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Internet-Scale IPv4 Alias Resolution with MIDAR

Ken Keys, Young Hyun, Matthew Luckie, and k claffy

Abstract—A critical step in creating accurate Internet topology  routing policies. Annotated with geolocation informatif$i,
maps from traceroute data is mapping IP addresses to routers, router-level topologies enable the study of ISP relatigrsht

a process known as alias resolution. Recent work in alias 5 finer granularity than allowed by an AS-level topology, isuc
resolution inferred aliases based on similarities in IP ID time . . . .
¢ as peering at multiple geographical locations.

series produced by different IP addresses. We design, implemen
and experiment with a new tool _that_bullds_ on these insights There are many alias resolution techniques and implemen-
to scale to Internet-scale topologies, i.e., millions of addresses,tatiOns available [10], but they are limited in accuracy and

with greater precision and sensitivity. MIDAR, our Monotonic d ticable at Int t-wide soal
ID-Based Alias Resolution tool, provides an extremely precise ID coverage, and none are practicable at Internet-wide soale,

comparison test based on monotonicity rather than proximity. Millions of IP addresses. The Mercator technique [6], [11],
MIDAR integrates multiple probing methods, multiple vantage [12] identifies aliases by sending a probe packet to one addre

points, and a novel sliding-window probe scheduling algorithm and getting a response from a different address. Ally [4risf
to increase scalability to millions of IP addresses. Experiments that a pair of addresses are aliases if probe packets sent to

show that MIDAR'’s approach is effective at minimizing the false th d ith IP 1D | in th t
positive rate sufficiently to achieve a highpositive predictive value €m produce responses wi values In the correc

at Internet scale. We provide sample statistics from running order. Spring et al. [13] described techniques for drawirasa
MIDAR on over 2 million addresses. We also validate MIDAR inferences from similarities in reverse DNS lookups, armairfr

and RadarGun against available ground truth and show that simple analysis of traceroute graphs. APAR [14], [15] and
MIDAR’s results are significantly bettgr than RadarGun’s. Tools kapar [10] use more sophisticated graph analysis techsique
such as MIDAR can enable longitudinal study of the Internet’s - o . .
topological evolution. to infer supnets Injklng routers, anq from that, aliasess-Di
Carte [16] infers aliases from analysis of a graph createoh fr
combined traceroute and Record Route data. RadarGun [17]
looks for similarities in IP ID time series collected from
many addresses. Sherry et al. [18] describe the use of the IP
|. INTRODUCTION prespecified timestamp option to infer aliases. MERLIN [19]
ARIANTS of the traceroute tool [1] are widely used toandnr i nf o [20] send an IGMPASK_NEI GHBORS message
discover Internet topology [2]-[5]. Traceroute shows tht® list the IPv4 multicast-enabled interfaces of a router.
sequence of router interfaces on the path from the sour¢®to t | this paper, we introduce MIDAR, our Monotonic ID-

destination, and executing traceroute from multiple Sesifo  g,5eq Alias Resolution tool, an IP ID-based alias resatutio
multiple destinations reveals many router interfaces dowsa technique inspired by Ally and RadarGun. AR ID value is

us to infer links between them. A router by definition has a&f 16 _pit number stored in the IP ID field in the IP header,
least two interfaces; Internet core routers often have Wlzey hich the sender of a packet sets to some unique value so
Alias resolution is the process of identifying which in®€ o the recipient can identify and reassemble fragmented
IP addresses belong to the same routers and is requiredyfQyets. For alias resolution purposes, we are concerrtéd wi
convert the abstract IP-level topology discovered by @t . |p ID values of packetsriginated by a router, rather

to a more concrete router-level topology [6], [7] that bettgan forwarded by a router. Routers themselves can send
describes the physical infrastructure of routers and liakd packets, for example, by responding to ping or traceroute;

thus is more useful for studying the diversity and resilient by running BGP or NTP: and by providing NetFlow, SNMP
the Internet infrastructure. The research community'S&r . remote terminal access. There is no standard method for

inability to draw a map that closely reflects physical coriwec generating IP ID values, but many routers maintain a simple

ity is a fundamental gap in our knowledge of the Internet, ang | counter that is incremented for packets it generates an
limits what else we can know or even study, including investj, i wraps from 65535 to 0. The key observation is that
gating the potential impact of loss of critical componerfte it 5 router uses @hared IP ID counterfor generating IP 1D
infrastructure. In conjunction with techniques for antioi@ \51yes, then the router will use consecutive IP ID valuesnwhe
routers with AS ownership [8], router-level topologies ®@lSgenging consecutive packets no matter which interfaceeaddr

enable the study of Internet economics and policy qUeStionS ses a5 the source address. Thus, if two addresses share a
such as which paths are not only feasible but consistent WEBunter, then they are conclusively aliases, and tHeitD
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time series to be derived from a shared counter. IP ID-basschlability by probing an entire set of addresses as a whole
alias resolution techniques infer aliases by analyzinglthe with O(NN) probes, but scalability is still limited by a need
ID values in response packets and inferring which interfate obtain overlapping time series from all addresses. Meith
addresses use a shared counter. RadarGun infers a shaAtldnor RadarGun has a sufficiently low false positive raie t
counter by looking for similar time series values, wheredsandle the millions of addresses that appear in macroscopic
Ally and MIDAR infer a shared counter by checking for thescale Internet topology graphs such as that collected by
monotonicity requirement, though in different ways. Ark [21]. Repeating the alias tests of Ally and RadarGun can

Most routers seem to use a single IP ID counter sharkmver the overall false positive rate and thus increase #é P
across all interfaces and protocols, but any IP ID based aliaut because these tests suffer from false negatives, tiepeti
resolution technique must account for those that do not.€Soan also decrease the sensitivity, causing aliases to sadis
routers set the IP ID to zero or some other constant value, avMIDAR is an attempt to overcome these limitations to
random value, or the value used in the probe packet [17]. Sustaling to millions of IPv4 addresses. In a nutshell, MIDAR
non-counter IP ID values can be detected and excluded frawllects IP ID time series data from many different vantage
IP ID-based alias resolution. Some other routers use separints, then mines the data using our Monotonic Bounds
counters for each interface or subset of interfaces. Usaaif s Test (Sec. IlI-B) to discover which IP addresses are likely
unshared IP ID counters is undetectable from an analysisalifases to the same router. The key features of MIDAR are
IP ID values alone. Because two addresses may be aliasesthetMonotonic Bounds TesfMBT), an ID comparison test
not share an IP ID counter, IP ID-based techniques canmath near perfect sensitivity based on monotonicity rathen
find all alias pairs, and cannot definitively conclude thab twproximity, which allows MIDAR to achieve an extremely low
addresses that do not share a counter are not aliases. Tfalse positive rate and thus a high PPV, the use of multiple
IP ID-based techniques can produce three resultposgjtive probing methods to increase the responsiveness of tangéts a
shared counter angbsitivealiases; 2negativeshared counter thus extend the coverage of IP ID-based techniques; and the
and inconclusivealiases; 3)inconclusiveshared counter and use of multiple vantage points and a novel sliding-window
inconclusivealiases. scheduling algorithm to achieve probing scalability.

Because of the limited precision of IP ID values and the This paper is organized as follows. Sec. Il reviews the
limited variation in rates of change, aelocities of IP ID features and limitations of the two best known IP-ID based
counters (see Appendix A), it is inevitable that any large sepproaches: Ally and RadarGun. Sec. Ill presents the eéakent
of addresses will have many pairs of addresses with similarepncepts and components of MIDAR. Sec. IV describes the
aligned IP ID time series out of sheer coincidence, as predlic four stages of our full MIDAR system: Estimation, Discovery
by the birthday paradox and the pigeonhole principle. SegpcElimination, and Corroboration. Sec. V reports resultsrfro
a given alias resolution technique hafakse positive ratef «  an Internet-scale MIDAR experiment. Sec. VI compares the
related to how much tolerance it allows when comparing twesults against ground truth and compares MIDAR’s MBT to
time series to infer a shared counter. Then foraddresses, RadarGun. Sec. VII summarizes our contributions and plans
there areO(IN?) pairs of addresses, and we can thus expeiet integrate MIDAR into a larger system for alias resolution
O(a x N?) false positives (FP), but onlg)(N) true positives
(TP) (see Appendix C). WheV > 10° as in the case || ExisTiNG IP ID TECHNIQUES ANDLIMITATIONS
of Internet-scale alias resolution, tipeevalenceof aliases is
extremely low, approximately 1 in a million. Hence, unldss t A. Ally
false positive rate is extremely low; < 1/N = 1075, false The Ally component of Rocketfuel was the first tool to
positives can overwhelm true positives, and the alias igclen examine IP ID values for alias resolution. Several papers
will not be reliable for identifying aliases. We can quaytifie describe the Ally alias resolution tool [4], [13], [17]. Wate
degree of reliability with thepositive predictive valu¢PPV) our description on Bender et al. [17] and on the Ally source
metric, which measures the fraction of positive test result code included in Scriptroute v0.4.8 [22] (earlier standalo
“shared counter” and thus “alias"—that are correct; that iscleases of Ally are now deprecated). The user can diregt All
TP/(TP+FP). Another important metric for evaluating IP ID-to probe with one of UDP (default), TCP ACK, or ICMP.
based techniques &ensitivity the fraction of shared counters A key step of Ally is checking whether the IP ID values of
that produce a positive test result; that is,/TPP+FN), where two candidate addresses aneorder, that is, the values form
FN stands for false negatives. For the purposes of compargg increasing sequence consistent with the use of a shared
the effectiveness of IP ID-based techniques, the falsetivega counter. Because IP ID counters wrap from 65535 to 0, Ally
we are interested in are failures to detect counter sharimgust use sequence space arithmetic, similar to that defined i
not failures to detect aliases. (See Appendix B for furth&FC 1982 [23]. We will use the notatioX < Y to denote
discussion of these and related terminology.) the less thanrelationship within sequence space.

There are two main challenges for an alias resolution Ally uses the following procedure to test whether addresses
technique as the number of addresaéscreases: 1) probing A and B are aliases. First, Ally sends a probe 4o waits
and testing thé&(N?) candidate alias pairs, and 2) minimizingl ms, then sends a probe . Suppose the IP ID values in
the false positives relative to true positives; that is,ueing) a the responses ard; and B;, respectively. Ally first checks
high PPV. The Ally technique require8(N?) probes to test whether A; and B; are in order and close enough to each
all possible pairs of addresses. RadarGun improves ongAllyther; namely, thatd; — 10 < B; < A; + 200. If so, then
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Ally waits 400 ms, sends a probe 8, waits 1 ms, and sendsB. RadarGun

a probe toA. Ally then checks that the resulting IP ID values _ .
B, and A, meet the conditionB, — 10 < Ay < By + 200 We base our discussion of RadarGun on the v0.3 source

code [24] and the RadarGun paper [17]. The RadarGun

met, then Ally declaresd and B to be aliases: otherwise,MPlementation can probe with TCP ACK (default), UDP, or
they are declared to be “non-aliases,” but like all IP IDdzas POth (without special handling of cross-protocol compare.

techniques, Ally can only infer that they do not share a ceunt RadarGun improves on Ally's scalability by probing an
Because Ally cannot know the exact generation time of eagRtire set of addresses in parallél( V') probes, rather than a
collected IP ID value, it uses an error margin when comparii§fies of pairsO(N?) probes. RadarGun makes 30 probing
the values. Thed; — 10 margin accommodates reordering oPasses through the address list to obtain 30 IP ID samples fro
probes on the forward path, which would cauBe to be each address, with samples from different addresses inter-
generated beforet;, with B; < A;. The 4; + 200 margin leaved with each other; for example, given addresteB, C,
accommodates the advancement of the IP ID counter betwd@farGun takes the samplds, By, C, Az, B2, Cs, . ... This
the arrival of the probe packets at and B. To keep this Probing scheme produces an IP ID time series for each
inter-arrival advancement low, Ally sends probe packets judddress. An IP ID time seried (for addressA) consists of a
1'ms apart, but the packets typically undergo some dispersggauence of samplgsi; }, where eachl; specifies the sample
due to cross traffic, routing differences (for example,4if time and the IP ID,(t;, ID;). RadarGun uses the measured
and B reside in different prefixes), load-balanced paths witfgceive time of a response packet as an approximation of the
different lengths, and other causes. More dispersion allog@mple time, since it does not know exactly when a router
greater potential counter advancement between IP ID samp@enerated a given IP ID sample. RadarGun discards a time
Ally has the following limitations. First, it is unclear Sefies as unusable if 1) fewer than 25% of the 30 probes
whether these empirically-derived margins of ert§r{10 and elicited responses (that is, RadarGun has fewer than 7 IP ID
X +200) are universally applicable to typical packet dispersiop@mples), 2) all collected samples have an IP ID of zero or
amounts and counter velocities. Second, using fixed margis have the IP ID used by probes, or 3) the time series is
of error is a fragile balancing act between minimizing falsBonlinear—that is, either the IP ID counter is advancing too
positives and false negatives. The wider these margingtee, Quickly to measure, or IP ID values are randomly generated.
more they allow false positives from chance alignments of IP RadarGun classifies a time series as nonlinear in two cases.
ID values. However, if these margins are too narrow, thep thEirst, a time series with too mamegative deltass nonlinear.
can lead to false negatives if counters advance at a high rétedelta is the difference of adjacent IP ID samples; that
or in bursts, or if probe packets undergo a significant amoufit AID; = ID;;1 — ID;. Negative deltas occur naturally
of dispersion. Third, Ally relies on only four IP ID samplas t as an IP ID counter wraps from 65535 to 0. For a given
infer aliases, which makes Ally susceptible to false pesiti sampling interval, the faster an IP ID counter advances, the
caused by chance alignments, independent of the margingmsire frequently a negative delta will appear in a time series
error. Fourth, Ally cannot perform IP ID-based alias retiolu  since the counter can wrap more often within the sampled
on a router that rate limits its responses, because Ally siedine period. Negative deltas can also occur when IP ID values
the responses to be generated closely in time. are generated randomly, since the average probability of an
Finally, a significant drawback of the Ally technique igndividualdelta being negative is 50% in a sequence of random
that, given N addresses, it require(/N?) probes to test all values. RadarGun discards a time series as nonlinear ifegrea
possible pairs. To make Ally more practical, some heusstithan 30% of the deltas are negative, since it cannot know if
are needed to reduce the size of the search space, suckth@sause is too fast a counter or random IP ID values.
requiring a pair of addresses to have similar return TTLe8lu Second, a time series with too high a velocity—that is, the
from a set of vantage points, as was done in Rocketfuapbparent rate of advancement of an IP ID counter—is non-
Although this heuristic significantly reduces the amount dinear. RadarGun computes the velocity from amwvrapped
pairwise testing needed at moderate scales, its effeetbgenIP ID time series. A time series is typically unwrapped by
with millions of addresses has never been demonstrated. adding 65536 (the full IP ID space) whenever a negative delta
Even if it were possible to apply Ally to one million occurs. RadarGun also tries to account for counter wrags tha
addresses, Ally’s false positive rate)(would be too high may have occurred in large gaps in time between samples,
to produce a useful positive predictive value. The margihs even when the delta is positive. RadarGun infers the number
error in Ally’s test allow samples to be 210 ID values apart, ®f possible wraps in each gap from an estimate of the time
210/65536 = 0.32% of the ID space. The two halves of thebetween wraps;Atuap, derived from a simplistic calculation
test are closely correlated because they are taken only 400an the positive deltas in a time series. For a gap of duration
apart and velocities are typically low (Fig. 7), suggesting Atgap, there arg Atgap/ Atwrap) inferred wraps, and RadarGun
only slightly lower than 0.0032. But even if the two halves ofdds this many multiples of the IP ID space when unwrapping
the test were completely independentyould be at best about the time series. Once a time series has been unwrapped,
0.00001. Extrapolating these rates to one million addsesdRadarGun computes the velocity as the slope of the linear
suggests there would be at least 5 million false positived, aleast squares line that best fits the unwrapped IP ID values.
probably closer to 1.6 billion, which is orders of magnitud@he more negative deltas there are in a time series, theighe
more than the expected 1 to 10 million true positives. the apparent velocity of the unwrapped samples. Therefore,

and thatA; < A, and By < B». If all these conditions are



4 IEEE/ACM TRANSACTIONS ON NETWORKING

1140
1120
1100
1080
1060
1040

with higher velocity addresses. Even if the thresholds were
. chosen adaptively to velocities, the thresholds must Isaille

. margins of error to allow for bursty IP ID counter advancetnen

N and other uncertainties, which prevents exact separation o
shared counters from unshared. As a result, adjusting the
distance thresholds never fully eliminates false posstialse
addr A —e— negatives, or inconclusive results, but merely shifts thlafce

IP ID

1020 addrB —=—
1000 . impossible shared counter - between them. Regardless of the threshold used, there can
0 20 40 60 80 100 always be a false positive under the distance test that dmld
time avoided by checking for monotonicity, as illustrated in.Fig

As a consequence of the above weaknesses, the distance
Fig. 1. There can always be a false positive under the RadedB&tance it
test regardless of the threshold used. For example, thegevéiPalD distance test .pr.oduces too many false positives for Radar.Gun to scale
between these time series is only 40, which is below the 20sstinid for O Millions of addresses. For example, extrapolating tieefa
being shared counters, but these addresses cannot shareterdzecause the positive rate (0.0005) implied in Bender et al. [17] to one
merged sample points do not form a monotonic sequence over tirsieiRr — illion target addresses suggests there will be an order of
construction exists for any threshold. . . - .
magnitude more false positives (264 million pairs) tharetru
positives, giving a very poor PPV. An obvious solution tcsthi
both true high velocity counters and random IP ID values wiiroblem would be to repeat the distance test at a later tiote, b
lead to high apparent velocities. RadarGun discards a tif@cause the test also suffers from false negatives, somedsha
series as nonlinear if the velocity is greater than 800 ID/epunter pairs would inevitably be lost with each repetition
since it cannot know the cause. Furthermore, because RadarGun needs overlapping time
The key insight of RadarGun is that if two addresses shageries from all addresses for the distance test, there is a
an IP ID counter, then their time series should have nearby practical limit to the number of addresses RadarGun can
ID values when overlapping in time. RadarGun checks for thigndle before requiring network-unfriendly levels of prap
condition by employing alistance testo measure how close bandwidth. For example, probing one million targets witrs10
two time series are in IP ID space. The key building blocgpacing would require 100 000 packets per second, or 35 Mb/s.
of the distance test is the calculation of te@mple distance
the distance between an individual sample point in one time I1l. MIDAR D ESIGN

series and the expected value of the IP ID counter in the_ )
other time series at the same moment in time. There are twol© find aliases among a large numbérf router addresses,

cases to computing the sample distance, with all calculaticM/DAR collects an 1P 1D time series from each of the

performed on the unwrapped time seriésand B of the two addresses and tests for a shared IP ID counter in each of
addresses being tested. LBt = (5, D5 ;) be a sample the O(N?) address pairs. We take a bottom-up approach to
of B. In the first (and more commdn) casB. lies between describing MIDAR. In this section, we describe the esséntia

. i )
adjacent samples of in time, that is, there is somigfor which  cOncepts and key features of MIDAR, and discuss our ap-
ta;<tp, <ta,i1. RadarGun then uses linear interpolatioﬁroaCh to mitigating false positives. In the following Sent
be7tw_eenl4‘ and Aj1 to estimatelD 4 eq the expected IP we will describe how we integrate these components into the
ID value of A at ¢tp ;. In the second case}; does not lie complete MIDAR system.
between any two samples of, and RadarGun extrapolates
the best fit line through (the same line used to calculate they. Time series in MIDAR
velocity) to estimate/D 4 e+ In either case, RadarGun then
computes the sample distangg ; = |ID 4 est— ID g ;|. After
computing all sample distancés; ; betweenB and A4, and
similarly computing the sample distancés; betweenA and
B, RadarGun calculates the average sample distance:

MIDAR takes a sampling of IP ID values to construct

the time series used for alias resolution. MIDAR considers a

time seriesunusablefor alias resolution if 1) fewer than 75%

of the probes elicited responses from the target; 2) 25% or

more of the collected samples adegeneratethat is, have

A _ > 5A,i+zj 0B a constant IP ID value (such as zero) or echo the IP ID
AB |A| + | B] used by probe$;or 3) the time series cannot be modeled

If A, 5 < 200, then RadarGun concludesand B are aliases; @S & monotonically.increasing sequence (that is, the obderv
if Asp > 1000, then they are not aliases. Otherwise, thirequency of negative deltas is so high that the IP ID values
distance test is inconclusive. may have been generated randomly or by a counter that is

By employing the distance test on time series, RadarG¥i@PPing too quickly to measure). Our quality thresholds ar
is more tolerant than Ally of ICMP rate limiting and lesdhigher than RadarGun’s, but in practice few interfaces peed

susceptible to false positives caused by chance alignmefgnedium-quality time series that would be considered esabl
However, RadarGun’s distance test is still only a heuristify RadarGun but unusable by MIDAR. However, the higher
There is no inherently right choice for the distance thréd$o , o

1We do observe real time series with more than 25% but fewer tBap61

since they- must be low to m'n'm'ze _f"_‘“s_e positives W!tlaegenerate samples. These samples appear to be the resufieafine@hanism
lower velocity addresses, and high to minimize false nggati other than chance occurrences in a time series produced byrgeco
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thresholds do matter in MIDAR’s procedure for choosing the

rrrrrrrr [5)
best probing method for each target, as described in Seb. Il 2*° T 5 =

To reliably detect all counter wraps, we must use a sampling Bys A4
interval shorter than the wrapping period, so we obtain tixac Bar A3
one negative delta whenever the counter wraps and positive B 1A,
deltas at all other times. Sampling even more frequently Wi|§ Tt
yield more positive deltas while the counter is increasing ! * A B,
monotonically but still only one negative delta at each ¢eun e ceries A .
wrap, decreasing the overall fraction of deltas that aratieg « passing pointin B N
We adopt RadarGun’s 30% threshold on the maximum allowed [~ falingpointin [ A

fraction of negative deltas before we consider a time series
unusable. This 30% threshold is intentionally more coreserv
tive th-an the 50% threshold suggested b-y th(.a NyquiSt_Sh&nnF(i) 2. lllustration of the sample-wise execution of the Mmic Bounds
sampling theorem when counter wrapping is thought of asTgs.t (MBT). Each sample in one time series must lie within the rtawrio
periodic signal. The 30% limit on negative deltas also h&s thounds set by the closest surrounding samples (in time) of tiher dime
advantage of excluding 98.8% of random time series, whiépries (e.g.B2 must fall within the bounding box with corners a; and
- . . As). When there is a counter wrap between the surrounding sar(@igs

cannot be used for alias resolution (see Appendix D). betweenA, and As when checkingBs), the monotonic bounds also wrap.

We define themaximum acceptable sampling interni@glax  (Velocity is exaggerated for clarity.)
to be the largest sampling interval that still ensures thetion
of negative deltas is no more than 30%. MIDAR collects an
initial time series from each target address using a smaltifixand B as a whole meet the monotonicity requirement. We first
sampling interval and then calculatBs, individually for each describe MBT in an idealized form and then describe the de-
target based on the target's observed velocity. MIDAR uses ttails needed to apply it to real data. LB} = (t5 ;, IDp ;) be
computedyay to customize the sampling interval individuallya sample ofB that we will check with respect to the samples
for each target when collecting additional time seriesaltyu of A. Let A, = (t4,,IDa;) and A; 41 = (tai+1,IDaiv1)
used for alias resolution (Sec. IlI-E). be adjacent samples i such thatt4 ; < tp; < ta,+1; that

Observe that limiting the fraction of negative deltas to 309, A; and A, are the nearest adjacent samplesidh time
is equivalent to limiting the average counter advancement go B;. Fig. 2 illustrates the two different MBT cases. In the
sample to 30% of the ID space, because the counter advaritiss case, the counter has not wrapped between the samples
through 100% of the ID space between each counter wrap. and A, 4, (that is, AID 4 ; > 0), and so we can simply
Hence, the maximum acceptable sampling interval for a tineeck that/D 4 ; < IDp ; < ID 4;+1. We can visualize this

series with velocityv is constraint as requiring3; to fall within the vertical bounds
60 of the box with corners at4; and A,,;. For example, in
Imax = (0.3 x 277) /v @) Fig. 2, By lies betweenA; and A, in time and falls within

We define the velocitys of a time series to be the averagdn® Pounding box of these samples, and tiitismeets the

slope of the segments weighted by segment duration; that f8onetonicity requirement. In contrast3; is between A
and As in time but does not fall within the bounding box

> AID; (2) (becauselDp ;s # ID.43) and thus violates the monotonicity
> At requirement. In the second MBT case, the counter has wrapped

where AID; and At; are the change in ID and time, respecPetweend; and A, (that is, AID 4 ; < 0). Therefore, the
tively, between samples and i + 1. If a AID, would be Pounding box betweerl; and A;., is split into two pieces,
negative, then wenwrapit by adding2'®. To avoid distortions @nd we must have eithéD 4 ; < [Dp ; Or IDp j < ID A iy1.
due to sampling gaps or atypical counter behavior, we exclui" €xample.B; lies betweenA, and A; and passes, since

discontinuities (Appendix E) when calculating velocity,. ~ P44 < IDps. Bg also lies between these samples but
violates the monotonicity requirement by lying outsidetbot

) pieces of the bounding box. If all samples Bf pass, then
B. Monotonic Bounds Test MBT swaps the roles oft and B and repeats the procedure.
The Monotonic Bounds Test (MBT) checks whether the IF any sample-wise test fails, we can immediately conclude
ID times series of two addresses meet the monotonicity ivat thatA and B do not share a counter without performing
quirement, a necessary condition for sharing an IP ID caunt¢he remaining sample-wise tests.
that is, whether the two time series form a monotonically So far, we have described a time series as béing ID;)}
increasing IP ID sequence when considered as a single mergéith ¢; being the sample time. To maintain a virtually zero
time series. The MBT is a rigorous test that does not emplégise negative rate (a crucial property relied on in MIDAR),
ad hoc thresholds to accommodate uncertainties. MBT needs accurate sample times to determine which samples
MBT checks that two time seried and B meet the mono- define the monotonic bounds for each sample-wise test. The
tonicity requirement by individually checking that eaclmgde true sample timer;, is the exact moment in time that a router
of B meets the monotonicity requirement with respect to thgenerated the valuéD;. We cannot determine; with active
samples ofd, and vice versa. If all sample tests pass, tlen measurement, but we can calculate accurate bounds dve

v =
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Fig. 4. With all other things being equal, monotonic bound®ftis, the
range of IP ID values allowed by the MBT) become tighter wheima tseries
has a lower velocity (subfigure (a) compared to (b)) or wherDRdlues are
sampled on shorter intervals ((c) vs. (b)).

Fig. 3. Monotonic Bounds Test with imperfect time de@ample time ranges
are shown as horizontal bars (with exaggerated size foityglaBamples B
and C lie at least partially within the bounding boxes, makiingossible to
draw a monotonic curve (dotted lines) through them conneatigighboring
samples from interface A, showing that samples B and C may come dro
counter shared with A. Sample D lies completely outside thenbimg boxes,

S0 no monotonic curve can connect samples in A and still passighrD,  the nearest samples that do not overlap withto find the
so D cannot come from a counter shared with A suitable monotonic bounds. Samlefalls completely within
this larger bounding box (that igD 41 < IDe < IDa3)

and therefore passes. Equivalently,falls at least partially

know the measured times when we sent our probe and iy he of the two smaller bounding boxes. The dashed line
when we received the response, and that the true send and .

receive times are withid-¢ of the measured times, whetrés passing throughly, ', and 4, illustrates a possible monotonic

the maximum clock error of all monitors during a MIDAR runcounter consistent with these sample values and time ranges

. Because MBT is based strictly on the definition of mono-
(see Sec. llI-D). Since the response must have been getherate. . . S

. o nicity, we must detect and account for discontinuitiep-A
between sending and receiving, we know that the true sample

. = . endix E) and other anomalies (Appendix F) that occur occa-
time must be within thesample time rangés; — ¢, r; +¢€), .. o . ; L

. ! . . . sionally in time series that otherwise adhere to the dedimiti
which we will substitute forr; in MBT execution.

MIDAR obtains th | f a sinale ti . Whenever a sample-wise MBT test involves an ID value that
. obtains the samples of a Single ime series SequeE’questionable due to a discontinuity or anomaly, the test m
tially by sending a probe only after receiving the respon

. ; . nerate a false negative. Rather than risk this rare eveodo
to a prior probe or after a timeout, so there is never a

. : - .ot apply the MBT to that sample, and rely on the remaining
uncertainty about the ordering of the samples within a e'ngéample-wise tests for the most accurate result
time series. However, since MIDAR probes multiple inteefs.c .

) lel (Sec. IN-E). tw les T te timd In general, the more ID samples we can test with MBT, and
in parallel (Sec. Ill-E), two samples from separate IMEESET the tighter the monotonic bounds, the more confident we can

can have overlapping “m? ranges, mak|_ng the true ordenB that a positive test result means a shared counter. Muigoto
of these samples uncertain. When the time range of one, of

. unds are typically small in practice for two reasons. tFirs
the bounding samples overlaps that of the test sample, M ypically P F

i its bounds 1o th t ol i le wh i onotonic bounds are defined separately by each pair of
widens 1is bounds to the next closest sample Whose time ra ?nples and are by construction as tight as possible. Tis, t

goesdnolt overl?]p thﬁ test s%mhple. Eh's r‘gaﬁes the nLor:ﬁOtof?)'\%/er velocity time series in Fig. 4a has tighter bounds than
ounds larger than they could have been If the true oraefing, g, higher velocity time series in Fig. 4b. Low velocity time

samples were known, but the sensitivity of the test is pueser series make up the majority of the cases observed in our data,

despite these uncertainties—a test failure against theeriargnd the monotonic bounds can be quite small: for example

bounds conclusively means that there is no shared Coungec{acent samples with ID values 5 and 7 define monotonic
We can thus accommodate uncertainties in both the respopseds that can be satisfied by only a single ID value, 6

t|m§ and _CIOCk error without cgmprom|S|ng the rigor of MI_BTSecond, we can use a shorter sampling interval to tighten the
Fig. 3 illustrates the execution of MBT using sample timg, 4 independently of the target velocity, as illusttaig
ranges. We wish to individually test the sampl@sC', andD g 4h and 4c, which have identical counters but different
against the surrounding samples{of;}. The time ranges of , \ho syacing. To the extent possible, MIDAR tries to keep
B and D (shown as horizontal bars) do not overlap with thg, o1 5ionic bounds small by adapting probe spacing to the

time ranges of4;, so we know the true ordering of these, | measured velocity of each target interface (Se®)lll
samples, and MBT execution is straightforward: sample

passes against; and A, and sampléD fails against4, and ] .

As. SampleC is the interesting new case, since the time rang&s Multiple probing methods

of C' and its nearest surrounding sample overlap. Because Bender et al. [17] mentioned the possibility of combining
of the overlap, we cannot know wheth€r precedesd, and TCP and UDP methods to increase the number of testable
therefore should be bounded Bl and A, (the left bounding targets, but did not offer any procedure for doing so, nor
box), or whetherC' follows A, and should be bounded byinvestigate its effectiveness. The recent RadarGun imgtem
A, and As (the right box). MIDAR simply avoids relying tation can probe each target with both TCP and UDP but does
on the ambiguousl; and looks outward towardl; and A3, not handle cross-protocol comparisions in any special \way.
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TABLE |

SUMMARY OF PROBING METHODS

ods is how consistently the interfaces on the same router
behave. In the simplest case, either all or none of the etes

Method | Probe Packet Expected Response of a single router respond with usable IP ID values to a given

TCP TCP ACK to port 80 on tar-| TCP RST or (rarely) ICMP thod. In thi lect all | ith th
get port unreachablérom target ~ Method. In this case, we can collect all samples wi e

UDP UDP packet to port 33435 o ICMP port unreachabldrom same method, presenting no complications for alias inferen

- Téra‘;t . : }éfa%t Fo T However, interfaces on a single router do not always behave

echo requesto target echo replyfrom target . . - . .

Indirect | TTL-limited ICMP echo re- | ICMP time exceededrom consistently, perhaps _due to different filtering on dlffﬁrg

questto a hosipastthe target| target routes to the various interfaces. In such cases, we can infer

aliases only if a router uses the same IP ID counter to gemerat
responses across probing methods as well as across ieterfac

this section, we describe the procedure used by MIDAR We expect a router to use a shared counter on all interfaces
fully exploit four probing methods—TCP, UDP, ICMP, and avhen responding to TCP and UDP probes, since we expect the
method we callTTL-limited indirect probingor Indirect for responses to come from a shared CPU that executes (router-
short. wide) services potentially reachable with these protocols

Table | summarizes the methods supported by MIDAR. Thdowever, when we use ICMP dndirect probing, the ICMP
TCP, UDP, and ICMP methods are straightforward: sendegho replyor time exceededesponses could be generated
probe packet to the target, and if the response is of the teghecentirely on a line card (that is, on the fast path) [26], and
type, collect the IP ID value. Although UDP responses from line card may have its own IP ID counter not shared with
a different address are often from a different interfacetan teither the CPU or other line cards on the same router. Thus,
same router, there is a risk that such responses are frorthere is a chance that responses to ICMP katirect probes
different router altogether, so we do not use them in MIDARmMay not share a counter with responses to TCP or UDP probes.
interpreting these responses is more in the domain of theWe can detect counter sharing across probing methods in
Mercator technique. Thimdirect method imitates a traceroutethe same way we identify shared counters across interfaces—
measurement. Every intermediate address in a tracerottie pge apply MBT to a pair of time series obtained from the
responded with an ICMBme exceedetesponse, so in theory, same interface but with different probing methods. Noté tha
we can elicit atime exceededesponse again by reproducinghese O(N) cross-method comparisons do not suffer from
the conditions of a traceroute measurement. For an addoesstbe high false discovery rate of th@(N?) cross-interface
served at hop in a traceroute path, thedirect method sends comparisons described in Appendix C. We observe a relgtivel
a probe with TTL= A from the original vantage point to thehigh incidence of counter sharing for our dataset (see Sgc. V
original destination and obtains an IP ID sample fromtthree  ranging from 88.9% to 97.4% of addresses per pair of methods
exceededesponse from the target. To maximize the chancésee Appendix | for details). Because counter sharing acros
of the probe taking the same route as the original tracerouethods is common, we can usually detect a shared counter
packet and expiring at the target address, we maintain theross addresses even if the addresses are probed witkewliffe
same Paris-traceroute flow label [25] as the original trauter methods. Thus, there would be little benefit to probing every
measurement. Nevertheless, the route can still changeyandaddress with every method when collecting data for MBT; one
may face a new route that either entirely bypasses the targetthod per target is sufficient, and much more efficient.
address, or passes through the target address at a differedb determine which methods are usable with each target,
hop. MIDAR does not currently handle the first case—thiSIIDAR probes all targets with all methods in the initial
is the greatest weakness lofdirect probing. MIDAR handles Estimation stage (see Sec. IV-A). This process is inherentl
the second case by hunting for the target at nearby TTLs.slfalable since time series do not need to overlap acrostsarg
an Indirect probe with TTL= h does not elicit the expected When multiple methods are usable for a given target, MIDAR
response, but one of two additional probes with T¥lh +1 selects one to use in subsequent stages based on the fgllowin
does, we use that new TTL as the expected TTL for subsequpreferences. We prefer TCP over UDP because routers are
probes. MIDAR performs thi§TL expansiormprocess only in more likely to rate-limit their responses to UDP. We know
the Estimation stage (see Sec. IV-A). In our experimentd, TThis from our own observations, and the fact that moderncCisc
expansion increased the fraction of sufficiently-respansirouters by default generate at most ameeachableresponse
targets oflndirect probing from 76.5% to 80.8%. Expandingevery 500 ms [27]. If the UDP and ICMP methods do not
further to h + 2 provided only a negligible increase in theappear to share a counter, we prefer UDP, because responses
response rate while significantly increasing the probinst.co to UDP are more likely to be generated in the CPU using an

Appendix H describes the extent to which employingD counter that is shared across interfaces. But if UDP and
multiple probing methods increases usable (i.e., suffisienICMP do share a counter, the choice of method does not affect
responsive, nondegenerate, and monotonic) time seriesifor the chances of cross-interface counter sharing, and werpref
dataset described in Sec. V. Using TCP alone resulted in oh§MP because its responses are less likely to be rate limited
34.6% of the addresses having usable time series, leaviig preferindirect the least because 1) its responses are less
nearly two-thirds completely untestable with IP ID basddsal likely to be generated in the CPU with a shared counter, 2)
resolution. If we employ all four methods, 80.6% of addressés responses are more likely to be rate limited, 3) a routing
yield usable time series to at least one method. change may prevent us from probing a target, and 4) if a

The main concern with employing multiple probing methvantage point is lost mid-run, we may not have the traceroute
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information needed to probe from a different vantage point. 30 e c °
Use of multiple probing methods is the reason MIDAR 20 _-

uses higher quality thresholds for time series than RadarGu 50 —

as described in Sec. lll-A. Accepting a medium-quality time B, 2

series from a preferred method might mean MIDAR would £ 70— 5

ignore a high-quality time series for the same address froma - =ees———————— T
less-preferred method.

PR 3

90 ;- -
2 0 200 400 600 800 1000 1200 1400
] . 8 1600 k
D. Multiple vantage points 2 100
e}
MIDAR employs multiple vantage points to increase theé igg
aggregate probing rate, an obvious approach to scalabilgy % oL ! ' [ e
. . Q
gested but not implemented in [17]. Because MIDAR needs to 0 200 400 600 ~ 800 1000 1200 1400

compare time series collected by the different vantagetpoin address index

their clocks must be synchronized, for example with NTP @g. 5. Portion of sliding window schedule for a real largeds run. The

i i il full schedule covers 272 rounds and 37 546 addresses peramduit for
RADclock [28], [29]. MIDAR does not require extraordinail brevity, we show only every fifth round from 30 to 90 and onlye tfirst

precise CIO_Ck SynChromzat'on' but it does reqwre_ an mm 1400 addresses. Addresses A and B have similar velocitiem;esnear each
of the maximum clock errof across all vantage points duringother in the velocity-sorted list, and thus share the windtowounds 35-83.

executior? The lower thee, the tighter the monotonic boundSAddresses A and C have less similar velocities, and share dowionly in
) N rounds 70-83. Addresses A and D have even less similar viecénd so

become in the Monotonic Bounds Test (Sec. HlI-B), SO W goes not enter the window until round 85, after A has exited.
recommend minimizinge where possible by, for example,
deploying RADclock instead of NTP.

The higher probing rate achievable by multiple vantag®/s, but the vast majority of the targets we have observed ha
points is not enough by itself for true scalability as the bem |ow velocities (see Appendix A), so we need a short sampling
of targets increases to Internet-scale. We discuss anothgérval only for the minority of high velocity targets.
technique MIDAR employs for scalability in the next section MIDAR incrementally probes the target list over multiple
rounds In each round, MIDAR sends one probe to each target
in awindowin sequence. Avindowis a contiguous subset of
the target list defined by starting and ending target indexes
. . i . ) Phe width and position of the window changes over time.
list O.f target address_es Is to |te_rate over the list mulifpiees, The width of the window determines the time it takes to
probing the targets in order, like RadarGun. If we prdiie probe the window, and thus the sampling interval for targets
addresses gb packets per second (pps), then each target, |3

led T — N ds. Th lting ti _-Within the window. The position or coverage of the window
sampied everyl = /p seconds. The resuling ime: Sereyqiarmines which targets will have overlapping time series
for each target is usable only if the sampling interl/as less

th | to th . tabl ling int MIDAR ensures that the window covers likely shared-counter
I anfortﬁqijﬁ Ot N mgx'mTlTAaccepfb € :;;]an:p Ing '?letw ndidates by sorting the target list by descending vslocit
max 10T 3 tar?r? (ﬁ.ei Ef[C' I- f m??hé(:‘ S otr egoug O \which puts addresses with similar velocities near eachrothe
accommoaate the nighest velocity o argets. Suppose \,paR obtains the velocities in the Estimation stage, see
the highest velocity is 200(? IDfs. Then, ffom (1), we musteha ec. IV-A). We can think of the simplest approach described
I= ?‘83;" Iftzgo§425; 10%, tf;}gnht.o afr'e\/??l:gjg’/s’ \;Vf t the beginning of this section as a degenerate case with a
Must probe a pps, which is atleast 7.L. S ottratieed window covering the entire target list, so that we alle
with TCP probes. The brute force approach of probing fro%\/erlapping time series for all targets

1000 hosts in paralle_l would reduce the p_robing rate to 283 pp Fig. 5 illustrates the execution of the sliding window. In
per host, but managing that many hOStS IS cumbersome. H%ee’ upper subfigure, each dashed horizontal line repretents
we present a more scalable technique that can achieve eyven

: ) ; target list at a particular round of execution (so each watti
smaller intervals for high velocity targets, at half the-pest line represents the same target address over all rounds), an
probing rate, using fewer than 40 hosts. '

) . . : - . each solid bar represents the window. For brevity, the figure
MIDAR achieves probing scalability with sliding window ! '
scheduling algorithm that exploits two observations. Th& fi only shows every fifth round. The lower subfigure shows the

2 . T target velocities in ID/s, with the target indexes matchinm
:Jhbservatlont |sr'][hat i addretsses have \éery dt|SS|mgatr mcl vertically between the two subfigures. For discussion, we ha
Ey cannot share a counter, so we do not need fo apply fQSeled four target addresses, (B, C', andD) and highlighted

MBT to them and thus do not need their time series to overl eir target indexes with vertical lines

That is, we can use velocity similarity as a high sensitivity Observe first that the width of the window increases over

(but low PF.)V) shared counter test, to filter out many gnshar (rjne, from around 300 targets at round 30 to 1000 targets at
counter pairs at an early stage. The second observatioatis {

o ) round 90. The window must be narrow near the beginning
target velocities vary widely from near zero to several and Co .
to ensure a sampling interval short enough for the highest

2To estimater, we usecht pg/nt pdat e to determine the clock offset and VeIO_CitY in the window. Because YeIOCitie_S vary widely ireth
delay of each vantage point during a MIDAR run. beginning (from 1600 to 400 ID/s in the first 300 targets), the

E. Achieving probing scalability with sliding window
The simplest way to collect overlapping time series for
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narrow window includes all targets that could plausiblyrehe 30 times while sharing a window with all targets of similar
counter with the highest-velocity target, while excludimgny enough velocities to potentially share counters. In thiy,wa
targets that could not. The window is several times widéhe window eventually slides down the entirety of the target
at round 90 than at round 30 because the target velocitlest over multiple rounds.
at indexes 400-1400 are much lower with less variation, soWe chose the coefficients and balance point for the two
the sampling interval can be longer, and more of the adjaceneétrics based on our experiments with the sliding window
targets are shared-counter candidates based on theiitiedoc schedule. These choices reflect an informed judgment on the
Next, observe that the window gradually moves down threlative importance of various measurement parametedsit an
list over successive rounds. The more rounds two addressesroay be worthwhile to further study the tradeoffs involvedt b
occupy the window, the more overlap there will be betwedhe exact chosen values are not critical. Because the window
their time series. We wish to ensure sufficient overlap betwefollows a smooth transition, a small change in these pararset
targets with similar velocities, but avoid wasting res@sron or in velocity estimates would cause only a small changeen th
obtaining overlap between targets with sufficiently dism amount of overlap between targets. If we had taken a simpler
velocities. Targets with nearly the same velocities, sush approach of grouping the targets by velocity and probindneac
A and B in Fig. 5, are near each other in the target liggroup separately, a small change in parameters or velocity
and thus will co-occupy the window the longest and hawstimates could change group assignments and cause some
the most overlap. Targetd and B have overlapping samplespairs of targets to go from full overlap to no overlap.
from round 35, whenB first falls within the window, until  MIDAR partitions the full target list across multiple vage
round 83, when4 last appears in the window. Targets wittpoints and simultaneously probes with a sliding window from
only somewhat similar velocities, such AsandC, are farther all locations. To ensure that all targets with similar véies
apart in the target list and thus will co-occupy the window fohave overlapping time series even across vantage points,
only a limited number of rounds (rounds 70-83 fbrand(C), MIDAR assigns, to the extent possible, both an equal number
but collecting even a few overlapping samples is still usefof targets and an equal distribution of target velocitiesdoh
for ruling out these unlikely shared-counter pairs with MBTvantage point, so that the windows of different vantage fsoin
Finally, targets with sufficiently dissimilar velocitiesuch as cover the same range of velocities at the same time. Targets
A andD, never co-occupy a window and have no overlap, bthat can only be probed with tHadirect method can only be
we presume they cannot share a counter, so lacking overlags$signed to vantage points that saw that target in a trateerou
a feature that improves efficiency. path, but targets usable with other methods can be assigned t
The sliding window must balance two competing requireany vantage point, giving us the flexibility needed to ackiev
ments in each round—it must be narrow enough to ensurearly identical velocity distributions.
a sufficiently short sampling interval for the highest targe The same sliding window schedule drives probing on each
velocity in the window, and it must be wide enough toantage point. We can pre-calculate the schedule becaase th
include all nearby targets with velocities similar enough twindows depend only on target velocities, which are known in
share a counter. We can quantify this trade-off with metri@lvance. The schedule includes a delay in each round for any
that depend only on target velocities and use the metricsM@ntage point that was assigned less than its share of garget
guide the choice of the optimal window size. Lgfy, be the for that round, allowing us to finely synchronize the probing
highest target velocity in a window, ang,, the lowest. These of a given velocity range across all vantage points.
are the velocities of the first and last targets in the window, The sliding window scales gracefully without manual pa-
because the target list is sorted by descending velocity. \\ameter adjustment to varying numbers of targets and vantag
define aspacingmetric for the quality of a window’s sampling points and varying levels of overlap quality between time
interval in terms of how much a counter with velocityig, Series. Using this approach, with 40 vantage points and a
would advance between samples; specifically, we defineself-imposed limit of 100 pps per vantage point to minimize
counter advancement of 16384, or 1/4 of the ID spacd@pact on the network, we were able to collect the required
to be one unit ofspacing If the counter advances 1/8 ofoverlapping time series for 1.9 million addresses in 5.9rbiou
the ID space, then the spacing will be 0.5. Lower spacingth a worst case sampling interval of 15% of the wrap period.
means more samples between counter wraps. We defindhés aggregate probing rate of 4000 pps is significantly towe
similarity metric for a window’s inclusiveness of similar targethan the 459 496 pps that would be needed by the brute force
velocities in terms of the ratiiow/vhign, With a value of approach to achieve the same sampling interval.
2/3 being one unit okimilarity. A ratio of 1/3 would be a  Like TTL clustering in Rocketfuel, MIDAR’s sliding win-
similarity of 0.5. The lower the similarity, the wider thenge dow eliminates many pairs from consideration before fully
of velocities allowed as possible shared counter pairs. AsPepbing them. In the context of MIDAR, we chose to use a
window becomes larger, the spacing metric increases (géliging window based on IP ID, the same parameter already
worse) and the similarity metric decreases (gets betten). Fised by MBT, rather than introduce potential additional eom
each round, we choose the window’s starting target index, aplications of a new parameter, TTL.
then choose the window size at which these two metric values
are equal (or cross). If possible, we first advance the startiF- Further reducing false positives
target index of the window past any targets in the beginningFor the millions of addresses typically discovered by
portion of the window that have already been probed at ledsternet-scale mapping experiments, some of the trilliohs
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possible pairs of addresses will have similar IP ID timeeseriB. Discovery stage

over a g_iven measurement period out_ of sheer c_oinciden_ee (SeThe Discoverystage is our first pass at identifying address
Appendix C). Thus, all IP ID based alias tests will be suseephirs that appear to share a counter. We start by generating
ble to false positives at this scale. Fortunately, unréll#ielD 5 gjiging window probing schedule using the velocities fbun
counters that were coincidentally similar during one p@6 i, the Estimation stage, and, following this schedule, prob
time will eventually diverge under continued observatidfe oach target with its best probing method. We then analyze the
exploit this fact to substantially improve confidence inipes  oqyits of these Discovery probes, applying our sharedteoun
test results and to rule out false positives. We repeat@ly tiosis 10 every pair of targets with overlapping time series.
pairs that pass MBT, delaying hours or days between tes&s. T, most important test for shared counters is the Monotonic
more times a pair passes MBT, the_hlgher our cpnfldence 0BBunds Test (Sec. 11I-B). But before applying the MBT, we
shared counter; but a single MBT fall'ure conclusively ruas can sometimes rule out a shared counter with two simpler
a shared counter. B_ecause of the V|rtua_\lly zero false negatihecks on IP ID byte order and precision (see Appendix F).
rate of MBT, assuming the clock error is not underestimat§gle explicitly do not use tests based on hop distance between
and counter anomalies are detected (see Appendix F), we Gifhitor and target, or on the inferred initial TTL set by
repeatedly apply MBT with negligible risk of losing aliases e target in the response, because these tests provide litt

When starting with a large numbe¥ of addresses, our aqgitional benefit and risk causing false negatives.
probing schedule must be tuned to handle@{&/?) possible

pairs, at some expense to accuracy. But as we repeat the MBT, =
the number of alias candidates gets smaller, allowing us %o Elimination stage
tune our probing schedule to give more accurate MBT results.In the Elimination stage, we repeat the MBT on every
Exactly how we do this is described in the next section. apparent shared counter pair found in Discovery in order to
eliminate the bulk of the false positives. Because we nove hav
IV. MIDAR | MPLEMENTATION a more manageable set of candidate pairs, we no longer need

A complete execution of MIDAR is divided into four stagesf'jl sliding window probing schedule. To achieve minimal probe
acing, and thus minimize the ID bounds in the MBT, we

In the Estimationstage, we determine the velocity and bestP Id b h shared A . telv. Th .
probe method for each address for use in subsequent sta guld probe each shared-counter pair separately. 1he main

In the Discoverystage, we probe all target addresses with awbacks of this approach are the high cost of probing a

sliding window schedule that allows us to efficiently proloel a large number of candidate pairs (6.8 million pairs in our

apply MBT to a large number of pairs to discover pairs thgtxpe_rlment, see Sec. V) an_d the un_de5|rab|llty of_repeﬁte_dl
potentially share an IP ID counter. In tEiminationstage, we probing addresses that are involved in many candidate.pairs

re-probe and repeat MBT on these potential alias pairs ® r% We Caﬂ afh'et‘/e farfgrﬁateraproblr;g effl(;lenC)ihby ci;(plonmg
out most false positives. Finally, in theorroboration stage, € graph structure of sharéd-counter Sets, with addresses

we probe and apply MBT to each candidate alias set as a wh? es z;nd gandld?te srlared—cou?tgrbrelgponshlpstasd.etdgl;as
to confirm them and to rule out remaining false positiveseaft ~2/9€ Shared-counter Sets generated by Liscovery tend 1o be

completion of all probing stages, we infer reliable aliatsse Very sparse graphs with many smaller ghques or near-cligue
of real aliases linked together by relatively few false exlge

o created by chance alignments. In Elimination, we decompose

A. Estimation stage each large shared-counter set into overlapping smaller sub

In the Estimation stage, we ascertain two fundamentagraphs, ensuring each edge occurs in at least one subgraph.
properties of each target. We first identify the preferréd/e try to extract subgraphs that are as close to a clique
probing method for each target, as discussed in Sec. llI-& possible, since we can efficiently collect overlappinggti
All subsequent MIDAR stages probe each target with onberies between all pairs in a clique with the minimal number
the target’s preferred method. We next estimate the velocitf probes, but if the resulting subgraph would caus&) to
of each target by applying (2) to the time series collectezkceed 5% of the ID space, we choose a smaller subgraph to
by a target's preferred method. The subsequent Discoveyyarantee tight probe spacing for more effective elimoratf
stage uses these estimated target velocities to calctddig,y false positives. To reduce repeated probing of addressesyw
according to (1) and create the sliding window schedule. to minimize the number of subgraphs that include any given

We partition the target list across vantage points and proaddress. In the experiment described in Sec. V, this subgrap
every target with every probing method. Because we care ofiigsed probing generated only 15% as many probes as would
about the properties of individual targets, we do not need lave been needed by pair-wise probing.
collect overlapping time series across targets, so theimgob We probe each subgraph for 10 rounds, where a round
procedure is inherently scalable to any number of targetnsists of a single probe to each member of the subgraph
To avoid potential bias in selecting a probing method, weonsecutively, which guarantees maximum overlap between
randomize the probing order of the methods for each targ#te time series of the addresses. We send probes to members
We probe each target 30 times, with an average interval aff the same subgraph no faster than once every 600 ms and
about 7.8s between probes of a given method to the sanmeslower than once every second. The purpose of the lower
target. This interval is short enough to reliably samplgéts bound is to avoid the appearance of an attack and to avoid
with velocities up to 2520 ID/s, according to (1). rate limiting at the target, since at least one popular bi@ind
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. - TABLE II
router will by default rate-limit |CanreaChab|aeSpon§e5 CLASSIFICATION OF ADDRESS PAIRS IN OUR EXPERIMENTBOLD LINES
to one every 500 ms. For each subgrdptthe round duration INDICATE PAIRS THAT WERE PASSED ON TO LATER STAGES
is typically a little over|S| x 600 ms and at mos{S| x 1s. o _

. . . stage/classification address pairs percent

To reduce total run time, we probe multiple subgraphs egimaton
parallel. The artificial delay within each round allows us to. usable 1753713330078 100.00

interleave rounds of different subgraphs without signiftga ~ Discovery
increasing the duration of each round. We can control ouf U1uSabl® 110318572353 6.29
g . At : - dissimilar Est.v (likely unshared) 802244369 262 45.75
aggregate probing rate by adjusting the number of subgraphsailed MBT (definitely unshared) 841143560073 47.96
we probe in paraIIeI. - passed MBT (possibly shared)= D 6828390 0.000389
- ...and belong to a large set Dy, 6450911 0.000368
- ...and belong to a small set Dg 377479 0.000022

D. Corroboration stage Elimination
. . -in Dy, and passed MBE £, 2790570 0.000159
In the Corroborationstage, we take the transitive closure of . survived Elim. = Ds U &, = € 3168049 0.000181

all candidate shared-counter pairs that passed the Eliimma Corroboration

stage to obtain candidate shared-counter sets. We thee propl'gaf ai’;?ygf:sec’ MBT=C 2783801 0.000159
each of the sets as a whole and apply MBT to both the apparenty transitiveClosuref) = ¢ 2935558 0.000167
shared-counter pairs we have already discovered and the pai ...inCr ang ?alssaed Cor. 2930698  0.000167
; : p ; : - ...in Cr and failed Cor. 2500 0.000000
|mpl|ed_ by j[ransmve closure _of those dl_scovered pairs. . in G and untested in Cor. 5360  0.000000
Probing in the Corroboration stage is the same as in thec,. minus pairs in conflicted sets 2800727 0.000160

Elimination stage. The only difference is in the input—thesse

are smaller, but we want coverage of every possible tramsiti

closure pair in each set, not just the previously discoveragtwork topology during data collection. We conservayivel

pairs. Although most sets are small, some are still largeigimo discard any alias sets with transitive closure conflicts; gbts

or have high enough velocity that they need to be brokéhat remain are MIDAR’s final router alias sets.

into subgraphs as in Elimination. Compared to Elimination,

more subgraphs are required to cover an alias set of a given V. EXPERIMENTAL RESULTS

size in Corroboration because we must probe every pair inwe now describe an Internet-scale experiment with MIDAR

the transitive closure. Minimizing the size of these sets Iperformed on CAIDAs Archipelago (Ark) [21] infrastructer

eliminating as many false positives as possible in Elimamat on April 18-26, 2011. Results are summarized in Table II.

allows Corroboration to work with reasonable efficiency. For input to MIDAR, we collected 2323682 addresses,
The Corroboration stage can also be used as a standalpfigarily from intermediate (router) addresses in 189 inill

tool to retest a previously collected set of aliases thaehav  paris-traceroute paths taken April 1-15, 2011 in tRe4

dergone months of potential address churn, or to test patenRouted /24 Topology Datasd80], which is an effort to

alias sets discovered by other means, such as with DNS nagpetematically measure IP-level paths from Ark monitors to

inference or other alias resolution techniques. Used tlaig, wa dynamically generated list of IP addresses covering 4ll /2

the Corroboration stage is more efficient and has better PByéfixes in routed IPv4 address spdc®f these addresses,

and sensitivity than Ally or RadarGun. MIDAR'’s Estimation stage found that 1872813 (80.6%) had
usable time series (Sec. Ill-A). For more detailed classifa
E. Final alias inference of Estimation responses, see Appendix G.

After all probing stages, we can finally infer reliable alias In the Discovery stage, we probed these usable addresses

sets. First, we find all pairs that passed MBT in Discover%Om ]\?0 Ark monitorls2 with a sliding window schedule. ?f
were not ruled out by Elimination, and were reconfirmed bhe <2) = 1.75 x 10°* address pairs, 6828390 (O'QOOA_'/")
MBT in Corroboration. Each of these pairs has passed {Apeared to use a shared counter. The small fraction is not

MBT at least two times, so we have fairly high confidence th&H"Prising because the number of shared pairs should( &)

i 2
they actually share counters. The transitive closure osghehereas the total number of pairsG§ V7). The 45.75% of

pairs yields the alias sets corresponding to routers. Fon e®2irs With dissimilar Estimation velocities were very tely
new pair created through transitive closure, we perform th@ Share a counter, and the sliding window was intentionally
MBT and other alias tests using probe data already collectgddineered to not waste resources collecting the overigppi
in the Corroboration stage. Because the Corroboratiorest{jn€ Series needed to apply the MBT to such pairs. ,
was specifically designed to obtain overlapping time series”nalyzing all possible pairs in the Discovery stage is
for every pair in every alias set, we will be able to perform ﬁy far the most computationally expensive task in a large-

least one MBT on each of these previously untested traasitgc2/€ MIDAR run; using a server with eight hyperthreaded

closure pairs, except when addresses are unresponsive>-A GHz CPUs, analysis of the 1.75 trillion pairs took 20

transitive closure conflicoccurs when addresse$ and B hours. Transitive closure of the 6828390 apparent shared-

appear to share a counté?,andC' appear to share a Coun,[er,counter pairs resulted in 75350 apparent shared-countgr se

but A and C do not share a counter. Such a conflict cannGPmammg a total of 1033759 addresses.
occur in an actual a_‘l'.as set, but can OCF:ur n eXper'men@ da SWe used 21 cycles of traces (7 per team) collected by all 54eadtik
due to a false positive or false negative, or a change in thenitors rather than just the 40 monitors used for MIDAR meas@rsgs.
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TABLE 11l
Of the 75350 apparent shared-counter sets, 72644 Sgk$unp TRUTH VALIDATION OF FULL-SCALE MIDAR SHARED-COUNTER

were already small enough to be efficiently tested in theairs. A PAIR IS“IN TARGET LIST” OR “USABLE" IF THAT CONDITION IS
Corroboration stage, but 2706 sets were large enough tHBYE FOR BOTH OF ITS ADDRESSES'UNDETERMINED” IS MOSTLY PAIRS
ST THAT WERE NOT TESTED WITHMBT BECAUSE THEY HAD DISSIMILAR
we wanted to use an Elimination stage to bre?‘k them UR/eiociTiEs. ACTUAL ALIASES CAN LEGITIMATELY BE CLASSIFIED AS
before Corroboration. The largest of these contained 618 87UNSHARED™ OR “UNDETERMINED” IF THEY BELONG TO A ROUTER THAT

addresses, but only 6.3 million of its 191 billion possib&rp DOES NOT SHARE A COUNTER ACROSS INTERFACES

were actually classified as shared. This very sparse graph is  yipar Tierl R&E

consistent with our expectation of many smaller cliques or result aliases  nonaliases aliases  nonaliases

near-cliques of true shared-counter sets being linkedtiiege _in tafgslt list S ;g 388 ig gégg;i 1;228 1;&822?
. . unusaple In Estimation

by relatively few false shared—counte_r pairs. The§e lasg8 s ¢hared (positive) 26522 ol 5856 0

were successfully broken up by eliminating pairs that the unshared (negative) 372 8758079 8 335297

Elimination stage classified as unshared or untestablginga undetermined 11497 10185571 2197 475202

174075 sets containing 704506 addresses, with the largest

set containing 658 addresses. Of the 2790570 pairs thatw 1

passed the MBT in Elimination, 2705601 (97.0%) would be
reconfirmed as being shared in Corroboration, suggestiy th
Elimination had already removed the majority of Discovery’
false positives among those pairs.

At this point, there are 3168049 pairs that survived Elim-
ination: the 377479 pairs from small Discovery sets that
were not subjected to Elimination and the 2790570 pairs

0.1 ;H— ‘:_-
0.01 7

fraction of pairs with overlapping rounds

from large Discovery sets that passed Elimination. In Cor- 0.001 I_.-'"'-

roboration, we probe those pairs to reconfirm them, and also ¢ Tiggéﬁgggg) —

probe the 1202111 additional pairs implied by transitive 0.0001 Liimamiliiliilin, TP EUTR8
0 10 20 30 40 50 60 70 80 90

closure of those pairs so we will be able to perform full-

mesh conflict testing. Of the pairs that survived Eliminatio

2783801 passed Corfoboratlon_, and have now passed Mﬁa— 6. Time series overlap between known shared-countes paring the

at least twice. (The pairs that failed mostly belonged tolsmaliding window for a newer MIDAR run on Oct 24-Nov 3, 2011. Tsléing

Discovery sets and had been previously tested only onténdow failed to achieve 3 rounds of overlap for only 0.25%wbéwn shared-
. . . LT ?oﬂlnter pairs in the Tierl dataset, and only 0.01% in the R&fas#.

and so were likely to still contain a significant number o

false positives.) Transitive closure of these high-comfige

pairs yielded 126 147 sets containing 427 199 addresses an -
2935558 total pairs. The largest set was the same 658-axdd§eesgs' For both sets, the number of false positives (shared

set found by the Elimination stage. Of these sets, only %nglle}ses) Is zero, showing that MIDAR hgs a h'.gh positive
. " > ; predictive value. There were few actual alias pairs that the
contained transitive closure conflicts. Treating the coted

: . MBT explicitly classified as unshared; closer analysis @frth
sets as untrustworthy leaves us with 126 124 sets containin . .
. . e series supports the conclusion that they are actually
426 152 addresses and 2800 727 total alias pairs. Only 2 : : L
(0.08%) of the pairs in 352 (0.28%) of the sets were untestuHShared’ and not false negatives in MBT. The majority of
> P . - Sl8fases missed by MIDAR were due to routers that do not
by MBT, that is, inferred only via transitive closure. Theghi .
respond, do not use monotonic counters, or do not share a

degree of internal consistency in the face of nearly coraplet . : :
. : . nter acr interf making them un | h
full-mesh testing of every set is strong evidence that MIDBAR Counter across interfaces, making them undetectable with a

o - . . T IP ID based technique.
positive predictive value is extremely high (that is, it fincery d - .
" To test the quality of the sliding window schedule, we
few false positives). . .
examine how many rounds of overlap were achieved between
the time series of pairs of addresses known to share counters
VI. VALIDATION We identify known shared counters by performing a standalon
Corroboration run on known aliases. In Discovery, we regjuir
least 5 sample points to pass the MBT, which can be

overlapping rounds

For validation, we used two sets of ground truth d&&Ek,
a collection of known topologies provided by research a

educational networks (CAnet [31], CENIC [32]FBNT [33], °© tained in 3_overlapping r_ounds, assuming no d_is_contiar_mit
I-Light [34], Internet2 [35], and NLR [36]); andTierl, a or unresponsive probes. Fig. 6 shows that the sliding window
KNOWn topo,logy provided b,y a Tier 1 1SP. ’ achieved this 3 round minimum for 99.75% of known shared-

oS . o
The most direct validation we can do is test whether MIDA Oltmte[ [_)re;]lrs N fthﬁ t‘rr:erlhdatzset, a?d 99:99£ Itn thpi éRh&E
and a validation set agree on the classification of aliaspai ataset. 1hus, ot afl the shared counter pairs that cou’e hav
Table Il shows the result of this comparison for the full; een found by Discovery, only a tiny fraction were missed due

scale experiment described in Sec. V against the two va'ad'miatto poor overlap in the sliding window.
sets. Note that disagreements may indicate not just emorsi, _

b | in th lidati | ch . “We did this overlap analysis on a new MIDAR run on Oct 24—No2(&l1,
MIDAR, but also errors in t e validation set or real angEs Which has similar overall results to the April 2011 MIDAR ruestribed in
the network between collection of MIDAR data and validatiome rest of this paper. We are unable to do this analysis ot run.
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TABLE IV

GROUND TRUTH VALIDATION OF RADARGUN AND MIDAR Discovery ~ RadarGun. Of the 100 000 addresses, 32 604 were testable with
ANALYSIS ON THE SAME PROBE DATA A “TESTABLE ALIAS” IS AN RadarGun, and 29678 with MBT. RadarGun with its default
ACTUAL ALIAS PAIR IN WHICH BOTH ADDRESSES WERE TESTABLE alias distance threshold of 200 found 1470877 positives out
ground | tool testable of 531494106 testable pairs, and MBT found 327 out of
truth and threshold aliases TP FP PPV 440377003 (and a full MIDAR run with multiple stages and
Tierl RadarGun 1 62817 1500 0 1.0000

adaptive probe spacing would find even fewer). Assuming
RadarGun 10 | 62817 | 48146 5  0.9999 that all " fal . bound al
RadarGun 100 | 62817 | 61773 7358 0.8936 at all positives are false gives an upper bound on false
RadarGun 200 | 62817 | 62392 23110 0.7297 positives. To obtain a lower bound, we must count only the
RadarGun 300 | 62817 | 62392 56885 05231  posjtives that we can be sure are actual negatives. We rely

MIDAR MBT 62801 | 62801 5 0.9999 e
RZE ' RadarGun T 5307 T 278 > 0.9913 on the fact that MBT tests a necessary condition for counter
RadarGun 10 2307 | 1010 4 0.9960 sharing, and is not specific to MIDAR. If two time series fail

Eagafgun ;gg ggg; igég gg 8-2532 MBT, they cannot share a counter (assuming no undetected
adarGun . . ..
RadarGun 300 5307 | 1820 252 08783 anomalies). Of the 1470 8_87 probable false p03|t|ves_f(_)und
MIDAR MBT 2513 | 2457 0 1.0000 by RadarGun, 1298696 failed the MBT and so are definitely
false positives for RadarGun, giving a lower bound @rof
TABLE V 0.0024. (We cannot use this approach to obtain a lower bound
LARGE-SCALE VALIDATION OF FALSE POSITIVES INRADARGUN AND

MIDAR D ISCOVERY ANALYSIS ON THE SAME PROBE DATA To100000  ON MIDAR's false positive rate.) Table V shows the results fo

PRESUMABLY UNRELATED ADDRESSES upper and lower bounds on FP aadfor various settings of
the RadarGun distance threshold, showing that RadarGun is

tool upper bound lower bound . . .
and threshold P P o highly susceptible to false positives, regardless of theseh
RadarGun 1 326 0.0000006 266 0.0000005 threshold.
RadarGun 10 25235 0.000048 | 21994  0.000041 By plotting the number of false positives in the above tests
RadarGun 100 | 631995 0.0019 559189  0.0011 > .
RadarGun 200 | 1470877 0.0028 1298696 0.0024 against increasingly larger random subsets of the targetds,
RadarGun 300 | 2397778 0.0045 2114970 0.0040 found that the number of false positives for both tools was, a
MIDAR MBT 327  0.0000007 - —

expected, directly proportional to the total number ofdbkt
pairs, not addresses. Specifically, the number of false positives

- . matched the predicted curvex N x (N —1)/2, with the values
Although it is not feasible to run RadarGun at the scale %ff o given in Table V

our MIDAR run in Sec. V, we did run it in April 2012 against
our entire ground truth, which is larger and more reliabknth
the inference-based validation data used by Bender et@l. [1 ) ) ) )
We used TCP probes and an average probe spacing of 30,10 one alias reso_lgtlon technlque_ls p_erfect_. All have some
and 13.1s for the Tierl and R&E datasets, respectively. \@gount of false positives, all have significant incompleg
then analyzed the results with various settings of RadaeGufind most have scalability issues in the operational diffjoof
alias distance threshold. We also applied MIDAR's DiscgvetVOrking at large scale or in the way errors grow superlinearl
stage analysis to the data collected by RadarGun, allowifig (he Scale increases. MIDAR extends recent work in IP ID-
us to directly compare RadarGun’s time series modeling aRgsed alias resolution with new, highly scalable techrsque
distance test to MIDAR's time series modeling and MBT. Notfiat minimize false positives sufficiently to achieve a high
that we are not testing the full MIDAR system: in particula0Sitive predictive value at Internet scale (that is, B
we are not testing multiple probing methods, multiple s&agec’f la.lddresses). AIthough we believe false positives and scal
or adaptive probe spacing. Table IV summarizes the result@Pility are now essentially solved problems for IP ID-based
Given identical probe data, there is no setting of Radarguf€chniques, completeness will always be limited by routers
distance threshold that allows it to achieve results as gmodthat simply do not share IP ID counters across interfaces. Fu
MIDAR’s MBT in both TP and FP at the same time. thermore, rate-limiting may slightly reduce the complet&n
Because the available ground truth is too small to exploldM!PAR, and overcoming this limitation is an area for fueur
large-scale phenomena, we constructed a special set ettaFé“dy' Using multiple alias resolutlop technlques in defalan
addresses for this purpose. From the 126124 multi-addrd@®rove completeness, but resolving disagreements batwee
and 1.7x 10P single-address shared-counter sets identified Beniques is a challenge we hope to pursue in the future.
the full MIDAR run of April 2011, we randomly picked one We are currently using a combination of MIDAR, iffinder,
address in each of 100000 random sets. Although MIDA®' kapar (working toward our larger Multi-Approach
cannot always identify the full set of addresses belonging £ias Resolution System (MAARS)) to periodically capture
every router, this construction minimizes the chance tbates router-level topology which we curate and share _W'th re-
of our selected addresses legitimately share a counter. S‘?arChefS [37]. The MIDAR t°9' and all data of this paper
In April 2012, we ran RadarGun on these addresses wiffill Pe released to the community by June 2012 [38].
TCP probes and an average probe spacing of 41.8s. We also
ran MIDAR Discovery stage analysis on the data collected by REFERENCES

[1] V. Jacobson, “traceroute tool,” ftp://ftp.ee.lbl.gtraceroute.tar.gz.
5The MIDAR validation in Table Ill had fewer testable pairsaththis  [2] k. claffy, T. Monk, and D. McRobb, “Internet tomographyyi Nature
validation because it included only addresses that alseapd in Ark traces. Jan. 1999.

VIl. CONCLUSIONS



14

(3]

(4]
(5]
(6]
(7]

(8]

B

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[29]

[20]
[21]
[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]
[31]
(32

[33]
[34]
[35]
[36]
[37]
(38]

IEEE/ACM TRANSACTIONS ON NETWORKING

N. Spring, D. Wetherall, and T. Anderson, “Scriptroutd: public

Internet measurement facility,” idth USENIX Symposium on Internet > 09 i

Technologies and Systen)02. g 08 3 :—w’"

N. Spring, R. Mahajan, and D. Wetherall, “Measuring |Spdlogies 2 07 -

with Rocketfuel,” inACM SIGCOMM 2002. ES] : I_/‘",r,,‘

Y. Shavitt and E. Shir, “DIMES: Let the Internet measurself,” in > 06 177

ACM Computer Communications Revje@ct. 2005. £ 05 4/

J.-J. Pansiot and D. Grad, “On routes and multicast tredisd Internet,” & 0.4 ( /

in ACM SIGCOMM 1998. g 0.3 f

M. H. Gunes and K. Sarac, “Importance of IP alias resohutia 5 ' - ] ICMP (832946) ————

sampling internet topologies,” iEEE Global Internet 2007 (Gl 2007) c 02 / Indir (1323740) E

May 2007 S o1 UDP (1148511) ------- E
: ] P/ TCP (803617) ——

B. Huffaker, A. Dhamdhere, M. Fomenkov, and k. claffy, “Taxs & O b P i il

Topology Dualism: Improving the Accuracy of AS Annotations fo 0.01 0.1 1 10 100 1000 10000

Routers,” inPAM, Apr 2010. Velocity (ID/s)

B. Huffaker, M. Fomenkov, and kc claffy, “Geocompare: a c@mgon
of public and commercial geolocation databasesNetwork Mapping Fig. 7. Cumulative distribution of IP ID velocities for usabtime series
and Measurement Conference (NMM®J)ay 2011, http://www.caida. collected by the Estimation stage using four probing methtskey includes

org/publications/papers/2011/geocompare-tr/. the count of time series for each method). The distributiorevily skewed
K. Keys, “IP alias resolution techniques,” Tech. R&t08, http://www. toward low velocities and tapers off long before reaching thaximum
caida.org/publications/papers/2008/aligsolution techreport/. discernible velocity of 2520 ID/s for the given sampling .

R. Govindan and H. Tangmunarunkit, “Heuristics for hm&t map

discovery,” inINFOCOM, Mar. 2000. TABLE VI

F?f-_ 'éeylsy “iffinder tool,” 2000, http://www.caida.orglols/measurement/ RELATIONSHIPS BETWEEN BINARY CLASSIFICATION TERMS
iffinder/.

N. Spring, M. Dontcheva, M. Rodrig, and D. Wetherall 6 to resolve Actual value

IP aliases,” Tech. Rep., May 2004. Positive Negative

M. H. Gunes and K. Sarac, “Analytical IP alias resolatfoin IEEE Test Positive TP FP — PPV
International Conference on Communications (ICC 20d&)n. 2006. result | Negative FN TN — NPV

——, “Resolving IP aliases in building traceroute-baseternet maps,” 4 1 1

Tech. Rep., Dec. 2006. Sensitivity | Specificity | — Accuracy

R. Sherwood, A. Bender, and N. Spring, “Discarte: A gigjtive Internet
cartographer,” irACM SIGCOMM 2008.
A. Bender, R. Sherwood, and N. Spring, “Fixing Ally’sayving pains

with velocity modelling,” inIMC, 2008. APPENDIXA

J. Sherry, E. Katz-Bassett, M. Pimenova, H. V. Madhyasth. Kr- VELOCITY DISTRIBUTION

ishnamurthy, and T. Anderson, “Resolving IP aliases wittspeeified . C " .
timestampsy" inMC. 2010. 9 pee Fig. 7 shows the distribution of velocities for usable tinee s

P. Mérindol, B. Donnet, J. Pansiot, M. Luckie, and Y. Hyun, “MERL  ries (Sec. IlI-A) collected by the Estimation stage (SecAlV

’\G/'Easuft? thletROUtSf L%elllof the INternet,” i@onference on Next The figure shows separate distributions for each of the four
eneration InterngtJun . .

J.-J. Pansiot, P. Btindol, B. Donnet, and O. Bonaventure, “Extractingsupported MIDAR _problng r_nethOdS (Sec. i C)' The L_Jpper

intra-domain topology fronm i nf o probing,” in PAM, April 2010. bound on the plot is approximately 2520 1D/s, the maximum

Y. Hyun, “Archipelago measurement infrastructure,”phttwww.caida. we could detect with our chosen sampling interval. The CDF

?sr?:/r?r?rjc?lftt:/arkléource code”  http://www.scriptrowte/source/ tapers off long before reaching this upper bound, sugggstin
Scrip‘t)route_o.4'81%92. ' b SCrpHo there are not many actual interfaces using monotonic IP ID

R. Elz and R. Bush, “Serial number arithmetic,” REFC 1982gA1996. counters with velocities higher than this bound; that isy an
“RadarGun source code,” http://www.cs.umd.edognder/radargun/ apparent velocities higher than this bound are likely due to

radargun-0.3.tgz.

B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Edman, and randomly generated IP ID values.
M. Latapy, “Avoiding traceroute anomalies with Paris traxee,” in
IMC, Oct. 2006. APPENDIX B

J. Aweya, “IP router architectures: an overview, Timernational Journal

of Communication System®001, pp. 447-475. BINARY CLASSIFICATION

“Cisco 10S release 12.0 network protocols command refeg To aid in discussion of alias resolution tests, it is useful

http://www.cisco.com/en/US/docs/ios/Xnpl/command/reference/ ; ; ; ; ;
1rip html#wp1028904. to review some terminology commonly used in epidemiology

D. Veitch, J. Ridoux, and S. B. Korada, “Robust Syncfization of Ab- and other fields. Some of these terms and their relationships
solute and Difference Clocks over Network$#EE/ACM Transactions are illustrated in table VI.

on Networking vol. 17, no. 2, pp. 417-430, April 2009. " . " . . .
J. Ridoux and D. Veitch, “Principles of Robust Timing ®véhe « positive having the condition in question (e.g., a pair of

Internet,” ACM Queue, Communications of the ACWbl. 53, no. 5, addresses sharing an IP ID counter, or being aliases)
pp. 54-61, May 2010. « negative not having the condition in question

http://www.caida.org/data/active/ipvebuted 24 _topology dataset.xml. . : .
hitps://amidala.canetd.netcgi-binfreports.pl. « actual positivegAP) andactual negative$¢AN): number

D. Newcomb, CENIC, La Mirada, CA, private communicationa of cases that d(_) or do not actually have the condition
2011. « prevalence fraction of cases that actually have the con-
http://stats.geant2.net/lg/. dition, AP/(AP + AN)

http://routerproxy.grnoc.iu.edu/ilight/. L . . .
hitp-//roUterproxy.grnoc.iu.edu/internet2. « true positiveqTP): actual positives that test as positive

http://routerproxy.grmoc.iu.edu/nir/. o true nega_ti_vez{TN): actual negatiyes that test as nega_t?ve
http://www.caida.org/data/active/internet-topgy- data- kit/. » false positivegFP): actual negatives that test as positive
http://www.caida.org/tools/measurement/midar/. « false negative$FN): actual positives that test as negative



INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR 15

« sensitivity= true positive rate(TPR) = recall: fraction For alias resolution results to have a usgfasitive predictive

of actual positives that test as positive, /PP valug there must be significantly fewer false positives than
« positive predictive valu€PPV) = precision fraction of actual positives. Comparing (5) and (3), and solving dor
positive tests that are correct, AIHP + FP) gives us an upper bound on useful valuesyof
o accuracy fraction of tests that are correc{(TP + d—1
TN)/(TP+ TN + FP+ FN) @< ©)

« false positive rat€éFPR ora): fraction of actual negatives
that test positive, FFAN
» false discovery ratéFDR): fraction of positive tests that

are incorrect, I_:P(TP+ PP =1-PPV ) To decreaser, RadarGun and MIDAR compare tens of
Accuracy alone is not a good measure of the quality Ofﬁmple points in time series, as opposed to Ally's two.
test. When prevalence is low, as in the case of large scake ap—?owever, the decrease is not as much as one might expect,
resolution, a test that mostly gives negative results valVeh ¢, 5 reasons. First, the samples in a single series are
a large number of true negatives and thus high accuracy, Rt independent, but are related by an underlying counter
might still have poor sensitivity and PPV. that increments with a somewhat regular rate. From this
perspective, we can view the test as requiring that two evant

Thus, whenN > d, the maximum acceptable false positive
rate of the test is inversely proportional to the number afet
addresses.

APPENDIXC have similarinitial ID values and similawvelocity (rate of ID
FALSE POSITIVES change). Second, because the velocity distribution of l2al
The false discovery rate is potentially very high when usin@“e. series is heaV|'Iy skewed toward.s low velocities as seen
IP ID time series for alias resolution at Internet scale. in Fig. 7, many pairs of counters will have a low velocity

According to the well-known “birthday problem,” in agrOUIOdifference. Two unrela_ted _counters with a similar ini_tiﬂ I
of just 23 or more randomly chosen people, there is great@ue and a low velocity difference will take a long time to
than 50% probability that at least one pair of people willéadiverge. _ _ o N
the same birthday. Similarly, given that the IP ID space haSFur_the_rmore, note that the ahas_ relationship is traresitiv
216 — 65536 distinct values, it takes a group of just 302 |Prhat is, if addressesl and B are aliases, an® and C' are
addresses to have a 50% probability of some pair of addres@iases, we must infer that andC' are also aliases; all three
having the same IP ID value at any given time, and just 7ﬁﬂdrgsse§ belong to the same router. Even a smalllset of false
addresses for a 99% probability. When the number of targ@@Sitives, interpreted at face value, could lead us to recdly
N passes the number of possible valuds collisions are Merge many distinct routers into one. The topology distarti
guaranteed by the pigeonhole principle. Even worse, if Bur caused by false positives is thus amplified by transitiveute.
ID test allows a range of nearby values instead of just equal
values, the frequency of collisions increases with the size APPENDIXD
the range. This would be the case if it were possible to probe NEGATIVE DELTA RATE OF RANDOM TIME SERIES
all N targets instantaneously with Ally. In the context of the A random time seriess produced from random IP ID values
birthday problem, this requirement would be like requirimg rather than from a monotonic counter. In random time series,
pair of people in a group to have birthdays within 4 days dhe average probability of a@ndividual delta being negative is
each other (which happens with 50% probability in a group0%, regardless of the sampling rate. Therefore, the eggect
of just 9 people). number of negative deltas appearing in a random time series
Given N target addresses, and an averageé afidresses per of n values is given by the binomial distribution fer — 1
router, the number of shared-counter pairs (actual pesitiis trials andp = 0.5. This distribution is a bell-shaped curve
approximately the number of interface pairs per router $imavith mode at(n — 1)/2.

the number of routers: For a time series of 30 samples (29 deltas), we would
_ allow a maximum of|0.3 x 29] = 8 negative deltas before
d N N(d-1) ey . .
AP ~ o) X g = g (3) classifying the time series as unusable based on our 30%

threshold on negative deltas (Sec. IlI-A). The probabibfy
and the number of non-shared-counter pairs (actual negativgetting 8 or fewer negative deltas out of 29 random deltas is
is the total number of possible pairs minus the actual pesiti just 0.012, so 98.8% of random time series will be correctly
_ identified as unusable. Eliminating addresses with randioe t
N N(N —d) . ) . .
AN = 5 |~ AP =~ 3 (4) series at an early stage is more efficient than ruling outeshar
counters involving those addresses later with MBT.

The prevalence is thefal—1) /(N —1). Some fractiony of the

tests on actual negatives will give false positive resultemv APPENDIXE

counters belonging to unrelated addresses are coinciyenta DISCONTINUITIES IN TIME SERIES

synchronized to within the tolerance of the test. Then, the An |p D time series that appears mostly monotonic may

total number of false positives will be have an occasionaliscontinuity a local region of uncertainty
N(N —d) where we cannot be confident that a counter remained mono-

FP=axAN~ax ——F—— (5)  tonic between individual samples.
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There are two types of discontinuity. First, there is a 0000 p—rr—rrrr—rr—rr-r—r—rr— T T I
discontinuity if the time gap between samples is too large, ,2888
or more precisely, ifA¢; is greater than 3.5 times the median Dggg
At of the same time series. This means that we lost three sooo
or more consecutive samples (assuming a regular spacing ff)fg\ggg
probes) due to rate limited responses or packet loss. Recéll 8000 ,
that our definition of a usable time series required at least goog bo—o—""" pooeo> " " e oot oo
three samples between counter wraps, so if we have lost threeiggg '
or more samples, the gap may hide one or more counter wraps. 3000

The second type of discontinuity occurs when the counter 2909
advances too quickly between samples, which could be due 0000
to a burst of router traffic causing high velocity monotonic

ID advancement, but could also be due to the router's counter L - .
Fig. 8. An example of the limited-precision counter anomalye Tive

bemg relsetv causing a noln'mono'[o_n'c ”:? Cha”ge- ﬂLéIe_ interpretation shows a much larger unwrapped delta (dasheyl than the
the median segment velocity for a given time series. If @itheorrect interpretation.

the actual counter advancemekfD; or the expected counter

advancementAt; of a segment is greater than 30% of the ID o o o
space, we mark that segment as a discontinuity. as discontinuities. We can also use limited precision aensnt

We take discontinuities into account in all our analyseg? rule out shared counters: two time series with different
allowing us to use time series that would otherwise intreduéanges cannot share a counter. We found about 0.39% of usable

errors or be unusable. For example, we exclude discorigsuitiime series had limited precision, most commonly using 12 bi
when computings in (2); that is, for a discontinuity betweenWith values between 0x6000 and Ox6FFF. o
samples andi+1, we excludeAID; andAt;, thus improving ~ 1n€ final type of anomalyXX00 and XXFF outliersis

the robustness of to atypical or transient counter behaviorMost easily explained by an example. Given a sequence of

We observed a discontinuity in approximately 0.8% of thdexadecimal) ID value$11FC, 11FE.X, 1202, 1204, one
usable time series we collected. would expect to se&'=1200, but might actually se&¥=1100.

Taking this at face value would mean the counter advanced by
FFO2 (from 11FE to 1100, almost the full ID space) in the time
APPENDIXF it would normally advance by just 0002. We speculate that a
ANOMALIES IN MONOTONIC COUNTERS more likely explanation is that the two bytes of the counter a

We observe several types of anomalies in IP ID valuegpdated asynchronously, and the value was genebetireeen
MIDAR detects and accounts for these anomalies in order tite time that the low byte wrapped from FF to 00 and the high
maximize its sensitivity and positive predictive value. byte incremented from 11 to 12. We also saw cases where the

Most routers transmit ID values in big-endian order (nefytes seem to be updated in the opposite order, gi%irg2FF
work byte order), but some usigtle-endianorder. If ID values in our example. Rather than allowing one possibly incorrect
from a |Ow-veiocity counter are interpreted in the Wrongdaytvalue to interfere with the MBT, we discard the one dubious
order, then the counter will appear to have a velocity aboR@int and keep the rest of the series. Whatever the cause of the
256 times greater than its true velocity. On the other hdral, ianomaly, discarding one point will not significantly hurt MB
high_ve|ocity counter is interpreted with the wrong bytden; results, but if the value is indeed incorrect, keeping it ldou
it will be indistinguishable from random. We developed aféefinitely cause false negatives. We found these anomalies i
inexpensive test to detect the correct byte Order, and fahetd Only 0.01% of 3.2 million observed monotonic time series.
approximately 0.6% of usable time series were little endian
We can also use byte order as an additional criterion fonguli APPENDIXG
out aliases, assuming that every interface of a router wosgd RESPONSE RATE ANDIP ID CHARACTERISTICS
the same byte order for a given probe method (Sec. IlI-C) (butTo study the usefulness of the probing methods, we analyze
we do not assume that every router uses the same byte owlar Estimation stage, in which we attempted to collect IP ID
for different probe methods). time series from 2323 641 target addresses with all availabl

The second type of anomaly is caused by routers that gdombing methods. The Indirect method could not be used with
not use all 16 bits of the IP ID field. Suchlianited precision addresses gathered from non-Ark sources, because we do not
counter will wrap around its smaller ID space more frequenthave the necessary traceroute information for them. Talble V
than a full precision counter with the same velocity, as shovshows the results.
in Fig. 8. To identify ab-bit limited precision counter, we We count a time series as haviigsufficient responses
require not only that tha6 — b high bits are constant, butfewer than 75% of the probes to the target elicit the expected
also that there is at least one wrap, and that every wrappedponse. The subcategories enumerate the most common
segment, after being unwrapped, has a velocity similar teasonsUnresponsivemeans more than 75% of probes did
that of the non-wrapped segments. Failing to identify ladit not elicitanyresponse. During Indirect probing, a sequence of
precision counters would not directly lead to false residtg TTL expansion that does not elicit any response from thestarg
it would lead us to unnecessarily mark their wrapped segmeig counted as a single non-response. We count a time series as

time
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TABLE VII
CLASSIFICATION OF [P ID BEHAVIOR OF ADDRESSES PROBED WITH VARIOUS METHODS IN THESTIMATION STAGE.
TCP UDP ICMP Indirect
addresses probed 2323641 100.00%| 2323641 100.00% 2323641 100.00%| 1832771 100.00%
insufficient responses 905267 38.96%| 1151476 49.55%| 482399 20.76%| 352537 19.24%
- mostly unresponsive 865498 37.25%| 1014227 43.65%| 459545 19.78%| 322991 17.62%
- mostly unexpected 39741 1.71%| 136863 5.89% 22723 0.98% 28454 1.55%
responsive, but degnerate ID values 137363 5.91% 17164 0.74%| 999677 43.02%| 138553 7.56%
- mostly zero 130744 5.63% 15044 0.65% 1293 0.06%| 110849 6.05%
- mostly repeat 100 0.00% 568 0.02% 236 0.01% 985 0.05%
- mostly reflect 6516 0.28% 1349 0.06%| 998077 42.95% 26270 1.43%
responsive and nondegenerate, but nonmonotorjic 477 394 20.55% 6490 0.28% 8619 0.37% 17941 0.98%
responsive, nondegenerate, and monotonic (usableB03617 34.58%| 1148511 49.43%| 832946 35.85%| 1323740 72.23%

0 . TABLE VIII
unexpectedf more than 75% of the Pmbes gIICIt & IeSPONSYTILITY OF COMBINING MULTIPLE PROBING METHODS. PERCENTAGES
of an unexpected type. For most time series, either all or ARE RELATIVE TO 2 323 641TOTAL ADDRESSES
none of the responses are unexpected. Most of the unexpected o .

. . combination of methods responsive| usable

responses are ICMHBestination unreachablenessages from TCP 62.75% | 34.58%

non-target addresses. UDP 56.35% | 49.43%

The main cause of unresponsiveness for the Indirect method ICMP . 80.22% | 35.85%

. Indir 64.97% | 56.97%

appears to be network changes during the delay between the UDP 1CMP  Indir 88.57% | 7739%

traceroutes and our experimental probes. When the delay is TCP ICMP  Indir 89.11% | 76.02%

shorter, the response rate is higher. For example, in areliffe TCP  UDP Indir | 85.72% | 77.28%

Indirect orobi 103000 t ts f inal it TCP UDP ICMP 82.66% | 68.91%

Indirect probing run to argets from a single moniter, u TP UDP ICMP Tndi 89.55% | 80.60%

ing addresses gathered from traceroutes taken only 3—4 hour

earlier, only 1.2% of time series had insufficient responses TABLE IX

The traceroutes collected for Table VII were taken up to 18 CROSSMEUTSHAC;DLEci’th’ANET'SEERSEQ':g“ESE’TFI*PALZD;EETSHSOESSTHAT YIELD
days before the Estimation run, showing that Indirect psobe

can still be useful even after a moderate delay. However, we methods | addresses| shared
do see significant variability between monitors in the resgo TCP:UDP 595465 | 562582 94.48%
rate to Indirect probing, suggesting different levels ofiteo TOPICMP |~ 383712 311247 88.93%
: O Indirect probing, suggesting di v . TCP:ndir | 511111 | 456523  89.32%
instability and per-packet load balancing near each lonati UDP:ICMP | 523710 | 509951 97.37%
We classify a time series as havidggenerate 1D valuei UDP:Indir 774993 | 745913  96.25%
ICMP:Indir | 545585 | 525224  96.27%

it had sufficient responses but 25% or more of the ID values
were zero, some other constant value, or the value used in

the probe packet. Such ID values are not gseful to us becagagceptible to rate limiting. If we employ all four methods,
they do not reveal the state of an underlying shared countgé_z% of addresses respond to at least one method, and 80.6%

The subcategories enumerate time series for which more th I} . . o
le tim ries to at least one method. This imgkov
75% of IDs had the same type of degenerate value. Nea d usable time series to at least one method S improve

half of the targets respond to ICM&tho requesby echoing cgverage will make alias resolution much more complete.
the ID, and a significant fraction of targets respond to TCP
and Indirect with zero-valued IDs. APPENDIX|
Any time series that passed all of the above tests is tested CROSSMETHOD [P ID COUNTER SHARING
for monotonicity. If its ID values cannot be modeled as a Table IX shows the prevalence of cross-method counter
monotonic counter, is is classified snmonotonicTCP is the sharing for our dataset. For each pair of methods, TableskX li
only method for which a significant fraction of targets passéhe number of addresses that responded to both methods with
the earlier criteria only to be classified as nonmonotonic. usable IP ID values and then the count and percentage of those
Fina”y’ any time series that is responsive, not degen,era@@dresses that had a shared counter. Overall, there is a hlgh

and monotonic, is classified asablefor testing with MBT.  incidence of counter sharing, ranging from 88.9% to 97.4%.
As expected, TCP and UDP share often at 94.5%. The sharing

rates of the remaining pairs seem to be correlated with the
response type; that is, counters seem more likely to be ghare
when two probing methods elicit a similar type of response.
Table VIII shows the increase in target responsiveness angr instance, the sharing rate of TCP with either ICMP or

usable time series achievable by employing multiple p@binndirect is comparatively low perhaps because TCP rarely
methods for our dataset. Individually, ICMP has the higheglicits an ICMP response. In contrast, UDP always elicits an
responsiveness but the lowest amount of usable time selig®p response, and we thus see comparatively greater ounte
due to many addresses echoing the IP ID of the probe gﬁanng between UDP, ICMP, anddirect

the response. UDP and Indir have the highest amount of

usable time series of any single method despite being more

APPENDIXH
UTILITY OF MULTIPLE PROBING METHODS



