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1 Introduction

Internet traffic has increased 5× in 5 years [4], much of it
from high-volume services such as cloud storage and peer-
to-peer sharing, and from the explosion of streaming video.
YouTube and Netflix alone combine to contribute nearly half
of the traffic to North American Internet users [8]. This is
driven by the fact that these services deliver high-volume traf-
fic, and by the vast popularity of some of these services—
YouTube has one billion unique users per month [12] and
more than 12% of the US population uses Netflix [6].

This high-volume traffic and its performance is important:
users want a quality Internet experience; content providers
rely on it for revenue; and Internet Service Providers (ISPs)
must cope with delivering its volume. While content
providers want to maximize the user quality of experience
for their services, an ISP needs to accommodate traffic from
a multitude of services and users, often through different ser-
vice agreements such as tiered data plans. High-volume ser-
vices like streaming video and bulk downloads (e.g., software
updates) that require high goodput must coexist with smaller
volume Web services that require low latency.

The question of how to manage high-volume traffic has
generated both technical and policy discussions. Disputes
arise over how to efficiently deliver it [9], and the question
of how to handle the growing volumes of traffic has become
important enough that even the President of the United States
recently weighed in [7]. Content providers spend consider-
able effort optimizing their infrastructure to deliver data from
a server to the client as well as possible [2, 5, 10].

This high-volume traffic has been subject to several forms
of traffic management for several years now. A commonly-
deployed traffic management mechanism, policing, limits a
flow to a preconfigured throughput rate, for example to en-
force a bandwidth corresponding to a data plan purchased by
a user, with any traffic exceeding the rate being dropped im-
mediately. However, a traffic policer (the logical entity in
a router or middlebox that performs policing) can often be
configured to accommodate short bursts that exceed the rate
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Figure 1: TCP sequence graph for a policed server-to-client flow.

limit.
To get a better grasp for the potential impact of policing

on a flow, consider the trace in Figure 1. It shows the time-
sequence plot of a policed flow collected in a lab experiment.
The flow ramps up quickly to over 15 Mbps without any loss
events. At t ≈ 1s, the policer starts to throttle the connection
to a rate of 1.5 Mbps. Since packets are transmitted at a rate
exceeding the policed rate by an order of magnitude, most of
them are dropped by the policer and retransmitted over a 5-
second period (up to t ≈ 6.5s). Following the delivery of the
first 2MB, the sender remains idle for one second until more
application data becomes available. Since the flow does not
exhaust its allotted bandwidth in this time frame, the policer
briefly allows the connection to exceed the policing rate once
the sender resumes transmitting (t ≈ 7.5s till t ≈ 9s). Overall,
the flow observes a loss rate of over 30%.

Understanding Policing. Besides scarce anecdotal evi-
dence [3, 11], little is known about how traffic policing is de-
ployed in practice. Thus, we conduct an exhaustive study of
traffic policing observed in the M-Lab NDT Dataset1. This
work complements a larger study currently under submission
where we analyzed policing in the context of traffic between
CDN servers of a large video content provider and clients all
over the world [1]. The details about the policing detection
algorithm can be found in the joint study. We’ll focus purely

1http://measurementlab.net/tools/ndt
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on the analysis of the NDT dataset here.

2 Methodology

The NDT dataset comprises of millions of packet traces and
metadata collected over the past seven years. Each trace is
the result of a diagnostic task manually triggered between a
client machine one of many M-Lab vantage points. While the
dataset should not be seen as good representation of all Web
traffic, it serves as a valuable addition to the CDN traffic that
we analyzed in conjunction to this work [1]. Since the NDT
dataset entails over 79TB of data we focused our work on a
sample by only looking at the data from the first day of each
month. In addition we filtered out traces with fewer than 100
packets for relevance.

We analyzed each of the remaining 7.5 million traces
through our publicly available policing detection algorithm
described in [1]. Each trace represents a single chunk of data,
as NDT only performs a single transfer from the server to
the client. As such, each trace becomes a datapoint with the
following information:

• Timestamp

• The M-Lab vantage point that sent the data

• The client’s geo-location as reported via the MaxMind
GeoLite2 database2, including country, continent, and
autonomous system number (ASN)

• The result of our policing algorithm, including whether
policing is detected and, if so, with what parameters
(rate and burst size)

• The loss rate experienced in the trace, measured as the
percentage of packets that are retransmitted

• The trace’s overall goodput, as well as the goodput ex-
perienced until the first packet loss.

These datapoints form the base for our analysis. The col-
lection of packet traces on a global scale over a time frame of
more than six years enables us to reason about the prevalence
and impact on policing across the Internet, and analyze lon-
gitudinal trends. For this we answer the following questions
in subsequent sections.

1. How prevalent is policing across traces in the dataset?
Are there differences depending on the region and/or
client ISP? Did the results change over the past six
years?

2. What impact does policing have on the performance of
a TCP connection?

3. What policing configurations do we observe? Are there
indicators for the underlying root cause leading to the
deployment of these policers?

2http://www.maxmind.com
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Figure 2: Prevalence of policing in the M-Lab NDT data-set
across client continents. – represents clients that could not be
geolocated with the MaxMind GeoLite2 Country database

Despite collecting data from clients on a global scale, the
M-Lab dataset does have some limitations. NDT is an ac-
tive measurement toolkit and as such requires the user to trig-
ger the collection of data. While it is integrated into torrent
clients like µtorrent and Vuze to reach a larger user base it po-
tentially biases the data collection towards clients with con-
nectivity problems who are more likely to run speed tests, etc.
All results should therefore be taken with a grain of salt. Nev-
ertheless we believe that the analysis presented in the follow-
ing sections provides valuable insights about traffic policing
in the wild and complements the passive measurement study
conducted from the a content provider’s vantage point, dis-
cussed in our parent paper [1].

3 Prevalence

We start our analysis with a quantitative look at how fre-
quently we observed policing in our dataset. Overall, our al-
gorithm marked 162,080 traces (2.2%), out of a total of 7.4
million relevant traces, as policed. As shown in Figure 2, the
policing frequency varies widely across continents. While
less than 0.4% of traces in North America are marked as po-
liced, 3.4% of the traces from Asia are tagged. We see a sim-
ilar disparity when clustering traces by the client’s country as
well (Figure 3). The bar diagram displays the policing fre-
quency and the sample size for the countries with the largest
fraction of their traces policed. Almost 25% of the traces
matched to clients in Kyrgyzstan are policed. While most of
the countries in the top-10 list contribute a small number of
samples to the overall dataset, there are exceptions like In-
dia and Russia for which we have many data points and high
policing frequencies (10 and 8%, respectively).

Since our dataset incorporates samples from a 6-year time
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(c) Algeria

Figure 6: Prevalence of policing over time, depending on the country. The period of inactivity between July 2014 and May 2015
represents a period without traces due to a bug in the NDT software.
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Figure 3: Top 10 countries with the most policing in the M-
Lab NDT dataset over the whole measurement period. Coun-
tries with fewer than 1000 traces were excluded. The number of
traces for each country is also represented on the right to give a
measure of statistical relevance.
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Figure 4: Prevalence of policing over time. The period of in-
activity between July 2014 and May 2015 represents a period
without traces due to a bug in the NDT software.
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Figure 5: Prevalence of policing over time, depending on the
continent. The period of inactivity between July 2014 and May
2015 represents a period without traces due to a bug in the NDT
software.

frame (2010 to 2015), we also analyzed longitudinal trends.
Figure 4 shows the global policing frequency seen in indi-
vidual samples (the first day of every month) as well as the
long-term trend over the past six years. In the oldest sam-
ples we analyzed (from early 2010), we detected policing in
about 3.5% of the recorded traces. Over time, policing be-
came less prevalent, with less than 1% of the traces policed in
our latest samples. Again we broke down our dataset based
on the client’s continent (Figure 5) and country (Figure 6).
For traces from Asia and Europe we see policing frequencies
decline over time, whereas measurements from the remain-
ing continents do not show a clear trend. For the per-country
breakdown we selected three of the most policed countries
with a substantial number of traces per sample to allow us
to analyze long-term trends. For India, roughly 14% of the
traces were policed in 2010, compared to less than 4% in late
2015. We observe a similar trend for traces tied to clients in
Russia. However, this trend does not apply to all countries.
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Figure 7: Distribution of packet loss rates seen for policed and
unpoliced traces across the whole dataset.
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Figure 8: Packet loss rates seen for policed and unpoliced traces
per continent (client location). Each bar shows the median, as
well as the 10thand 90thpercentile using error bars.

For example, in Algeria we see the opposite trend with polic-
ing being more prevalent in the newer samples.

4 Loss Rates

The use of policing is not merely an academic discussion, as it
has very real consequences to a connection, in particular with
respect to packet loss. Every packet dropped by a policer
must subsequently be retransmitted, further contributing to
transit costs and network congestion at the content provider,
the transit networks, and even the customer ISP which is do-
ing the policing. Figure 7 compares the distribution of loss
rates seen in policed vs. unpoliced traces. Generally, loss
rates for policed traces are at least an order of magnitude
larger compared to their unpoliced counterparts. In the me-
dian, we see a 7.4% packet loss when traces are policed vs.
0.14% for non-policed traces. The 90thpercentile further ex-
acerbates this with 17.6% loss for policed traces, vs. 3.9%
for unpoliced. Many of the locations with high policing rates
also have high loss rates. To rule out the client location as a
confounding factor we break down the results by regions with
different granularities. We start with a breakdown by conti-
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Figure 9: Packet loss rates seen for policed and unpoliced traces
in the top-7 countries (based on the percentage of traces policed
per country). Each bar shows the median, as well as the 10thand
90thpercentile using error bars.

nent, as shown in Figure 8. For each continent, we compare
the loss rates seen with policed vs. unpoliced traces. Clearly
policed traces see much higher loss rates, often at least a mag-
nitude larger compared to unpoliced traces from the same
continent. For example, the median loss rate in Africa is 14%
in policed traces vs. 0.5% in unpoliced traces. Next, we look
at the loss rates when clustering by the client’s country. Fig-
ure 9) shows results for the top-7 countries, based on the per-
centage of traces policed per country. Again, policed traces
see much higher loss rates compared to unpoliced traces from
the same country.

Finally, we break down results based on the client’s AS
(Figure 10). A large number of the top ASes, based on the
percentage of traces policed per AS, now belong to a large
russian provider (Rostelecom). We therefore provide two
plots, one for the top-7 ASes within Rostelecom and one for
all other ASes. In comparison to the per-continent or per-
country figures, the disparity between loss rates for policed
and unpoliced traces is smaller. For most ASes the median
loss rate is twice as high for policed traces. ASes 8443 and
42575 are an exception in this regard. Loss rates are particu-
larly high for these ASes, even when policing is not detected,
suggesting that non-policer induced loss is overshadowing the
the effects of policing here.

5 Policing Rates

Having discussed the prevalence of policing and the impact it
has on packet loss rates, we now describe the goodput rates
enforced by policers when they are present, and how those
rates break down for different clients. This also serves the
purpose of further validating our policing detection algorithm
since, as we will show, the policing rates found in many ASes
coincide with the published rates for the contracts they offer
to their customers.

Figure 11 shows the policing rate distributions broken
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Figure 10: Packet loss rates seen for policed and unpoliced traces in the top-7 ASes (separating Rostelecom and non-Rostelecom
ASes; based on the percentage of traces policed per AS). Each bar shows the median, as well as the 10thand 90thpercentile using error
bars.

ASN Name Country (TLD) Matched to plan rates (Mbps) Unmatched
8193 Uzbektelekom Uzbekistan (UZ) 0.125, 0.25, 0.5, 1 None
28840 Tattelecom Russia (RU) 0.5, 1 1.5
36947 Algerie Telecom Algeria (DZ) 1, 2, 4 0.5
6697 Beltelecom Belarus (BY) 1, 2, 3, 4 None
9829 BSNL India (IN) 0.5, 1 None
6849 Ukrtelecom Ukraine (UA) 0.5, 2 None
9198 Kazakhtelecom Kazakhstan (KZ) None 0.5, 1, 2

Table 1: Top-7 policing ASes using traces after May 2015 only.
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Figure 11: Distribution of policing rates observed in the top-7 ASes (by prevalence of policing) excluding Rostelecom (left) and
ASes that are now incorporated into Rostelecom (right), over the whole measurement period. Six of the top-10 ASes belong now to
Rostelecom.
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Figure 12: Distribution of policing rates observed in the top-7
policing ASes in 2015.
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Figure 13: Distribution of policing rates observed in AS 6697, in
two different time frames.
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down for the top ASes based on the fraction of their traces
being policed. Rostelecom is a large Russian ISP which now
owns six of the top-10 most policed ASes. To get a more
representative view of policing rates used by different ISPs
we plot the ASes now managed by Rostelecom separately.
The distribution for each of the ASes shows a clear staircase
pattern with few policing rates dominating per AS. For ex-
ample, Uzbektelekom (ASN 8193) configures their policers
primarily for throughput rates of 0.25 and 0.5 Mbps, with a
few traces seeing rates of 0.125 and 1 Mbps. To get a more
scoped view we narrow down our measurement window to
traces from 2015 only. The results are graphed in Figure 12.
Note that a different set of ASes are the top policers in this
time frame. This is not surprising. As we mentioned earlier,
policing became less prevalent over time. Thus, it is likely
that some ASes decided to abandon policing as their method
for traffic engineering over time.

For some ASes we see a larger spread of common polic-
ing rates for two reasons. First, we aggregate data from the
whole six-year measurement period during which the config-
ured policing rates can change. Figure 13 examplifies this for
AS 6697. We generated the distribution for samples from
2010 to 2014, and for the samples from 2015 separately.
While we observe rates of 1, 2, and 3 Mbps in both distri-
butions (albeit in different quantities), the rates of 0.25, 0.5,
4, and 5 Mbps are only seen in one of the time frames. Sec-
ond, even if an ISP currently offers a relatively small number
of data plans, legacy data plans remain intact resulting in a
variety of enforced bandwidths.

To quantify how well clustered the rate distributions are
we devised a simple algorithm to identify the most prominent
clusters (i.e. rates with a margin of error of ±5%). Using this
algorithm we can find how many clusters would be needed to
represent a certain amount of the identified rates (Figure 14)
or, conversely, we can find how many rates are represented
by a fixed amount of clusters (Figure 15). The results show
that policed traces are far more likely to fall in well defined
clusters than non-policed ones. For most ASes, 75% of po-
liced traces can fit in six clusters or less, whereas non-policed
traces would need 27. On the flip-side, eight clusters can ex-
plain 82% of most policed traces, compared to just 36% for
non-policed ones.

Finally, we note that the observed policing rates cluster
around round numbers or fractions thereof that are commonly
tied to data plans. For the top ASes based on the fraction
of traffic policed in 2015, we looked up the data plans and
bandwidth rates these ISPs offer to their customers and tried
to find matches for the observed policing rates. The results
are shown in Table 1. Generally, the policing rates do align
with data plan rates with a few exceptions. For example, for
Kazakhtelecom we could not find data plans that match any
of the policing rates of 0.25, 0.5, and 1 Mbps that we see in
our dataset. The current data plans that this ISP offers start at
4 Mbps. It is possible that the policing rates are tied to legacy

plans. It is also possible that they reflect rates enforced for
oversubscribers, i.e. when a customer exceeds a data limit.
Our main paper discusses a case of this observation [1]. In
conclusion, we conjecture that policers are indeed used to en-
force data plans rather than just to mitigate network conges-
tion.

6 Conclusions

Upon examination of the M-Lab NDT dataset, we find that
traffic policing patterns mostly confirm what was seen in our
larger and more representative dataset from the wild [1]. As
before, policing is mainly prevalent in Asia, and relatively
rare in the Americas. We also reconfirm the pattern of sig-
nificant packet loss induced by policing, with policed traces
suffering an order of magnitude more loss than non-policed
traces. Finally, while the lack of ground-truth for the NDT
data-set precludes a hard evaluation, we once again confirm
that the detected policing rates are largely consistent with ex-
pected data-plan rates. As a result, we find that the good-
put seen for policed traces much more closely fits within a
few clusters than for non-policed traces. For the ASes where
policing was more prevalent, we also confirm that these clus-
ters largely coincide with the rates they publish for their data-
plans.

While the other dataset represented a fairly short time-
window, the NDT dataset spans six years, allowing for a more
longitudinal study. We find that as the Internet becomes more
widely deployed in developing nations, their use of policers
to has been reducing over time. Up to 15% of traces were po-
liced in India and Russia in 2010, compared to less than 5%
in 2015. This feeds into a similar global trend, as the preva-
lence of policing reduced world-wide from 3.5% in 2010 to
less than 1% in 2015.

We hope that the examination of this publicly available
data, in addition to the private data from a large video content
provider, will further help inform network operators of the
disadvantages of policing over other forms of traffic manage-
ment. To further help the academic community in studying
these patterns, we have made the raw data behind this report
publicly available on the accompanying website3.
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