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ABSTRACT
We examine the current state of user network performance and
opportunities to improve it from the vantage point of Facebook,
a global content provider. Facebook serves over 2 billion users
distributed around the world using a network of PoPs and inter-
connections spread across 6 continents. In this paper, we execute a
large-scale, 10-day measurement study of metrics at the TCP and
HTTP layers for production user traffic at all of Facebook’s PoPs
worldwide, collecting performance measurements for hundreds of
trillions of sampled HTTP sessions. We discuss our approach to col-
lecting and analyzing measurements, including a novel approach
to characterizing user achievable goodput from the server side.
We find that most user sessions have MinRTT less than 39ms and
can support HD video. We investigate if it is possible to improve
performance by incorporating performance information into Face-
book’s routing decisions; we find that default routing by Facebook
is largely optimal. To our knowledge, our measurement study is
the first characterization of user performance on today’s Internet
from the vantage point of a global content provider.

CCS CONCEPTS
• Networks→ Network performance analysis; Transport pro-
tocols; Network performance modeling; Network monitoring.
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1 INTRODUCTION
Global content providers and content delivery networks have built
points of presence (PoPs) around the world to provide short, direct
paths to users, with the end-goal of improving user experience
[15, 17, 26, 43, 49, 55, 68]. Given the large investment in this in-
frastructure, it is natural to ask whether it has resulted in users
experiencing good performance.

∗In this paper, Facebook’s edge is the collection of PoPs on Facebook’s AS.
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While an extensive body of prior work has investigated user
performance on the Internet across a variety of dimensions, many
of these studies have focused on a specific region [25, 36], access
link type [9, 70], or aspect of the Internet ecosystem that relates to
performance such as traffic engineering at interconnections [3, 5,
36, 55]. Studies that attempted to more broadly characterize user
performance or opportunities for performance-aware routing have
been limited in vantage points and measurements, limiting the
analysis and conclusions they could make [3, 5–7, 18, 55, 63].

In this work we characterize the traffic properties and network
performance experienced by users of Facebook, a content provider
with over 2 billion users across hundreds of countries. In contrast
to previous work, we use a dataset of user traffic collected at all
of Facebook’s PoPs worldwide (§2.2), a subset of Facebook’s edge
serving infrastructure. Our 10 day dataset is composed of metrics
from randomly sampled production traffic, captures performance
for hundreds of trillions of HTTP sessions, and has global cover-
age with measurements from hundreds of countries and billions of
unique client IP addresses. The dataset provides the high-volume of
samples required to conduct granular analysis of performance, such
as identifying spatial and temporal variations. Given this coverage,
and because a large share of global Internet traffic comes from a
small number of well connected content and cloud providers with
connectivity similar to Facebook’s [26, 54], performance measure-
ments and analysis from Facebook’s vantage point likely roughly
reflect user performance to popular services in general. In addition,
the dataset contains measurements from production traffic continu-
ously routed via alternate routes.We explore if Facebook’s extensive
connectivity creates opportunities for performance-aware routing,
in which an alternate (non-default) route offers better performance.

We begin with a characterization of Facebook’s user traffic,
which is predominantly composed of TCP flows carrying HTTP/1.1
or HTTP/2 traffic (§2.3). Most objects requested by users are small
(50% of objects fetched are less than 3 KB), and HTTP sessions can
be idle for the majority of their lifetimes.

We quantify performance by capturing latency and goodput mea-
surements from existing production traffic (§§ 2.2 and 3). Latency
is important in interactive applications where a user is actively
blocked awaiting a response, such as waiting for a search query
to return or a video to start playing. Goodput depends on latency
and other connection properties such as loss, jitter, the congestion
control algorithm, and the available bandwidth, and high goodput
is important for streaming high-quality video and for downloading
large objects. However, capturing insights into achievable goodput
from passive traffic measurements is challenging given that most
objects served by Facebook are small; under such conditions good-
put measurements often under-utilize the available bandwidth as
they may not exercise the bandwidth-delay product and/or because
of TCP slow-start. Our novel approach to goodput measurements
accounts for these intricacies by determining (1) if transmission
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of an object is capable of testing for a given goodput (we focus on
2.5Mbps, the minimum bitrate for HD video) and (2) for capable
transmissions, if the transmission achieved the target goodput after
correcting for transmission time, cwnd growth, and other aspects
(§3.2). This approach enables us to differentiate between goodput
restricted by network conditions (which we want to measure) and
goodput “only” restricted by sender behavior. Our approach is prac-
tical and deployed in production at Facebook’s PoPs worldwide.

Using the results from our methodology, we characterize the
performance seen by our users worldwide (§4). We show that a
majority of user sessions have low latency (median MinRTT <
40ms) and achieve the goodput required to stream HD video. We
examine regional variances and show that users in Africa, Asia, and
South America in particular experience poorer performance.

We aggregate measurements by geolocation information and
time to facilitate spatial and temporal analysis, and employ statisti-
cal tools when comparing aggregations to separate measurement
noise from statistically significant differences. We identify episodes
of performance degradation that could be caused by failures and
predictable periods of degradation that could indicate recurring
downstream congestion. However, the vast majority of traffic sees
minimal degradation over the 10 days in the study period (§5).

Finally, we investigate whether it is possible to improve user
performance by changing the route Facebook uses to send traf-
fic to users. Prior publications on SDN egress controllers such as
Facebook’s Edge Fabric [55] and Google’s Espresso [68] discuss
opportunities for incorporating real-time performance measure-
ments, but did not define a concrete methodology for capturing
and converting metrics into decisions and did not fully quantify
the benefits of performance aware routing. We offer insights into
both of these aspects and find that there is limited opportunity for
benefit (§6). Performance-aware routing decisions provide a latency
improvement of 5ms or more for only a few percent of traffic of
traffic, showing that the existing standard, static BGP routing policy
employed by Facebook is close to optimal.

2 DATA COLLECTION OVERVIEW AND
TRAFFIC CHARACTERISTICS

This section presents an overview of the Facebook content serving
infrastructure as it pertains to serving client traffic (§2.1). We de-
scribe our passive measurement infrastructure and the data that we
collect (§2.2) and then explore the characteristics of client connec-
tions at the application and transport layers (§2.3). In Section 3, we
use these insights to illustrate the challenges to quantifying user
performance from passive measurements in this environment and
how our approach overcomes these challenges.

2.1 Background
The vast majority of Facebook’s user traffic is HTTP/1.1 or HTTP/2
secured with TLS atop a TCP transport, which we refer to as an
HTTP session. A client establishes an HTTP session with an HTTP
endpoint (distinguished by IP address) depending on the application
and the type of request. Each HTTP session can have one or more
transactions, each composed of an HTTP request from the client
and response from the server.

Proxygen, Facebook’s software load balancer, runs at each end-
point, terminates client TCP connections, and forwards HTTP re-
quests to internal services [57]. Throughout this work, when we
refer to a server we are referring to a Proxygen load balancer.

Facebook has dozens of PoPs across six continents and a signifi-
cant fraction of client traffic is directed to endpoints at these PoPs;
our analysis is centered around this traffic. Most users are close to
a PoP; based on geolocation of users, half of all traffic is to users
within 500km of the serving PoP, and 90% is to users within 2500km
and in the same continent. The 10% of traffic served by a PoP in
a different continent than the user is composed predominantly of
European PoPs serving users in Asia (4.8% of all traffic) and Africa
(2.1% of all traffic).

Two complementary traffic engineering systems are responsible
for steering user traffic. Cartographer steers client traffic to PoPs by
controlling DNS responses and rewriting endpoint URLs in HTML,
using performancemeasurements to decide the best ingress location
[56]. Egress traffic at a PoP is routed based on decisions are made
by Edge Fabric [55], which we discuss in further detail in Section 6.

2.2 Measurement Infrastructure and Dataset
We measure performance by collecting metrics from existing pro-
duction traffic at our servers. We present the reasoning behind this
design choice and its trade-offs relative to approaches used in prior
work. We also describe how we collect data and the properties of
the dataset.

2.2.1 Why server-side passive measurements? Prior work has char-
acterized performance via instrumentation at clients that executes
measurement tasks such as downloading an object or pinging an
endpoint [3, 5, 19] and/or network probing measurements executed
from the server side, such as pings or traceroutes [71].

In contrast, we use server-side measurements of existing production
traffic as they best support our measurement goals:

Avoid overhead at clients: Capturing measurements at the server
side from existing traffic does not introduce any overhead at clients.
In comparison, executing measurements from clients must be done
with extreme care to avoid negative consequences. For instance,
measuring goodput may require transferring a large volume of
traffic (§3.2) and thus may increase data usage and reduce battery
life on mobile devices.

Facilitate granular time series analysis: Server side measurements
can satisfy the high sampling rates required for temporal analysis.
Events such as congestion or failures can cause network perfor-
mance to quickly change. Detecting such events and evaluating
options to mitigate requires sufficient samples to make statistically
significant conclusions at short-time scales. Capturing sufficient
samples with active measurements is challenging [64].

Ensure representative results: Capturing measurements from ex-
isting production traffic ensures that results are representative of
user performance. In comparison, measurements collected server-
side via pings or traceroutes may not be representative. ICMP traffic
may be deprioritized, dropped, or routed over a different path than
TCP traffic [41, 59, 60], and prior work has found that over 40% of
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hosts do not respond to ICMP probes, limiting the coverage of sys-
tems that rely on such probes [41, 71]. In the same vein, experiments
executed on randomly selected production flows are guaranteed to
not be biased by the sampling scheme.

Enable rapid experimentation: Changes at the server side are easy
and quick to roll out and maintain, in direct contrast with client
changes which typically have longer rollout cycles and require
extensive testing. For instance, in this work we evaluate whether
changes in how we route traffic to users can improve performance
(§6) without requiring any coordination with clients.

However, server side measurements have two key drawbacks:

May not capture end-to-end performance: Performance enhanc-
ing proxies (PEPs) are commonly deployed in satellite and cellular
networks and attempt to improve performance by splitting the
TCP connection between the user and server and then optimizing
TCP behavior for each segment’s characteristics [14, 67]. Under
these conditions, server side performance measurements reflect the
performance between Facebook and the PEP instead of end-to-end
performance, and thus may overestimate goodput and underes-
timate latency relative to what would be measured end-to-end.1
However, since Facebook can only optimize for conditions between
Facebook’s edge and the PEP, this does not have any considerable
drawback on our analysis.

Experiments can degrade performance: Experiments that impact
production traffic could (inadvertently) degrade performance for
users. Limiting the traffic impacted by an experiment reduces this
risk, but we acknowledge that this may be insufficient. Prior work
has cited risks to production traffic in justifying separate active
measurement infrastructure for experiments [19].

2.2.2 Measurement Infrastructure. We capture performance infor-
mation at the load balancers, which are configured to sample a
percentage of HTTP sessions. For sampled sessions, instrumenta-
tion captures TCP state at the start and end of each HTTP session,
and for each HTTP transaction, the load balancer captures times-
tamps and TCP state at prescribed points to enable calculation of
goodput. We discuss how we use this state further in Section 3.

When the load balancer detects a sampled session’s underlying
TCP connection has been closed, it captures the final TCP state.
The load balancer then sends all captured information to a separate
process that adds information about the egress route used to deliver
traffic to the user, including BGP information such as the destination
prefix and AS-path.

2.2.3 Control of egress routes. Traffic to a given destination may
be shifted to an alternate route by Edge Fabric, Facebook’s egress
routing controller, if an interconnection at the edge of Facebook’s
network is at risk of becoming congested [55]. These shifts could
impact performance for the small fraction of traffic that is shifted
and would complicate analysis of opportunity for performance
aware routing. To ensure that our analysis is not influenced, servers
override the route used for sampled HTTP sessions in coordination
with Edge Fabric. The analysis in Sections 4 and 5 always uses
measurements from the best route according to Facebook’s routing
1Adoption of QUICwill nullify this drawback as QUIC’s encryption inherently prevents
PEPs from splitting connections [42, 45, 66].

policy (§6.1). Likewise, the analysis in Section 6 always compares
the best route against n alternate routes. This ensures that our
analysis is not impacted by Edge Fabric’s actions or congestion at
the edge of Facebook’s network.

2.2.4 Dataset. All of our analysis is derived from a dataset contain-
ing 10 days worth of samples collected from load balancers at all of
Facebook’s PoPs worldwide. We describe the metrics each sample
captures in Section 3. Servers randomly select HTTP sessions to
sample at a defined rate, and a subset of sessions are routed via al-
ternate egress routes to enable comparisons of performance across
routes (§6). Since our focus is on performance between Facebook’s
edge and users, we filter samples to client IP addresses determined
by a third-party commercial service to be controlled by a hosting
provider (~2% of measured traffic).2

Post filtering, our dataset contains measurements from billions
of unique client IP addresses spread across hundreds of countries. In
total, our dataset contains measurements for hundreds of trillions
of HTTP sessions.

2.3 Connection Characteristics
In order to inform the design of our performance measurements,
we characterize Facebook’s user traffic at the HTTP session and
transaction level. We show that the majority of session time (e.g.,
the time from establishment to termination of the underlying TCP
connection) is spent idle, and sessions and transactions transfer
small amounts of data. Section 3 discusses how these insights shape
our approach to measuring goodput.

HTTP Sessions are mostly idle. Figure 1(a) shows the distribution
of client session durations. Session times vary, with 7.4% lasting for
less than a second and 33% lasting for less than a minute, and 20%
lastingmore than 3minutes. HTTP/2 sessions, which are commonly
used by web browsers and some of Facebook’s mobile applications,
have fewer short sessions than HTTP/1.1. For example, 44% of
HTTP/1.1 sessions lasted for less than a minute, while only 26%
of HTTP/2 sessions did. Figure 1(b) shows the percentage of time
that the load balancer is actively sending data for an HTTP session
(i.e., the load balancer has data to send to the client and/or there is
unacknowledged data in flight). For both HTTP/1.1 and HTTP/2,
the majority of sessions are idle for most of their lifetime; 80% of
HTTP/2 sessions are active less than 10% of the time, while 75% of
HTTP/1.1 sessions are active less than 10% of the time.

A small fraction of sessions transfer the bulk of data volume. Fig-
ure 2 shows the distribution of the number of bytes transferred
per HTTP session. Over 58% of sessions transfer fewer than 10
kilobytes. However, for the subset of sessions to endpoints that
host image and video content, 17% of responses transfer at least 100
kilobytes. In addition, there is a long tail with 6% of sessions trans-
ferring over 1 megabyte, the majority of which contain transactions
for streaming video objects.

Figure 2 also shows the distribution of response sizes across
transactions. Over 50% of responses are fewer than 6 kilobytes, the
2We have found that these HTTP sessions are composed of API requests (from other
organization’s servers) and traffic relayed by VPN providers. VPN traffic can mislead
temporal performance analysis because the composition of users and user locations
behind the IP address sourcing VPN traffic can change drastically over time, which in
turn changes performance.
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(b) Connection busy time

Figure 1: Cumulative distribution across sessions of duration and busy times.
Most sessions end within 60 seconds and spend most of their lifetime idle.
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ferred per session, all HTTP responses,
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Figure 3: Over 80% of sessions have fewer than 5 transac-
tions, but the majority of traffic is on sessions with greater
than 50 transactions (not shown).

vast majority of which are responses to API calls, rendered HTML,
and other dynamically generated content. Endpoints hosting images
and videos have a slightly larger response size, with a median
response size of ~19 kilobytes.

HTTP sessions comprise a small number of transactions. Figure 3
shows that most sessions have a single transaction, and over 87%
of HTTP/1.1 and 75% of HTTP/2 sessions have fewer than 5 trans-
actions. For HTTP/1.1, web browsers may establish multiple con-
nections to the same endpoint to facilitate pipelining and enable
multiple objects to be requested in parallel. In comparison, multi-
plexing and pipelining are supported within an HTTP/2 connection,
so web browsers only establish a single HTTP/2 connection to an
endpoint. As a result, HTTP/2 sessions have more transactions
than HTTP/1.1 on average. However, the bulk of total traffic is
carried by sessions with many transactions. Sessions with 50 or
more transactions account for more than half of all network traffic.

3 QUANTIFYING PERFORMANCE
Our main goal in this section to provide insights into how network
quality varies across users, and in later sections across time and
routes (§§ 5 and 6). We therefore design our methodology to be
agnostic to the specific application workload or client device type.

Although requirements for good performance vary by
application—for instance, streaming video traffic requires high
goodput and has soft real-time latency demands [29] while
real-time games exchange data at low rates but require low latency
[40]—latency, loss, jitter, and goodput form baseline metrics
commonly considered for assessing network quality. Techniques

to capture these metrics have been incorporated into network
debugging tools that rely on active measurements [1, 22]. Our
methodology for quantifying performance focuses on capturing
latency and goodput, with goodput also offering insights into loss
and jitter. Our methodology differs from that used in network
debugging tools because we seek to extract insights by measuring
existing production traffic (§2.2.1).

3.1 Measuring latency with MinRTT
Latency is important in interactive applications where a user is
actively blocked on a response, such as waiting for a search query
to return or a video to start playing. Prior work has quantified the
impact of large changes in latency (100ms+) on e-commerce and
other applications [11, 47] and provides rules of thumb that we can
use to assess the quality of experience given different latencies.

• Prior research has established that beyond about 8Mbps,
latency is the primary bottleneck for page load times in
last-mile access networks [65].

• An online gaming services provider uses 80ms latency as a
cutoff for good performance [48].

• ITU-T G.114 recommends at most a 150ms one-way delay
(300ms RTT) for telecommunications applications; higher
latencies significantly degrade user experience [2].

We measure latency by capturing the minimum round-trip time
(MinRTT) as measured by the Linux kernel’s TCP implementa-
tion at connection termination. This metric captures the minimum
round-trip time observed over a configurable window; in Face-
book’s environment this window is set to 5 minutes. Because the
vast majority of HTTP sessions terminate within 5 minutes (§2.3),
recording this metric at session termination effectively captures
the minimum RTT observed over the session’s lifetime.

We use MinRTT because it represents an upper bound on the
underlying path’s propagation delay. Congestion in the backbone
will result in a persistent standing queue [28] that increases the
MinRTT to be more than the propagation delay (and also can cause
loss, which we capture with our goodput metric (§3.2)). In Section 4
we show distributions of user latency from Facebook’s perspective
based on MinRTT.

Measured RTT can vary over a session’s lifetime, and the
kernel maintains an RTT calculation that incorporates these
variations (sRTT) for calculating the retransmission timeout (RTO).
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However, because our focus is the quality of the routes between
Facebook and users and not the quality of last mile access links
or customer premise networks, variation in latency (and more
generally jitter) is less relevant to our analysis. Prior work has
found that traffic arrival rates in backbone networks at small time
scales are smooth because small variations in round-trip time and
processing time desynchronize the large number of flows, and flow
transfer rates are slow relative to backbone link capacity [32, 53].
As a result, we expect variations in RTT can often be attributed
to last mile/customer premise network conditions, such as on-path
buffers at the access link becoming bloated due to self-induced,
non-standing congestion [34, 62], or wireless/cellular signal quality
issues causing retransmissions at the link layer.

3.2 Measuring goodput with HDratio
User experience depends on Facebook’s ability to deliver content to
users in a performant manner, which in part depends on goodput.
For instance, after a video has started playing, user experience
is primarily dependent on the connection’s ability to sustain the
playback bitrate [29]. Clients with low goodput will be unable to
continuously stream high bitrate videowithout frequent rebuffering
and will experience delays in loading of images and other large
objects. Clients with extremely low goodput may be unable to
interact with Facebook’s services because requests may timeout
before delivery has been completed.

Goodput depends on latency and other connection properties
such as loss, jitter, the congestion control algorithm, and the avail-
able bandwidth. Individually, these signals do not provide a com-
plete picture. For example, MinRTT and sRTT do not reflect the
impact of loss, which impacts data delivery latency and responsive-
ness at the application level [60], and the frequency and impact
of loss depends (among other things) on the congestion control
algorithm, the bottleneck link speed, and latency [20, 38].

Goodput reflects the complex interactions between these compo-
nents and provides a signal that we can use to define the quality of
routes between Facebook and users. As with latency, goodput de-
pends on conditions and properties of the backbone, access, and cus-
tomer premise networks. A client may have low goodput because
of limitations in the client’s Internet plan or access technology;
insight into such limitations can be informative during the develop-
ment of Facebook’s applications and services, but is not actionable
in terms of changes to Facebook’s edge network. However, good-
put measurements provide a powerful tool for temporal analysis
of degradation and opportunities for performance-aware routing,
both of which may be actionable. For instance, if two routes to a
destination network have similar RTTs, but one path has a lower
goodput (perhaps due to loss caused by congestion), shifting traffic
to the route with higher goodput may improve client performance.

3.2.1 Defining target goodput. Speedtests are often used to capture
the maximum achievable goodput between a server and user, but
this maximum does not correlate linearly with application perfor-
mance. A client that can achieve 100 Mbps goodput will rarely
experience any improvement in performance over a client with 10
Mbps goodput because neither connection is likely to be saturated
by the types of content served by Facebook (voice or video calls,
live or time-shifted streaming video, and photos) [65]. In addition,
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Figure 4: Sequence diagram for three back to back HTTP
transactions over a single HTTP session.

speedtests can be intrusive and can have a negative impact on users,
and thus are not suitable to our setting (§2.2).

Instead of capturing maximum achievable goodput, we define a
target goodput that suffices to provide good experience for Face-
book’s services, and then design our methodology to check whether
sessions are able to achieve this goodput. Given the importance
of video on today’s Internet, we define our target goodput as 2.5
Mbps, the minimum required to stream HD video [4]. We refer to
this target goodput as HD goodput. Once HD goodput is achieved,
latency (which determines responsiveness) may be more important.
Although we focus on HD goodput, our methodology is generic
and can work for any target goodput.

Because Facebook HTTP sessions are idle for most of their du-
ration (§2.3), goodput at the session level is not meaningful; we
must calculate goodput at the transaction level. However, even at
the transaction level, capturing meaningful goodput measurements
from small responses is non-trivial compared to a speedtest. With
small responses, goodput can be restricted by response size or the
cwnd at the start of a response (rather than by underlying network
conditions), and transmission time can have a significant impact.

In the sections that follow, we describe how we determine if an
HTTP transaction is capable of testing for our target HD goodput
(§3.2.2). Then, for the subset of transactions capable of testing, we
describe howwe determine if the transaction achieved the targetHD
goodput while correcting for transmission time and other aspects
(§3.2.3). Finally, we describe how we summarize these results into
HDratio, a metric that reflects the ability of a given HTTP session
to deliver traffic at a rate sufficient to maintain HD goodput (§3.2.4).

3.2.2 Determining if a transaction tests for target goodput. In Face-
book’s environment, a transaction’s response size is small relative
to the amount of data transferred in a speedtest (§2.3). The example
scenario in Figure 4 illustrates how small responses impact the de-
sign of our approach to measure goodput. In this example, a client
with a 60ms MinRTT requests three objects in series via a single
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HTTP session. We assume ideal network conditions, under which a
connection experiences fixed round-trip times and no packet losses.
To keep the example simple, we (1) assume that there is no bottle-
neck in the network; (2) ignore the impact of pacing, transmission
delay, and ACK clocking; (3) set the maximum packet size to 1500
bytes and the initial congestion window (cwnd) to 10 packets; and
(4) assume a loss-based congestion control such as Reno. With no
loss and fixed round-trip times, the connection will never exit slow
start, and the cwnd will grow exponentially whenever the connec-
tion is cwnd limited.3 Under these conditions, goodput is restricted
by response size and the cwnd at the start of a response (denoted
Wstart).

• Transaction 1: Goodput = 0.4Mbps (2 packets/60ms).
Wstart = 10, greater than response size, takes 1 RTT to send
all packets and receive ACK. No cwnd growth.

• Transaction 2: Goodput = 2.4Mbps (24 packets/120ms).
Wstart = 10, less than response size, takes 2 RTT to send all
packets and receive ACK. cwnd grows to at least 20.

• Transaction 3: Goodput = 2.8Mbps (14 packets/60ms).
Wstart = 20, greater than response size, takes 1 RTT to send
all packets and receive ACK.

We make three observations from this example:
Goodput can be calculated per RTT. When a transaction’s re-

sponse is transferred over multiple RTT (i.e.,Wstart is less than
response size), goodput for a single RTT can be greater than good-
put for the transaction. For instance, transaction 2 sends 10 packets
in its first RTT, yielding a goodput of 2Mbps, and 14 packets in its
second RTT, yielding a goodput of 2.8Mbps.

Goodput per RTT depends on prior transactions. The cwnd at the
start of a response restricts the goodput a transaction can achieve
and depends on previous transactions. For instance, transaction
3 is able to transfer 14 packets in its first and only RTT because
transaction 2 grew the cwnd to 20. In comparison, transaction 1 did
not grow the cwnd, so transaction 2 could only transfer 10 packets
in its first RTT.

The highest per-RTT goodput under ideal network conditions is the

highest goodput a transaction can test for. This type of ideal-case
analysis determines the maximum achievable goodput in an RTT
for a givenWstart and response size, providing an upper bound on
the highest goodput the response can exercise under real network
conditions. From the example, we can observe that the maximum
testable goodput for a given response is the maximum number of
bytes delivered in a single round-trip:

• Transaction 1 can test if 0.4Mbps goodput can be achieved.
• Transaction 2 (because of its second RTT) and transaction 3
can test whether a goodput of 2.8Mbps can be achieved.

In production we determine the maximum goodput that each
transaction can test for by modeling TCP’s behavior under ideal
conditions. The maximum testable goodput occurs either on the

3The Linux kernel’s TCP implementation grows the cwnd when the connection is
cwnd limited in the last round-trip and is not in loss or recovery states. Growth
is determined by the number of bytes ACKed, not the number of ACKs received. A
connection is cwnd limited during slow start if it had more than half of the cwnd (in
bytes) in flight. After slow start a connection is cwnd limited if sending was blocked
on cwnd. The growth for partially-utilized cwnds is difficult to model as it depends
on precisely when acknowledgements are received.

last round-trip or the penultimate round-trip if the last round-trip
has fewer bytes to send.

We definem as the number of round-trips required to transfer a
response of Btotal bytes if the cwnd size (in bytes) when the first
byte of the transaction was sent isWstart (note that this may not be
the same as the initial congestion window, as we explain below):

m = ⌈log2(Btotal/Wstart + 1)⌉ . (1)

We defineWSS(n) as the size of cwnd at the start of the nth round-
trip:

WSS(n) = 2(n−1) ×Wstart. (2)
The maximum testable goodput is the maximum number of bytes
transferred over each of the last two round-trips divided by the
RTT:

Gtestable =
max{WSS(m − 1),Btotal −

∑m−1
i=1 WSS(i)}

MinRTT
. (3)

In Figure 4, transaction 2 hasm = 2,WSS(2) = 20, and Gtestable =
2.8Mbps.

Thus, if a transaction’s Gtestable is greater than or equal to HD
goodput, then the transaction is capable of testing for HD goodput.
In the next section we discuss how we determine if a transaction
that is capable of testing for HD goodput was able to achieve it.

Gtestable is used to identify when a transaction cannot test for
HD goodput because the response size is too small or because
the session has not yet had the opportunity to grow its cwnd, in
which case we exclude the transaction from our goodput analysis.
Gtestable intentionally does not reflect the impact of actual network
conditions on cwnd growth. Consider how the session illustrated
in Figure 4 may actually behave in production. Under poor network
conditions, the cwnd at the start of the third transaction may be 1
(instead of 20) because timeouts during the preceding transactions
caused the cwnd to be reduced. If we (incorrectly) considered
Wstart = 1, then Gtestable = 1.4Mbps (7 packets/60ms) and we
would infer that the third transaction cannot test for HD goodput.
This is problematic as we only learn about network conditions when
we are able to test for HD goodput. Worse, saying that the third
transaction cannot test for HD goodput would incorrectly ignore
strong evidence of poor performance. Transactions in a session
being unable to test for HD goodput is in itself not a signal; it
simply reflects that the session transferred small objects that could
not achieve HD goodput.

To avoid this problem, we always calculate Gtestable by setting
Wstart for each transaction assuming cwnd growth under ideal cir-
cumstances. Then, the transactions identified as capable of testing
HD goodput are the points in the session when, if a connection has
good performance, it will (a) have a cwnd capable of supportingHD
goodput and (b) be delivering a large enough response to demon-
strate HD goodput. We defineWnic as the cwnd measured when a
transaction’s first response byte is written to the NIC. For the first
transactionWstart is equal toWnic. For all subsequent transactions,
we defineWstart as the maximum betweenWnic and the ideal cwnd
at the end of the previous transaction (estimated asWSS(m), where
m is the number of round-trips in the previous transaction under
ideal network conditions).4

4WSS(m) provides a lower bound on the idealWstart of the next transaction because it
ignores any growth of the cwnd during the last round-trip (footnote 3). Taking the
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3.2.3 Measuring if a transaction achieved a testable goodput. The
previous section described how to determine themaximum goodput
that each transaction can test for under ideal network conditions,
specifically focusing on maximum goodput across the transaction’s
RTTs. This section describes how we determine whether a transac-
tionwas able to achieve a goodput that it was capable of testing—e.g.,
for a given transaction capable of testing for HD goodput, did it
actually achieve HD goodput? Making this determination requires
accounting for the impact of real network conditions (e.g., packet
loss and transmission time) and extrapolating behavior about good-
put for one RTT to the entire transaction.

Accounting for transmission time at bottleneck links. Actual
packet transfer time is composed of transmission time, propagation
delay, and queueing delay. At a minimum, all responses will tra-
verse a bottleneck link that will shape packets due to transmission
delays. If we do not account for the delays, then we may say that a
transaction capable of testing for HD goodput failed to achieve
HD goodput in cases where goodput at the user side (which is
ultimately our focus) would meet or exceed HD goodput.

Consider again transaction 3 in the session illustrated in Figure 4,
but this time assume there is a 3Mbps bottleneck link between
Facebook and the user. Transmission times at the bottleneck link
will add ≈55ms to transaction 3’s transfer time, increasing its total
duration to ≈115ms.5 With this increase in transfer time, goodput
calculated will be 1.46Mbps (14 packets/115ms). Thus, if we do
not account for the impact of transmission time at the bottleneck
link, we will correctly infer that transaction 3 was able to test for
2.5Mbps but incorrectly infer that it failed to achieve it.

We do not know the achievable rate at the bottleneck link and
therefore cannot correct for it directly. In the next section, we dis-
cuss a general solution for this challenge. First, we illustrate the
intuition behind our approach for a transaction that should only
require a single RTT to transfer (based onWnic and its response
size). For such a transaction, we can approximate the rate that the
response was delivered at by estimating the transaction’s trans-
mission time, which we approximate by subtracting MinRTT (an
approximation of the propagation and any persistent queueing de-
lays) from the transfer duration (i.e., Ttotal − MinRTT), and then
calculating the rate as Btotal ÷ (Ttotal −MinRTT). This rate repre-
sents the speed at which the network delivered the response and
captures the delay induced by bottleneck links, queuing (includ-
ing any cross-traffic), shaping, and retransmissions. If this rate is
greater than HD goodput, then HD goodput was achieved.

Handling transactions that require cwnd growth to test goodput.

We want to extend the intuition above for transactions that require
multiple round-trips to complete. For large transactions, we want
to look at as much of the transaction’s behavior as possible, as we
can learn more about path performance (e.g., packet loss and jitter)
by considering the whole transaction instead of just computing
goodput for any individual round-trip.

A transaction’s transfer time depends on its properties (e.g.,Wnic
and congestion control algorithm) and the path’s performance (e.g.,

maximum betweenWnic andWSS(m) allows us to increase the maximum testable
goodput whenWnic is greater than the modeledWSS(m).
5MinRTT captures (at a minimum) the transmission time for TCP headers, so we only
consider the impact of transmission time at the bottleneck link on payload.

RTT, loss, jitter, available bandwidth). At best, a transaction would
be able to deliver traffic at the rate of the available bandwidth at
the bottleneck link along the path. If a real transaction experiences
performance degrading events, e.g., exits slow start early due to
CUBIC’s hybrid slow start [37], experiences losses due to conges-
tion, or has variable RTT due to cross traffic, it will deliver traffic
at an overall rate lower than that available at the bottleneck link
and take longer to complete.

We estimate whether a real transaction can deliver traffic at rate
R by comparing it against a model (best-case) transaction going
through a bottleneck link with available bandwidth corresponding
to R. More specifically, if the real transaction’s transfer time Ttotal
is shorter than the model transaction’s (best-case) transfer time
through a bottleneck rate R, denoted Tmodel(R), then it must be the
case that the real transaction delivered traffic at a rate higher than R.

Our model of a best-case transaction through a bottleneck of
rate R assumes best-case network conditions, removing the impact
of path properties (e.g., packet loss and jitter), and a simplified
optimal congestion control algorithm. More precisely, we assume a
congestion control algorithm that (i) doubles the cwnd n round-
trips (starting fromWnic) until the cwnd is high enough to support
rate R and (ii) delivers traffic at rate R from that point on. The
first assumption minimizes the time the model transaction stays in
slow start,6 and the second assumptions optimistically minimizes
transmission time by considering full, perfect utilization of the
bottleneck’s available bandwidth. If the model transaction exits
slow start after n + 1 round-trips, its transfer time is given by (i)
the number n of round-trips in slow start, (ii) plus the transmission
time of the remaining bytes, (iii) plus one round-trip for receiving
the acknowledgement of the last packet:

Tmodel(R) = n ×MinRTT +
Btotal −

∑n
i=0WSS(i)

R
+MinRTT,

where we use MinRTT as the best-case RTT.
We estimate the delivery rate of a real transaction as the largest

rate R for which the transaction’s Ttotal ≤ Tmodel(R). For the case
of short responses that can transfer in one RTT, then n = 0 and
the solution is as in the previous example, i.e., R = Btotal ÷ (Ttotal −
MinRTT). If a transaction is capable of testing for HD goodput and
Ttotal ≤ Tmodel(HD goodput), then we determine that the transac-
tion achieved a delivery rate of at least HD goodput.

Validation using simulation. We validated that our goodput esti-
mation technique accurately approximates bottleneck bandwidth
under ideal network conditions using simulations in NS3.7 We sim-
ulated transfers through 15,840 configurations, varying bottleneck
bandwidth Gbottleneck (0.5–5 Mbps), round-trip propagation delays
(20–200 ms), initial cwnd sizes (1–50 packets), and transfer sizes
(1–500 packets). We identify configurations whose transfers can
achieve the bottleneck rate by checking if Gtestable > Gbottleneck.
For these configurations, the goodput G inferred by our technique

6We assume the model transaction increases its cwnd exponentially starting from
Wnic . As most of Facebook’s transactions are small and may finish while in slow start,
assuming constant transmission rate would deterministically underestimate R (§3.2.1).
7NS3’s TCP implementation grows the cwnd by number of ACKs received (instead of
bytes ACKed). We disabled delayed ACKs to force the simulator to better match cwnd
growth in the Linux kernel’s TCP implementation (footnote 3).
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never overestimates the bottleneck rate, and usually only under-
estimates slightly: the 99-th percentile of the distribution of the
relative error (Gbottleneck −G)/Gbottleneck is 0.066. Under realistic
network conditions (e.g., including losses and jitter), the estimated
goodput could be lower (never overestimating Gbottleneck) due to
the reduced available bandwidth at the bottleneck, still capturing
how fast data was delivered to the destination.

3.2.4 Defining a session’s HDratio. We use the approach above to
compute HDratio, a metric that captures the ability of an HTTP
session’s underlying connection to sustain HD goodput. Our ap-
proach can estimate whether a transaction can test for and deliver
traffic at any rate R, but in HDratio we set R to HD goodput (i.e.,
R = 2.5 Mbps). We define HDratio for each HTTP session as the ra-
tio between the number of its transactions that achieved a delivery
rate of at least HD goodput and the number of its transactions that
tested for HD goodput (i.e., transactions with Gtestable ≤ 2.5 Mbps
are ignored). We compute HDratio for an HTTP session instead of
individual transactions to avoid overrepresenting paths that carry
sessions with many transactions (Figure 3).

3.2.5 Other Considerations.

Delayed ACKs. TCP delays sending an ACK until it has two
packets to ACK or until an implementation-dependent timeout
(30ms+ for Linux). Delayed ACKs can significantly inflate Ttotal
for small responses and lead to underestimation of the achieved
goodput; we avoid this by ignoring the last data packet (and its ACK).
Instead,Ttotal is the interval between the instant when the first byte
of the response is written to the NIC and the instant when an ACK
covering the second-to-last packet of the transaction is received by
the NIC, and Btotal is the total amount of bytes transferred minus
the number of bytes in the last packet.8

HTTP/2 Preemption and Multiplexing. HTTP/2 preempts and
multiplexes transactions based on the transactions’ priorities [12].
Sending of a transaction response is preempted (paused) if a higher
priority transaction is ready to send, and the HTTP/2 send win-
dow is multiplexed when transactions have equal priority. When
preemption or multiplexing occurs, a transaction’s Ttotal may be
inflated because it includes time spent transferring other responses.
To prevent inflation, we coalesce transactions together into a single
larger transaction when their responses are multiplexed or pre-
empted. In addition, we coalesce transactions when their responses
are written back-to-back to enable a sequence of small responses
to be considered as a single large response.9

Bytes in Flight. Our approach to calculating goodput assumes
that no response bytes are in flight when a new transaction’s first
response byte is sent. To preserve this requirement, a transaction is
ineligible to be used for goodput measurements if a previous trans-
action’s response was still in flight (e.g., last byte not yet ACKed)
8If the ACK for the second-to-last packet is delayed, it will be sent when the timeout
expires or when the last packet arrives at the receiver. Thus, the delay for the second-
to-last ACK is no larger than the guaranteed timeout incurred for delayed last ACKs.
This approach performs no worse than the naive approach, and is more accurate in
the common case of the last two packets transmitted close in time.
9If two responses are written in series and the last byte of the first response has not
been written to the NIC before the first byte of the second response is written to the
send buffer, then there is no gap between the writes at the transport layer. We use
socket and NIC timestamps to capture this level of detail.

when the first byte of its response was sent, but the conditions for
coalescing were not met.

3.3 Aggregating Measurements
Our focus is the performance of the routes between the edge of
Facebook’s PoPs and groups of users—not the performance of any
single session. Internet routing is inherently focused on groups of
endpoints—a BGP prefix represents a (logically arbitrary) aggregate
of endpoints in the same destination network, and traffic engineer-
ing systems are limited to the routes available to each BGP prefix
when making routing decisions [55, 68].

We define user groups as aggregates of users in the same desti-
nation network (autonomous system) that are likely to experience
similar performance (e.g., served by the same PoP, route, and in
the same geographic location). Our approach to aggregating users
balances the advantages of aggregating data finely (e.g., the ability
to see events that impact a small group of clients or that impact
clients for a short period of time) with the requirement to have
sufficient samples for a statistically significant result.

A user group is defined as the following:
• Facebook point of presence containing the server,
• Client BGP IP prefix (and thus inherently the client AS), and
• Client country.

We must include the BGP prefix in the grouping (instead of
aggregating to the AS) because the primary and alternate routes to
users in the same autonomous system can vary by BGP prefix, and
thus we must determine whether performance-aware routing (§6)
can improve performance on a per-prefix basis.

We include geolocation information because we find that it re-
duces variability relative to aggregating to the BGP prefix alone.
Network address space loosely correlates with location; two user IP
addresses in the same /24 are likely to be in the same geographic lo-
cation [33, 35, 46]. However, a BGP prefix can contain a large block
of address space and thus is more likely to include users spread
widely geographically. For example, Figure 5 shows an example of
a /16 prefix that serves clients in California and Hawaii and how
this results in MinRTT changes over time. We experimented with
deaggregating BGP prefixes (e.g., splitting a /16 into /18s or /20s)
and geolocating clients into finer granularities (states and “tiles”
[16]) but found that this offered minimal reductions in variabil-
ity while reducing coverage when deaggregation leaves too few
measurements.

We group measurements for each user group into 15 minute
time windows to enable temporal analysis of both degradation (§5)
and opportunity for performance aware routing (§6). We refer to
measurements for a user group during a time window as an aggre-
gation. We choose a 15 minute window to balance insights into brief
events with the need to have sufficient measurements for statisti-
cally significant results. For each aggregation, we capture the 50th
percentile (median, p50) of MinRTT across all sessions, denoted
MinRTTP50, and the median HDratio across sessions that had at
least one transaction test the connection’s ability to achieve HD
goodput, denoted HDratioP50. We aggregate MinRTT and HDratio
to percentiles instead of taking the average to focus on shifts in
the distribution. Taking the percentiles also avoids skew in the un-
derlying distributions: we observe MinRTT values in the tail of the
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Figure 5: Example of how shifts in client population can
lead to changes in MinRTT. In this example, clients in each
region have stable median MinRTT, but the global median
MinRTT decreases to 20ms during peak hours in California,
increases to 60ms during peak hours in Hawaii, and oscil-
lates between these two extremes during other periods.

distribution having values on the order of seconds [51], likely either
due to bufferbloat [34] or last-mile / last-link problems; and the
distribution of HDratio is frequently bimodal as sessions frequently
have HDratio at the extremes 0.0 and 1.0.10

When reporting performance across aggregations, we weight
results by the volume of traffic in the corresponding HTTP sessions.
We focus on traffic volumes because prefixes are arbitrary units of
address space whose size may not map to the underlying userbase
size [27, 39] and can be subdivided arbitrarily [13].

3.4 Comparing Performance
Internet performance can vary over time due to failures, routing
changes, traffic engineering, transient congestion (e.g., during peak
hours), changes in client population (e.g., as users change networks
at the end of working hours or as users in earlier time zones go to
sleep). To capture these effects, we evaluate performance over time
to assess whether we can identify temporal patterns of Internet
performance. We characterize performance degradation to check
how the performance for a user group changes over time, e.g., is
performance at 6am significantly better than performance at 8pm?
Facebook PoPs have multiple paths to most destination prefixes
they serve. For these user groups, we also compare the performance
of available paths to characterize the opportunity to improve per-
formance by choosing the best performing path, e.g., when using a
performance-aware traffic engineering system [55, 68].

We compute performance degradation over time by identifying
the baseline performance of each user group, then comparing per-
formance of the (BGP) preferred route in each time window against
the baseline. We define the baseline MinRTTP50 of a user group as
the 10th percentile of the MinRTTP50 distribution of its preferred
route across all time windows, and the baseline HDratioP50 as the
90th percentile of the corresponding distribution. We consider an
aggregation to be experiencing performance degradation whenever
the lower bound of the confidence interval of the difference between
the baseline performance and the current performance is above a
configurable threshold (e.g., 5ms for MinRTTP50). We compare the
lower bound of the confidence interval to check for aggregations
where there likely is degradation at the chosen threshold.

10We have also reproduced our analysis in §6 comparing the average HDratio across
aggregations (omitted), with qualitatively similar results and findings.

We also compute the opportunity to improve performance over
time by using alternate routes. Within an aggregation, we compare
the performance of the preferred route with the performance of
the best alternate route. We consider there to be an opportunity to
improve performance whenever the lower bound of the confidence
interval of the performance difference between the preferred and
best alternate routes is above a configurable threshold (e.g., 0.05
for HDratioP50). Given HDratio captures a richer view of perfor-
mance, we assume networks would prioritize improving HDratio
over MinRTT. When an alternate route has better MinRTTP50 at
the specified threshold, we classify it as an opportunity for im-
proving MinRTTP50 only if the HDratioP50 of the alternate route
is statistically equal to or better than that of the preferred route.

3.4.1 Controlling Statistical Significance. The statistical signifi-
cance of our observations depends on the underlying performance
variance and the number of samples. If clients in a user group have
similar performance, then few samples are needed to obtain a good
estimate of their performance; conversely, if clients in a user group
have highly variable performance, then more samples are needed.
Our approach allows us to not focus on a target number of samples,
but instead on whether the comparison is of enough precision to
support conclusions.

When comparing two aggregations (baseline vs current perfor-
mance for degradation or primary vs best alternate for opportunity),
we compute their performance difference and the α = 0.95 confi-
dence interval of the difference. Since we cannot assume normality,
we compute the confidence interval for the difference of medians
for MinRTTP50 and HDratioP50 using a distribution-free technique
[52].11 We only consider aggregations with at least 30 samples,
and define comparisons of aggregations to be valid for analysis
when we can calculate “tight” confidence intervals: we require the
confidence intervals of the differences to be smaller than 10ms for
MinRTTP50 and 0.1 for HDratioP50. Using larger thresholds allows
us to capture more traffic at a lower statistical significance, and
smaller thresholds provide additional statistical significance at the
cost of invalidating more time windows. We find that thresholds
defining confidence intervals with half and double the chosen sizes
yield qualitatively similar results (not shown).

3.4.2 Temporal Behavior Classes. After we compute degradation/
opportunity over time, we try to identify temporal patterns. In
particular, we identify user groups that have persistent or diurnal
degradation/opportunity. We classify each user group into one of
the following classes, checking the conditions for each in order:

1. The uneventful class includes user groups where no valid
time window has degradation/opportunity. This class cap-
tures user groups where performance is stable over time
(no degradation) or the preferred route is consistently better
than the best alternate route (no opportunity).

2. The persistent class includes user groups with degradation/
opportunity for at least 75% of the time windows. This class

11Traffic engineering systems in production need to be able to make these comparisons
in near real-time (for instance, to compare the performance of routes to a network). t-
digests (an on-line, probabilistic data structure [30]) can be used to efficiently calculate
percentiles in streaming analytics frameworks and calculate confidence intervals via
the cited approach.
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Figure 6: Distribution of MinRTT and HDratio over all sessions and split per continent. Most sessions have low RTTs, and
most sessions that test for HD goodput are able to achieve it for all transactions that can test for it.

captures user groups with frequent degradation or where
the alternate route is often better than the preferred route.

3. The diurnal class includes user groups with degradation/
opportunity for at least one fixed 15-minute time window
(e.g., 11:00–11:15) in at least 5 days in our dataset. This class
captures user groupswhere there is degradation/opportunity
for part of the day over multiple days.

4. The episodic class includes all remaining user groups. It cap-
tures user groups with some degradation/opportunity but
that do not fit into the consistent or diurnal classes.

As we need a representative view of a user group’s behavior
over time to classify its behavior, we ignore user groups that have
traffic for less than 60% of the time windows. This can happen, for
example, due to the aggregation only sporadically having client
traffic (e.g., business networks with very little traffic off hours) or
Cartographer [56] redirecting clients to different PoPs.

The definitions above make the uneventful class restrictive (ex-
cludes user groups with any opportunity/degradation), while the
other classes are somewhat inclusive (e.g., any user group with one

time window that experiences repeated opportunity/degradation
will be classified as diurnal). Results presented in §§ 5 and 6 are
robust to and findings qualitatively similar for different thresholds
in the classification algorithm.

4 OVERVIEW OF GLOBAL PERFORMANCE
In this section we present a snapshot of Internet performance for
users around the world, as measured from Facebook’s perspective.
The breadth and diversity of Facebook’s users—Facebook serves
billions of users from hundreds of countries every day—and the
fact that Facebook is a large content provider yields an opportu-
nity to explore and compare network performance across regions
worldwide.

Users typically have low RTTs to PoPs. Figure 6(a) shows the
distribution of MinRTT per session. We observe that 50% of ses-
sions have MinRTT less than 39 milliseconds, and 80% of sessions
have MinRTT of less than 78 milliseconds. Figure 6(b) depicts the
MinRTT distribution by continent. The median latency in Africa
is 58ms, Asia is 51ms, and South America is 40ms. The median in
other continents is approximately 25 milliseconds or less.

These results indicate that most users reach Facebook over routes
with low MinRTT, enabling real-time applications such as video

calls. Performance tends to be better in continents with more de-
veloped infrastructure [25], both in terms of access networks and
density of Facebook PoPs.

Users are typically able to achieve HD goodput. Figure 6(a) shows
the distribution of HDratio across HTTP sessions. Over 82% of
sessions have an HDratio greater than zero. This means that at
least some of these sessions’ transactions were able to achieve HD
goodput, indicating that the underlying routes can support HD
goodput when there is no congestion. Because our approach uses
small transactions, it is inherently impacted more by jitter, particu-
larly on connections with low propagation delay (as measured by
MinRTT). For instance, if our model shows that a given transaction
should complete in 2 ms and it actually completes in 4 ms (due to 2
ms jitter), then it may be tagged as non-HD-capable. Further, 60%
have HDratio of 1, meaning most sessions have enough bandwidth
to support HD video. We evaluated the benefit of our approach by
comparing it to a simple approach that estimates the achieved good-
put of a transaction as its overall goodput Btotal ÷ (Ttotal) (but still
uses our techniques from §§ 3.2.2 and 3.2.5). The simple approach
underestimates which transactions reach HD goodput, yielding an
underestimated median HDratio of 0.69.

Figure 6(c) shows that HDratio follows a similar per-continent
trend as MinRTT, with Africa, Asia and South America standing
out for having more sessions with HDratio equal to zero: 36% of
African sessions, 24% of Asian sessions, and 27% of South American
sessions. This result indicates a higher concentration of clients with
non-HD-capable access links in these regions.

MinRTT does not directly correlate with HDratio. A transaction’s
ability to test for HD goodput is partially dependent on latency;
sessions with higher latency require larger transfers to test for
and achieve HD goodput (§3.2). However, because our approach
to calculating HDratio considers whether a transaction is able to
test for HD goodput based on its latency, response size, and cwnd,
HDratio does not necessarily decrease as latency increases. Instead,
achieving HDratio at higher latencies is dependent on the loss rate,
jitter, and other aspects.

Figure 7 shows how MinRTT and HDratio correlate. We group
by ranges of MinRTT and show the distribution of HDratio for each
range. HDratio degrades as latency increases, but the majority of
sessions achieveHDgoodput for some transactions even atMinRTT
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Figure 7: Relationship between MinRTT
(different lines) and HDratio (x axis). Ses-
sions with higher MinRTT values are of-
ten still able to achieve HD goodput.
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(b) HDratioP50
Figure 8: Degradation in MinRTTP50 and HDratioP50, comparing the perfor-
mance of each time window with the baseline performance for the same user
group. The shaded areas show the distributions of the lower and upper bounds
of the degradation confidence interval (not the confidence interval around indi-
vidual points on the CDF), and provide an indication of where the distribution is.

above 80 milliseconds, indicating that users in these groupings have
connections capable of supporting greater than 2.5Mbps. Thus, the
largest barrier to these clients achieving HD goodput is likely the
impact of loss and traffic policing; with high latency, even a small
loss rate makes maintaining a given goodput difficult [20, 31, 50].

5 HOW DOES PERFORMANCE CHANGE
OVER TIME?

In this section we look at how both of our performance metrics
change over time. Performance for a given destination may vary
for a number of reasons, including path changes (due to routing
dynamics or traffic engineering [55, 56]), congestion, or changes
in the client population. We compute performance degradation
(§3.4) for each user group to quantify how much user-perceived
performance changes over time.

After removing any aggregation with insufficient traffic or too
large of a confidence window (§3.4), the results for MinRTTP50
include 94.8% of traffic and results for HDratioP50 include 89.5% of
traffic.

Figure 8 shows the distributions of degradation for MinRTTP50
and HDratioP50, comparing the difference in performance for each
aggregation to the baseline for the user group, weighted by the
volume of traffic of each aggregation to enable the impact of a
degradation to be better understood. The vast majority of traffic
sees minimal degradation over the 10 days in the study period, with
only 10% of traffic experiencing 4 millisecond or worse degradation
in MinRTTP50 and 10% experiencing a 0.065 or worse degradation
in HDratioP50, both of which can be the result of minor changes in
client population, or client behavior. However, in the tail we observe
1.1% of traffic experiencing degradation of at least 20 milliseconds,
and 2.3% of traffic has a degradation of at least 0.4 in HDratioP50.
These changes are more significant and may indicate congestion
between our PoP and the destination.

Table 1 shows degradation, computed at different thresholds,
per temporal behavior class (§3.4). (The caption explains how to
interpret the table.) For example, user groups responsible for 13.4%
of overall traffic are classified as experiencing diurnal HDratioP50
degradation of at least 0.05 (Entries mentioned in text are under-
lined and bold in table.) However, only a fraction of this traffic
experienced degradation: the second number shows that 8.6% of
overall traffic was delivered for these user groups during these
periods of diurnal degradation.

The orange columns of the table show that most of the perfor-
mance degradation is diurnal, which can be explained by degra-
dation occurring due to congestion at peak periods. As we will
discuss further in Section 6, we expect this congestion to be located
at destination networks (e.g., at the last mile or peering links). We
also observe that any performance degradation is usually small:
the fraction of traffic experiencing degradation decreases as the
threshold increases. For example, only 1.1% of traffic experience di-
urnal degradation of 20ms or more.12 Finally, a significant fraction
of user groups experience episodic degradation; we note, however,
that the amount of traffic actually impacted is small (compare total
traffic in blue vs impacted traffic in orange).

Results for individual continents follow similar trends, with
Africa, Asia, and South America experiencing above-average degra-
dation, and Oceania experiencing below-average degradation.

6 CAN PERFORMANCE BE IMPROVED VIA
ROUTING CHANGES?

This section evaluates if it is possible to improve network perfor-
mance for Facebook’s users by changing how traffic is routed from
our PoPs. This is one of the key motivations behind traffic engineer-
ing systems used by large content providers [55, 68]. Because BGP
does not communicate route performance characteristics such as
latency, packet loss, or the presence of congestion (all of which de-
termine achievable goodput/HDratio), Facebook and other network
operators have traditionally resorted to using heuristics to guide
their routing decisions. We begin by briefly discussing these heuris-
tics and how they correlate with performance; prior work discusses
Facebook’s and other network’s policies in detail [55, 68]. We then
compare MinRTTP50 and HDratioP50 across different routes in an
aggregation to identify cases where performance can be improved.

6.1 Facebook’s Routing Policy
A typical Facebook PoP interconnects with tens or hundreds of
peers and often at least one transit provider (frequently multiple
for redundancy). In most cases, the PoP serving a given user learns
three or more distinct paths to the user: paths announced by one or
more peers, and paths announced by two or more transit providers.

12The fraction of traffic experiencing diurnal and episodic degradation can increase as
the threshold increases. Prefixes experiencing continuous or diurnal degradation at
low thresholds may experience only diurnal or episodic degradation at high thresholds.
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Periods of degraded performance (§5) Opportunity for performance-aware routing (§6)
Class/ MinRTTP50 (§§ 3.1, 3.3 and 3.4) HDratioP50 (§§ 3.2 to 3.4) MinRTTP50 HDratioP50
Continent +5ms +10ms +20ms +50ms −0.05 −0.1 −0.2 −0.5 −5ms −10ms +0.05
Uneventful .575 .705 .809 .929 .598 .625 .655 .742 .890 .943 .844

AF .344 .561 .710 .837 .541 .541 .544 .713 .570 .740 .722
AS .378 .518 .688 .880 .481 .487 .494 .507 .711 .828 .798
EU .637 .747 .813 .932 .590 .634 .688 .754 .939 .977 .857
NA .680 .813 .909 .984 .656 .671 .681 .817 .916 .961 .839
OC .899 .955 .976 .993 .662 .662 .662 .672 .901 .976 .688
SA .296 .454 .633 .817 .497 .501 .541 .721 .583 .676 .913

Continuous .008 .007 .002 .001 .000 .000 .000 .000 .019 .018 .009 .009 .008 .008 .001 .001 .013 .012 .006 .006 .000 .000
AF .017 .015 .002 .001 .000 .000 .000 .000 .212 .202 .212 .199 .212 .196 .052 .051 .119 .115 .043 .041 .000 .000
AS .006 .005 .001 .001 .000 .000 .000 .000 .035 .033 .035 .033 .035 .033 .001 .001 .049 .046 .036 .034 .000 .000
EU .007 .006 .003 .003 .000 .000 .000 .000 .021 .020 .001 .001 .000 .000 .000 .000 .004 .004 .000 .000 .000 .000
NA .009 .007 .000 .000 .000 .000 .000 .000 .003 .003 .002 .001 .000 .000 .000 .000 .004 .003 .001 .001 .000 .000
OC .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .004 .004 .004 .004 .000 .000
SA .010 .007 .001 .000 .000 .000 .000 .000 .011 .011 .011 .011 .011 .011 .000 .000 .072 .069 .046 .043 .000 .000

Diurnal .175 .060 .091 .023 .043 .008 .010 .002 .134 .086 .135 .075 .089 .043 .017 .009 .016 .007 .005 .002 .005 .001
AF .312 .149 .183 .092 .126 .047 .069 .011 .091 .059 .091 .035 .085 .012 .083 .065 .094 .049 .069 .031 .000 .000
AS .322 .125 .166 .041 .064 .011 .022 .003 .075 .054 .069 .051 .065 .049 .085 .054 .035 .010 .012 .004 .003 .002
EU .149 .035 .082 .012 .045 .004 .002 .000 .135 .076 .143 .066 .059 .028 .006 .001 .005 .002 .001 .000 .009 .002
NA .075 .026 .033 .009 .011 .003 .002 .000 .154 .108 .151 .096 .132 .062 .005 .001 .015 .008 .001 .001 .000 .000
OC .034 .009 .018 .003 .008 .001 .002 .000 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
SA .383 .164 .174 .063 .082 .023 .018 .004 .234 .174 .234 .157 .197 .070 .020 .010 .108 .036 .062 .027 .000 .000

Episodic .242 .007 .202 .005 .148 .003 .061 .001 .249 .002 .231 .001 .249 .002 .239 .001 .081 .001 .046 .001 .151 .001
AF .327 .007 .255 .003 .164 .002 .094 .002 .156 .001 .156 .000 .159 .000 .153 .000 .217 .002 .148 .006 .278 .001
AS .294 .012 .315 .012 .247 .006 .099 .002 .410 .002 .410 .002 .407 .002 .406 .001 .205 .007 .124 .003 .200 .001
EU .207 .006 .167 .004 .142 .003 .066 .001 .253 .002 .222 .001 .253 .001 .240 .001 .052 .001 .022 .000 .134 .001
NA .236 .004 .153 .003 .080 .001 .014 .000 .186 .002 .176 .001 .187 .002 .178 .001 .064 .001 .036 .000 .160 .001
OC .067 .001 .027 .001 .016 .000 .005 .000 .336 .001 .338 .001 .338 .001 .328 .001 .095 .001 .020 .000 .312 .002
SA .312 .011 .371 .015 .285 .010 .164 .004 .258 .001 .254 .001 .250 .001 .258 .004 .237 .004 .217 .003 .087 .000

Table 1: Fraction of traffic on prefixes by temporal behavior class (§3.4.2) and user geographic location for periods of degraded performance
(§5) and periods with opportunity for performance-aware routing (§6) at various thresholds of degradation/improvement (§3.3). In each pair
of columns, each user group is assigned a single class and a single continent. The first blue column weights the user group by its total traffic
volume, normalized overall and per continent, and so the classes sum to 1 per column (across classes, without continent breakdown) and
to 1 per column per continent. This column provides insight into the amount of users (weighed by their total traffic) that experienced the
temporal behavior, and therefore provides insight into howwidespread the events are. The orange column shows the fraction of overall (or per
continent) traffic sent from those PoPs to those prefixes during the episodes of performance degradation or of opportunity for improvement
via performance-aware rerouting. This column provides insights into the amount of traffic associated with the episodes. For example (bottom
leftmost entries), 31.2% of traffic to South American clients is for user groups that experience episodic degradation of at least 5ms, and 1.1%
of traffic to South American clients is sent during the episodes of degradation.

When a Facebook PoP hasmultiple routes to a user, it decides among
them by applying the following four tiebreakers in order: (1) Prefer
longest matching prefix, (2) Prefer peer routes, (3) Prefer shorter
AS-paths, (4) Prefer routes via a private network interconnect (PNI).

Peer routes are preferred because they are more likely to be
short, direct routes into the destination network with lower latency
and better performance compared to routes via transit providers
[5, 26]. Further, from operational experience we know that routes
via transit providers frequently lack the capacity required to deliver
Facebook’s traffic to a destination, resulting in congestion (§6.2.2).
Paths via a private network interconnect (PNI) are preferred over
routes via public exchanges (IXPs) because Facebook can monitor
PNI circuit capacity and utilization to prevent congestion (§2.2.3).

6.2 Opportunity for Performance-aware Routing
In this section we quantify the opportunity for improving perfor-
mance by shifting traffic from the policy-defined preferred route
to an alternate route (§3.4). Approximately 47% of sampled HTTP
sessions are routed via the best path to the destination (regardless
of the decisions made by Facebook’s egress routing controller, as
described in §2.2.3). The remaining sessions are used to measure
the performance of alternate paths, which by default are the two
next best paths to the destination (as determined by the policy
described in §6.1). For each aggregation, we compare the preferred
route and the best performing alternate. We find 89.5% of the traffic
has valid aggregations (at least two routes and “tight” confidence in-
tervals) for 60% of the time windows when computing opportunity
to improve MinRTTP50 (85.8% of traffic for HDratioP50).

The solid line in Figure 9 shows the performance difference
between the preferred and best alternate routes for all valid aggre-
gations. The distributions are concentrated around x = 0, indicating
that the preferred and best alternate routes often have similar per-
formance. The MinRTTP50 of the preferred path is within 3ms of
optimal (i.e., whichever of preferred and best alternate performs
better) for 83.9% of traffic, and the HDratioP50 of the preferred
path is within 0.025 of optimal for 93.4% of traffic. Overall, we find
few opportunities to improve performance: MinRTTP50 can be im-
proved by 5ms or more for only 2.0% of traffic, and HDratioP50 can
be improved by 0.05 or more for only 0.2% of traffic. One possible
explanation for finding less opportunity to improve HDratioP50
compared to MinRTTP50 is that congestion often occurs at the des-
tination network (e.g., regional ISPs with limited infrastructure
or access links); in these cases, congestion cannot be bypassed by
using alternate routes as both converge at the destination network
and traverse the bottleneck. MinRTTP50, however, is not defined
by a single bottleneck and can improve whenever a better alternate
route is available. The difference distribution for MinRTTP50 has
more density on x < 0 (i.e., they are skewed to the left), which
means that the preferred route is more likely to outperform the
best alternate route than the opposite.

6.2.1 When and Where Are the Opportunities for Improvement? Ta-
ble 1 breaks down opportunity for improving MinRTTP50 by 5ms
and HDratioP50 by 0.05 by temporal pattern and client continent.
We prioritize HDratioP50 when assessing connection performance
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Figure 9: Possible performance improvement, weighted by traffic, over 15minute
timewindows. Positive valuesmean the alternate path is better than the primary
path (lower MinRTTP50, higher HDratioP50). The shaded areas show the distri-
butions of the lower and uppwer bounds of confidence intervals.
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Figure 10: MinRTTP50 difference (§§ 3.1,
3.3 and 3.4) of alternate routes by rela-
tionship type, weighted by traffic.

and exclude cases where MinRTTP50 improves if HDratioP50 de-
grades (§3.4). Results for higher improvement thresholds are quali-
tatively similar, but apply to smaller fractions of traffic (not shown).
We report on lower thresholds as we identify few opportunities.

We find that most (1.2% of overall traffic) opportunity for im-
proving MinRTTP50 is for user groups classified as continuous,
meaning that the preferred route usually has higher RTT than the
best available route. We find few diurnal or episodic opportunities
to improve MinRTTP50 and even fewer episodic opportunities to
improve HDratioP50 using alternate routes. Opportunity to improve
performance over alternate routes implies that the access network/
technology is not the performance bottleneck. Opportunities to
improve MinRTTP50 and HDratioP50 may be due to few conges-
tion events happening in the non-shared portion of alternate paths
(i.e., intermediate networks). Opportunities to improve MinRTTP50
may also arise due to temporary path changes (e.g., when the nor-
mal path is unavailable or a different alternate route is available).
Since the events are episodic, they suggest that congestion or path
changes may have occurred due to a failure/maintenance, and not
a long-standing bottleneck. As with degradation, we find more
opportunity in Africa, Asia and South America, and less in Oceania.

6.2.2 Are Opportunities Practical? This section investigates im-
plications of using a dynamic traffic engineering system to direct
traffic to better performing paths when there is opportunity. Table 2
breaks down the traffic with opportunity for performance improve-
ment (orange columns in Table 1) by the peering relationships of
the preferred and alternate routes. A significant fraction of oppor-
tunity happens when the preferred and alternate routes have the
same relationship (blue rows). In these cases, the alternate routes
are often less preferred (i.e., not chosen) due to having a longer
AS-path compared to the preferred route. We also inspect how
often the alternate route has more prepending than the preferred
route, as this may be a signal of ingress traffic engineering (per-
haps the route is better performing, but capacity constrained) [23],
meaning that the alternate route should be deprioritized and thus
is not a good candidate for improving performance. An additional
fraction of opportunity is on traffic sent over private and public
exchange peering links that shows better performance on transit
(orange rows). Results are qualitatively similar for MinRTTP50 and
HDratioP50, although transit providers account for more opportu-
nity for improving HDratioP50.

Relationships Absolute Relative Longer Prepended
MinRTTP50 (§§ 3.1, 3.3 and 3.4)

Private → Private .0118 .489 .449 .327
Private → Transit .0046 .191 N/A N/A
Public → Public .0001 .003 .003 .002
Public → Transit .0021 .086 N/A N/A
Transit→ Transit .0026 .108 .048 .027
Others .0029 .122 N/A N/A

HDratioP50 (§§ 3.2 to 3.4)
Private → Private .0003 .081 .066 .023
Private → Transit .0014 .398 N/A N/A
Public → Public .0000 .001 .001 .000
Public → Transit .0003 .091 N/A N/A
Transit→ Transit .0012 .361 .015 .043
Others .0002 .068 N/A N/A

Table 2: Opportunity to improve MinRTTP50 and HDratioP50 by re-
lationship type of preferred and alternate routes (private intercon-
nects, public IXPs, and transit providers). Blue rows correspond
to opportunity over alternate routes of the same relationship type,
and orange rows correspond to cases where a transit performs bet-
ter than a peer. The absolute column shows the fraction of total
traffic with opportunity, and the other columns show the fraction
of opportunity in each relationship (relative column adds up to 1
for MinRTTP50 and 1 for HDratioP50). We show the fraction of op-
portunity where the routing decision occurred because the alter-
nate route’s AS-path was longer, as well as the fraction where it was
prepended more than the preferred route.

Although alternate routes can support measurement traffic, they
may lack the capacity to support all Facebook traffic to the des-
tination [55]. Facebook’s high traffic volumes can congest even
Tier-1 networks; transit networks may lack capacity to deliver the
additional traffic; and peer networks may not expect (or be willing
to carry) the sudden increases in traffic. In practice, a traffic engi-
neering system that simply shifts traffic onto the best performing
alternate route may cause congestion and risk oscillations. An ac-
tive traffic engineering system would need to gradually shift traffic
onto the alternate route, continuously monitor its performance,
and guarantee convergence to a stable state. Multiple large content
providers operating such systems could interact in complex ways,
presenting significant challenges in achieving fairness and stability.

6.3 Comparing Peer and Transit Performance
We now compare the performance of routes by the type of peering
relationship. Our goal is to quantify how peer routes compare to
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transit routes, and how much performance differs between transits.
Given two relationships r1 and r2, we consider aggregations where
the preferred route is of type r1 and there is at least one alternate
route of type r2. As before, we compare the difference inMinRTTP50
and HDratioP50 and ignore time windows for which we cannot com-
pute “tight” confidence intervals (10ms for MinRTTP50 and 0.1 for
HDratioP50). Whereas our analysis of opportunity considered the
best-performing alternate route, here, if multiple alternate routes of
the same relationship type are available, we pick the most preferred
one based on Facebook’s routing policy (§6.1).

Figure 10 shows the distribution of MinRTTP50 difference when
comparing peering vs transit, and when comparing two transits.
The distributions are concentrated around x = 0, indicating that
differences are frequently small. However, some peer routes sig-
nificantly outperform alternate transits, as 10% of traffic has peer
routes with at least 10ms better MinRTTP50 than alternate tran-
sits. All distributions are also shifted to the left, particularly when
comparing peering vs transit. This means that transit rarely has
better MinRTTP50, which is intuitive as peer routes are usually
direct (i.e., have an AS-path length of 1). The distribution for transit
vs transit is less skewed, but the preferred transit routes (i.e., with
either equal or shorter length compared to the less preferred transit
route) are better than alternate transits slightly more often than
not, perhaps because shorter routes correlate with better perfor-
mance. The private vs public line shows that some IXP peers might
present an opportunity to improve performance. In all these cases,
however, utilizing the alternate route in practice requires solving
the challenge of avoiding congestion and oscillations (§6.2.2).

Results for HDratioP50 (omitted) find the difference between
peering and transit is concentrated around x = 0 (comparable
performance) and mostly symmetrical, indicating that cases where
peering outperforms transit occur as often and by as much as cases
where transit outperforms peering. HDratioP50 difference for transit
vs transit are qualitatively similar to the MinRTTP50 difference
(small differences, and slightly skewed to the left).

7 RELATEDWORK
Measuring User Performance. Measuring user performance at

scale and in a representative manner is difficult without a global
vantage point. Prior work has therefore tackled this piecemeal.
For instance, some work focused on performance and interdomain
connectivity in developing regions of Africa [25, 36, 69] while others
have focused specifically on mobile network performance [9, 70].

Studies that more widely characterized user performance typi-
cally still had limited measurement coverage and vantage points
[3, 5, 55, 63, 71]. These limitations made it challenging for them to
characterize at high granularity (in terms of time and client popu-
lation) the performance that can be achieved by a global network.

Understanding Impact of Network Metrics. Researchers have been
trying to understand how performance and user experience may be
impacted by different factors. Modeling TCP performance based on
network parameters has helped us understand how latency and loss
affect performance [8, 21, 50]. Previous work studied the impact of
network and server metrics on HTTP performance [10, 44, 65] and
video engagement [29]. These insights helped us understand the
importance of network metrics on user performance.

Performance Aware Routing. Prior work has explored opportu-
nities for performance aware routing across multiple dimensions.
Akella et al focused on the impact of multihoming and the po-
tential of improving performance by choosing different upstream
ISPs[6, 7]. Spring et al quantified the prevalence of AS-path in-
flation and its impact on latency [58]. A 2014 Measurement-Lab
report showed diurnal performance degradation of several access
networks and concluded it was influenced by ISP interconnections
[3]. Ahmed et al characterized the performance of peering links
compared to transit links and found that the former were mostly
better [5]. Our analysis in §6 is most similar to that of Akella et al, in
that we investigate potential opportunities to improve performance
by changing how traffic is routed to users. However, those studies
were conducted before the era of massive peering [26].

Other control systems. Large content providers have been extend-
ing their backbone network infrastructure and establishing direct
peering relationships with numerous other networks [15, 17, 26].
With the change in infrastructure, these providers have built control
systems [55, 68] in order to have better control over their egress
traffic and bypass BGP limitations. Those systems could benefit
from our measurement insights to better understand under what
conditions they can potentially improve user experience by account-
ing for path performance in their routing decisions. Prior work has
explored challenges in mapping ingress requests to PoPs, including
metrics for quantifying and comparing each PoP’s performance and
routing user traffic [19, 24, 61]. Our work is complementary in that
it focuses on quantifying the performance of egress routes from a
PoP to users and identifying opportunities to improve performance
through changes to traditionally simple egress routing policies.

8 CONCLUSION
This paper provides a large-scale study of user traffic and perfor-
mance from the vantage point of Facebook, a large content provider
with over 2 billion users worldwide. We first dissected the proper-
ties of Internet traffic for large content providers and the challenges
associated with measuring network performance passively when
object sizes are small. We discussed how we collect server-side mea-
surements, including HDratio, our novel approach to characterizing
achievable client goodput. Equipped with a robust measurement
methodology and dataset, we characterized Facebook traffic. Most
users are able to achieve good performance, although there are
regional variances, particularly in Asia, Africa, and South America.
We found limited opportunity to improve performance by incorpo-
rating performance measurements into routing decisions; default
routing decisions taken by Facebook are largely optimal.
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