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Internet-Scale IPv4 Alias Resolution with MIDAR
Ken Keys, Young Hyun, Matthew Luckie, and k claffy

Abstract—A critical step in creating accurate Internet topology
maps from traceroute data is mapping IP addresses to routers,
a process known as alias resolution. Recent work in alias
resolution inferred aliases based on similarities in IP ID time
series produced by different IP addresses. We design, implement,
and experiment with a new tool that builds on these insights
to scale to Internet-scale topologies, i.e., millions of addresses,
with greater precision and sensitivity. MIDAR, our Monotonic
ID-Based Alias Resolution tool, provides an extremely precise ID
comparison test based on monotonicity rather than proximity.
MIDAR integrates multiple probing methods, multiple vantage
points, and a novel sliding-window probe scheduling algorithm
to increase scalability to millions of IP addresses. Experiments
show that MIDAR’s approach is effective at minimizing the false
positive rate sufficiently to achieve a highpositive predictive value
at Internet scale. We provide sample statistics from running
MIDAR on over 2 million addresses. We also validate MIDAR
and RadarGun against available ground truth and show that
MIDAR’s results are significantly better than RadarGun’s. Tools
such as MIDAR can enable longitudinal study of the Internet’s
topological evolution.

Index Terms—alias resolution, Internet topology, network mea-
surement, IP identifier

I. I NTRODUCTION

V ARIANTS of the traceroute tool [1] are widely used to
discover Internet topology [2]–[5]. Traceroute shows the

sequence of router interfaces on the path from the source to the
destination, and executing traceroute from multiple sources to
multiple destinations reveals many router interfaces and allows
us to infer links between them. A router by definition has at
least two interfaces; Internet core routers often have dozens.
Alias resolution is the process of identifying which interface
IP addresses belong to the same routers and is required to
convert the abstract IP-level topology discovered by traceroute
to a more concrete router-level topology [6], [7] that better
describes the physical infrastructure of routers and linksand
thus is more useful for studying the diversity and resiliency of
the Internet infrastructure. The research community’s current
inability to draw a map that closely reflects physical connectiv-
ity is a fundamental gap in our knowledge of the Internet, and
limits what else we can know or even study, including investi-
gating the potential impact of loss of critical components of the
infrastructure. In conjunction with techniques for annotating
routers with AS ownership [8], router-level topologies also
enable the study of Internet economics and policy questions,
such as which paths are not only feasible but consistent with
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routing policies. Annotated with geolocation information[9],
router-level topologies enable the study of ISP relationships at
a finer granularity than allowed by an AS-level topology, such
as peering at multiple geographical locations.

There are many alias resolution techniques and implemen-
tations available [10], but they are limited in accuracy and
coverage, and none are practicable at Internet-wide scale,i.e.,
millions of IP addresses. The Mercator technique [6], [11],
[12] identifies aliases by sending a probe packet to one address
and getting a response from a different address. Ally [4] infers
that a pair of addresses are aliases if probe packets sent to
them produce responses with IP ID values in the correct
order. Spring et al. [13] described techniques for drawing alias
inferences from similarities in reverse DNS lookups, and from
simple analysis of traceroute graphs. APAR [14], [15] and
kapar [10] use more sophisticated graph analysis techniques
to infer subnets linking routers, and from that, aliases. Dis-
Carte [16] infers aliases from analysis of a graph created from
combined traceroute and Record Route data. RadarGun [17]
looks for similarities in IP ID time series collected from
many addresses. Sherry et al. [18] describe the use of the IP
prespecified timestamp option to infer aliases. MERLIN [19]
andmrinfo [20] send an IGMPASK_NEIGHBORS message
to list the IPv4 multicast-enabled interfaces of a router.

In this paper, we introduce MIDAR, our Monotonic ID-
Based Alias Resolution tool, an IP ID-based alias resolution
technique inspired by Ally and RadarGun. AnIP ID value is
a 16-bit number stored in the IP ID field in the IP header,
which the sender of a packet sets to some unique value so
that the recipient can identify and reassemble fragmented
packets. For alias resolution purposes, we are concerned with
the IP ID values of packetsoriginated by a router, rather
than forwarded by a router. Routers themselves can send
packets, for example, by responding to ping or traceroute;
by running BGP or NTP; and by providing NetFlow, SNMP,
or remote terminal access. There is no standard method for
generating IP ID values, but many routers maintain a simple
IP ID counter that is incremented for packets it generates and
which wraps from 65 535 to 0. The key observation is that
if a router uses ashared IP ID counterfor generating IP ID
values, then the router will use consecutive IP ID values when
sending consecutive packets no matter which interface address
it uses as the source address. Thus, if two addresses share a
counter, then they are conclusively aliases, and theirIP ID
time series, a sequence of IP ID values collected over time,
will have similar values in a given measurement period and
will form a monotonically increasing IP ID sequence when
merged together, modulo counter wraps. The latter expresses
the monotonicity requirement, a necessary condition for two
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time series to be derived from a shared counter. IP ID-based
alias resolution techniques infer aliases by analyzing theIP
ID values in response packets and inferring which interface
addresses use a shared counter. RadarGun infers a shared
counter by looking for similar time series values, whereas
Ally and MIDAR infer a shared counter by checking for the
monotonicity requirement, though in different ways.

Most routers seem to use a single IP ID counter shared
across all interfaces and protocols, but any IP ID based alias
resolution technique must account for those that do not. Some
routers set the IP ID to zero or some other constant value, a
random value, or the value used in the probe packet [17]. Such
non-counter IP ID values can be detected and excluded from
IP ID-based alias resolution. Some other routers use separate
counters for each interface or subset of interfaces. Use of such
unshared IP ID counters is undetectable from an analysis of
IP ID values alone. Because two addresses may be aliases but
not share an IP ID counter, IP ID-based techniques cannot
find all alias pairs, and cannot definitively conclude that two
addresses that do not share a counter are not aliases. Thus,
IP ID-based techniques can produce three results: 1)positive
shared counter andpositivealiases; 2)negativeshared counter
and inconclusivealiases; 3)inconclusiveshared counter and
inconclusivealiases.

Because of the limited precision of IP ID values and the
limited variation in rates of change, orvelocities, of IP ID
counters (see Appendix A), it is inevitable that any large set
of addresses will have many pairs of addresses with similar or
aligned IP ID time series out of sheer coincidence, as predicted
by the birthday paradox and the pigeonhole principle. Suppose
a given alias resolution technique has afalse positive rateof α
related to how much tolerance it allows when comparing two
time series to infer a shared counter. Then forN addresses,
there areO(N2) pairs of addresses, and we can thus expect
O(α×N2) false positives (FP), but onlyO(N) true positives
(TP) (see Appendix C). WhenN > 106, as in the case
of Internet-scale alias resolution, theprevalenceof aliases is
extremely low, approximately 1 in a million. Hence, unless the
false positive rate is extremely low,α ≪ 1/N = 10−6, false
positives can overwhelm true positives, and the alias technique
will not be reliable for identifying aliases. We can quantify the
degree of reliability with thepositive predictive value(PPV)
metric, which measures the fraction of positive test results—
“shared counter” and thus “alias”—that are correct; that is,
TP/(TP+FP). Another important metric for evaluating IP ID-
based techniques issensitivity, the fraction of shared counters
that produce a positive test result; that is, TP/(TP+FN), where
FN stands for false negatives. For the purposes of comparing
the effectiveness of IP ID-based techniques, the false negatives
we are interested in are failures to detect counter sharing,
not failures to detect aliases. (See Appendix B for further
discussion of these and related terminology.)

There are two main challenges for an alias resolution
technique as the number of addressesN increases: 1) probing
and testing theO(N2) candidate alias pairs, and 2) minimizing
the false positives relative to true positives; that is, ensuring a
high PPV. The Ally technique requiresO(N2) probes to test
all possible pairs of addresses. RadarGun improves on Ally’s

scalability by probing an entire set of addresses as a whole
with O(N) probes, but scalability is still limited by a need
to obtain overlapping time series from all addresses. Neither
Ally nor RadarGun has a sufficiently low false positive rate to
handle the millions of addresses that appear in macroscopic-
scale Internet topology graphs such as that collected by
Ark [21]. Repeating the alias tests of Ally and RadarGun can
lower the overall false positive rate and thus increase the PPV,
but because these tests suffer from false negatives, repetition
can also decrease the sensitivity, causing aliases to be missed.

MIDAR is an attempt to overcome these limitations to
scaling to millions of IPv4 addresses. In a nutshell, MIDAR
collects IP ID time series data from many different vantage
points, then mines the data using our Monotonic Bounds
Test (Sec. III-B) to discover which IP addresses are likely
aliases to the same router. The key features of MIDAR are
the Monotonic Bounds Test(MBT), an ID comparison test
with near perfect sensitivity based on monotonicity ratherthan
proximity, which allows MIDAR to achieve an extremely low
false positive rate and thus a high PPV; the use of multiple
probing methods to increase the responsiveness of targets and
thus extend the coverage of IP ID-based techniques; and the
use of multiple vantage points and a novel sliding-window
scheduling algorithm to achieve probing scalability.

This paper is organized as follows. Sec. II reviews the
features and limitations of the two best known IP-ID based
approaches: Ally and RadarGun. Sec. III presents the essential
concepts and components of MIDAR. Sec. IV describes the
four stages of our full MIDAR system: Estimation, Discovery,
Elimination, and Corroboration. Sec. V reports results from
an Internet-scale MIDAR experiment. Sec. VI compares the
results against ground truth and compares MIDAR’s MBT to
RadarGun. Sec. VII summarizes our contributions and plans
to integrate MIDAR into a larger system for alias resolution.

II. EXISTING IP ID TECHNIQUES ANDL IMITATIONS

A. Ally

The Ally component of Rocketfuel was the first tool to
examine IP ID values for alias resolution. Several papers
describe the Ally alias resolution tool [4], [13], [17]. We base
our description on Bender et al. [17] and on the Ally source
code included in Scriptroute v0.4.8 [22] (earlier standalone
releases of Ally are now deprecated). The user can direct Ally
to probe with one of UDP (default), TCP ACK, or ICMP.

A key step of Ally is checking whether the IP ID values of
two candidate addresses arein order; that is, the values form
an increasing sequence consistent with the use of a shared
counter. Because IP ID counters wrap from 65 535 to 0, Ally
must use sequence space arithmetic, similar to that defined in
RFC 1982 [23]. We will use the notationX ≺ Y to denote
the less thanrelationship within sequence space.

Ally uses the following procedure to test whether addresses
A and B are aliases. First, Ally sends a probe toA, waits
1 ms, then sends a probe toB. Suppose the IP ID values in
the responses areA1 andB1, respectively. Ally first checks
whetherA1 and B1 are in order and close enough to each
other; namely, thatA1 − 10 ≺ B1 ≺ A1 + 200. If so, then
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Ally waits 400 ms, sends a probe toB, waits 1 ms, and sends
a probe toA. Ally then checks that the resulting IP ID values
B2 andA2 meet the conditionB2 − 10 ≺ A2 ≺ B2 + 200
and thatA1 ≺ A2 andB1 ≺ B2. If all these conditions are
met, then Ally declaresA and B to be aliases; otherwise,
they are declared to be “non-aliases,” but like all IP ID-based
techniques, Ally can only infer that they do not share a counter.

Because Ally cannot know the exact generation time of each
collected IP ID value, it uses an error margin when comparing
the values. TheA1 − 10 margin accommodates reordering of
probes on the forward path, which would causeB1 to be
generated beforeA1, with B1 ≺ A1. The A1 + 200 margin
accommodates the advancement of the IP ID counter between
the arrival of the probe packets atA and B. To keep this
inter-arrival advancement low, Ally sends probe packets just
1 ms apart, but the packets typically undergo some dispersion
due to cross traffic, routing differences (for example, ifA
andB reside in different prefixes), load-balanced paths with
different lengths, and other causes. More dispersion allows
greater potential counter advancement between IP ID samples.

Ally has the following limitations. First, it is unclear
whether these empirically-derived margins of error (X−10 and
X+200) are universally applicable to typical packet dispersion
amounts and counter velocities. Second, using fixed margins
of error is a fragile balancing act between minimizing false
positives and false negatives. The wider these margins are,the
more they allow false positives from chance alignments of IP
ID values. However, if these margins are too narrow, then they
can lead to false negatives if counters advance at a high rate
or in bursts, or if probe packets undergo a significant amount
of dispersion. Third, Ally relies on only four IP ID samples to
infer aliases, which makes Ally susceptible to false positives
caused by chance alignments, independent of the margins of
error. Fourth, Ally cannot perform IP ID-based alias resolution
on a router that rate limits its responses, because Ally needs
the responses to be generated closely in time.

Finally, a significant drawback of the Ally technique is
that, givenN addresses, it requiresO(N2) probes to test all
possible pairs. To make Ally more practical, some heuristics
are needed to reduce the size of the search space, such as
requiring a pair of addresses to have similar return TTL values
from a set of vantage points, as was done in Rocketfuel.
Although this heuristic significantly reduces the amount of
pairwise testing needed at moderate scales, its effectiveness
with millions of addresses has never been demonstrated.

Even if it were possible to apply Ally to one million
addresses, Ally’s false positive rate (α) would be too high
to produce a useful positive predictive value. The margins of
error in Ally’s test allow samples to be 210 ID values apart, or
210/65536 = 0.32% of the ID space. The two halves of the
test are closely correlated because they are taken only 400 ms
apart and velocities are typically low (Fig. 7), suggestingα is
only slightly lower than 0.0032. But even if the two halves of
the test were completely independent,α would be at best about
0.00001. Extrapolating these rates to one million addresses
suggests there would be at least 5 million false positives, and
probably closer to 1.6 billion, which is orders of magnitude
more than the expected 1 to 10 million true positives.

B. RadarGun

We base our discussion of RadarGun on the v0.3 source
code [24] and the RadarGun paper [17]. The RadarGun
implementation can probe with TCP ACK (default), UDP, or
both (without special handling of cross-protocol comparisons).

RadarGun improves on Ally’s scalability by probing an
entire set of addresses in parallel,O(N) probes, rather than a
series of pairs,O(N2) probes. RadarGun makes 30 probing
passes through the address list to obtain 30 IP ID samples from
each address, with samples from different addresses inter-
leaved with each other; for example, given addressesA,B,C,
RadarGun takes the samplesA1, B1, C1, A2, B2, C2, . . .. This
probing scheme produces an IP ID time series for each
address. An IP ID time seriesA (for addressA) consists of a
sequence of samples{Ai}, where eachAi specifies the sample
time and the IP ID,(ti, ID i). RadarGun uses the measured
receive time of a response packet as an approximation of the
sample time, since it does not know exactly when a router
generated a given IP ID sample. RadarGun discards a time
series as unusable if 1) fewer than 25% of the 30 probes
elicited responses (that is, RadarGun has fewer than 7 IP ID
samples), 2) all collected samples have an IP ID of zero or
all have the IP ID used by probes, or 3) the time series is
nonlinear—that is, either the IP ID counter is advancing too
quickly to measure, or IP ID values are randomly generated.

RadarGun classifies a time series as nonlinear in two cases.
First, a time series with too manynegative deltasis nonlinear.
A delta is the difference of adjacent IP ID samples; that
is, ∆ID i = ID i+1 − ID i. Negative deltas occur naturally
as an IP ID counter wraps from 65 535 to 0. For a given
sampling interval, the faster an IP ID counter advances, the
more frequently a negative delta will appear in a time series,
since the counter can wrap more often within the sampled
time period. Negative deltas can also occur when IP ID values
are generated randomly, since the average probability of an
individualdelta being negative is 50% in a sequence of random
values. RadarGun discards a time series as nonlinear if greater
than 30% of the deltas are negative, since it cannot know if
the cause is too fast a counter or random IP ID values.

Second, a time series with too high a velocity—that is, the
apparent rate of advancement of an IP ID counter—is non-
linear. RadarGun computes the velocity from anunwrapped
IP ID time series. A time series is typically unwrapped by
adding 65 536 (the full IP ID space) whenever a negative delta
occurs. RadarGun also tries to account for counter wraps that
may have occurred in large gaps in time between samples,
even when the delta is positive. RadarGun infers the number
of possible wraps in each gap from an estimate of the time
between wraps,∆twrap, derived from a simplistic calculation
on the positive deltas in a time series. For a gap of duration
∆tgap, there are⌊∆tgap/∆twrap⌋ inferred wraps, and RadarGun
adds this many multiples of the IP ID space when unwrapping
the time series. Once a time series has been unwrapped,
RadarGun computes the velocity as the slope of the linear
least squares line that best fits the unwrapped IP ID values.
The more negative deltas there are in a time series, the higher
the apparent velocity of the unwrapped samples. Therefore,
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Fig. 1. There can always be a false positive under the RadarGun distance
test regardless of the threshold used. For example, the average IP ID distance
between these time series is only 40, which is below the 200 threshold for
being shared counters, but these addresses cannot share a counter because the
merged sample points do not form a monotonic sequence over time. Asimilar
construction exists for any threshold.

both true high velocity counters and random IP ID values will
lead to high apparent velocities. RadarGun discards a time
series as nonlinear if the velocity is greater than 800 ID/s,
since it cannot know the cause.

The key insight of RadarGun is that if two addresses share
an IP ID counter, then their time series should have nearby IP
ID values when overlapping in time. RadarGun checks for this
condition by employing adistance testto measure how close
two time series are in IP ID space. The key building block
of the distance test is the calculation of thesample distance,
the distance between an individual sample point in one time
series and the expected value of the IP ID counter in the
other time series at the same moment in time. There are two
cases to computing the sample distance, with all calculations
performed on the unwrapped time seriesA andB of the two
addresses being tested. LetBj = (tB,j , IDB,j) be a sample
of B. In the first (and more common) case,Bj lies between
adjacent samples ofA in time, that is, there is somei for which
tA,i ≤ tB,j < tA,i+1. RadarGun then uses linear interpolation
betweenAi and Ai+1 to estimateIDA,est, the expected IP
ID value of A at tB,j . In the second case,Bj does not lie
between any two samples ofA, and RadarGun extrapolates
the best fit line throughA (the same line used to calculate the
velocity) to estimateIDA,est. In either case, RadarGun then
computes the sample distanceδB,j = |IDA,est− IDB,j |. After
computing all sample distancesδB,j betweenB andA, and
similarly computing the sample distancesδA,i betweenA and
B, RadarGun calculates the average sample distance:

∆A,B =

∑

i δA,i +
∑

j δB,j

|A|+ |B|

If ∆A,B < 200, then RadarGun concludesA andB are aliases;
if ∆A,B > 1000, then they are not aliases. Otherwise, the
distance test is inconclusive.

By employing the distance test on time series, RadarGun
is more tolerant than Ally of ICMP rate limiting and less
susceptible to false positives caused by chance alignments.
However, RadarGun’s distance test is still only a heuristic.
There is no inherently right choice for the distance thresholds,
since they must be low to minimize false positives with
lower velocity addresses, and high to minimize false negatives

with higher velocity addresses. Even if the thresholds were
chosen adaptively to velocities, the thresholds must stillhave
margins of error to allow for bursty IP ID counter advancement
and other uncertainties, which prevents exact separation of
shared counters from unshared. As a result, adjusting the
distance thresholds never fully eliminates false positives, false
negatives, or inconclusive results, but merely shifts the balance
between them. Regardless of the threshold used, there can
always be a false positive under the distance test that couldbe
avoided by checking for monotonicity, as illustrated in Fig. 1.

As a consequence of the above weaknesses, the distance
test produces too many false positives for RadarGun to scale
to millions of addresses. For example, extrapolating the false
positive rate (0.0005) implied in Bender et al. [17] to one
million target addresses suggests there will be an order of
magnitude more false positives (264 million pairs) than true
positives, giving a very poor PPV. An obvious solution to this
problem would be to repeat the distance test at a later time, but
because the test also suffers from false negatives, some shared
counter pairs would inevitably be lost with each repetition.

Furthermore, because RadarGun needs overlapping time
series from all addresses for the distance test, there is a
practical limit to the number of addresses RadarGun can
handle before requiring network-unfriendly levels of probing
bandwidth. For example, probing one million targets with 10s
spacing would require 100 000 packets per second, or 35 Mb/s.

III. MIDAR D ESIGN

To find aliases among a large numberN of router addresses,
MIDAR collects an IP ID time series from each of the
addresses and tests for a shared IP ID counter in each of
the O(N2) address pairs. We take a bottom-up approach to
describing MIDAR. In this section, we describe the essential
concepts and key features of MIDAR, and discuss our ap-
proach to mitigating false positives. In the following section
we will describe how we integrate these components into the
complete MIDAR system.

A. Time series in MIDAR

MIDAR takes a sampling of IP ID values to construct
the time series used for alias resolution. MIDAR considers a
time seriesunusablefor alias resolution if 1) fewer than 75%
of the probes elicited responses from the target; 2) 25% or
more of the collected samples aredegenerate, that is, have
a constant IP ID value (such as zero) or echo the IP ID
used by probes;1 or 3) the time series cannot be modeled
as a monotonically increasing sequence (that is, the observed
frequency of negative deltas is so high that the IP ID values
may have been generated randomly or by a counter that is
wrapping too quickly to measure). Our quality thresholds are
higher than RadarGun’s, but in practice few interfaces produce
a medium-quality time series that would be considered usable
by RadarGun but unusable by MIDAR. However, the higher

1We do observe real time series with more than 25% but fewer than 100%
degenerate samples. These samples appear to be the result of some mechanism
other than chance occurrences in a time series produced by a counter.
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thresholds do matter in MIDAR’s procedure for choosing the
best probing method for each target, as described in Sec. III-D.

To reliably detect all counter wraps, we must use a sampling
interval shorter than the wrapping period, so we obtain exactly
one negative delta whenever the counter wraps and positive
deltas at all other times. Sampling even more frequently will
yield more positive deltas while the counter is increasing
monotonically but still only one negative delta at each counter
wrap, decreasing the overall fraction of deltas that are negative.
We adopt RadarGun’s 30% threshold on the maximum allowed
fraction of negative deltas before we consider a time series
unusable. This 30% threshold is intentionally more conserva-
tive than the 50% threshold suggested by the Nyquist-Shannon
sampling theorem when counter wrapping is thought of as a
periodic signal. The 30% limit on negative deltas also has the
advantage of excluding 98.8% of random time series, which
cannot be used for alias resolution (see Appendix D).

We define themaximum acceptable sampling intervalImax

to be the largest sampling interval that still ensures the fraction
of negative deltas is no more than 30%. MIDAR collects an
initial time series from each target address using a small fixed
sampling interval and then calculatesImax individually for each
target based on the target’s observed velocity. MIDAR uses the
computedImax to customize the sampling interval individually
for each target when collecting additional time series actually
used for alias resolution (Sec. III-E).

Observe that limiting the fraction of negative deltas to 30%
is equivalent to limiting the average counter advancement per
sample to 30% of the ID space, because the counter advances
through 100% of the ID space between each counter wrap.
Hence, the maximum acceptable sampling interval for a time
series with velocitȳv is

Imax = (0.3× 216)/v̄ (1)

We define the velocitȳv of a time series to be the average
slope of the segments weighted by segment duration; that is,

v̄ =

∑

∆ID i
∑

∆ti
(2)

where∆ID i and∆ti are the change in ID and time, respec-
tively, between samplesi and i + 1. If a ∆ID i would be
negative, then weunwrapit by adding216. To avoid distortions
due to sampling gaps or atypical counter behavior, we exclude
discontinuities (Appendix E) when calculating velocity.

B. Monotonic Bounds Test

The Monotonic Bounds Test (MBT) checks whether the IP
ID times series of two addresses meet the monotonicity re-
quirement, a necessary condition for sharing an IP ID counter;
that is, whether the two time series form a monotonically
increasing IP ID sequence when considered as a single merged
time series. The MBT is a rigorous test that does not employ
ad hoc thresholds to accommodate uncertainties.

MBT checks that two time seriesA andB meet the mono-
tonicity requirement by individually checking that each sample
of B meets the monotonicity requirement with respect to the
samples ofA, and vice versa. If all sample tests pass, thenA
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Fig. 2. Illustration of the sample-wise execution of the Monotonic Bounds
Test (MBT). Each sample in one time series must lie within the monotonic
bounds set by the closest surrounding samples (in time) of the other time
series (e.g.,B2 must fall within the bounding box with corners atA1 and
A2). When there is a counter wrap between the surrounding samples(e.g.,
betweenA4 andA5 when checkingB5), the monotonic bounds also wrap.
(Velocity is exaggerated for clarity.)

andB as a whole meet the monotonicity requirement. We first
describe MBT in an idealized form and then describe the de-
tails needed to apply it to real data. LetBj = (tB,j , IDB,j) be
a sample ofB that we will check with respect to the samples
of A. Let Ai = (tA,i, IDA,i) andAi+1 = (tA,i+1, IDA,i+1)
be adjacent samples inA such thattA,i < tB,j < tA,i+1; that
is, Ai andAi+1 are the nearest adjacent samples ofA in time
to Bj . Fig. 2 illustrates the two different MBT cases. In the
first case, the counter has not wrapped between the samples
Ai and Ai+1 (that is,∆IDA,i > 0), and so we can simply
check thatIDA,i < IDB,j < IDA,i+1. We can visualize this
constraint as requiringBj to fall within the vertical bounds
of the box with corners atAi and Ai+1. For example, in
Fig. 2, B2 lies betweenA1 andA2 in time and falls within
the bounding box of these samples, and thusB2 meets the
monotonicity requirement. In contrast,B3 is betweenA2

and A3 in time but does not fall within the bounding box
(becauseIDB,3 6< IDA,3) and thus violates the monotonicity
requirement. In the second MBT case, the counter has wrapped
betweenAi andAi+1 (that is,∆IDA,i < 0). Therefore, the
bounding box betweenAi andAi+1 is split into two pieces,
and we must have eitherIDA,i < IDB,j or IDB,j < IDA,i+1.
For example,B5 lies betweenA4 andA5 and passes, since
IDA,4 < IDB,5. B6 also lies between these samples but
violates the monotonicity requirement by lying outside both
pieces of the bounding box. If all samples ofB pass, then
MBT swaps the roles ofA andB and repeats the procedure.
If any sample-wise test fails, we can immediately conclude
that thatA andB do not share a counter without performing
the remaining sample-wise tests.

So far, we have described a time series as being{(ti, ID i)}
with ti being the sample time. To maintain a virtually zero
false negative rate (a crucial property relied on in MIDAR),
MBT needs accurate sample times to determine which samples
define the monotonic bounds for each sample-wise test. The
true sample time, τi, is the exact moment in time that a router
generated the valueID i. We cannot determineτi with active
measurement, but we can calculate accurate bounds onτi. We
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Fig. 3. Monotonic Bounds Test with imperfect time data.Sample time ranges
are shown as horizontal bars (with exaggerated size for clarity). Samples B
and C lie at least partially within the bounding boxes, makingit possible to
draw a monotonic curve (dotted lines) through them connecting neighboring
samples from interface A, showing that samples B and C may come from a
counter shared with A. Sample D lies completely outside the bounding boxes,
so no monotonic curve can connect samples in A and still pass through D,
so D cannot come from a counter shared with A.

know the measured timessi when we sent our probe andri
when we received the response, and that the true send and
receive times are within±ǫ of the measured times, whereǫ is
the maximum clock error of all monitors during a MIDAR run
(see Sec. III-D). Since the response must have been generated
between sending and receiving, we know that the true sample
time must be within thesample time range(si − ǫ, ri + ǫ),
which we will substitute forτi in MBT execution.

MIDAR obtains the samples of a single time series sequen-
tially by sending a probe only after receiving the response
to a prior probe or after a timeout, so there is never any
uncertainty about the ordering of the samples within a single
time series. However, since MIDAR probes multiple interfaces
in parallel (Sec. III-E), two samples from separate time series
can have overlapping time ranges, making the true ordering
of these samples uncertain. When the time range of one of
the bounding samples overlaps that of the test sample, MBT
widens its bounds to the next closest sample whose time range
does not overlap the test sample. This makes the monotonic
bounds larger than they could have been if the true ordering of
samples were known, but the sensitivity of the test is preserved
despite these uncertainties—a test failure against the larger
bounds conclusively means that there is no shared counter.
We can thus accommodate uncertainties in both the response
time and clock error without compromising the rigor of MBT.

Fig. 3 illustrates the execution of MBT using sample time
ranges. We wish to individually test the samplesB, C, andD
against the surrounding samples of{Ai}. The time ranges of
B andD (shown as horizontal bars) do not overlap with the
time ranges ofAi, so we know the true ordering of these
samples, and MBT execution is straightforward: sampleB
passes againstA1 andA2, and sampleD fails againstA2 and
A3. SampleC is the interesting new case, since the time ranges
of C and its nearest surrounding sampleA2 overlap. Because
of the overlap, we cannot know whetherC precedesA2 and
therefore should be bounded byA1 andA2 (the left bounding
box), or whetherC follows A2 and should be bounded by
A2 and A3 (the right box). MIDAR simply avoids relying
on the ambiguousA2 and looks outward towardA1 andA3,
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Fig. 4. With all other things being equal, monotonic bounds (that is, the
range of IP ID values allowed by the MBT) become tighter when a time series
has a lower velocity (subfigure (a) compared to (b)) or when IP ID values are
sampled on shorter intervals ((c) vs. (b)).

the nearest samples that do not overlap withC, to find the
suitable monotonic bounds. SampleC falls completely within
this larger bounding box (that is,IDA,1 < IDC < IDA,3)
and therefore passes. Equivalently,C falls at least partially
within one of the two smaller bounding boxes. The dashed line
passing throughA1, C, andA2 illustrates a possible monotonic
counter consistent with these sample values and time ranges.

Because MBT is based strictly on the definition of mono-
tonicity, we must detect and account for discontinuities (Ap-
pendix E) and other anomalies (Appendix F) that occur occa-
sionally in time series that otherwise adhere to the definition.
Whenever a sample-wise MBT test involves an ID value that
is questionable due to a discontinuity or anomaly, the test may
generate a false negative. Rather than risk this rare error,we do
not apply the MBT to that sample, and rely on the remaining
sample-wise tests for the most accurate result.

In general, the more ID samples we can test with MBT, and
the tighter the monotonic bounds, the more confident we can
be that a positive test result means a shared counter. Monotonic
bounds are typically small in practice for two reasons. First,
monotonic bounds are defined separately by each pair of
samples and are by construction as tight as possible. Thus, the
lower velocity time series in Fig. 4a has tighter bounds than
the higher velocity time series in Fig. 4b. Low velocity time
series make up the majority of the cases observed in our data,
and the monotonic bounds can be quite small; for example,
adjacent samples with ID values 5 and 7 define monotonic
bounds that can be satisfied by only a single ID value, 6.
Second, we can use a shorter sampling interval to tighten the
bounds independently of the target velocity, as illustrated by
Fig. 4b and 4c, which have identical counters but different
probe spacing. To the extent possible, MIDAR tries to keep
monotonic bounds small by adapting probe spacing to the
actual measured velocity of each target interface (Sec. III-E).

C. Multiple probing methods

Bender et al. [17] mentioned the possibility of combining
TCP and UDP methods to increase the number of testable
targets, but did not offer any procedure for doing so, nor
investigate its effectiveness. The recent RadarGun implemen-
tation can probe each target with both TCP and UDP but does
not handle cross-protocol comparisions in any special way.In
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TABLE I
SUMMARY OF PROBING METHODS.

Method Probe Packet Expected Response
TCP TCP ACK to port 80 on tar-

get
TCP RST or (rarely) ICMP
port unreachablefrom target

UDP UDP packet to port 33435 on
target

ICMP port unreachablefrom
target

ICMP ICMP echo requestto target ICMP echo replyfrom target
Indirect TTL-limited ICMP echo re-

questto a hostpastthe target
ICMP time exceededfrom
target

this section, we describe the procedure used by MIDAR to
fully exploit four probing methods—TCP, UDP, ICMP, and a
method we callTTL-limited indirect probing, or Indirect for
short.

Table I summarizes the methods supported by MIDAR. The
TCP, UDP, and ICMP methods are straightforward: send a
probe packet to the target, and if the response is of the expected
type, collect the IP ID value. Although UDP responses from
a different address are often from a different interface on the
same router, there is a risk that such responses are from a
different router altogether, so we do not use them in MIDAR;
interpreting these responses is more in the domain of the
Mercator technique. TheIndirect method imitates a traceroute
measurement. Every intermediate address in a traceroute path
responded with an ICMPtime exceededresponse, so in theory,
we can elicit atime exceededresponse again by reproducing
the conditions of a traceroute measurement. For an address ob-
served at hoph in a traceroute path, theIndirect method sends
a probe with TTL= h from the original vantage point to the
original destination and obtains an IP ID sample from thetime
exceededresponse from the target. To maximize the chances
of the probe taking the same route as the original traceroute
packet and expiring at the target address, we maintain the
same Paris-traceroute flow label [25] as the original traceroute
measurement. Nevertheless, the route can still change, andwe
may face a new route that either entirely bypasses the target
address, or passes through the target address at a different
hop. MIDAR does not currently handle the first case—this
is the greatest weakness ofIndirect probing. MIDAR handles
the second case by hunting for the target at nearby TTLs. If
an Indirect probe with TTL= h does not elicit the expected
response, but one of two additional probes with TTL= h± 1
does, we use that new TTL as the expected TTL for subsequent
probes. MIDAR performs thisTTL expansionprocess only in
the Estimation stage (see Sec. IV-A). In our experiments, TTL
expansion increased the fraction of sufficiently-responsive
targets ofIndirect probing from 76.5% to 80.8%. Expanding
further to h ± 2 provided only a negligible increase in the
response rate while significantly increasing the probing cost.

Appendix H describes the extent to which employing
multiple probing methods increases usable (i.e., sufficiently
responsive, nondegenerate, and monotonic) time series forour
dataset described in Sec. V. Using TCP alone resulted in only
34.6% of the addresses having usable time series, leaving
nearly two-thirds completely untestable with IP ID based alias
resolution. If we employ all four methods, 80.6% of addresses
yield usable time series to at least one method.

The main concern with employing multiple probing meth-

ods is how consistently the interfaces on the same router
behave. In the simplest case, either all or none of the interfaces
of a single router respond with usable IP ID values to a given
method. In this case, we can collect all samples with the
same method, presenting no complications for alias inference.
However, interfaces on a single router do not always behave
consistently, perhaps due to different filtering on different
routes to the various interfaces. In such cases, we can infer
aliases only if a router uses the same IP ID counter to generate
responses across probing methods as well as across interfaces.
We expect a router to use a shared counter on all interfaces
when responding to TCP and UDP probes, since we expect the
responses to come from a shared CPU that executes (router-
wide) services potentially reachable with these protocols.
However, when we use ICMP orIndirect probing, the ICMP
echo replyor time exceededresponses could be generated
entirely on a line card (that is, on the fast path) [26], and
a line card may have its own IP ID counter not shared with
either the CPU or other line cards on the same router. Thus,
there is a chance that responses to ICMP andIndirect probes
may not share a counter with responses to TCP or UDP probes.

We can detect counter sharing across probing methods in
the same way we identify shared counters across interfaces—
we apply MBT to a pair of time series obtained from the
same interface but with different probing methods. Note that
theseO(N) cross-method comparisons do not suffer from
the high false discovery rate of theO(N2) cross-interface
comparisons described in Appendix C. We observe a relatively
high incidence of counter sharing for our dataset (see Sec. V),
ranging from 88.9% to 97.4% of addresses per pair of methods
(see Appendix I for details). Because counter sharing across
methods is common, we can usually detect a shared counter
across addresses even if the addresses are probed with different
methods. Thus, there would be little benefit to probing every
address with every method when collecting data for MBT; one
method per target is sufficient, and much more efficient.

To determine which methods are usable with each target,
MIDAR probes all targets with all methods in the initial
Estimation stage (see Sec. IV-A). This process is inherently
scalable since time series do not need to overlap across targets.
When multiple methods are usable for a given target, MIDAR
selects one to use in subsequent stages based on the following
preferences. We prefer TCP over UDP because routers are
more likely to rate-limit their responses to UDP. We know
this from our own observations, and the fact that modern Cisco
routers by default generate at most oneunreachableresponse
every 500 ms [27]. If the UDP and ICMP methods do not
appear to share a counter, we prefer UDP, because responses
to UDP are more likely to be generated in the CPU using an
ID counter that is shared across interfaces. But if UDP and
ICMP do share a counter, the choice of method does not affect
the chances of cross-interface counter sharing, and we prefer
ICMP because its responses are less likely to be rate limited.
We preferIndirect the least because 1) its responses are less
likely to be generated in the CPU with a shared counter, 2)
its responses are more likely to be rate limited, 3) a routing
change may prevent us from probing a target, and 4) if a
vantage point is lost mid-run, we may not have the traceroute
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information needed to probe from a different vantage point.
Use of multiple probing methods is the reason MIDAR

uses higher quality thresholds for time series than RadarGun,
as described in Sec. III-A. Accepting a medium-quality time
series from a preferred method might mean MIDAR would
ignore a high-quality time series for the same address from a
less-preferred method.

D. Multiple vantage points

MIDAR employs multiple vantage points to increase the
aggregate probing rate, an obvious approach to scalabilitysug-
gested but not implemented in [17]. Because MIDAR needs to
compare time series collected by the different vantage points,
their clocks must be synchronized, for example with NTP or
RADclock [28], [29]. MIDAR does not require extraordinarily
precise clock synchronization, but it does require an estimate
of the maximum clock errorǫ across all vantage points during
execution.2 The lower theǫ, the tighter the monotonic bounds
become in the Monotonic Bounds Test (Sec. III-B), so we
recommend minimizingǫ where possible by, for example,
deploying RADclock instead of NTP.

The higher probing rate achievable by multiple vantage
points is not enough by itself for true scalability as the number
of targets increases to Internet-scale. We discuss another
technique MIDAR employs for scalability in the next section.

E. Achieving probing scalability with sliding window

The simplest way to collect overlapping time series for a
list of target addresses is to iterate over the list multipletimes,
probing the targets in order, like RadarGun. If we probeN
addresses atp packets per second (pps), then each target is
sampled everyI = N/p seconds. The resulting time series
for each target is usable only if the sampling intervalI is less
than or equal to the maximum acceptable sampling interval
Imax for that target (see Sec. III-A).I must be short enough to
accommodate the highest velocity of theN targets. Suppose
the highest velocity is 2000 ID/s. Then, from (1), we must have
I ≤ 9.83 s. If N = 2 × 106, then to achieveI = 9.83 s, we
must probe at 203 459 pps, which is at least 71.6 Mb/s of traffic
with TCP probes. The brute force approach of probing from
1000 hosts in parallel would reduce the probing rate to 203 pps
per host, but managing that many hosts is cumbersome. Here,
we present a more scalable technique that can achieve even
smaller intervals for high velocity targets, at half the per-host
probing rate, using fewer than 40 hosts.

MIDAR achieves probing scalability with asliding window
scheduling algorithm that exploits two observations. The first
observation is that if addresses have very dissimilar velocities,
they cannot share a counter, so we do not need to apply the
MBT to them and thus do not need their time series to overlap.
That is, we can use velocity similarity as a high sensitivity
(but low PPV) shared counter test, to filter out many unshared
counter pairs at an early stage. The second observation is that
target velocities vary widely from near zero to several thousand

2To estimateǫ, we usedntpq/ntpdate to determine the clock offset and
delay of each vantage point during a MIDAR run.
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Fig. 5. Portion of sliding window schedule for a real large-scale run. The
full schedule covers 272 rounds and 37 546 addresses per monitor, but for
brevity, we show only every fifth round from 30 to 90 and only the first
1400 addresses. Addresses A and B have similar velocities, soare near each
other in the velocity-sorted list, and thus share the windowin rounds 35–83.
Addresses A and C have less similar velocities, and share a window only in
rounds 70–83. Addresses A and D have even less similar velocities, and so
D does not enter the window until round 85, after A has exited.

ID/s, but the vast majority of the targets we have observed have
low velocities (see Appendix A), so we need a short sampling
interval only for the minority of high velocity targets.

MIDAR incrementally probes the target list over multiple
rounds. In each round, MIDAR sends one probe to each target
in a window in sequence. Awindow is a contiguous subset of
the target list defined by starting and ending target indexes.
The width and position of the window changes over time.
The width of the window determines the time it takes to
probe the window, and thus the sampling interval for targets
within the window. The position or coverage of the window
determines which targets will have overlapping time series.
MIDAR ensures that the window covers likely shared-counter
candidates by sorting the target list by descending velocity,
which puts addresses with similar velocities near each other
(MIDAR obtains the velocities in the Estimation stage, see
Sec. IV-A). We can think of the simplest approach described
at the beginning of this section as a degenerate case with a
fixed window covering the entire target list, so that we collect
overlapping time series for all targets.

Fig. 5 illustrates the execution of the sliding window. In
the upper subfigure, each dashed horizontal line representsthe
target list at a particular round of execution (so each vertical
line represents the same target address over all rounds), and
each solid bar represents the window. For brevity, the figure
only shows every fifth round. The lower subfigure shows the
target velocities in ID/s, with the target indexes matchingup
vertically between the two subfigures. For discussion, we have
labeled four target addresses (A, B, C, andD) and highlighted
their target indexes with vertical lines.

Observe first that the width of the window increases over
time, from around 300 targets at round 30 to 1000 targets at
round 90. The window must be narrow near the beginning
to ensure a sampling interval short enough for the highest
velocity in the window. Because velocities vary widely in the
beginning (from 1600 to 400 ID/s in the first 300 targets), the
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narrow window includes all targets that could plausibly share a
counter with the highest-velocity target, while excludingmany
targets that could not. The window is several times wider
at round 90 than at round 30 because the target velocities
at indexes 400–1400 are much lower with less variation, so
the sampling interval can be longer, and more of the adjacent
targets are shared-counter candidates based on their velocities.

Next, observe that the window gradually moves down the
list over successive rounds. The more rounds two addresses co-
occupy the window, the more overlap there will be between
their time series. We wish to ensure sufficient overlap between
targets with similar velocities, but avoid wasting resources on
obtaining overlap between targets with sufficiently dissimilar
velocities. Targets with nearly the same velocities, such as
A and B in Fig. 5, are near each other in the target list
and thus will co-occupy the window the longest and have
the most overlap. TargetsA andB have overlapping samples
from round 35, whenB first falls within the window, until
round 83, whenA last appears in the window. Targets with
only somewhat similar velocities, such asA andC, are farther
apart in the target list and thus will co-occupy the window for
only a limited number of rounds (rounds 70–83 forA andC),
but collecting even a few overlapping samples is still useful
for ruling out these unlikely shared-counter pairs with MBT.
Finally, targets with sufficiently dissimilar velocities,such as
A andD, never co-occupy a window and have no overlap, but
we presume they cannot share a counter, so lacking overlap is
a feature that improves efficiency.

The sliding window must balance two competing require-
ments in each round—it must be narrow enough to ensure
a sufficiently short sampling interval for the highest target
velocity in the window, and it must be wide enough to
include all nearby targets with velocities similar enough to
share a counter. We can quantify this trade-off with metrics
that depend only on target velocities and use the metrics to
guide the choice of the optimal window size. Letvhigh be the
highest target velocity in a window, andvlow the lowest. These
are the velocities of the first and last targets in the window,
because the target list is sorted by descending velocity. We
define aspacingmetric for the quality of a window’s sampling
interval in terms of how much a counter with velocityvhigh

would advance between samples; specifically, we define a
counter advancement of 16 384, or 1/4 of the ID space,
to be one unit ofspacing. If the counter advances 1/8 of
the ID space, then the spacing will be 0.5. Lower spacing
means more samples between counter wraps. We define a
similarity metric for a window’s inclusiveness of similar target
velocities in terms of the ratiovlow/vhigh, with a value of
2/3 being one unit ofsimilarity. A ratio of 1/3 would be a
similarity of 0.5. The lower the similarity, the wider the range
of velocities allowed as possible shared counter pairs. As a
window becomes larger, the spacing metric increases (gets
worse) and the similarity metric decreases (gets better). For
each round, we choose the window’s starting target index, and
then choose the window size at which these two metric values
are equal (or cross). If possible, we first advance the starting
target index of the window past any targets in the beginning
portion of the window that have already been probed at least

30 times while sharing a window with all targets of similar
enough velocities to potentially share counters. In this way,
the window eventually slides down the entirety of the target
list over multiple rounds.

We chose the coefficients and balance point for the two
metrics based on our experiments with the sliding window
schedule. These choices reflect an informed judgment on the
relative importance of various measurement parameters, and it
may be worthwhile to further study the tradeoffs involved, but
the exact chosen values are not critical. Because the window
follows a smooth transition, a small change in these parameters
or in velocity estimates would cause only a small change in the
amount of overlap between targets. If we had taken a simpler
approach of grouping the targets by velocity and probing each
group separately, a small change in parameters or velocity
estimates could change group assignments and cause some
pairs of targets to go from full overlap to no overlap.

MIDAR partitions the full target list across multiple vantage
points and simultaneously probes with a sliding window from
all locations. To ensure that all targets with similar velocities
have overlapping time series even across vantage points,
MIDAR assigns, to the extent possible, both an equal number
of targets and an equal distribution of target velocities toeach
vantage point, so that the windows of different vantage points
cover the same range of velocities at the same time. Targets
that can only be probed with theIndirect method can only be
assigned to vantage points that saw that target in a traceroute
path, but targets usable with other methods can be assigned to
any vantage point, giving us the flexibility needed to achieve
nearly identical velocity distributions.

The same sliding window schedule drives probing on each
vantage point. We can pre-calculate the schedule because the
windows depend only on target velocities, which are known in
advance. The schedule includes a delay in each round for any
vantage point that was assigned less than its share of targets
for that round, allowing us to finely synchronize the probing
of a given velocity range across all vantage points.

The sliding window scales gracefully without manual pa-
rameter adjustment to varying numbers of targets and vantage
points and varying levels of overlap quality between time
series. Using this approach, with 40 vantage points and a
self-imposed limit of 100 pps per vantage point to minimize
impact on the network, we were able to collect the required
overlapping time series for 1.9 million addresses in 5.9 hours,
with a worst case sampling interval of 15% of the wrap period.
This aggregate probing rate of 4 000 pps is significantly lower
than the 459 496 pps that would be needed by the brute force
approach to achieve the same sampling interval.

Like TTL clustering in Rocketfuel, MIDAR’s sliding win-
dow eliminates many pairs from consideration before fully
probing them. In the context of MIDAR, we chose to use a
sliding window based on IP ID, the same parameter already
used by MBT, rather than introduce potential additional com-
plications of a new parameter, TTL.

F. Further reducing false positives

For the millions of addresses typically discovered by
Internet-scale mapping experiments, some of the trillionsof
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possible pairs of addresses will have similar IP ID time series
over a given measurement period out of sheer coincidence (see
Appendix C). Thus, all IP ID based alias tests will be suscepti-
ble to false positives at this scale. Fortunately, unrelated IP ID
counters that were coincidentally similar during one period of
time will eventually diverge under continued observation.We
exploit this fact to substantially improve confidence in positive
test results and to rule out false positives. We repeatedly test
pairs that pass MBT, delaying hours or days between tests. The
more times a pair passes MBT, the higher our confidence of a
shared counter; but a single MBT failure conclusively rulesout
a shared counter. Because of the virtually zero false negative
rate of MBT, assuming the clock error is not underestimated
and counter anomalies are detected (see Appendix F), we can
repeatedly apply MBT with negligible risk of losing aliases.

When starting with a large numberN of addresses, our
probing schedule must be tuned to handle theO(N2) possible
pairs, at some expense to accuracy. But as we repeat the MBT,
the number of alias candidates gets smaller, allowing us to
tune our probing schedule to give more accurate MBT results.
Exactly how we do this is described in the next section.

IV. MIDAR I MPLEMENTATION

A complete execution of MIDAR is divided into four stages.
In the Estimationstage, we determine the velocity and best
probe method for each address for use in subsequent stages.
In the Discoverystage, we probe all target addresses with a
sliding window schedule that allows us to efficiently probe and
apply MBT to a large number of pairs to discover pairs that
potentially share an IP ID counter. In theEliminationstage, we
re-probe and repeat MBT on these potential alias pairs to rule
out most false positives. Finally, in theCorroboration stage,
we probe and apply MBT to each candidate alias set as a whole
to confirm them and to rule out remaining false positives. After
completion of all probing stages, we infer reliable alias sets.

A. Estimation stage

In the Estimation stage, we ascertain two fundamental
properties of each target. We first identify the preferred
probing method for each target, as discussed in Sec. III-C.
All subsequent MIDAR stages probe each target with only
the target’s preferred method. We next estimate the velocity
of each target by applying (2) to the time series collected
by a target’s preferred method. The subsequent Discovery
stage uses these estimated target velocities to calculate its Imax

according to (1) and create the sliding window schedule.
We partition the target list across vantage points and probe

every target with every probing method. Because we care only
about the properties of individual targets, we do not need to
collect overlapping time series across targets, so the probing
procedure is inherently scalable to any number of targets.
To avoid potential bias in selecting a probing method, we
randomize the probing order of the methods for each target.
We probe each target 30 times, with an average interval of
about 7.8 s between probes of a given method to the same
target. This interval is short enough to reliably sample targets
with velocities up to 2 520 ID/s, according to (1).

B. Discovery stage

The Discoverystage is our first pass at identifying address
pairs that appear to share a counter. We start by generating
a sliding window probing schedule using the velocities found
in the Estimation stage, and, following this schedule, probe
each target with its best probing method. We then analyze the
results of these Discovery probes, applying our shared counter
tests to every pair of targets with overlapping time series.
Our most important test for shared counters is the Monotonic
Bounds Test (Sec. III-B). But before applying the MBT, we
can sometimes rule out a shared counter with two simpler
checks on IP ID byte order and precision (see Appendix F).
We explicitly do not use tests based on hop distance between
monitor and target, or on the inferred initial TTL set by
the target in the response, because these tests provide little
additional benefit and risk causing false negatives.

C. Elimination stage

In the Elimination stage, we repeat the MBT on every
apparent shared counter pair found in Discovery in order to
eliminate the bulk of the false positives. Because we now have
a more manageable set of candidate pairs, we no longer need
a sliding window probing schedule. To achieve minimal probe
spacing, and thus minimize the ID bounds in the MBT, we
could probe each shared-counter pair separately. The main
drawbacks of this approach are the high cost of probing a
large number of candidate pairs (6.8 million pairs in our
experiment, see Sec. V) and the undesirability of repeatedly
probing addresses that are involved in many candidate pairs.

We can achieve far greater probing efficiency by exploiting
the graph structure of shared-counter sets, with addressesas
nodes and candidate shared-counter relationships as edges.
Large shared-counter sets generated by Discovery tend to be
very sparse graphs with many smaller cliques or near-cliques
of real aliases linked together by relatively few false edges
created by chance alignments. In Elimination, we decompose
each large shared-counter set into overlapping smaller sub-
graphs, ensuring each edge occurs in at least one subgraph.
We try to extract subgraphs that are as close to a clique
as possible, since we can efficiently collect overlapping time
series between all pairs in a clique with the minimal number
of probes, but if the resulting subgraph would cause∆ID to
exceed 5% of the ID space, we choose a smaller subgraph to
guarantee tight probe spacing for more effective elimination of
false positives. To reduce repeated probing of addresses, we try
to minimize the number of subgraphs that include any given
address. In the experiment described in Sec. V, this subgraph-
based probing generated only 15% as many probes as would
have been needed by pair-wise probing.

We probe each subgraph for 10 rounds, where a round
consists of a single probe to each member of the subgraph
consecutively, which guarantees maximum overlap between
the time series of the addresses. We send probes to members
of the same subgraph no faster than once every 600 ms and
no slower than once every second. The purpose of the lower
bound is to avoid the appearance of an attack and to avoid
rate limiting at the target, since at least one popular brandof
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router will by default rate-limit ICMPunreachableresponses
to one every 500 ms. For each subgraphS, the round duration
is typically a little over|S| × 600ms and at most|S| × 1 s.

To reduce total run time, we probe multiple subgraphs in
parallel. The artificial delay within each round allows us to
interleave rounds of different subgraphs without significantly
increasing the duration of each round. We can control our
aggregate probing rate by adjusting the number of subgraphs
we probe in parallel.

D. Corroboration stage

In theCorroborationstage, we take the transitive closure of
all candidate shared-counter pairs that passed the Elimination
stage to obtain candidate shared-counter sets. We then probe
each of the sets as a whole and apply MBT to both the apparent
shared-counter pairs we have already discovered and the pairs
implied by transitive closure of those discovered pairs.

Probing in the Corroboration stage is the same as in the
Elimination stage. The only difference is in the input—the sets
are smaller, but we want coverage of every possible transitive
closure pair in each set, not just the previously discovered
pairs. Although most sets are small, some are still large enough
or have high enough velocity that they need to be broken
into subgraphs as in Elimination. Compared to Elimination,
more subgraphs are required to cover an alias set of a given
size in Corroboration because we must probe every pair in
the transitive closure. Minimizing the size of these sets by
eliminating as many false positives as possible in Elimination
allows Corroboration to work with reasonable efficiency.

The Corroboration stage can also be used as a standalone
tool to retest a previously collected set of aliases that have un-
dergone months of potential address churn, or to test potential
alias sets discovered by other means, such as with DNS name
inference or other alias resolution techniques. Used this way,
the Corroboration stage is more efficient and has better PPV
and sensitivity than Ally or RadarGun.

E. Final alias inference

After all probing stages, we can finally infer reliable alias
sets. First, we find all pairs that passed MBT in Discovery,
were not ruled out by Elimination, and were reconfirmed by
MBT in Corroboration. Each of these pairs has passed the
MBT at least two times, so we have fairly high confidence that
they actually share counters. The transitive closure of these
pairs yields the alias sets corresponding to routers. For each
new pair created through transitive closure, we perform the
MBT and other alias tests using probe data already collected
in the Corroboration stage. Because the Corroboration stage
was specifically designed to obtain overlapping time series
for every pair in every alias set, we will be able to perform at
least one MBT on each of these previously untested transitive
closure pairs, except when addresses are unresponsive. A
transitive closure conflictoccurs when addressesA and B
appear to share a counter,B andC appear to share a counter,
but A andC do not share a counter. Such a conflict cannot
occur in an actual alias set, but can occur in experimental data
due to a false positive or false negative, or a change in the

TABLE II
CLASSIFICATION OF ADDRESS PAIRS IN OUR EXPERIMENT. BOLD LINES

INDICATE PAIRS THAT WERE PASSED ON TO LATER STAGES.

stage/classification address pairs percent
Estimation
· usable 1 753 713 330 078 100.00
Discovery
· unusable 110 318 572 353 6.29
· dissimilar Est.v̄ (likely unshared) 802 244 369 262 45.75
· failed MBT (definitely unshared) 841 143 560 073 47.96
· passed MBT (possibly shared)≡ D 6 828 390 0.000389
· . . . and belong to a large set≡ DL 6 450 911 0.000368
· . . . and belong to a small set≡ DS 377 479 0.000022
Elimination
· in DL and passed MBT≡ EL 2 790 570 0.000159
· survived Elim. ≡ DS ∪ EL ≡ E 3 168 049 0.000181
Corroboration
· in E and passed MBT≡ C 2 783 801 0.000159
Final analysis
· in transitiveClosure(C) ≡ CT 2 935 558 0.000167
· . . . in CT and passed Cor. 2 930 698 0.000167
· . . . in CT and failed Cor. 2 500 0.000000
· . . . in CT and untested in Cor. 2 360 0.000000
· CT minus pairs in conflicted sets 2 800 727 0.000160

network topology during data collection. We conservatively
discard any alias sets with transitive closure conflicts; the sets
that remain are MIDAR’s final router alias sets.

V. EXPERIMENTAL RESULTS

We now describe an Internet-scale experiment with MIDAR
performed on CAIDA’s Archipelago (Ark) [21] infrastructure
on April 18–26, 2011. Results are summarized in Table II.

For input to MIDAR, we collected 2 323 682 addresses,
primarily from intermediate (router) addresses in 189 million
Paris-traceroute paths taken April 1–15, 2011 in theIPv4
Routed /24 Topology Dataset[30], which is an effort to
systematically measure IP-level paths from Ark monitors to
a dynamically generated list of IP addresses covering all /24
prefixes in routed IPv4 address space.3 Of these addresses,
MIDAR’s Estimation stage found that 1 872 813 (80.6%) had
usable time series (Sec. III-A). For more detailed classification
of Estimation responses, see Appendix G.

In the Discovery stage, we probed these usable addresses
from 40 Ark monitors with a sliding window schedule. Of
the

(

N
2

)

= 1.75 × 1012 address pairs, 6 828 390 (0.0004%)
appeared to use a shared counter. The small fraction is not
surprising because the number of shared pairs should beO(N)
whereas the total number of pairs isO(N2). The 45.75% of
pairs with dissimilar Estimation velocities were very unlikely
to share a counter, and the sliding window was intentionally
engineered to not waste resources collecting the overlapping
time series needed to apply the MBT to such pairs.

Analyzing all possible pairs in the Discovery stage is
by far the most computationally expensive task in a large-
scale MIDAR run; using a server with eight hyperthreaded
3.0 GHz CPUs, analysis of the 1.75 trillion pairs took 20
hours. Transitive closure of the 6 828 390 apparent shared-
counter pairs resulted in 75 350 apparent shared-counter sets
containing a total of 1 033 759 addresses.

3We used 21 cycles of traces (7 per team) collected by all 54 active Ark
monitors rather than just the 40 monitors used for MIDAR measurements.
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Of the 75 350 apparent shared-counter sets, 72 644 sets
were already small enough to be efficiently tested in the
Corroboration stage, but 2 706 sets were large enough that
we wanted to use an Elimination stage to break them up
before Corroboration. The largest of these contained 618 877
addresses, but only 6.3 million of its 191 billion possible pairs
were actually classified as shared. This very sparse graph is
consistent with our expectation of many smaller cliques or
near-cliques of true shared-counter sets being linked together
by relatively few false shared-counter pairs. These large sets
were successfully broken up by eliminating pairs that the
Elimination stage classified as unshared or untestable, leaving
174 075 sets containing 704 506 addresses, with the largest
set containing 658 addresses. Of the 2 790 570 pairs that
passed the MBT in Elimination, 2 705 601 (97.0%) would be
reconfirmed as being shared in Corroboration, suggesting that
Elimination had already removed the majority of Discovery’s
false positives among those pairs.

At this point, there are 3 168 049 pairs that survived Elim-
ination: the 377 479 pairs from small Discovery sets that
were not subjected to Elimination and the 2 790 570 pairs
from large Discovery sets that passed Elimination. In Cor-
roboration, we probe those pairs to reconfirm them, and also
probe the 1 202 111 additional pairs implied by transitive
closure of those pairs so we will be able to perform full-
mesh conflict testing. Of the pairs that survived Elimination,
2 783 801 passed Corroboration, and have now passed MBT
at least twice. (The pairs that failed mostly belonged to small
Discovery sets and had been previously tested only once,
and so were likely to still contain a significant number of
false positives.) Transitive closure of these high-confidence
pairs yielded 126 147 sets containing 427 199 addresses and
2 935 558 total pairs. The largest set was the same 658-address
set found by the Elimination stage. Of these sets, only 23
contained transitive closure conflicts. Treating the conflicted
sets as untrustworthy leaves us with 126 124 sets containing
426 152 addresses and 2 800 727 total alias pairs. Only 2325
(0.08%) of the pairs in 352 (0.28%) of the sets were untested
by MBT, that is, inferred only via transitive closure. The high
degree of internal consistency in the face of nearly complete
full-mesh testing of every set is strong evidence that MIDAR’s
positive predictive value is extremely high (that is, it finds very
few false positives).

VI. VALIDATION

For validation, we used two sets of ground truth data:R&E,
a collection of known topologies provided by research and
educational networks (CAnet [31], CENIC [32], GÉANT [33],
I-Light [34], Internet2 [35], and NLR [36]); andTier1, a
known topology provided by a Tier 1 ISP.

The most direct validation we can do is test whether MIDAR
and a validation set agree on the classification of alias pairs.
Table III shows the result of this comparison for the full-
scale experiment described in Sec. V against the two validation
sets. Note that disagreements may indicate not just errors in
MIDAR, but also errors in the validation set or real changes in
the network between collection of MIDAR data and validation

TABLE III
GROUND TRUTH VALIDATION OF FULL-SCALE MIDAR SHARED-COUNTER

PAIRS. A PAIR IS “ IN TARGET LIST” OR “ USABLE” IF THAT CONDITION IS

TRUE FOR BOTH OF ITS ADDRESSES. “U NDETERMINED” IS MOSTLY PAIRS

THAT WERE NOT TESTED WITHMBT BECAUSE THEY HAD DISSIMILAR

VELOCITIES. ACTUAL ALIASES CAN LEGITIMATELY BE CLASSIFIED AS

“ UNSHARED” OR “ UNDETERMINED” IF THEY BELONG TO A ROUTER THAT

DOES NOT SHARE A COUNTER ACROSS INTERFACES.

MIDAR Tier1 R&E
result aliases nonaliases aliases nonaliases

in target list 72 300 38 810 671 17 930 1 710 940
unusable in Estimation 33 909 19 867 021 9 869 900 441
shared (positive) 26 522 0 5 856 0
unshared (negative) 372 8 758 079 8 335 297
undetermined 11 497 10 185 571 2 197 475 202
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Fig. 6. Time series overlap between known shared-counter pairs during the
sliding window for a newer MIDAR run on Oct 24-Nov 3, 2011. Thesliding
window failed to achieve 3 rounds of overlap for only 0.25% ofknown shared-
counter pairs in the Tier1 dataset, and only 0.01% in the R&E dataset.

sets. For both sets, the number of false positives (shared
nonaliases) is zero, showing that MIDAR has a high positive
predictive value. There were few actual alias pairs that the
MBT explicitly classified as unshared; closer analysis of their
time series supports the conclusion that they are actually
unshared, and not false negatives in MBT. The majority of
aliases missed by MIDAR were due to routers that do not
respond, do not use monotonic counters, or do not share a
counter across interfaces, making them undetectable with any
IP ID based technique.

To test the quality of the sliding window schedule, we
examine how many rounds of overlap were achieved between
the time series of pairs of addresses known to share counters.4

We identify known shared counters by performing a standalone
Corroboration run on known aliases. In Discovery, we require
at least 5 sample points to pass the MBT, which can be
obtained in 3 overlapping rounds, assuming no discontinuities
or unresponsive probes. Fig. 6 shows that the sliding window
achieved this 3 round minimum for 99.75% of known shared-
counter pairs in the Tier1 dataset, and 99.99% in the R&E
dataset. Thus, of all the shared counter pairs that could have
been found by Discovery, only a tiny fraction were missed due
to poor overlap in the sliding window.

4We did this overlap analysis on a new MIDAR run on Oct 24–Nov 3,2011,
which has similar overall results to the April 2011 MIDAR run described in
the rest of this paper. We are unable to do this analysis on theApril run.
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TABLE IV
GROUND TRUTH VALIDATION OF RADARGUN AND MIDAR D ISCOVERY

ANALYSIS ON THE SAME PROBE DATA. A “ TESTABLE ALIAS” IS AN

ACTUAL ALIAS PAIR IN WHICH BOTH ADDRESSES WERE TESTABLE.

ground tool testable
truth and threshold aliases TP FP PPV
Tier1 RadarGun 1 62 817 1 500 0 1.0000

RadarGun 10 62 817 48 146 5 0.9999
RadarGun 100 62 817 61 773 7 358 0.8936
RadarGun 200 62 817 62 392 23 110 0.7297
RadarGun 300 62 817 62 392 56 885 0.5231
MIDAR MBT 62 801 62 801 5 0.9999

R&E RadarGun 1 2 307 228 2 0.9913
RadarGun 10 2 307 1 010 4 0.9960
RadarGun 100 2 307 1 426 110 0.9283
RadarGun 200 2 307 1 608 225 0.8773
RadarGun 300 2 307 1 820 252 0.8783
MIDAR MBT 2 513 2 457 0 1.0000

TABLE V
LARGE-SCALE VALIDATION OF FALSE POSITIVES INRADARGUN AND

MIDAR D ISCOVERY ANALYSIS ON THE SAME PROBE DATA TO100 000
PRESUMABLY UNRELATED ADDRESSES.

tool upper bound lower bound
and threshold FP α FP α

RadarGun 1 326 0.000 000 6 266 0.000 000 5
RadarGun 10 25 235 0.000 048 21 994 0.000 041
RadarGun 100 631 995 0.001 9 559 189 0.001 1
RadarGun 200 1 470 877 0.002 8 1 298 696 0.002 4
RadarGun 300 2 397 778 0.004 5 2 114 970 0.004 0
MIDAR MBT 327 0.000 000 7 — —

Although it is not feasible to run RadarGun at the scale of
our MIDAR run in Sec. V, we did run it in April 2012 against
our entire ground truth, which is larger and more reliable than
the inference-based validation data used by Bender et al. [17].
We used TCP probes and an average probe spacing of 30.1 s
and 13.1 s for the Tier1 and R&E datasets, respectively. We
then analyzed the results with various settings of RadarGun’s
alias distance threshold. We also applied MIDAR’s Discovery
stage analysis to the data collected by RadarGun, allowing
us to directly compare RadarGun’s time series modeling and
distance test to MIDAR’s time series modeling and MBT. Note
that we are not testing the full MIDAR system; in particular,
we are not testing multiple probing methods, multiple stages,
or adaptive probe spacing. Table IV summarizes the results.5

Given identical probe data, there is no setting of RadarGun’s
distance threshold that allows it to achieve results as goodas
MIDAR’s MBT in both TP and FP at the same time.

Because the available ground truth is too small to explore
large-scale phenomena, we constructed a special set of target
addresses for this purpose. From the 126 124 multi-address
and 1.7× 106 single-address shared-counter sets identified by
the full MIDAR run of April 2011, we randomly picked one
address in each of 100 000 random sets. Although MIDAR
cannot always identify the full set of addresses belonging to
every router, this construction minimizes the chance that some
of our selected addresses legitimately share a counter.

In April 2012, we ran RadarGun on these addresses with
TCP probes and an average probe spacing of 41.8 s. We also
ran MIDAR Discovery stage analysis on the data collected by

5The MIDAR validation in Table III had fewer testable pairs than this
validation because it included only addresses that also appeared in Ark traces.

RadarGun. Of the 100 000 addresses, 32 604 were testable with
RadarGun, and 29 678 with MBT. RadarGun with its default
alias distance threshold of 200 found 1 470 877 positives out
of 531 494 106 testable pairs, and MBT found 327 out of
440 377 003 (and a full MIDAR run with multiple stages and
adaptive probe spacing would find even fewer). Assuming
that all positives are false gives an upper bound on false
positives. To obtain a lower bound, we must count only the
positives that we can be sure are actual negatives. We rely
on the fact that MBT tests a necessary condition for counter
sharing, and is not specific to MIDAR. If two time series fail
MBT, they cannot share a counter (assuming no undetected
anomalies). Of the 1 470 887 probable false positives found
by RadarGun, 1 298 696 failed the MBT and so are definitely
false positives for RadarGun, giving a lower bound onα of
0.0024. (We cannot use this approach to obtain a lower bound
on MIDAR’s false positive rate.) Table V shows the results for
upper and lower bounds on FP andα for various settings of
the RadarGun distance threshold, showing that RadarGun is
highly susceptible to false positives, regardless of the chosen
threshold.

By plotting the number of false positives in the above tests
against increasingly larger random subsets of the targets,we
found that the number of false positives for both tools was, as
expected, directly proportional to the total number of testable
pairs, not addresses. Specifically, the number of false positives
matched the predicted curveα×N×(N−1)/2, with the values
of α given in Table V.

VII. C ONCLUSIONS

No one alias resolution technique is perfect. All have some
amount of false positives, all have significant incompleteness,
and most have scalability issues in the operational difficulty of
working at large scale or in the way errors grow superlinearly
as the scale increases. MIDAR extends recent work in IP ID-
based alias resolution with new, highly scalable techniques
that minimize false positives sufficiently to achieve a high
positive predictive value at Internet scale (that is, millions
of addresses). Although we believe false positives and scal-
ability are now essentially solved problems for IP ID-based
techniques, completeness will always be limited by routers
that simply do not share IP ID counters across interfaces. Fur-
thermore, rate-limiting may slightly reduce the completeness
in MIDAR, and overcoming this limitation is an area for future
study. Using multiple alias resolution techniques in parallel can
improve completeness, but resolving disagreements between
techniques is a challenge we hope to pursue in the future.

We are currently using a combination of MIDAR, iffinder,
and kapar (working toward our larger Multi-Approach
Alias Resolution System (MAARS)) to periodically capture
router-level topology which we curate and share with re-
searchers [37]. The MIDAR tool and all data of this paper
will be released to the community by June 2012 [38].
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Fig. 7. Cumulative distribution of IP ID velocities for usable time series
collected by the Estimation stage using four probing methods (the key includes
the count of time series for each method). The distribution is heavily skewed
toward low velocities and tapers off long before reaching the maximum
discernible velocity of 2 520 ID/s for the given sampling interval.

TABLE VI
RELATIONSHIPS BETWEEN BINARY CLASSIFICATION TERMS.

Actual value
Positive Negative

Test Positive TP FP → PPV
result Negative FN TN → NPV

↓ ↓ ↓
Sensitivity Specificity → Accuracy

APPENDIX A
VELOCITY DISTRIBUTION

Fig. 7 shows the distribution of velocities for usable time se-
ries (Sec. III-A) collected by the Estimation stage (Sec. IV-A).
The figure shows separate distributions for each of the four
supported MIDAR probing methods (Sec. III-C). The upper
bound on the plot is approximately 2 520 ID/s, the maximum
we could detect with our chosen sampling interval. The CDF
tapers off long before reaching this upper bound, suggesting
there are not many actual interfaces using monotonic IP ID
counters with velocities higher than this bound; that is, any
apparent velocities higher than this bound are likely due to
randomly generated IP ID values.

APPENDIX B
BINARY CLASSIFICATION

To aid in discussion of alias resolution tests, it is useful
to review some terminology commonly used in epidemiology
and other fields. Some of these terms and their relationships
are illustrated in table VI.

• positive: having the condition in question (e.g., a pair of
addresses sharing an IP ID counter, or being aliases)

• negative: not having the condition in question
• actual positives(AP) andactual negatives(AN): number

of cases that do or do not actually have the condition
• prevalence: fraction of cases that actually have the con-

dition, AP/(AP+ AN)
• true positives(TP): actual positives that test as positive
• true negatives(TN): actual negatives that test as negative
• false positives(FP): actual negatives that test as positive
• false negatives(FN): actual positives that test as negative
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• sensitivity≡ true positive rate(TPR) ≡ recall: fraction
of actual positives that test as positive, TP/AP

• positive predictive value(PPV) ≡ precision: fraction of
positive tests that are correct, TP/(TP+ FP)

• accuracy: fraction of tests that are correct,(TP +
TN)/(TP+ TN + FP+ FN)

• false positive rate(FPR orα): fraction of actual negatives
that test positive, FP/AN

• false discovery rate(FDR): fraction of positive tests that
are incorrect, FP/(TP+ FP) = 1− PPV

Accuracy alone is not a good measure of the quality of a
test. When prevalence is low, as in the case of large scale alias
resolution, a test that mostly gives negative results will have
a large number of true negatives and thus high accuracy, but
might still have poor sensitivity and PPV.

APPENDIX C
FALSE POSITIVES

The false discovery rate is potentially very high when using
IP ID time series for alias resolution at Internet scale.

According to the well-known “birthday problem,” in a group
of just 23 or more randomly chosen people, there is greater
than 50% probability that at least one pair of people will have
the same birthday. Similarly, given that the IP ID space has
216 = 65 536 distinct values, it takes a group of just 302 IP
addresses to have a 50% probability of some pair of addresses
having the same IP ID value at any given time, and just 777
addresses for a 99% probability. When the number of targets
N passes the number of possible valuesH, collisions are
guaranteed by the pigeonhole principle. Even worse, if our IP
ID test allows a range of nearby values instead of just equal
values, the frequency of collisions increases with the sizeof
the range. This would be the case if it were possible to probe
all N targets instantaneously with Ally. In the context of the
birthday problem, this requirement would be like requiringa
pair of people in a group to have birthdays within 4 days of
each other (which happens with 50% probability in a group
of just 9 people).

GivenN target addresses, and an average ofd addresses per
router, the number of shared-counter pairs (actual positives) is
approximately the number of interface pairs per router times
the number of routers:

AP ≈

(

d

2

)

×
N

d
=

N(d− 1)

2
(3)

and the number of non-shared-counter pairs (actual negatives)
is the total number of possible pairs minus the actual positives:

AN =

(

N

2

)

− AP ≈
N(N − d)

2
(4)

The prevalence is then(d−1)/(N−1). Some fractionα of the
tests on actual negatives will give false positive results when
counters belonging to unrelated addresses are coincidentally
synchronized to within the tolerance of the test. Then, the
total number of false positives will be

FP= α× AN ≈ α×
N(N − d)

2
(5)

For alias resolution results to have a usefulpositive predictive
value, there must be significantly fewer false positives than
actual positives. Comparing (5) and (3), and solving forα,
gives us an upper bound on useful values ofα:

α ≪
d− 1

N − d
(6)

Thus, whenN ≫ d, the maximum acceptable false positive
rate of the test is inversely proportional to the number of target
addresses.

To decreaseα, RadarGun and MIDAR compare tens of
sample points in time series, as opposed to Ally’s two.
However, the decrease is not as much as one might expect,
for two reasons. First, the samples in a single series are
not independent, but are related by an underlying counter
that increments with a somewhat regular rate. From this
perspective, we can view the test as requiring that two counters
have similarinitial ID values and similarvelocity (rate of ID
change). Second, because the velocity distribution of realID
time series is heavily skewed towards low velocities as seen
in Fig. 7, many pairs of counters will have a low velocity
difference. Two unrelated counters with a similar initial ID
value and a low velocity difference will take a long time to
diverge.

Furthermore, note that the alias relationship is transitive.
That is, if addressesA andB are aliases, andB andC are
aliases, we must infer thatA andC are also aliases; all three
addresses belong to the same router. Even a small set of false
positives, interpreted at face value, could lead us to incorrectly
merge many distinct routers into one. The topology distortion
caused by false positives is thus amplified by transitive closure.

APPENDIX D
NEGATIVE DELTA RATE OF RANDOM TIME SERIES

A random time seriesis produced from random IP ID values
rather than from a monotonic counter. In random time series,
the average probability of anindividual delta being negative is
50%, regardless of the sampling rate. Therefore, the expected
number of negative deltas appearing in a random time series
of n values is given by the binomial distribution forn − 1
trials andp = 0.5. This distribution is a bell-shaped curve
with mode at(n− 1)/2.

For a time series of 30 samples (29 deltas), we would
allow a maximum of⌊0.3 × 29⌋ = 8 negative deltas before
classifying the time series as unusable based on our 30%
threshold on negative deltas (Sec. III-A). The probabilityof
getting 8 or fewer negative deltas out of 29 random deltas is
just 0.012, so 98.8% of random time series will be correctly
identified as unusable. Eliminating addresses with random time
series at an early stage is more efficient than ruling out shared
counters involving those addresses later with MBT.

APPENDIX E
DISCONTINUITIES IN TIME SERIES

An IP ID time series that appears mostly monotonic may
have an occasionaldiscontinuity, a local region of uncertainty
where we cannot be confident that a counter remained mono-
tonic between individual samples.
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There are two types of discontinuity. First, there is a
discontinuity if the time gap between samples is too large,
or more precisely, if∆ti is greater than 3.5 times the median
∆t of the same time series. This means that we lost three
or more consecutive samples (assuming a regular spacing of
probes) due to rate limited responses or packet loss. Recall
that our definition of a usable time series required at least
three samples between counter wraps, so if we have lost three
or more samples, the gap may hide one or more counter wraps.

The second type of discontinuity occurs when the counter
advances too quickly between samples, which could be due
to a burst of router traffic causing high velocity monotonic
ID advancement, but could also be due to the router’s counter
being reset, causing a non-monotonic ID change. Letv̂ be
the median segment velocity for a given time series. If either
the actual counter advancement∆ID i or the expected counter
advancement̂v∆ti of a segment is greater than 30% of the ID
space, we mark that segment as a discontinuity.

We take discontinuities into account in all our analyses,
allowing us to use time series that would otherwise introduce
errors or be unusable. For example, we exclude discontinuities
when computinḡv in (2); that is, for a discontinuity between
samplesi andi+1, we exclude∆ID i and∆ti, thus improving
the robustness of̄v to atypical or transient counter behavior.
We observed a discontinuity in approximately 0.8% of the
usable time series we collected.

APPENDIX F
ANOMALIES IN MONOTONIC COUNTERS

We observe several types of anomalies in IP ID values.
MIDAR detects and accounts for these anomalies in order to
maximize its sensitivity and positive predictive value.

Most routers transmit ID values in big-endian order (net-
work byte order), but some uselittle-endianorder. If ID values
from a low-velocity counter are interpreted in the wrong byte
order, then the counter will appear to have a velocity about
256 times greater than its true velocity. On the other hand, if a
high-velocity counter is interpreted with the wrong byte order,
it will be indistinguishable from random. We developed an
inexpensive test to detect the correct byte order, and foundthat
approximately 0.6% of usable time series were little endian.
We can also use byte order as an additional criterion for ruling
out aliases, assuming that every interface of a router woulduse
the same byte order for a given probe method (Sec. III-C) (but
we do not assume that every router uses the same byte order
for different probe methods).

The second type of anomaly is caused by routers that do
not use all 16 bits of the IP ID field. Such alimited precision
counter will wrap around its smaller ID space more frequently
than a full precision counter with the same velocity, as shown
in Fig. 8. To identify ab-bit limited precision counter, we
require not only that the16 − b high bits are constant, but
also that there is at least one wrap, and that every wrapped
segment, after being unwrapped, has a velocity similar to
that of the non-wrapped segments. Failing to identify limited
precision counters would not directly lead to false results, but
it would lead us to unnecessarily mark their wrapped segments
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Fig. 8. An example of the limited-precision counter anomaly. The näıve
interpretation shows a much larger unwrapped delta (dashed line) than the
correct interpretation.

as discontinuities. We can also use limited precision counters
to rule out shared counters: two time series with different
ranges cannot share a counter. We found about 0.39% of usable
time series had limited precision, most commonly using 12 bits
with values between 0x6000 and 0x6FFF.

The final type of anomaly,XX00 and XXFF outliers, is
most easily explained by an example. Given a sequence of
(hexadecimal) ID values{11FC, 11FE,X, 1202, 1204}, one
would expect to seeX=1200, but might actually seeX=1100.
Taking this at face value would mean the counter advanced by
FF02 (from 11FE to 1100, almost the full ID space) in the time
it would normally advance by just 0002. We speculate that a
more likely explanation is that the two bytes of the counter are
updated asynchronously, and the value was generatedbetween
the time that the low byte wrapped from FF to 00 and the high
byte incremented from 11 to 12. We also saw cases where the
bytes seem to be updated in the opposite order, givingX=12FF
in our example. Rather than allowing one possibly incorrect
value to interfere with the MBT, we discard the one dubious
point and keep the rest of the series. Whatever the cause of the
anomaly, discarding one point will not significantly hurt MBT
results, but if the value is indeed incorrect, keeping it would
definitely cause false negatives. We found these anomalies in
only 0.01% of 3.2 million observed monotonic time series.

APPENDIX G
RESPONSE RATE ANDIP ID CHARACTERISTICS

To study the usefulness of the probing methods, we analyze
our Estimation stage, in which we attempted to collect IP ID
time series from 2 323 641 target addresses with all available
probing methods. The Indirect method could not be used with
addresses gathered from non-Ark sources, because we do not
have the necessary traceroute information for them. Table VII
shows the results.

We count a time series as havinginsufficient responsesif
fewer than 75% of the probes to the target elicit the expected
response. The subcategories enumerate the most common
reasons.Unresponsivemeans more than 75% of probes did
not elicit any response. During Indirect probing, a sequence of
TTL expansion that does not elicit any response from the target
is counted as a single non-response. We count a time series as
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TABLE VII
CLASSIFICATION OF IP ID BEHAVIOR OF ADDRESSES PROBED WITH VARIOUS METHODS IN THEESTIMATION STAGE.

TCP UDP ICMP Indirect
addresses probed 2 323 641 100.00% 2 323 641 100.00% 2 323 641 100.00% 1 832 771 100.00%
insufficient responses 905 267 38.96% 1 151 476 49.55% 482 399 20.76% 352 537 19.24%
· mostly unresponsive 865 498 37.25% 1 014 227 43.65% 459 545 19.78% 322 991 17.62%
· mostly unexpected 39 741 1.71% 136 863 5.89% 22 723 0.98% 28 454 1.55%
responsive, but degnerate ID values 137 363 5.91% 17 164 0.74% 999 677 43.02% 138 553 7.56%
· mostly zero 130 744 5.63% 15 044 0.65% 1 293 0.06% 110 849 6.05%
· mostly repeat 100 0.00% 568 0.02% 236 0.01% 985 0.05%
· mostly reflect 6 516 0.28% 1 349 0.06% 998 077 42.95% 26 270 1.43%
responsive and nondegenerate, but nonmonotonic 477 394 20.55% 6 490 0.28% 8 619 0.37% 17 941 0.98%
responsive, nondegenerate, and monotonic (usable)803 617 34.58% 1 148 511 49.43% 832 946 35.85% 1 323 740 72.23%

unexpectedif more than 75% of the probes elicit a response
of an unexpected type. For most time series, either all or
none of the responses are unexpected. Most of the unexpected
responses are ICMPdestination unreachablemessages from
non-target addresses.

The main cause of unresponsiveness for the Indirect method
appears to be network changes during the delay between the
traceroutes and our experimental probes. When the delay is
shorter, the response rate is higher. For example, in a different
Indirect probing run to 3 000 targets from a single monitor, us-
ing addresses gathered from traceroutes taken only 3–4 hours
earlier, only 1.2% of time series had insufficient responses.
The traceroutes collected for Table VII were taken up to 18
days before the Estimation run, showing that Indirect probes
can still be useful even after a moderate delay. However, we
do see significant variability between monitors in the response
rate to Indirect probing, suggesting different levels of route
instability and per-packet load balancing near each location.

We classify a time series as havingdegenerate ID valuesif
it had sufficient responses but 25% or more of the ID values
were zero, some other constant value, or the value used in
the probe packet. Such ID values are not useful to us because
they do not reveal the state of an underlying shared counter.
The subcategories enumerate time series for which more than
75% of IDs had the same type of degenerate value. Nearly
half of the targets respond to ICMPecho requestby echoing
the ID, and a significant fraction of targets respond to TCP
and Indirect with zero-valued IDs.

Any time series that passed all of the above tests is tested
for monotonicity. If its ID values cannot be modeled as a
monotonic counter, is is classified asnonmonotonic. TCP is the
only method for which a significant fraction of targets passed
the earlier criteria only to be classified as nonmonotonic.

Finally, any time series that is responsive, not degenerate,
and monotonic, is classified asusablefor testing with MBT.

APPENDIX H
UTILITY OF MULTIPLE PROBING METHODS

Table VIII shows the increase in target responsiveness and
usable time series achievable by employing multiple probing
methods for our dataset. Individually, ICMP has the highest
responsiveness but the lowest amount of usable time series
due to many addresses echoing the IP ID of the probe in
the response. UDP and Indir have the highest amount of
usable time series of any single method despite being more

TABLE VIII
UTILITY OF COMBINING MULTIPLE PROBING METHODS. PERCENTAGES

ARE RELATIVE TO 2 323 641TOTAL ADDRESSES.

combination of methods responsive usable
TCP 62.75% 34.58%

UDP 56.35% 49.43%
ICMP 80.22% 35.85%

Indir 64.97% 56.97%
UDP ICMP Indir 88.27% 77.39%

TCP ICMP Indir 89.11% 76.02%
TCP UDP Indir 85.72% 77.28%
TCP UDP ICMP 82.66% 68.91%
TCP UDP ICMP Indir 89.25% 80.60%

TABLE IX
CROSS-METHOD COUNTER SHARING FOR ADDRESSES THAT YIELD

USABLE TIME SERIES TO MULTIPLE METHODS.

methods addresses shared
TCP:UDP 595 465 562 582 94.48%
TCP:ICMP 383 712 341 247 88.93%
TCP:Indir 511 111 456 523 89.32%
UDP:ICMP 523 710 509 951 97.37%
UDP:Indir 774 993 745 913 96.25%
ICMP:Indir 545 585 525 224 96.27%

susceptible to rate limiting. If we employ all four methods,
89.2% of addresses respond to at least one method, and 80.6%
yield usable time series to at least one method. This improved
coverage will make alias resolution much more complete.

APPENDIX I
CROSS-METHOD IP ID COUNTER SHARING

Table IX shows the prevalence of cross-method counter
sharing for our dataset. For each pair of methods, Table IX lists
the number of addresses that responded to both methods with
usable IP ID values and then the count and percentage of those
addresses that had a shared counter. Overall, there is a high
incidence of counter sharing, ranging from 88.9% to 97.4%.
As expected, TCP and UDP share often at 94.5%. The sharing
rates of the remaining pairs seem to be correlated with the
response type; that is, counters seem more likely to be shared
when two probing methods elicit a similar type of response.
For instance, the sharing rate of TCP with either ICMP or
Indirect is comparatively low perhaps because TCP rarely
elicits an ICMP response. In contrast, UDP always elicits an
ICMP response, and we thus see comparatively greater counter
sharing between UDP, ICMP, andIndirect.


