level with
a finite number of moments, as in Nakamura and Steinsson (2010). In particular,
we impose that firms perceive future inflation to depend only on future nominal
aggregate demand (St, which is exogenous), and the current price level:

πt ≡ log(
Pt
Pt−1

) = Γ(
St
Pt−1

)

Under this assumption, the state space can be reduced to three dimensions: the
firm’s idiosyncratic productivity (exogenous), the firm’s relative price (choice vari-
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able), and real aggregate demand (Ct, which determines the real wage in equilibrium).
The latter is endogenously determined, but the probability distribution of its future
value is known fully with the law of motion of nominal aggregate demand, and the
assumed law of motion of inflation.

The firm’s problem can therefore be written recursively with the following Bell-
man equation:

V (At(z),
pt−1(z)

Pt
,
St
Pt

) = max
pt(z)

{
ΠR
t (z) + Et

[
DR
t,t+1V (At+1(z),

pt(z)

Pt+1

,
St+1

Pt+1

)

]}
, where V (·) is firm z’s value function, ΠR

t (z)13 is firm z’s real profits at time t, and
DR
t,t+1 is the real stochastic discount factor between time t and t+1. Our procedure

to solve the model then closely follows Nakamura and Steinsson (2010): First, we
discretize the state variables and propose a guess for the function Γ( St

Pt−1
) on the

grid. Then, we solve for the firm’s policy function, F14, by value function iteration,
using the proposed Γ(·) function, the stochastic processes for the exogenous variables
(applied using the Tauchen (1986) method), and the menu cost structure of the firm’s
problem. We then check whether F and Γ are consistent, by computing the price
level (and inflation) implied by F for each value on the St

Pt−1
grid and comparing it

to the value given by Γ. If they are consistent, we stop and use F to simulate the
models. If they are not consistent, we update Γ and go back to the value function
iteration step and continue. To determine whether they are consistent, we compare
the inflation values, grid point by grid point, and consider that they are consistent
when the difference is smaller the difference in values between grid points.

The method described above applies to all the menu cost models (including the
Calvo model). However, the imperfect information models are markedly different
in several ways, and therefore require different methods. We solve these models
using the same methods and parameter values used in the original papers (Alvarez
et al. (2011b) for the observation costs model; Woodford (2009) for the rational
inattention model), and use the policy functions to simulate the models.

As mentioned in Section 2, the existing menu cost models and the Calvo model are
calibrated to match the median frequency of price change and the median average
size of price change in the data. The way we compute these moments is by first

13It can be shown that the profit function under CES preferences and linear production using
only labor can be written as ΠR(A, p̃, C) = Cp̃−θ[p̃− ωC

A ]
14Because the value of the menu cost in our general model is stochastic, the policy function is

also a function of the menu cost. However, because we assume that the menu costs are iid over
time, they are not a state variable.
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calculating the frequency of monthly price changes and the mean absolute value of
price change by ELI-year. We then compute the median across the ELI frequencies
for each year (to obtain an annual series for the median frequency) and to then take
the mean across years. The average frequency that we obtain is 11.3%, and the
average size of price change is 8.0%. For the Midrigan model (as well as our random
menu cost model), we also target the fraction of price changes that are small (less
than 1% in absolute value). We compute this as with the frequency and average size:
evaluate fractions by ELI-year, and take weighted medians across ELI’s. WE find
a value of 12%. Table A2 below shows the model-implied moments for the Golosov
and Lucas, Midrigan, and Calvo models, as well as our random menu cost model,
and compares them to their empirical values:

Table A2

Model Average Frequency (%) Average Size (%) Fraction Small (%)
Golosov and Lucas 11.1 8.0 0

Midrigan 11.0 8.0 12.4
Calvo 11.0 7.9 17.3

Random MC 11.3 8.0 12.2
Data 11.3 8.0 12.0

All the models match the frequency and size moments almost exactly, and the
Midrigan and random menu cost models match the fraction of small changes very
closely. The Calvo and Golosov and Lucas models over- and undershoot the empirical
value, respectively, as they do not target it. Table A3 below shows the parameter
values that we choose for these models.
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Table A3

Parameter Golosov and Lucas Value
χ Menu cost (as share of steady state revenue) 0.019
σε Std. dev. of idiosyncratic tech. shocks 0.042

Midrigan
χHigh Menu cost (when positive) 0.034
σε Std. dev. of idiosyncratic tech. shocks 0.076
pz Probability of free price change 0.037
pε Probability of receiving idio. shock 0.153

Calvo
α Probability of price change 0.111
σε Std. dev. of idiosyncratic tech. shocks 0.197

For the multi-sector model, we use the same parameter values as in Nakamura
and Steinsson (2010), which make the model match the average frequency and size
of price change for each of 14 sectors.

C Additional Empirical Results

In Section 2, we presented results on the empirical result between inflation and
various price change moments, using both scatter plots and regressions. For the
scatter plots, the measure of inflation that we used was Core PCE inflation, which
excludes food and energy prices that tend to be quite volatile (and that could be
influenced by sectoral shocks that we do not consider in the models). In addition,
since the PCE index is chained, it tends to yield a lower value for inflation than
the CPI. However, for the regressions, we used CPI inflation because we include
expected inflation as a control, and the survey of inflation expectations asks about
expecatgions of CPI inflation specifically. We therefore used CPI inflation to make
the two variables more comparable. In Figure A2 below, we plot the twelve month
log change for both indexes. They both co-move very strongly, although the peak is
much higher for the CPI.
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Figure A2: Inflation

In this section we show that our results do not depend on which inflation measure
we use, so we present scatter plots with CPI inflation, and regression results with
Core PCE inflation as the regressor. The only difference that this makes is that in
the regressions, the absolute value of the coefficients on inflation are slightly larger,
because core PCE inflation does not attain as high a value, so the estimated slope of
the moments on inflation is smaller. We also present results using series filtered by a
moving average smoother and seasonally adjusted by removing quarterly dummies.
Again, the the same results hold, but they come out a bit more clearly. For all of
these results, we focus on using the quarterly inflation and moment series, although
the same results would hold with the monthly and annual series.

Figures A3-A6 below present scatter plots of the smoothed moment and inflation
series.
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Figure A3: Frequency of Price Chane & Inflation Smoothed, Quarterly
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Figure A4: IQR & Inflation, Quarterly Smoothed

-.4
-.2

0
.2

.4
.6

P
ric

e 
C

ha
ng

e 
S

ke
w

ne
ss

, w
ei

gh
te

d 
m

ea
n

-.02 0 .02 .04 .06
Year-on-year inflation, Quarterly Average

Pre 1984 Post 1984

All Observations; Corr = 0.474

-.4
-.2

0
.2

.4
.6

P
ric

e 
C

ha
ng

e 
S

ke
w

ne
ss

, w
ei

gh
te

d 
m

ea
n

-.02 0 .02 .04 .06
Year-on-year inflation, Quarterly Average

Pre 1984 Post 1984

EJRS; Corr = 0.452

Figure A5: Skewness & Inflation Smoothed, Quarterly
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Figure A6: Kelly Skewness & Inflation Smoothed, Quarterly; Corr = 0.734

Figures A7-A10 are scatter plots using CPI inflation.
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Figure A7: Frequency of Price Change & CPI Inflation, Quarterly
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Figure A8: IQR & CPI Inflation, Quarterly
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Figure A9: Skewness & CPI Inflation, Quarterly
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Figure A10: Kelly Skewness & CPI Inflation, Quarterly; Corr = 0.674

The patterns in these scatter plots are the same as in the ones presented in Section
3. We further confirm these results with the regression tables below.

Table A4 (Core Inflation as regressor)
Coefficients for Frequency Regressions

Weighted Median Weighted Mean
Specification 1977-2014 1985-2014 1977-2014 1985-2014
All 0.906*** 1.362*** -0.046 -0.231

(0.271) (0.313) (0.244) (0.305)
Fed Dummies 1.248*** 1.503*** 0.978*** 0.281**

(0.220) (0.214) (0.223) (0.258)
Inflation Only 0.877*** 1.083*** 0.374** -0.580**

(0.122) (0.253) (0.173) (0.296)
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Table A5 (Smoothed and Seas. Adj. Series)
Coefficients for Frequency Regressions

Weighted Median Weighted Mean
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Fed & Expected Infl 0.711*** 0.796*** 0.462 0.326*

(0.125) (0.210) (0.138) (0.189)
Fed Dummies 0.778 *** 0.889*** 0.723*** 0.284*

(0.075) (0.207) (0.109) (0.163)
Inflation Only 0.716*** 0.824*** 0.437*** -0.178

(0.062) (0.223) (0.105 ) (0.240)

Table A6 (Core Inflation as regressor)
Coefficients for IQR Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only -0.412*** -0.676*** -0.461*** -0.803***

(0.060) (0.081) (0.068) (-0.086)
Fed Dummies -0.354*** -0.686*** -0.401*** -0.824***

(0.082) (0.095) (0.095) (0.099)
Fed & Expected Infl -0.366*** -0.485** -0.429*** -0.594***

(0.127) (0.117) (0.142) (0.128)

Table A7 (Smoothed and Seas. Adj. Series)
Coefficients for IQR Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only -0.301*** -0.493*** -0.330*** -0.561***

(0.043) (0.073) (0.047) (0.086)
Fed Dummies -0.241*** -0.495*** -0.249*** -0.556***

(0.048) (0.084) (0.054) (0.097)
Fed & Expected Infl -0.164** -0.377** -0.178** -0.431 ***

(0.069) (0.073) (0.075) (0.083)
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Table A8 (Core Inflation as regressor)
Coefficients for Skewness Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only 4.537*** 2.131 4.315*** 1.658

(1.306) (2.062) (1.285) (1.895)
Fed Dummies 7.546*** 3.716 6.997*** 3.396

(1.686) (2.270) (1.572) (2.087)
Fed & Expected Infl 4.683 6.224* 4.039* 5.991

(2.870) (3.316) (2.657) (3.136)

Table A9 (Smoothed and Seas. Adj. Series)
Coefficients for Skewness Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only 3.656*** 1.208 3.263*** 0.699

(0.776) (1.222) (0.776) (1.148)
Fed Dummies 3.683*** 0.925 3.404*** 0.688

(0.689) (1.349) (0.680) (1.245)
Fed & Expected Infl 0.969 0.453 0.785 0.152

(1.206) (1.504) (1.182) (1.367)

Table A10 (Core Inflation as regressor)
Coefficients for Kelly Skewness Regressions

All Observations
Specification 1977-2014 1985-2014
Inflation Only 2.973*** -0.603

(0.537) (0.512)
Fed Dummies 4.035*** 0.504

(0.713) (0.606)
Fed & Expected Infl 2.066** 0.136*

(1.047) (0.721)
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Table A11 (Smoothed and Seas. Adj. Series)
Coefficients for Kelly Skewness Regressions

All Observations
Specification 1977-2014 1985-2014
Inflation Only 2.465*** -0.088

(0.342) (0.394)
Fed Dummies 2.479*** 0.282

(0.329) (0.435)
Fed & Expected Infl 1.636** 0.204

(0.731) (-0.430)

What these tables show is that while the size of the coefficients varies somewhat
across specifications, the results presented in section 2 still hold: the frequency of
price change rises with inflation, the dispersion falls, and the skewness does not fall
with inflation (the relationship is positive but not significant in the low inflation
period, and positive and mostly significant in the whole sample).
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