
Diagnosing Slow Web Page Access at the Client Side

Tobias Flach, Ethan Katz-Bassett, and Ramesh Govindan

Department of Computer Science

University of Southern California

ABSTRACT
Transient performance anomalies when accessing websites
can be hard to replicate and make it difficult to detect and
remedy their root causes. We propose a tool which pas-
sively monitors browser behavior and network traffic, while
actively probing the network when detecting performance
anomalies, and determining their root causes.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; C.4
[Performance of Systems]: Measurement techniques, Per-
formance attributes

Keywords
Internet Measurements; Web Latency; Performance
Anomalies

1. INTRODUCTION
Detecting and diagnosing performance problems via mea-

surements from a client perspective has been studied for a
long time and a variety of tools has been proposed to help ex-
plain why some users observe slow web access. For example,
Fathom [2] provides an API accessible by web page providers
to take measurements when loading a page, whereas Net-
alyzr [4] analyses the network performance in general and
is particularly useful in situations where a client observes
persistent connectivity issues. Web pages have become in-
creasingly complex and often require fetching content from
many sources [1]. This makes it more challenging to estab-
lish which resource(s) are responsible for the degraded per-
formance. In addition, users often observe bad performance
sporadically. A web page might normally display after a
very short delay, and only occasionally takes several sec-
onds before the rendering process starts. A possible reason
for this could be a costly recovery from a TCP tail packet
drop when fetching a resource which has many dependents.
We also observed cases where a web site request is pending

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT Student Workshop’13, December 9, 2013, Santa Barbara, CA, USA.
Copyright 2013 ACM 978-1-4503-2575-2/13/12 ...$15.00.
http://dx.doi.org/10.1145/2537148.2537160.

indefinitely, yet fetching the content finishes quickly after
refreshing the page. Thus, we propose a tool which:

• passively monitors browser behavior as well as network
traffic,

• actively probes the network when an anomaly has been
detected, and

• classifies the anomaly and determines root causes based
on the collected data and feature-cause mappings.

The user benefits from such a tool by getting educated about
the factors causing slow web page access. In addition, even
though events like this might be rare for a single user, the ag-
gregate frequency can be large enough for a content provider
to have an incentive to address the problem. Consequently,
a better understanding of the root causes is useful to the
content providers as well.

2. COMPARISON TO OTHER WORK
It is challenging to reproduce transient performance anoma-

lies, yet we want to understand their underlying causes in
order to prevent them in the future. Due to their tran-
sient nature, existing measurement tools are insufficient for
this task. Client-side frameworks like Fathom or Netalyzr,
either provide a general performance overview, i.e. they
only inspect the“average”performance thus ignoring anoma-
lies which only show up in a small fraction of data points,
or require a significant amount of overhead to guarantee
that anomalies can be detected (which might be associated
with any of the fetched resources). Other tools like Mi-
rage [6], a headless web client to analyze page load times,
or BISmark [5], a platform instrumenting home routers for
measurements, are hard to deploy and focus on detecting
widespread performance anomalies.

Conversely, server-side mechanisms have only partial vis-
ibility into the application flow at the client since they only
observe traffic to and from the client passing through the
measurement node. As a result some performance anoma-
lies remain hidden. For example, a content provider can-
not observe unsuccessful connection attempts made by the
client, or recognize interference caused by other applications
running on the client machine.

Our solution complements existing frameworks and is tai-
lored for the detection and analysis of transient performance
anomalies.

3. HANDLING ANOMALIES
In Figure 1 we show the architecture of our tool, which

consists of two components: a data collection and a data

59

Requested
Resources

Requested
Resources

Active Tab

Passive
Windows

Passive
Windows

Passive
Tabs

Requested
Resources

Requested
Resources

Requested
Resources

TCP
Connections

Requested
Resources

Requested
Resources
TCP packets

Aggregate
Statistics

Browser

Aggregate
Statistics

(for other traffic)

Data Collection

Anomaly
Rule Set

Anomaly Detection
and Classification

Data Analysis

Pings +
Traceroutes

(limited)

Figure 1: Tool Architecture

analysis module. Both components are managed by a browser
extension, which has also access to diagnostic tools like tcp-

dump, ping, or traceroute.

Data Collection. Our browser extension continuously
collects passive measurements, including metadata for each
tab (like the resources requested and rendered in each tab)
as well as temporarily buffered records of raw TCP con-
nections and packets, accessible by running tcpdump in the
background. When the analysis is triggered, either explicitly
by the user or through predefined timer events (e.g. long re-
quest/response delay), we preprocess all available data. For
the active tab, i.e. the tab where we expect to observe a per-
formance anomaly, we keep all recorded data and associate
resources requested by the browser with the TCP connec-
tions and packets responsible for fetching the data. In addi-
tion, we determine the hosts from which the resources were
requested and issue traceroutes and pings to them. These
data points are particularly useful to detect routing anoma-
lies. Since we only issue the active measurements when the
analysis stage is triggered, we avoid the unnecessary over-
head of executing them during normal operation when net-
work performance is satisfactory. We can further reduce
the number of active probes by focusing on resources criti-
cal for the page load process. As such we can incorporate
a selector avoiding data collection for resources like adver-
tisements, popups, small icons, etc. For all other (passive)
tabs and applications we compress the available data into
aggregate statistics, including metrics like throughput and
packet loss rates. This enables the analysis module to de-
tect performance anomalies caused by interference between
different browser tabs and/or applications.

Data Analysis. First, we annotate TCP connections and
packets by inspecting the observed packet traces and de-
tecting features like fast retransmits, timeouts, reordering,
depleted receiver window (rwnd). In a clustering step, we
group traces with common properties together to help the
detection of entities affected by a performance anomaly. For
example, connections to different hosts can exhibit similar
performance characteristics if the problem is located within
the path segment shared by the routes to these hosts. In this
case we can detect shared subpaths by inspecting traceroutes
collected during the active measurement phase right before
the analysis is triggered. Next, we use a predefined set of
rules to map performance characteristics including the ag-
gregated statistics and annotations to anomaly types. Ex-
ample mappings are shown in Table 1. We partially de-
rived this initial set from a manual inspection of anomaly

Feature(s) Anomaly type
High RTT AND filled rwnd BDP limitation
High packet loss Network congestion
Tail packet loss TCP limitation
High packet reordering Packet-based load balancing
HTTP request w/o response Backend error / reachability
Consecutive RTOs (HTTP GET) Backend error / reachability
Low TP on all connections Access bandwidth limitation
Low TP AND high TP on Unfair bandwidth allocation
other connections

Table 1: Examples for mapping performance features to
anomaly types (TP = throughput, BDP = bandwidth
delay product, RTO = retransmission timeout, RTT =
round trip time, TP = throughput)

indicators observed in an earlier study [3] and ground truth
about the underlying cause. Finally, we generate a report for
the user explaining the detected anomalies. This helps non-
experts to gain a better understanding of network dynamics
and their impact on performance. Expert users can use the
information to pinpoint performance issues and possibly de-
velop solutions to avoid them in the future. Optionally, the
user can export the report and the raw data (in anonymized
form), which can then be forwarded to the resource provider
similar to a bug report.

Extending the Rule Set. To continously improve the
analysis stage we aim to extend the rule set through a feed-
back loop. We achieve this through a component which lets
the user report data associated with unclassified anomalies
to a centralized cloud platform. In a semi-automatic way, we
then cluster the data collected from multiple users based on
common features and identify new mappings between fea-
tures and anomaly types.

4. CONCLUSION AND NEXT STEPS
We propose a tool to detect transient performance anoma-

lies at the client side and determine their root causes. It sup-
plements existing frameworks which primarily focus on per-
sistent anomaly detection, as well as active measurements
as the primary data source. We are currently working on an
implementation of our solution in the Chrome browser and
we believe that providing explanations for slow web page
accesses experienced by users is a sufficient incentive to gen-
erate a solid initial customer base for the tool. Finally we
note that we plan to investigate an extension of our frame-
work to support deployment on mobile devices as well.

60

5. REFERENCES
[1] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.

Understanding Website Complexity: Measurements,
Metrics, and Implications. In Proceedings of the
Internet Measurement Conference (IMC), 2011.

[2] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich,
M. Allman, N. Weaver, and V. Paxson. Fathom: a
Browser-based Network Measurement Platform. In
Proceedings of the Internet Measurement Conference
(IMC), 2012.

[3] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao,
E. Katz-Bassett, and R. Govindan. Reducing Web
Latency: the Virtue of Gentle Aggression. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
2013.

[4] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the Edge Network. In
Proceedings of the Internet Measurement Conference
(IMC), 2010.

[5] S. Sundaresan, W. De Donato, N. Feamster,
R. Teixeira, S. Crawford, and A. Pescapè. Broadband
Internet Performance: A View From the Gateway. In
ACM SIGCOMM Computer Communication Review,
2011.

[6] S. Sundaresan, N. Feamster, R. Teixeira, and
N. Magharei. Measuring and Mitigating Web
Performance Bottlenecks in Broadband Access
Networks. In Proceedings of the Internet Measurement
Conference (IMC), 2013.

61

