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Abstract— Network traffic measurements provide essential
data for networking research and network management. In
this paper we describe a passive monitoring system designed
to capture GPS synchronized packet level traffic measurements
on OC-3, OC-12, and OC-48 links. Our system is deployed
in four POPs in the Sprint IP backbone. Measurement data
is stored on a 10 terabyte SAN (Storage Area Network) and
analyzed on a computing cluster. We present a set of results to
both demonstrate the strength of the system and identify recent
changes in Internet traffic characteristics. The results include
traffic workload, analyses of TCP flow round-trip times, out-of-
sequence packet rates, and packet delay. We also show that some
links no longer carry web traffic as their dominant component to
the benefit of file sharing and media streaming. On most links we
monitored, TCP flows exhibit low out-of-sequence packets rates
and backbone delays are dominated by the speed of light.

Index Terms— Packet-level traffic measurements, IP backbone,
GPS synchronization, web traffic, file sharing applications, packet
size distribution, TCP performance, delay measurements

I. INTRODUCTION

OVER-PROVISIONING is widely used by packet net-
work engineering teams to qprotect networks against

network element failure and support the rapid growth of
traffic volume. So far, this approach has been successful
in maintaining simple, scalable, highly available, and robust
networks. It is important to realize that in packet networks
which do not perform call admission control, there is often
no way to control the amount or types of traffic entering the
network. The provisioning problem therefore lies in figuring
out how much excess capacity is required to provide robust-
ness (e.g. resilience to multiple simultaneous link failures)
and scalability. The current tools for network management,
such as SNMP (Simple Network Management Protocol), are
limited in their capabilities, since they only provide highly
aggregated statistics about the traffic (e.g. average traffic load
over five minute intervals) and do not give insight into traffic
dynamics on time scales appropriate for events such as packet
drops. Another example is the demand traffic matrix which is
a crucial input to many network planning, provisioning, and
engineering problems, but which is difficult to obtain with
available tools [1], [2].
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Detailed traffic measurements are necessary to assess the
capacity requirements and to efficiently engineer the network.
Research topics that can benefit from packet-level monitoring
are:

� Developing traffic models that allow network operators
to determine the amount of over-provisioning required in
their network [3].

� Assessing the trade-offs between different levels of gran-
ularity in routing, and studying the traffic dynamics
between POPs [2], [4].

� Developing algorithms to detect network anomalies such
as Denial-of-Service attacks and routing loops [5].

� Studying the performance of TCP, and identifying where
congestion is occurring in the network [6].

� Evaluating the network’s capability to support new value-
added services (telephony, QoS, etc.) [7].

In order to gain a better insight into network traffic, we
have developed the IP Monitoring (IPMON) system and have
deployed it in the Sprint IP backbone network. The IPMON
system is capable of (i) collecting packet-level traces at
multiple points on the Sprint IP backbone for link speeds of
up to OC-48 (2.5 Gbps), (ii) marking each of the packets with
a sub-microsecond time-stamp, and (iii) synchronizing these
traces to within 5 �s. Off-line processing of the packet traces
then enables detailed studies of the various aspects of traffic
characteristics, such as delay and loss.

In this paper we first describe the architecture and capabil-
ities of the IPMON system. Then we point out the challenges
we faced in collecting terabytes of data, and include our
solutions to data sanitization. In the remainder of the paper
we present our observations of traffic on OC-12 (622 Mbps)
and OC-48 links in the Sprint IP backbone network 1.

Results presented in this paper provide a high-level view of
a major backbone network’s traffic in 2001 and 2002, and
highlight the changes that have occurred in traffic charac-
teristics with respect to previous studies. First, we illustrate
that SNMP statistics are not appropriate to detect short term
congestion. Then we identify the impact of new applications
such as distributed file sharing and streaming media: on
some links over 60% of the traffic is generated by these
new applications, while only 30% is web traffic. Our results
on end-to-end loss and round-trip-time (rtt) performance of
TCP connections are significantly different from previous
observations. Lastly, we present results on the network delays
that are experienced through a single router in the backbone,

1www.sprint.net
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as well as the U.S. transcontinental delay measurement. Our
findings are that packets experience very little queuing delay
and insignificant jitter in the backbone.

The paper is organized as follows. Section II discusses re-
lated work. Section III describes the monitoring system archi-
tecture. Section IV presents and analyzes traffic measurements
from the Sprint IP backbone network. It starts with a brief
description of the 32 traces used in the paper, and analyses
the traffic load broken into bytes, applications, and numbers
of flows. The performance of TCP flows is evaluated in terms
of round trip times and out-of-sequence packet rates. Lastly,
delay measurements are presented. Section V concludes this
paper and discusses future work.

II. RELATED WORK

The challenges in designing a monitoring system for a
comprehensive view of the network performance are (i) the
collection of detailed traffic statistics, including application
mixes and traffic matrices, from heterogeneous network links,
(ii) limiting the side-effects of the monitoring system on
the monitored network, and (iii) obtaining a global view of
the monitored network from a limited number of monitoring
sites. Existing monitoring systems partially address these three
issues.

Network researchers have adopted two distinct approaches
to data collection. The first approach uses an “active” mea-
surement system to inject probe traffic into the network and
then extrapolate the performance of the network from the
performance of the injected traffic. The second approach is that
of passively observing and recording network traffic. These
passive measurement systems use the recorded traffic to char-
acterize both the applications and the network’s performance.
They record and archive full traces, which in turn can be later
used for re-analysis. One drawback is that they generate a
large amount of measurement data. Due to the quantity of data
produced, recording traces from very high bandwidth links
is a serious challenge [8]. As a result, global observations
have often been addressed by inference techniques, and not
by exhaustive passive monitoring of every link in a network.

OC3MON is a well-known passive monitoring system for
OC-3 links (155 Mbps) described in [9]. It collects packet-
level traces or flow-level statistics. Packet-level traces can be
collected only for a limited amount of time (only a few minutes
at a time), while flow-level statistics can be collected on a con-
tinuous basis. It has been deployed at two locations in the MCI
backbone network to investigate daily and weekly variations in
traffic volume, packet size distribution, and traffic composition
in terms of protocols and applications [10]. OC3MON has now
been extended to support OC-12 and OC-48 links 2[11]. Passive
monitoring systems require specific hardware to collect data
on the network. In the case of OC3MON, data capture relies on
tapping the fiber through a dedicated network interface card.

There are several projects which combine both active and
passive measurement. The NetScope project [12] collects
measurements from the AT&T network in order to study the

2The analysis results from two 1-hour-long OC-48 traces are available at
http://www.caida.org.

effects of changing network routes and router configuration.
Using NetFlow measurements from routers, the traffic demand
for the entire network is derived [13]. The traffic demand is
used in simulation to determine the effects of changing the
network configuration. As part of an ongoing effort to de-
velop better network measurement tools, a passive monitoring
system called PacketScope has been developed and used to
collect and filter packet-level information.

The NAI (Network Analysis Infrastructure) project mea-
sures the performance of the vBNS and Abilene networks. This
system collects packet traces, active measurements of round-
trip delay and loss, and BGP routing information. All of the
90-second-long packet traces from this project are available
on their web site3.

Some routers have built-in monitoring capabilities. Cisco
routers have NetFlow [14]. It collects information about every
TCP and UDP flow on a link. Juniper routers have a set of
accounting tools to collect similar statistics as NetFlow [15].
There are other stand-alone commercial products for passive
monitoring, such as Niksun’s NetDetector and NetScout’s
ATM Probes. These systems, however, are limited to OC-3
or lower link speeds, and are thus not adequate for Internet
backbone links.

Our monitoring infrastructure, called IPMON, is similar to
the OC3MON system, but with extended capabilities that allow
it to collect packet traces at up to OC-48 link speeds (2.48
Gbps) for a period of at least several hours. The range of
observable metrics is wider than with the above systems thanks
to timestamps synchronized to within 5 �s of a global clock
signal. In the next section we describe and discuss the IPMON
components in greater details.

III. IPMON ARCHITECTURE AND FEATURES

In this section we present the architecture of the Sprint IP
backbone network and then give a high level description of
our passive monitoring system. We close the section with a
brief summary of practical concerns in trace collection.

A. The Sprint IP backbone network

The topology of a tier-1 Internet backbone typically con-
sists of a set of nodes known as Points-of-Presence (POPs)
connected by high bandwidth OC-48 (2.5 Gbps) and OC-
192 (10 Gbps) links. From each POP, links radiate outwards
to customers (e.g. large corporate networks, regional tier-2
ISPs, DSL-aggregation devices, and large server farms), which
typically require higher bandwidth network connections 4. Each
POP may have links, known as private peering points, to other
backbone networks as well as links to public network access
points (NAPs). Because of traffic volume, major backbone
networks often have peering links in multiple, geographically
distinct, POPs.

The Sprint IP backbone consists of approximately 40 POPs
worldwide, of which 18 are located in the U.S.A. Figure 1
shows an abstract view of the Sprint U.S. backbone topology.

3http://moat.nlanr.net/PMA/
4Lower bandwidth customers, such as dial-up home users, connect to tier-2

ISPs which in turn connect to the backbone network.
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Fig. 1. The IPMON system in the Sprint IP backbone

Within a POP, the network has a two-level, hierarchical struc-
ture: access (edge or gateway) and backbone (or core) routers.
Customer links are connected to access aggregation routers.
The access routers are in turn connected to the backbone
routers. These backbone routers provide connectivity to other
POPs, and connect to public and private peering points. The
backbone links that interconnect the POPs have the speed
of OC-48 or OC-192. Sprint uses Packet-over-Sonet (POS)
framing which in turn runs over Sprint’s DWDM (Dense
Wavelength Division Multiplexing) optical network.

B. The IPMON monitoring infrastructure

In this section we give a short description of the IPMON
architecture5. IPMON consists of three elements (see Figure
1): a set of passive monitoring entities which collect the packet
traces; a data repository that stores the traces once they have
been collected; and an analysis platform which performs off-
line analysis. Analysis is performed off-line for two reasons.
The primary reason is that the data is used in many different
research projects, each of which has its own set of custom
analysis tools. It is more efficient to perform the multiple types
of analysis on a computing cluster in the lab where many
systems can access the data simultaneously. The second reason
is we archive the traces for use in future projects.

1) Monitoring entities: The monitoring entities are respon-
sible for collecting the packet traces. Each trace is a sequence
of packet records that contain the first 40 bytes of each packet,
which are just the IP and UDP/TCP headers, as well as a sub-
microsecond timestamp which indicates the time at which the

5A detailed description of the monitoring infrastructure is provided in [16].

packet was observed. The source and destination IP addresses
are not anonymized, since they are needed in routing-related
analysis.

Each monitoring entity is a dual-processor Linux server
(Dell PowerEdge 6000 series) with 1 GB main memory, a
large disk array (100 to 330 GB), and a POS network interface
card, known as the DAG card [17]. Existing DAG cards are
capable of monitoring links ranging in speed from OC-3 to
OC-48. An OC-192 monitoring card is under development
[8]. The DAG card captures, timestamps, and transfers the
POS HDLC framing information and the IP packet headers to
the main memory of the Linux server where a driver software
then transfers the data to the disk array. An optical splitter is
installed on the monitored link, and one output of the splitter
is connected to the DAG card in the server. This is a receive-
only connection; the DAG card does not have the capability of
injecting data into the network. Since a receive-only passive
optical splitter is used, failure or misbehavior of the monitoring
entity or the DAG card cannot compromise network integrity.

Each monitoring entity has a removable disk array of up
to 330 GB. This amount of disk space allows us to capture a
minimum of several hours of trace data at full link utilization.
We can either schedule trace collection for a pre-defined
interval or allow it to run until space on the hard disks is
exhausted. By Sprint engineering design, the network links
are not fully loaded (except in extreme failure scenarios) and
we are typically able to collect several days of measurement
data.

The packet timestamps are generated by an embedded
clock on the DAG card that is synchronized to an external
GPS signal. GPS is a satellite based system that provides
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global time information with an accuracy of 20 nanoseconds.
Hardware errors as well as other system related issues bring
the maximum error on timestamps to 5 �s [16][17]. This
synchronization ability allows us to measure one-way network
delay between two monitored links.

A total of 60 monitoring entities are installed at 4 differ-
ent POPs, chosen on the basis of geographic diversity and
connectivity. They monitor the traffic on OC-3, OC-12, and
OC-48 links which connect access routers, backbone routers
and several of the private peering links.

2) Data Repository: The data repository involves two levels
of storage, consisting of a 12 TB removable tape library
and a 10 TB disk storage array. It is located at the Sprint
Advanced Technology Laboratory (ATL). For short traces, a
dedicated OC-3 link is available for transferring the data from
the monitoring entities back to the ATL. Given that a full
multi-POP trace set consists of approximately 10TB when
trace collection is allowed to run until the disks fill up, the best
method for transferring full traces back to the data repository is
by physically shipping the removable hard disks. As a result of
these constraints on transferring trace data, we do not schedule
new traces until the previous trace data is either transferred or
deleted.

3) Data Analysis Platform: Data analysis is performed on
a cluster of 17 high-end servers connected to a Storage Area
Network (SAN) with a capacity of 10 TB. Two categories of
analysis are performed on the platform:

� Single trace analysis involves processing data from a
single link. This type of analysis includes, but is not
limited to, determining packet size distributions, flow size
distributions, and the amount of bandwidth consumed by
different applications. In this work, we define a flow by
the 5-tuple �protocol type, source IP address, source port,
destination IP address, destination port�.

� Multi-trace analysis involves correlating traffic measure-
ments from different links. This includes calculating de-
lay and identifying packet losses. The key to performing
multi-trace analysis is to identify an individual packet
as it travels across multiple links in the network. To
identify a packet we use 30 bytes out of the 40 bytes of
header information that provide unique identification of
packets. These 30 bytes include the source and destination
IP addresses, the IP header identification number, and
possibly TCP and UDP header information (TCP and
UDP information may not be available due to the use
of IP options). Other fields, such as the IP version and
checksum, are not used, since they are identical in most IP
packets or, in the case of the checksum, provide redundant
information. To match packets on multiple links we use
a hash-based search algorithm to determine if the same
packet is observed in multiple traces [18].

The following three sets of analysis tools are most com-
monly used.

� The first set of tools is a set of custom tools which extract
information about individual flows from a single trace.
These tools process an entire trace and return a list of
flows, their start time, end time, and details about each
packet in the flow.

� The second set of tools is the CoralReef public suite and
custom tools which we use to identify the amount of
traffic generated by different protocols (e.g. TCP, UDP)
and applications (e.g. web, email, media streaming) [19].

� The third set of tools is used for multi-trace correlation.
These tools use the hash-based algorithm for finding
packets that have been recorded on multiple links and
return a list of these packets and the time at which they
were observed on each link.

C. Trace Sanitization

The trace collection is a complex process and traces can be
corrupted at any step of the process:

� The monitoring entities can fail. Problems range from
operating systems to hardware failures. Any of these
problems can potentially affect the trace consistency.
Hard disk failures are the most common in our expe-
rience.

� Hardware or software bugs of the DAG card have im-
pacted the traces. For example, we have observed traces
where packets were missing, or traces had sequences of
zeroes. Misalignment or byte swapping has also been a
problem.

� While they are being transferred from the collection site
to the analysis platform, traces can get corrupted or
truncated due to intermediate system failures: local disk
failure, defective tapes, etc.

We realized from the very first trace collection the need for
trace sanitization. As we discovered and fixed sources of cor-
ruption, we have steadily improved the process. Sanitization
has been established as a systematic process that is run on
every trace before it is used in an analysis. The current steps
in the sanitization process are described below. We understand
that the list of sources of corruption is not exhaustive, and
continues to grow, though slowly.

� We first check the hard disks on which the traces are
stored for bad blocks and access problems.

� We analyse the DAG card log. While collecting a trace,
the DAG card keeps track of GPS synchronization and
increments a counter any time it misses a packet.

� We process the POS HDLC header and verify the consis-
tency of each packet based on information, such as packet
type. We then check that the structure of the packet is
correct for the packet type.

� We check that the timestamps are monotonically increas-
ing, that the inter-packet time is both greater than the
time required to transmit the previous packet, and that
any gaps in the trace are reasonable6.

� We detect traces out of GPS synchronization by calcu-
lating the delay between traces. If the minimum delay
per minute between two traces fluctuates more than a
few milliseconds, those two traces are considered out of
synchronization.

6On OC-3 to OC-48 links it is extremely unlikely to have no packet in any
interval of 100 ms. A long gap is often an indication of clock synchronization
problem.
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Anytime a problem is detected, the corresponding trace is
ignored. Only those traces that are ”sanitized” per process
described above are used in analysis.

IV. MEASUREMENT RESULTS

In this section, we present measurement results to demon-
strate the capabilities of the IPMON system and to provide
information on the characteristics of the backbone traffic in
2001 and 2002. The results are organized in three categories.
First we present traffic workload statistics (e.g. application
mix, packet size distribution, flow size distribution). These
results are not unique to our measurement system. They can
be obtained using flow-level measurement systems such as
NetFlow or CoralReef 7. However, these results are the first
published traffic statistics from a large number of OC-12 and
OC-48 links in a production backbone network, and they show
the impact of emerging applications such as distributed file
sharing and streaming media. The second category of results
are TCP performance statistics. These results demonstrate the
advantages of collecting packet-level measurements. The third
set of results are packet delay measurements through a single
backbone router and over a U. S. transcontinental path.

A. Trace Description

The IPMON system collects measurements from about 30
bidirectional links at 4 POPs, out of about 5000 links in the
Sprint IP backbone. Three POPs are located on the east coast
of the U.S.A., and one POP on the west coast. The OC-48 links
we monitor are all long-haul trans-continental connections.
The other links either connect backbone routers to access
routers within the POP, or connect peers and customers to the
backbone as in Figure 1. Links we monitor are not selected
randomly, but based on pragmatic constraints: the physical
layer characterstics (only POS links, no Spatial Reuse Protocol
or Channelized links), link capacity (no OC-192 links yet), ge-
ographical locations (no space for our monitoring equipments
at some POPs), types of customers (peer or customer), and
research topics (traffic matrix, delay measurement, routing,
etc.). Thus, we do not claim that our data is statistically
representative of our backbone network.

Due to space limitation, we do not present results from
all of the traces, but choose to use a subset of the 32 most
recent traces for this paper. The goal of this paper is to
demonstrate the strengths and functionalities of the IPMON
system, and present general observations made through them
on the Sprint IP backbone network. For this purpose, we
believe 32 traces are enough. For ease of presentation, we
limit ourselves to only one or two traces in some of the
figures. Readers are referred to the Data Management System
at http://ipmon.sprint.com for the exhaustive list of
available traces and analysis results.

The link speeds, start times, and durations of the 32 traces
used in the paper are given in Table I. The starting time of
traces on Tuesday, July 24th, 2001, and Wednesday, September

7We actually use CoralReef public suite and SNMP data to validate the
workload results.

5th, 2001, was 8am EDT; that on Friday, April 19th, 2002, was
1pm EDT. Different days of the week were chosen in order
to take into account time-of-day and day-of-week variations.
Traces from 2001 are from OC-12 links, and those from
2002 are from OC-48. Since we use a fixed amount of hard
disk space, the durations of the traces depend on the link
utilization: the higher the link utilization is, the more packets
are captured and the shorter the trace is. We can also fix the
trace collection time to a constant as in the case of OC-48
traces. Even-numbered traces are from the opposite directions
of odd-numbered traces; for example, OC-12-1 and OC-12-2
are from the same link, but in opposite directions. We do not
have week-long traces for all monitored links, but only from
a subset of links as shown in Table I. Therefore, to study
the week-long trends, we resort to SNMP statistics collected
separately.

Trace Link Speed Start Time Duration
OC-12-1 OC-12 Jul. 24, 2001 13h 30m
OC-12-2 OC-12 Jul. 24, 2001 2d 2h 35m
OC-12-3 OC-12 Jul. 24, 2001 15h 55m
OC-12-4 OC-12 Jul. 24, 2001 7h 34m
OC-12-5 OC-12 Jul. 24, 2001 1d 3h 17m
OC-12-6 OC-12 Jul. 24, 2001 23h 7m
OC-12-7 OC-12 Jul. 24, 2001 4d 18h 42m
OC-12-8 OC-12 Jul. 24, 2001 4d 10h 1m
OC-12-9 OC-12 Jul. 24, 2001 4d 57m

OC-12-10 OC-12 Jul. 24, 2001 6d 48m
OC-12-11 OC-12 Sep. 5, 2001 11h 2m
OC-12-12 OC-12 Sep. 5, 2001 10h 6m
OC-12-13 OC-12 Sep. 5, 2001 6h 17m
OC-12-14 OC-12 Sep. 5, 2001 2d 9h 47m
OC-12-15 OC-12 Sep. 5, 2001 1d 2h 5m
OC-12-16 OC-12 Sep. 5, 2001 7h 24m
OC-12-17 OC-12 Sep. 5, 2001 1d
OC-12-18 OC-12 Sep. 5, 2001 17h 51m
OC-12-19 OC-12 Sep. 5, 2001 16h 7m
OC-12-20 OC-12 Sep. 5, 2001 14h 3m
OC-12-21 OC-12 Sep. 5, 2001 16h 2m
OC-12-22 OC-12 Sep. 5, 2001 4d 19h 3m
OC-12-23 OC-12 Sep. 5, 2001 14h 13m
OC-12-24 OC-12 Sep. 5, 2001 13h 7m
OC-48-1 OC-48 Apr. 19, 2002 1h
OC-48-2 OC-48 Apr. 19, 2002 1h
OC-48-3 OC-48 Apr. 19, 2002 1h
OC-48-4 OC-48 Apr. 19, 2002 1h
OC-48-5 OC-48 Apr. 19, 2002 1h
OC-48-6 OC-48 Apr. 19, 2002 1h
OC-48-7 OC-48 Apr. 19, 2002 1h
OC-48-8 OC-48 Apr. 19, 2002 1h

TABLE I

TABLE OF TRACES

B. Workload Characteristics

1) Traffic Load in Bytes: Figure 2 shows the traffic load
collected over one week in 5 minute intervals using SNMP.
The SNMP statistics are collected from the same links that
we collected OC-12-7 and OC-12-8 traces from. Daily peaks
are visible between 9 am to 5 pm. On the weekend, the
traffic decreases significantly. The same behavior is observed
on all links with variations on peak height, duration, and hours,
depending on the geographic location and the customer type
of the link [4]. Figure 3 shows the traffic load measured in
1 second intervals. The region marked by two vertical lines
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in Figure 2 corresponds to the 24-hour-long period shown in
Figure 3.
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Fig. 3. Day-long time-series plot from IPMON

The following observations are of interest:

� Traffic load reported by SNMP is lower than that from
the IPMON measurements. On OC-12-7 the maximum
from July 24th, 2001, is about 68 Mbps in SNMP, while it
reaches above 125 Mbps from the IPMON measurements.
This is because the SNMP statistic is an average over
5 minutes, while the IPMON measured traffic load is
calculated in 1 second intervals. This shows that the traffic
is more bursty in a finer time granularity. In other words,
SNMP statistics are not appropriate to detect short term
congestion.

� We observe distinct weekly and diurnal patterns in Fig-
ures 2 and 3. From Monday to Friday, the traffic surges
during the busy hours, and the load comes down signifi-
cantly at night. The day-to-night traffic ratio is about 5:1
to 7:1. On the weekend the traffic load is significantly
less than on the weekdays, and does not exhibit clear
patterns. The traffic load on the weekend is low possibly
because it is outside of business hours.

� We observe that all OC-12 and OC-48 links have loads
less than 90 Mbps and 1.4 Gbps, respectively. The results
are consistent with our previous observations on the

overall network performance [20]: most of the links are
utilized under 50%, and less than 10% of the links in the
backbone experience utilization higher than 50% in any
given 5 min interval. This is a consequence of bandwidth
over-provisioning. Over-provisioning is not a waste of
resources, but is a design choice that allows Sprint to
protect the network against multiple failures and to handle
traffic variability incurred by the absence of access con-
trol. This is analogous to the use of working and protect
circuits in traditional telecommunication networks.

� In Figure 3 we see occasional peaks in traffic load. There
can be many causes behind such peaks: Denial-of-Service
(DoS) attacks, routing loops, and bursty traffic. In some
traces, we found an order of magnitude more TCP SYN
packets than usual that are destined to the same addresses.
We suspect those peaks are due to DoS attacks, for
we observed many source addresses randomly spoofed
toward the same destination address. But we admit that it
is not easy to verify if the destinations suffered Denial-of-
Service attacks, since most organizations are reluctant to
release such information. We also observed that transient
routing loops caused spikes in traffic load. In other cases,
peaks were simply due to very bursty arrivals of packets.
We leave the detailed study of these phenomena for future
work.

� Traffic on a bidirectional link is often asymmetric [21].
This traffic asymmetry results from two factors in the
Sprint backbone. The first factor is the nature of an
application. Many applications, such as web and ftp,
are inherently asymmetric. One direction carries small
request messages and the other direction carries the actual
web data. For example, if a link connects to a web server
farm, the direction toward the server farm usually carries
requests, and thus less traffic than the other direction.
The second factor is routing. Most networks use the “hot
potato” routing policy. Traffic destined to another network
is passed to that network at the closest peering point. As
a result, if a flow is observed on one direction of a link,
it is possible that the reverse direction of the flow will
follow a different route and will not be observed on the
opposite direction of the link.
OC-12-1 and OC-12-2 contain examples of an extreme
case. OC-12-1 has an average traffic volume of 200
Mbps, and OC-12-2 has less than 20 Mbps. OC-12-1
and OC-12-2 are to and from an international peer. Both
the direction of web requests and hot-potato routing can
explain the asymmetry on this link. Most links from 2001
exhibit traffic asymmetry between 2:1 and 5:1. As OC-
48 POP-to-POP links carry more diverse and aggregated
traffic, the loads are less asymmetric than on OC-12 links.
It is hard to accurately extrapolate from our data how
prevalent traffic asymmetry is in the network. However,
the data shows that this is not uncommon and traffic on
links on the edge (in our case, OC-12 links) is more likely
to be asymmetric.

2) Traffic Load by Applications: Next we break down the
traffic volume by application. We use port numbers to identify
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the application. When either the source or destination port
number of a packet corresponds to a well-known port number
for a specific application, we deem the packet as belonging to
the application. Detailed mapping between port numbers and
the applications is from the CoralReef public suite [19]. We
group similar applications into the following categories: web,
mail, file transfer, peer-to-peer, streaming, and others. The
web category include those packets from HTTP (Hyper Text
Transfer Protocol) and HTTPS (Secure Hyper Text Transfer
Protocol). Mail traffic is from POP3 (Post Office Protocol 3)
and SMTP (Simple Mail Transfer Protocol). The file transfer
traffic includes FTP (File Transfer Protocol) and SCP (secure
copy). A new kind of application, which we call peer-to-peer,
has emerged recently, pioneered by Napster and Gnutella. It
offers a way to share files among users, and has become a
popular medium to share audio and video clips. Popular peer-
to-peer applications include Napster, Morpheus, Gnutella, and
KaZaa. Streaming media traffic is from Realaudio, Windows
Media Player, and iMesh. All other known traffic, such as
DNS (Domain Name System) and news, is grouped into the
“others” category. The “unknown” category is for those with-
out identifiable port numbers. As the peer-to-peer file sharing
systems have gained popularity, audio and video clips of large
sizes have added a serious amount of traffic to most university
networks and more specifically to the connections to their
ISPs. Subsequently, on some university networks, access to
the file sharing systems has been limited by preventing traffic
to or from certain port numbers at the firewall. To circumvent
this blockage, many file sharing applications adopted the use
of dynamically allocated port numbers instead of using fixed-
numbered (or well-known) ports. For this reason, the amount
of unknown traffic in the backbone has increased significantly
in comparison to previous work [10]. From our observations
and proprietary observations of DSL customers, we conjecture
that the unknown traffic is mostly made up of peer-to-peer
traffic.

Table II shows the minimum and maximum percentiles of
traffic each category contributes among the 32 traces used in
this paper.

Traffic Type min - max
web 11% - 90%

peer-to-peer + unknown 0.1% - 80%
streaming 0.2% - 26%

mail 0% - 6%
file transfer 0% - 7%

others 5% - 21%

TABLE II

PERCENTILES OF TRAFFIC BY APPLICATION

The application mix is quite different from link to link.
Figure 4 plots the average web traffic per link, and Figure 5
plots the average traffic of peer-to-peer and unknown traffic
combined. In most traces web traffic represents more than
40% of the total traffic. This result is consistent with most
prior traffic analysis studies [10], [11], [22]. However, on
a handful of links (OC-12-4, OC-12-9, OC-12-16, and OC-
12-20) the web traffic contributes less than 20%, and we

see the emergence of peer-to-peer traffic which contributes
almost 80% of the total traffic on those links. Note that
these links are customer and inter-router links. The OC-48
traces exhibit less variability between web and peer-to-peer
traffic than OC-12 traces. The OC-48 links that we monitor
are inter-POP backbone links, and carry heavily aggregated
traffic. This could explain the small variability amongst them.
Our observations indicate that peer-to-peer traffic may have
become one of the two most dominant applications in the
network along with web traffic, and its emergence is not
limited to certain types of links.

Another important observation is that streaming applications
are a stable component of the traffic, if not as much in volume
yet as the peer-to-peer applications. We observe 1 to 6% of
streaming traffic even on OC-48 links.

In addition to the application mix, we also consider the
traffic breakdown by protocol (TCP/UDP/ICMP). We do not
plot these results because in all cases above 90% of the traffic
is TCP, even on the links with a significant percentage of
streaming media.
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Fig. 4. Average percentiles of web traffic vs. traces
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Fig. 5. Average percentiles of peer-to-peer traffic vs. traces

3) Traffic load in flows: Now we consider the traffic in
flows per minute. The start time of a flow is the time at which
we observe for the first time a packet carrying a given 5-tuple.
The flow ends when we do not see any packets with the same



8

5-tuple for 60 seconds. The 60 second timeout has been chosen
based on previous work by Claffy et al [23] and on our own
observations [8]. A day-long analysis of the same traces used
in Figure 3 is presented in Figure 6. For all the traces, the
average number of flows per minute is plotted in Figure 7.
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Fig. 6. Time-series plot of number of flows per minute
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Fig. 7. Average number of flows per minute vs. traces

The main observation is that peaks in the number of flows
in Figure 6 do not necessarily translate to traffic load peaks
of Figure 3. Between 9 am and 11 am on July 24th, 2001,
the number of flows is as large as that during the peak hours
between noon and 5 pm. During the same time period, the
traffic load is often just half of that during the peak hours
between noon and 5pm. The OC-12-7 and OC-12-8 traces
are from a link to a CDN (Content Distribution Network8)
customer. The discrepancy in load and flow numbers is another
example of the asymmetry discussed in Section IV-B.1. We
also observe a small number of occasional conspicuous peaks
in flow numbers. Performing a DNS lookup on the source and
destination IP addresses of these flows, we find that the peaks
are attributable to a large number of flows between servers
of the CDN customer. However, they do not cause sudden
increases in traffic load in Figure 3.

The second observation is that the average number of active
flows per minute is less than 50,000 for all OC-12 links and

8A CDN is a mechanism to improve web content delivery to end users.

less than 300,000 for all OC-48 links in Figure 7. In one OC-
12 trace, the maximum number of active flows per minute is
10 times larger than the average, but remains under 400,000.
A look into the one minute interval with the maximum number
of flows of that specific trace revealed that it was likely due
to a DoS attack as described in Section IV-B.1. In the rest of
the traces, the maximum numbers of active flows are 1.1 to 4
times larger than the average numbers.

The result in Figure 7 is important as it demonstrates per-
flow scheduling may be feasible in hardware on access links.
This observation means that new avenues in traffic control
should be explored, and that routers may go beyond TCP
fairness and Active Queue Management9.

4) Packet size distributions: Router designers find packet
size distributions useful in optimizing the per-packet process-
ing for the most common sizes. Prior work has shown that the
packet size distribution is tri-modal [10]. This was a result of
a combination of TCP acknowledgments and the existence of
two distinct default message transmission unit (MTU) sizes.
Figure 8 demonstrates this tri-modal packet size distribution
for two traces, OC-12-1 and OC-12-2. These were selected
as they show the typical distributions seen on most of the
links we monitored. For these two traces, there are three
steps at around 40, 572, and 1500, where 40 is for TCP
ACKs, and 572 and 1500 are the most common default MTUs.
When there is traffic asymmetry due to applications on the
link, one step is more dominant than the others depending
on the direction. The third trace, OC-12-10, exhibits a total
of five steps with additional steps at 211 and around 820.
The 211 byte packets correspond to a CDN proprietary UDP
application which uses an unregistered port and carries a single
211 byte packet. Most 845 byte packets are from DNS (domain
name service). The 821 and 825 byte packets are generated by
media streaming applications. Trace OC-12-10 clearly shows
that the emergence of new applications requires the periodic
re-examination of assumptions about the distribution of packet
sizes on an IP backbone network.
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9Recent developments in network processors allow per-flow states of more
than million concurrent flows to be processed by a router interface at line
speed: http://www.agere.com.
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C. TCP Performance

Except for the packet size distribution analysis, the results in
the previous section do not require packet-level measurements.
Such data can be collected using flow-level aggregate measure-
ments. On the other hand, studying TCP performance requires
knowledge about all packets transmitted in a TCP flow. In
this section we demonstrate the types of TCP measurements
possible with IPMON by presenting results on the round-trip-
time (rtt) distribution and out-of-sequence packet statistics for
the TCP flows.

The rtt is measured as the time elapsed between a SYN
packet and the first ACK packet that completes the three-
way handshake, as proposed in [24]. Note that the rtt is
measured end-to-end, i.e. it includes the time spent on the
host computer, and the transmission time on the access link
to the host computer (which can be as large as 150 ms in the
case of a dial-up modem). In addition, we can only compute
the rtt for flows for which we observe the SYN/ACK pair:
the rtt of a flow is accounted for in only one direction. Thus
to have a complete and accurate picture of rtt distribution
for all flows on a link, rtt distributions from both directions
should be combined. However, due to routing asymmetry, this
is not always feasible. Also, the rtt of a flow is not a constant
value as it may change over the duration of the flow due to
changes in network congestion or in routing: a single value
of rtt taken at the beginning of a flow can only be a rough
estimate of the rtt distribution for the flow. All these limitations
in the methodology should be taken into consideration in
interpreting the rtt results below. However, measuring rtt in
the middle of the network allows us to collect many more
data points than generally would be possible with active end-
to-end measurements.

Figure 9 shows the median rtts vs. traces. On all links,
the median rtt lies below 450 ms. Three traces, OC-12-2,
OC-12-12, and OC-12-14, have the median rtt above 300
ms. This result is easily explained because the links from
which these traces were collected are primarily connected
to European customers. Six traces (OC-12-6, OC-12-7, OC-
12-10, OC-12-18, OC-12-20, OC-12-24) have the median rtt
below 50ms. The traffic on these links is primarily from
content distribution networks (CDNs). This is consistent with
the results of Krishnamurthy et al that show CDNs improve
the overall response time of customer requests [25].

Figure 10 shows the rate of out-of-sequence packets for TCP
flows defined by the 5-tuple as in Section III-B.3. Possible
causes of out-of-sequence packets are: retransmission after
loss, unnecessary retransmission, duplicates, and reordering.
Jaiswal et al report that most of such out-of-sequence packets
are due to retransmission after loss [6]. While this may seem
to be a crude estimate for the end-to-end loss of a flow, it
provides an upper bound on the number of losses we can
detect from our measurements10.

In Figure 10, we see that in all traces, 90% of the flows
experience no out-of-sequence packets; in only a handful of

10If a packet is lost before it reaches the link we monitor, and is somehow
retransmitted in order, there is no way we can determine that a loss has
occurred. We believe this case is unusual enough so that it does not affect
our results significantly.
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Fig. 9. Median round-trip time vs. traces
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Fig. 10. Out-of-sequence rate vs. traces

traces is the 99th percentile above 30% out-of-sequence. The
maximum out-of-sequence packet rate often reaches above
90%, but this may be a result of short flows losing most of
their packets and reporting a high loss rate. The fact that 90%
of flows experience an out-of-sequence rate of 0% on all the
monitored links shows that most TCP flows experience no
end-to-end loss.

D. Delay measurements

An accurate understanding of packet delay characteristics is
important, since delay is a major metric in the definition of
Service Level Agreements (SLAs). Delay and delay variation
(i.e. jitter) are critical to applications such as Voice over IP
(VoIP). Currently, delay measurements rely on active mea-
surements. While these measurements provide good estimates
of the average network delay, they require a large amount
of probe traffic to be generated in order to be useful in
the construction of models, in the evaluation of SLAs, or
in the assessment of application feasibility (such as VoIP).
Furthermore, many of the active probes use ICMP packets
which are handled with a lower priority in routers, and whose
delay may not be representative. Unlike active probes, our
delay measurements are derived from all packets that traverse
the network from one observation point to the other.
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The GPS mechanism we have implemented in the monitor-
ing systems gives us an accurate measurement of the delay
a packet experiences in our backbone. A packet, observed at
time � on one link and at time �� � on another link, actually
spent time � traveling between these links. By monitoring
links entering and exiting a single router, we can measure
the queuing behavior of the router. By monitoring links in
different geographic locations, we can measure the queuing
behavior of the backbone.

Obtaining delay distributions through multiple POPs is more
challenging than single-hop delay distributions. We do not
always find common packets in a pair of OC-48 backbone
traces. However, when we do find matching packets in two
OC-48 traces, the number of matched packets is very large.
U.S. transcontinental delay distributions in Figure 11 are ob-
tained between San Jose and New York, and reflect 200 million
packet matches in a one hour period11. Packets identified in
these delay distributions crossed 5 POPs and 8 core routers.
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Fig. 11. Delay distributions

The minimum delays are 27.58 ms from OC-48-6 to OC-
48-4 (from San Jose to New York), and 27.34 ms from OC-
48-3 to OC-48-5 (from New York to San Jose); the average
delays are 28.37 ms and 28.58, and the 99.9% delays are
28.99 ms and 31 ms, respectively. The jitter on these paths is
consequently limited to less than 3 ms. This amount of jitter is
not sufficient to impact the performance of delay-constrained
applications such as media streaming or VoIP. While over
99.99% of packets experienced less than 31 ms delay, we
observe a very small number of packets that experienced delay
above 100 ms. Router idiosyncrasies are identified as a cause
of large delays12.

The analysis of the delay distributions reveals two major
characteristics of the backbone, as partially monitored in our
work. First, the main contributing factor in network delay is
the speed of light. Second, jitter is extremely low. As our
measurements do not cover the entire backbone network and
represent only a small portion of it, the two characteristics
apply only to those paths we monitored.

11For delay distributions from other traces, we again refer readers to
http://ipmon.sprint.com.

12We suspect that routing updates, IP option packets, and SNMP requests
interfere with packet forwarding [18].

V. CONCLUSIONS

We described a passive monitoring system that is capable
of capturing packet-level traces on high-speed backbone links.
This monitoring infrastructure is innovative in two aspects.
First, it has the capability of simultaneously collecting in-
formation with fine granularity on multiple, geographically
dispersed links. Second, all of the collected information is
timestamped with a GPS-synchronized global clock, giving
us the ability to do detailed analyses of packet queuing and
transmission behaviors on an Internet backbone.

We have deployed our monitoring infrastructure on multiple
OC-3, OC-12, and OC-48 bidirectional links in 4 POPs in the
Sprint IP backbone network, and collected weeks of traces.
This paper presents a synthesis of the results from traces col-
lected in July and September 2001 and April 2002. Interested
readers are referred to http://ipmon.sprint.com for
additional results. Ongoing work is focused on the deployment
of the IPMON systems on OC-192 links and on upgrading
the DAG card in order to add new filtering and sampling
capabilities.

We observed that link load characteristics often vary from
link to link and that these variations are often correlated to
the nature of the customers connected to the POP. As one
might expect, as traffic becomes more highly aggregated, for
example on OC-48 backbone links, there is a higher degree of
consistency. We also showed that some links no longer have
web traffic as their dominant component. In those traces, file
sharing and media streaming applications represent up to 80%
of the total traffic. We also computed the number of active
flows and showed that it is small enough to consider per-flow
queueing as a feasible technology to control the traffic and to
provide new services. Finally we showed that TCP flows on
most links exhibit low out-of-sequence packet rates and that
backbone delay is dominated by the speed of the light.

Our approach would not scale to monitoring every link in a
tier-1 backbone, but deployed on the current scale it provides
crucial data for understanding the dynamics of network traffic;
data which is not available from existing router-based mon-
itoring tools. In the long term, the goal of this project is to
identify which metrics need to be monitored in real-time and
to work with router vendors to design measurement functions
embedded in routers. It is through precise understanding of
traffic dynamics that we will be able to make the design and
control of Internet backbones an engineering science.
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