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Abstract
We discuss findings from a large-scale study of Internet packet dy-
namics conducted by tracing 20,000 TCP bulk transfers between
35 Internet sites. Because we traced each 100 Kbyte transfer at
both the sender and the receiver, the measurements allow us to dis-
tinguish between the end-to-end behaviors due to the different di-
rections of the Internet paths, which often exhibit asymmetries. We
characterize the prevalence of unusual network events such as out-
of-order delivery and packet corruption; discuss a robust receiver-
based algorithm for estimating “bottleneck bandwidth” that ad-
dresses deficiencies discovered in techniques based on “packet
pair”; investigate patterns of packet loss, finding that loss events
are not well-modeled as independent and, furthermore, that the dis-
tribution of the duration of loss events exhibits infinite variance; and
analyze variations in packet transit delays as indicators of conges-
tion periods, finding that congestion periods also span a wide range
of time scales.

1 Introduction
As the Internet grows larger, measuring and characterizing
its dynamics grows harder. Part of the problem is how
quickly the network changes. Another part, though, is its
increasing heterogeneity. It is more and more difficult to
measure a plausibly representative cross-section of its behav-
ior. The few studies to date of end-to-end packet dynamics
have all been confined to measuring a handful of Internet
paths, because of the great logistical difficulties presented
by larger-scale measurement [Mo92, Bo93, CPB93, Mu94].
Consequently, it is hard to gauge the degree to which their
findings are representative. To address this problem, we
devised a measurement framework in which a number of
sites run special measurement daemons (“NPDs”) to facil-
itate measurement. With this framework, the number of In-
ternet paths available for measurement grows as for
sites, yielding an attractive scaling. We previously used the
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frameworkwith sites to study the end-to-end routing
dynamics of about 1,000 Internet paths [Pa97a].
In this studywe report on a large-scale experiment to study

end-to-end Internet packet dynamics. Our analysis is based
on measurements of TCP bulk transfers conducted between
35 NPD sites ( 2). Using TCP—rather than fixed-rate UDP
or ICMP “echo” packets as done in [Bo93, CPB93, Mu94]—
reaps significant benefits. First, TCP traffic is “real world,”
since TCP is widely used in today's Internet [TMW97]. Con-
sequently, any network path properties we can derive from
measurements of a TCP transfer can potentially be directly
applied to tuning TCP performance. Second, TCP packet
streams allow fine-scale probing without unduly loading the
network, since TCP adapts its transmission rate to current
congestion levels.
Using TCP, however, also presents two analysis problems.

First, to analyze packet dynamics using TCP requires a way
to measure the sending and receiving times of individual
packets, which TCP does not provide. We instead must
record the traffic with a packet filter. Packet filter measure-
ment can be imperfect, in particular suffering from measure-
ment “drops” in which the filter fails to record all of the traf-
fic. Unless we identify traces with such errors, we can derive
inaccurate conclusions about packet dynamics such as loss
rates. To address this problem, we developed tcpanaly, a
program that understands the specifics of the different TCP
implementations in our study, and thus can infer when the
packet filter has made an error [Pa97b]. We then exclude er-
roneous traces from any analysis that would be skewed by
the error. tcpanaly also forms the basis for the analysis in
this paper: after verifying the trace's integrity, it then com-
putes statistics concerning network dynamics.
Second, TCP packets are sent over a wide range of time

scales, frommilliseconds to many seconds between consecu-
tive packets. Such irregular spacing greatly complicates cor-
relational and frequency-domain analysis, because a stream
of TCP packets does not give us a traditional time series of
constant-rate observations to work with. Consequently, in
this paper we do not attempt these sorts of analyses, though
we hope to pursue them in future work. See also [Mu94]
for previous work in applying frequency-domain analysis to
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Internet paths.
In 3 we characterize unusual network behavior: out-

of-order delivery, replication, and packet corruption. Then
in 4 we discuss a robust algorithm for estimating the
“bottleneck” bandwidth that limits a connection's maximum
rate. This estimation is crucial for subsequent analysis be-
cause knowing the bottleneck rate lets us determine when
the closely-spaced TCP data packets used for our network
probes necessarily queue behind each other, and hence their
timing dynamics will be correlated. Once we can determine
which probes were correlated and which not, we then can
turn to analysis of end-to-end Internet packet loss ( 5) and
delay ( 6). In 7 we summarize our findings, several of
which challenge commonly-held assumptions about network
behavior.

2 The Measurements
We gathered our measurements using the “NPD” measure-
ment framework we developed and discussed in [Pa97a].
35 sites participated in two experimental runs. The sites in-
clude educational institutes, research labs, network service
providers, and commercial companies, in 9 countries. We
conducted the first run, , during Dec. 1994, and the sec-
ond, , during Nov–Dec. 1995. Thus, differences between

and give an indication how Internet packet dynamics
changed during the course of 1995. Throughout this paper,
when discussing such differences, we limit discussion to the
21 sites that participated in both and .
Each measurement was made by instructing daemons run-

ning at two of the sites to send or receive a 100 Kbyte
TCP bulk transfer, and to trace the results using tcpdump
[JLM89]. Measurements occurred at Poisson intervals,
which, in principle, results in unbiased measurement, even
if the sampling rate varies [Pa97a]. In , the mean per-site
sampling interval was about 2 hours, with each site randomly
paired with another. Sites typically participated in about
200 measurements, and we gathered a total of 2,800 pairs
of traces. In , we sampled pairs of sites in a series of
groupedmeasurements, varying the sampling rate frommin-
utes to days, with most rates on the order of 4–30 minutes.
These groups then give us observations of the path between
the site pair over a wide range of time scales. Sites typi-
cally participated in about 1,200 measurements, for a total
of 18,000 trace pairs. In addition to the different sampling
rates, the other difference between and is that in
we used Unix socket options to assure that the sending and
receiving TCPs had big “windows,” to prevent window limi-
tations from throttling the transfer's throughput.
We limited measurements to a total of 10 minutes. This

limit leads to under-representation of those times during
which network conditions were poor enough to make it dif-
ficult to complete a 100 Kbyte transfer in that much time.
Thus, our measurements are biased towards more favorable
network conditions. In [Pa97c] we show that the bias is neg-

ligible for North American sites, but noticeable for European
sites.

3 Network Pathologies
We begin with an analysis of network behavior we might
consider “pathological,” meaning unusual or unexpected:
out-of-order delivery, packet replication, and packet corrup-
tion. It is important to recognize pathological behaviors so
subsequent analysis of packet loss and delay is not skewed
by their presence. For example, it is very difficult to perform
any sort of sound queueing delay analysis in the presence
of out-of-order delivery, since the latter indicates that a first-
in-first-out (FIFO) queueing model of the network does not
apply.

3.1 Out-of-order delivery
Even though Internet routers employ FIFO queueing, any
time a route changes, if the new route offers a lower delay
than the old one, then reordering can occur [Mo92]. Since
we recorded packets at both ends of each TCP connection,
we can detect network reordering, as follows. First, we re-
move from our analysis any trace pairs suffering packet filter
errors [Pa97b]. Then, for each arriving packet , we check
whether it was sent after the last non-reordered packet. If so,
then it becomes the new such packet. Otherwise, we count its
arrival as an instance of a network reordering. So, for exam-
ple, if a flight of ten packets all arrive in the order sent except
the last one arrives before all of the others, we consider this
to reflect 9 reordered packets rather than 1. Using this defi-
nition emphasizes “late” arrivals rather than “premature” ar-
rivals. It turns out that counting late arrivals gives somewhat
higher ( %) numbers than counting premature arrivals,
but as our goal is only to convey the rough magnitude of re-
ordering, this difference is not particularly significant.
Observations of reordering. Out-of-order delivery is

fairly prevalent in the Internet. In , 36% of the connec-
tions included at least one packet (data or ack) delivered out
of order, while in , 12% did. Overall, 2% of all of the
data packets and 0.6% of the acks arrived out of order (0.3%
and 0.1% in ). Data packets are no doubt more often re-
ordered than acks because they are frequently sent closer to-
gether (due to ack-every-other policies), so their reordering
requires less of a difference in transit times.
We should not infer from the differences between reorder-

ing in and that reordering became less likely over the
course of 1995, because out-of-order delivery varies greatly
from site-to-site. For example, fully 15% of the data pack-
ets sent by the “ucol” site during arrived out of order,
much higher than the 2.0% overall average.
Reordering is also highly asymmetric. For example, only

1.5% of the data packets sent to ucol during arrived out
of order. This means a sender cannot soundly infer whether

See [Pa97a] for specifics concerning the sites mentioned in this paper.

2



Time

Se
qu

en
ce

 #

1.73 1.74 1.75 1.76 1.77 1.78

75
00

0
80

00
0

85
00

0
90

00
0

95
00

01
00

00
0

Figure 1: Out-of-order delivery with two distinct slopes

the packets it sends are likely to be reordered, based on ob-
servations of the acks it receives, which is too bad, as oth-
erwise the reordering information would aid in determining
the optimal duplicate ack threshold to use for TCP fast re-
transmission (see below).
The site-to-site variation in reordering coincides with ear-

lier findings concerning route flutter among the same sites
[Pa97a]. That study identified two sites as particularly ex-
hibiting flutter, ucol and the “wustl” site. For the part of

during which wustl exhibited route flutter, 24% of all
of the data packets it sent arrived out of order, a rather stun-
ning degree of reordering. If we eliminate ucol and wustl
from the analysis, then the proportion of all of the data
packets delivered out-of-order falls by a factor of two. We
also note that in , packets sent by ucol were reordered
only 25 times out of nearly 100,000 sent, though 3.3% of
the data packets sent to ucol arrived out of order, dramatiz-
ing how over long time scales, site-specific effects can com-
pletely change.
Thus, we should not interpret the prevalence of out-of-

order delivery summarized above as giving representative
numbers for the Internet, but instead form the rule of thumb:
Internet paths are sometimes subject to a high incidence of
reordering, but the effect is strongly site-dependent, and cor-
related with route fluttering.
We observed reordering rates as high as 36% of all pack-

ets arriving in a single connection. Interestingly, some of the
most highly reordered connections did not suffer any packet
loss, and no needless retransmissions due to false signals
from duplicate acks. We also occasionally observed very
large reordering “gaps.” However, the evidence suggests that
these gaps are not due to route changes, but a different effect.
Figure 1 shows a sequence plot exhibiting a massive reorder-
ing event. This plot reflects packet arrivals at the TCP re-
ceiver, where each square marks the upper sequence number
of an arriving data packet. All packets were sent in increas-
ing sequence order.
Fitting a line to the upper points yields a data rate of a

little over 170 Kbyte/sec, which was indeed the true (T1)
bottleneck rate ( 4). The slope of the packets delivered late,
though, is just under 1 Mbyte/sec, consistent with an Ether-
net bottleneck. What has apparently happened is that a router
with Ethernet-limited connectivity to the receiver stopped

forwarding packets for 110 msec just as sequence 72,705
arrived, perhaps because at that point it processed a rout-
ing update [FJ94]. It finished between the arrival of 91,137
and 91,649, and began forwarding packets normally again
at their arrival rate, namely T1 speed. Meanwhile, it had
queued 35 packets while processing the update, and these
it now finally forwarded whenever it had a chance, so they
went out as quickly as possible, namely at Ethernet speed,
but interspersed with new arrivals.
We observed this pattern a number of times in our data—

not frequently enough to conclude that it is anything but a
pathology, but often enough to suggest that significant mo-
mentary increases in networking delay can be due to effects
different from both route changes and queueing; most likely
due to router forwarding lulls.
Impact of reordering. While out-of-order delivery can

violate one's assumptions about the network—in particular,
the abstraction that it is well-modeled as a series of FIFO
queueing servers—for the connections in our study it only
rarely had significant impact on TCP performance, because
generally the scale of the reordering was just a few packets.
In general, one way reordering can make a difference is

in determining the TCP “duplicate ack” threshold a sender
uses to infer that a packet requires retransmission. If the net-
work never exhibited reordering, then as soon as the receiver
observed a packet arriving that created a sequence “hole,” it
would know that the expected in-sequence packet had been
dropped, and could signal to the sender calling for prompt
retransmission. Because of reordering, however, the receiver
does not know whether the packet in fact has been dropped;
it may instead just be late. Presently, TCP senders retrans-
mit if “dups” arrive, a value chosen so that “false”
dups caused by out-of-order delivery are unlikely to lead to
spurious retransmissions.
The value of was chosen primarily to assure that

the threshold was conservative. Large-scale measurement
studies were not available to further guide the selection of
the threshold. We now examine two possible ways to im-
prove the fast retransmitmechanism: by delaying the genera-
tion of dups to better disambiguate packet loss from reorder-
ing, and by altering the threshold to improve the balance be-
tween seizing retransmission opportunities, versus avoiding
unneeded retransmissions.
We first look at packet reordering time scales to determine

how long a receiver needs to wait to disambiguate reorder-
ing from loss. We only look at the time scales of data packet
reorderings, since ack reorderings do not affect the fast re-
transmission process. We find a wide range of times be-
tween an out-of-order arrival and the later arrival of the last
packet sent before it. One noteworthy artifact in the distri-
bution is the presence of “spikes” at particular values, the
strongest at 81msec. This turns out to be due to a 56Kbit/sec
link, which has a bottleneck bandwidth of about 6,320 user
data bytes/sec. Consequently, transmitting a 512 byte packet
across the link requires 81.0msec, so data packets of this size
can arrive no closer, even if reordered. Thus we see that re-
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ordering can have associated with it a minimum time, which
can be quite large.
Inspecting the distributions further, we find that a strat-

egy of waiting 20 msec would identify 70% of the out-
of-order deliveries. For , the same proportion can be
achieved waiting 8 msec, due to its overall shorter reorder-
ing times (presumably due to overall higher bandwidths).
Thus, even though the upper end of the distribution is very
large (12 seconds!), a generally modest wait serves to disam-
biguate most sequence holes.
We now look at the degree to which false fast retransmit

signals due to reordering are actually a problem. We clas-
sify each sequence of dups as either good or bad, depending
on whether a retransmission in response to it was necessary
or unnecessary. When considering a refinement to the fast
retransmission mechanism, our interest lies in the resulting
ratio of good to bad, , controlled by both the dup ack
threshold value we consider, and the waiting time, ,
observed by the receiver before generating a dup upon the
advent of a sequence hole.
For current TCP, dups and . For these val-

ues, we find in , , and in , . The
order of magnitude improvement between and is due
to the use in of bigger windows ( 2), and hence more
opportunity for generating good dups. Clearly, the current
scheme works well. While improves by a fac-
tor of 2.5, it also diminishes fast retransmit opportunities by
30%, a significant loss.
For , we gain 65–70% more fast retransmit op-

portunities, a hefty improvement, each generally saving a
connection from an expensive timeout retransmission. The
cost, however, is that falls by about a factor of three. If
the receiving TCP waited msec before generating
a second dup, then falls only slightly (30% for , not
at all for ). Unfortunately, adding to TCPs cou-
pled with the msec delay requires both sender and
receiver modifications, increasing the problem of deploying
the change. However, we could instead consider a similar
change requiring only changes to the sender: lower to
, but on the second dup, wait msec before entering fast
retransmission. This change turns out to have virtually iden-
tical effects to having the receiver perform the wait.
falls only slightly for , and not at all for , and numer-
ous additional fast retransmission opportunities are gained.
We might then be tempted to apply the same sender-side

approach to lowering to . This works well for , only
diminishing to , still a comfortably high value; but
for , we obtain , which is unacceptably low.
We note that the TCP selective acknowledgement

However, as noted above, some network paths have substantial mini-
mum reordering times. For today's slower-rate paths, these times can well
exceed the msec figure we have explored. For such paths prone to re-
ordering, we would expect any approach based on delaying msec
to lead to significant, unnecessary retransmissions, and poor performance.
This problem is considerably diminished for because then we
must have quite substantial (in terms of time) reordering in order to gen-
erate enough dups to falsely trigger fast retransmission.

(“SACK”) option also provides a mechanism for improv-
ing TCP retransmission [MMFR96, FF96, MM96a]. Use of
SACK can be complementary to lowering , since SACK
focusses on determiningwhat to retransmit rather thanwhen.
We observed one other form of dup ack series potentially

leading to unnecessary retransmission, which we mention
briefly because it is surprisingly common. Sometimes a se-
ries occurs for which the original ack (of which the others are
dups) had acknowledged all of the outstanding data. When
this occurs, the subsequent dups are always due to unneces-
sary retransmissions arriving at the receiving TCP, until at
least a round-trip time (RTT) after the sending TCP sends
new data. For , these sorts of series are 2–15 times
more frequent than bad series, and about 10 times rarer than
good series. They occur during retransmission periods when
the sender has already filled all of the sequence holes and is
now retransmitting unnecessarily. Use of SACK eliminates
these series, as would a simple heuristic of noting when all
of the outstanding data has been acknowledged.

3.2 Packet replication
Another form of “pathological” network behavior is packet
replication, in which the network delivers multiple copies of
the same packet. Unlike reordering, it is difficult to see how
replication can occur, though perhaps one mechanism is un-
necessary link-level retransmissions. In , we observed
only once instance of packet replication, in which a pair of
acks, sent once, arrived 9 times, each copy coming 32 msec
after the last. In , we observed 65 instances of replica-
tion, all of a single packet, the largest being 23 copies of a
data packet arriving in a short blur at the receiver. Since the
problem was exceedingly rare in our traces, we omit further
analysis here.

3.3 Packet corruption
The final pathologywe look at is packet corruption, in which
the network delivers to the receiver an imperfect copy of
the original packet. For data packets, tcpanaly cannot di-
rectly verify the checksum because the packet filter used in
our study only recorded the packet headers, not payloads.
(For “pure acks,” i.e., acknowledgement packets with no data
payload, it directly verifies the checksum.) Consequently,
tcpanaly includes algorithms to infer whether data packets
arrive with invalid checksums, discussed in [Pa97b]. Using
that analysis, we first found that one site, “lbli,” was much
more prone to checksum errors than any other. Since lbli's
Internet link is via an ISDN link, it appears quite likely that
these are due to noise on the ISDN channels.
After eliminating lbli, the proportion of corrupted pack-

ets is about 0.02% in both datasets. No other single site
strongly dominated in suffering from corrupted packets, and

We have observed traces (not part of this study) in which more than
10% of the packets were replicated. The problem was traced to an improp-
erly configured bridging device.
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in , most of the sites receiving corrupted packets had fast
(T1 or greater) Internet connectivity, so the corruptions are
not primarily due to noisy, slow links. This evidence sug-
gests that, as a rule of thumb, the proportion of Internet data
packets corrupted in transit is around 1 in 5,000.
A corruption rate of 1 packet in 5,000 is certainly not neg-

ligible, because TCP protects its data with a 16-bit check-
sum. Consequently, on average one bad packet out of 65,536
will be erroneously accepted by the receiving TCP, resulting
in undetected data corruption. If the 1 in 5,000 rate is indeed
correct, then about one in every 300 million Internet packets
is accepted with corruption—certainly, many each day. In
this case, we argue that TCP's 16-bit checksum is no longer
adequate, if the goal is that globally in the Internet there are
very few corrupted packets accepted by TCP implementa-
tions. If the checksum were instead 32 bits, then only about
one in packets would be accepted with corruption.
The data checksum error rate of 0.02% of the packets is

much higher than that measured directly (by verifying the
checksum) for pure acks. For pure acks, we found only 1 cor-
ruption out of 300,000 acks in , and, after eliminating
lbli, 1 out of 1.6 million acks in . This discrepancy sug-
gests that data packets are much more likely to be corrupted
than the small pure ack packets because of some artifact of
how the corruption occurs. For example, it may be that cor-
ruption primarily occurs inside routers, where it goes unde-
tected by any link-layer checksum, and that the mechanism
(e.g., botched DMA, cache inconsistencies) only manifests
itself for packets larger than a particular size.
We gathered a bit of further evidence concerning corrup-

tion rates by sampling traffic on a busy FDDI ring connect-
ing a large university (U.C. Berkeley) to the Internet. In a
Jan. 1998 sample of 400,000 packets, one in 7,500 had an in-
consistent checksum. In a Nov. 1998 sample of 294 million
packets, about one in 9,500 had an inconsistent checksum.
Thus, the problem appears quite real, and is under further
investigation [Par98].
In summary, we cannot offer a definitive answer as to over-

all Internet packet corruption rates: but the evidence that cor-
ruption occurs fairly frequently argues for further study in
order to resolve the question.

4 Bottleneck Bandwidth
In this section we discuss how to estimate a fundamental
property of a network connection, the bottleneck bandwidth
that sets the upper limit on how quickly the network can de-
liver the sender's data to the receiver. The bottleneck comes
from the slowest forwarding element in the end-to-end chain
that comprises the network path. We make a crucial distinc-
tion between bottleneck bandwidth and available bandwidth.
The former gives an upper bound on how fast a connection
can possibly transmit data, while the less-well-defined latter
term denotes how fast the connection can transmit while still
preserving network stability. Available bandwidth never ex-

ceeds bottleneck bandwidth, and can in fact be much smaller
( 6.3).
We will denote a path's bottleneck bandwidth as . For

measurement analysis, it is important to estimate because
from it we can then estimate a bound on interpacket spacing
such that if two packets are sent with less spacing between
them, then the second packet will have to queue behind the
first at the bottleneck, and thus the transmission delays of
the two packets will be correlated, rather than providing in-
dependent measurements of delay conditions along the path.
If a packet carries a total of bytes and the bottleneck band-
width is byte/sec, then define:

(1)

From a queueing theory perspective, is simply the service
time of a -byte packet at the bottleneck link. If the sender
transmits two -byte packets with an interval be-
tween them, then the second one is guaranteed to have to
wait behind the first one at the bottleneck element (hence the
use of “ ” to denote “queueing”). We will always discuss
in terms of user data bytes, i.e., TCP packet payload, and

for ease of discussion will assume is constant. We will not
use the term for acks.
For our measurement analysis, accurate assessment of

is critical. Suppose we observe a sender transmitting pack-
ets and an interval apart. Then if , the
delays experienced by and are perforce correlated, and
if their delays, if correlated, are due to another
source (such as additional traffic from other connections, or
processing delays). We need to know so we can dis-
tinguish those measurements that are necessarily correlated
from those that are not. If we do not do so, then we will skew
our analysis by mixing together measurements with built-in
delays due to queueing at the bottleneck with measurements
that do not reflect built-in delays.

4.1 Packet pair
The bottleneck estimation technique used in previous work
is based on “packet pair” [Ke91, Bo93, CC96a]. The fun-
damental idea is that if two packets are transmitted by the
sender with an interval between them, then when
they arrive at the bottleneck they will be spread out in time
by the transmission delay of the first packet across the bottle-
neck: after completing transmission through the bottleneck,
their spacing will be exactly . Barring subsequent delay
variations, they will then arrive at the receiver spaced not

apart, but . We then compute via Eqn 1.
The principle of the bottleneck spacing effect was noted in

Jacobson's classic congestion paper [Ja88], where it in turn
leads to the “self-clocking” mechanism. Keshav formally
analyzed the behavior of packet pair for a network of routers
that all obey the “fair queueing” scheduling discipline (not
presently used in the Internet), and developed a provably sta-
ble flow control scheme based on packet pair measurements
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[Ke91]. Both Jacobson and Keshav were interested in esti-
mating available rather than bottleneck bandwidth, and for
this variations from due to queueing are of primary con-
cern ( 6.3). But if, as for us, the goal is to estimate , then
these variations instead become noise we must deal with.
Bolot used a stream of packets sent at fixed intervals to

probe several Internet paths in order to characterize delay
and loss [Bo93]. He measured round-trip delay of UDP echo
packets and, among other analysis, applied the packet pair
technique to form estimates of bottleneck bandwidths. He
found good agreement with known link capacities, though a
limitation of his study is that the measurements were con-
fined to a small number of Internet paths.
Recent work by Carter and Crovella also investigates the

utility of using packet pair in the Internet for estimating
[CC96a]. Their work focusses on bprobe, a tool they de-
vised for estimating by transmitting 10 consecutive ICMP
echo packets and recording the interarrival times of the con-
secutive replies. Much of the effort in developing bprobe
concerns how to filter the resulting raw measurements in or-
der to form a solid estimate. bprobe currently filters by first
widening each estimate into an interval by adding an error
term, and then finding the point at which the most intervals
overlap. The authors also undertook to calibrate bprobe by
testing its performance for a number of Internet paths with
known bottlenecks. They found in general it works well,
though some paths exhibited sufficient noise to sometimes
produce erroneous estimates.
One limitation of both studies is that they were based on

measurements made only at the data sender. (This is not an
intrinsic limitation of the techniques used in either study).
Since in both studies, the packets echoed back from the re-
mote end were the same size as those sent to it, neither anal-
ysis was able to distinguish whether the bottleneck along the
forward and reverse paths was the same. The bottleneck
could differ in the two directions due to asymmetric rout-
ing [Pa97a], or because some media, such as satellite links,
can have significant bandwidth asymmetries depending on
the direction traversed [DMT96].
For estimating bottleneck bandwidth by measuring TCP

traffic, a second problem arises: if the only measurements
available are those at the sender, then “ack compression”
( 6.1) can significantly alter the spacing of the small ack
packets as they return through the network, distorting the
bandwidth estimate. We investigate the degree of this prob-
lem below.
For our analysis, we consider what we term receiver-based

packet pair (RBPP), in which we look at the pattern of data
packet arrivals at the receiver. We also assume that the re-
ceiver has full timing information available to it. In partic-
ular, we assume that the receiver knows when the packets
sent were not stretched out by the network, and can reject
these as candidates for RBPP analysis. RBPP is considerably
more accurate than sender-based packet pair (SBPP), since it
eliminates the additional noise and possible asymmetry of
the return path, as well as noise due to delays in generating
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Figure 2: Bottleneck bandwidth change

the acks themselves. We find in practice this additional noise
can be quite large.

4.2 Difficulties with packet pair
As shown in [Bo93] and [CC96a], packet pair techniques
often provide good estimates of bottleneck bandwidth. We
find, however, four potential problems (in addition to asym-
metries and noise on the return path for SBPP). Three of
these problem can often be addressed, but the fourth is more
fundamental.
Out-of-order delivery. The first problem stems from the

fact that for some Internet paths, out-of-order packet delivery
occurs quite frequently ( 3.1). Clearly, packet pairs deliv-
ered out of order completely destroy the packet pair tech-
nique, since they result in , which then leads to
a negative estimate for . Out-of-order delivery is symp-
tomatic of a more general problem, namely that the two
packets in a pair may not take the same route through the
network, which then violates the assumption that the second
queues behind the first at the bottleneck.
Limitations due to clock resolution. Another problem

relates to the receiver's clock resolution, , meaning the
minimum difference in time the clock can report. can
introduce large margins of error around estimates of . For
example, if msec, then for bytes, packet
pair cannot distinguish between 51,200 byte/sec, and

.
We had several sites in our study with msec. A

technique for coping with large is to use packet bunch, in
which back-to-back packets are used, rather than just
two. Thus, the overall arrival interval spanned by the
packets will be about times larger than that spanned by
a single packet pair, diminishing the uncertainty due to .
Changes in bottleneck bandwidth. Another problem

that any bottleneck bandwidth estimation must deal with is
the possibility that the bottleneck changes over the course
of the connection. Figure 2 shows a sequence plot of data
packets arriving at the receiver for a trace in which this hap-
pened. The eye immediately picks out a transition between
one overall slope to another, just after . The first
slope corresponds to about 53 Kbit/sec, while the second is
106 Kbit/sec, and increase of a factor of two.

6



Time

Se
qu

en
ce

 #

8.4 8.6 8.8 9.052
00

0
54

00
0

56
00

0
58

00
0

60
00

0

Figure 3: Enlargement of part of previous figure's right half

Here, the change is due to lbli's ISDN link activating
a second channel to double the link bandwidth, but we em-
phasize that bottleneck shifts can occur due to other mech-
anisms, such as routing changes or partial layer 2 failures.
What is of interest is not that ISDN in particular exhibits this
quirk, but the awareness of the general problem that bottle-
neck bandwidth can indeed change during the course of a
connection.
Multi-channel bottleneck links. A more fundamental

problem with packet-pair techniques arises from the effects
of multi-channel links, for which packet pair can yield in-
correct overestimates even in the absence of any delay noise.
Figure 3 expands a portion of Figure 2. The slope of the
large linear trend in the plot corresponds to 13,300 byte/sec
(106 Kbit/sec) as earlier noted. However, we see that the
line is actually made up of pairs of packets. The slope be-
tween the pairs corresponds to a data rate of 160 Kbyte/sec.
However, this trace involved lbli, a site with an ISDN link
that has a hard limit of 128 Kbit/sec = 16 Kbyte/sec, a factor
of ten smaller. Clearly, an estimate of Kbyte/sec
must be wrong, yet that is what a packet-pair calculation will
yield.
What has happened is that the bottleneck ISDN link uses

two channels that operate in parallel. When the link is idle
and a packet arrives, it goes out over the first channel, and
when another packet arrives shortly after, it goes out over
the other channel. They don't queue behind each other!
Multi-channel links violate the assumption that there is a sin-
gle end-to-end forwarding path, with disastrous results for
packet-pair, since in their presence it can form completely
misleading overestimates for .
Again, we stress that the problem is more general than the

circumstances shown in this example. First, while in this ex-
ample the parallelism leading to the estimation error came
from a single link with two separate physical channels, the
same effect could come from a router that balances its outgo-
ing load across two different links. Second, it may be tempt-
ing to dismiss this problem as correctable by using packet
bunch with instead of packet pair. This argument is
not compelling without further investigation, however, be-
cause could be more prone to error for regular bot-
tlenecks; and, more fundamentally, only works if the
parallelism comes from two channels. If it came from three

channels (or load-balancing links), then will still yield
misleading estimates.

4.3 Robust bottleneck estimation
We now turn to the question of how we might extend the
packet pair concept to address the difficulties mentioned in
the previous section. We term the more robust procedure
we developed “packet bunch modes” (PBM). The main ob-
servations behind PBM are that we can deal with packet-
pair's shortcomings by forming receiver-side estimates for a
range of packet bunch sizes, allowing formultiple bottleneck
values or apparent bottleneck values. Forming estimates at
the receiver yields the benefits discussed in 4.1. Consider-
ing a range of bunch sizes lets us accommodate limited re-
ceiver clock resolutions and the possibility of multiple chan-
nels or load-balancing across multiple links, by using large
bunch sizes; but since we also consider small bunch sizes,
we can still still minimize the risk of underestimation due to
noise diluting the spacing of the bunches. Finally, allowing
for finding multiple bottleneck values lets us accommodate
multi-channel (and multi-link) effects, and also the possibil-
ity of a bottleneck change.
Allowing for multiple bottleneck values rules out use of

the most common robust estimator, the median, since it
presupposes unimodality. We instead focus on identifying
modes, i.e., local maxima in the density function of the dis-
tribution of the estimates. We then observe that:

(i) If we find two strong modes, for which one is found
only at the beginning of the connection and one at the
end, then we have evidence of a bottleneck change.

(ii) If we find two strong modes which span the same por-
tion of the connection, and if one is found only for a
packet bunch size of and the other only for bunch
sizes , then we have evidence for an -channel
bottleneck link.

(iii) We can find both situations, for a link that exhibits both
a change and a multi-channel link, such as shown in
Figure 2.

Turning these observations into a working algorithm entails a
great degree of niggling detail, as well as the use of a number
of heuristics. Examples are: determining how many packet
arrivals to consider given limited clock resolution; propagat-
ing clock uncertainties into the bandwidth estimates; deal-
ing with relatively flat modal peaks; merging nearby peaks;
avoiding timing artifacts introduced by TCP “self-clocking”
and delayed acknowledgements; deciding when we have too
few bandwidth measurements for a given bunch size to trust
the corresponding estimate; and numerous others.
We defer discussion of these particulars to [Pa97c]. We

note, though, that one salient aspect of PBM is that it forms
its final estimates in terms of error bars that nominally en-
compass % around the bottleneck estimate, but might
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Figure 4: Histogram of single-bottleneck estimates for

be narrower if estimates cluster sharply around a particu-
lar value, or wider if limited clock resolution prevents finer
bounds. PBM always tries bunch sizes ranging from two
packets to five packets. If required by limited clock resolu-
tion or the failure to find a compelling bandwidth estimate
(about one quarter of all of the traces, usually due to limited
clock resolution), it tries progressively larger bunch sizes, up
to a maximum of 21 packets. We also note that nothing in
PBM is specific to analyzing TCP traffic. All it requires is
knowingwhen packets were sent relative to one another, how
they arrived relative to one another, and their size.
We applied PBM to and for those traces for which

tcpanaly's packet filter and clock analysis did not un-
cover any uncorrectable problems. After removing lbli,
which frequently exhibited both bottleneck changes and
multi-channel effects, PBM detected a single bottleneck 95–
98% of the time; failed to produce an estimate 0-2% of the
time (due to excessive noise or reordering); detected a bot-
tleneck change in about 1 connection out of 250; and in-
ferred a multi-channel bottleneck in 1–2% of the connections
(though some of these appear spurious). Since all but sin-
gle bottlenecks are rare, we defer discussion of the others to
[Pa97c], and focus here on the usual case of finding a single
bottleneck.
Unlike [CC96a], we do not know a priori the bottleneck

bandwidths for many of the paths in our study. We thus must
fall back on self-consistency checks in order to gauge the
accuracy of PBM. Figure 4 shows a histogram of the esti-
mates formed for . (The estimates are similar, though
lower bandwidth estimates are more common.) We can ar-
guably identify all of the peaks in the figure as corresponding
to known bandwidths such as 170 Kbyte/sec for a T1 circuit
after removing overhead, or possible divisions or pairings
of known bandwidths. We find that the E1 peak disappears
if we confine the analysis to North American sites, as ex-
pected since E1 is used in Europe but not in North America.
Since we can offer plausible explanations for all of the peaks,
PBM passes the self-consistency test, which in turn argues
that PBM is indeed detecting true bottleneck bandwidths.
We next investigate the stability of bottleneck bandwidth

over time. If we consider successive estimates for the same
sender/receiver pair, then we find that 50% differ by less than
1.75%; 80%, by less than 10%; and 98% differ by less than

a factor of two. Clearly, bottlenecks change infrequently.
The last property of bottleneck bandwidth we investigate

is symmetry: how often is the bottleneck from host to host
the same as that from to ? Bottleneck asymmetries

are an important consideration for sender-based “echo” mea-
surement techniques, since these will observe the minimum
bottleneck of the two directions [Bo93, CC96a]. A receiver-
based algorithm like PBM, however, can soundly assess the
bottleneck in just one direction along the path. Since our
datasets include connections in both directions along each
path, we can use PBM to estimate the bottleneck bandwidth
in each direction, and then compare the two to assess sym-
metry. This assessment is imperfect since we do not have
simultaneous measurements in each direction, but since the
bottleneck bandwidth along a path changes infrequently, we
can still compare connections somewhat separated in time.
We find that for a given pair of hosts, the median es-

timates in the two directions differ by more than 20%
about 20% of the time. This finding agrees with the observa-
tion that Internet paths often exhibit major routing asymme-
tries [Pa97a]. The bottleneck differences can be quite large,
with for example some paths T1-limited in one direction but
Ethernet-limited in the other. In light of these variations,
we see that sender-based bottleneck measurement will some-
times yield quite inaccurate results.

4.4 Efficacy of packet-pair
We finish with a look at how packet pair performs compared
to PBM. We confine our analysis to those traces for which
PBM found a single bottleneck. This restriction might intro-
duce bias by removing traces for which we know packet pair
will perform poorly (such as multi-channel links). However,
the bias is bounded by the fact that such traces comprise only
2–5% of all of the traces.
If packet pair produces an estimate lying within 20%

of PBM's, then we consider it to agree with PBM, otherwise
not. We evaluate “receiver-based packet pair” (RBPP, per
4.1) by considering it as PBM limited to packet bunch

sizes of 2 packets (or larger, if needed to resolve limited
clock resolutions). We find RBPP estimates almost always
(97–98%) agree with PBM. Thus, if (1) PBM's general clus-
tering and filtering algorithms are applied to packet pair, (2)
we do packet pair estimation at the receiver, (3) the receiver
benefits from sender timing information, so it can reliably
detect out-of-order delivery and lack of bottleneck “expan-
sion,” and (4) we are not concerned with multi-channel ef-
fects, then packet pair is a viable and relatively simple means
to estimate the bottleneck bandwidth.
We also evaluate “sender-based packet pair” (SBPP), in

which the sender makes measurements by itself. SBPP is
of considerable interest because a sender can use it without
any cooperation from the receiver, making it easy to deploy
in the Internet. To fairly evaluate SBPP, we assume use by
the sender of a number of considerations for forming sound
bandwidth estimates, detailed in [Pa97c]. Even so, we find
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that SBPP does not work especially well. In both datasets,
the SBPP bottleneck estimate agrees with PBM only about
60% of the time. About one third of the estimates are too
low, reflecting inaccuracies induced by excessive delays in-
curred by the acks on their return. The remaining 5–6%
are overestimates (typically 50% too high), reflecting ack
compression ( 6.1).

5 Packet Loss
In this section we look at what our measurements tell us
about packet loss in the Internet: how frequently it occurs
and with what general patterns ( 5.1); differences between
loss rates of data packets and acks ( 5.2); the degree to
which loss occurs in bursts ( 5.3); and how well TCP re-
transmission matches genuine loss ( 5.4).

5.1 Loss rates
A fundamental issue in measuring packet loss is to avoid
confusing measurement drops with genuine losses. As men-
tioned in 1, we addressed this concern by coding into
tcpanaly the details of the different TCP implementations
in our study, so it could infer measurement drops by detect-
ing apparently inconsistent TCP behavior (such as sending
an acknowledgement for data that, according to the trace,
never arrived) [Pa97b]. Because we can determine whether
traces suffer from measurement drops, we can exclude those
that do from our packet loss analysis and avoid what could
otherwise be significant inaccuracies.
For the sites in common, in , 2.7% of the packets were

lost, while in , 5.2%, nearly twice as many. However,
we need to address the question of whether the increase was
due to the use of bigger windows in ( 2). With bigger
windows, transfers will often have more data in flight and,
consequently, load router queues much more.
We can assess the impact of bigger windows by looking at

loss rates of data packets versus those for ack packets. Data
packets stress the forward path much more than the smaller
ack packets stress the reverse path, especially since acks are
usually sent at half the rate of data packets due to ack-every-
other-packet policies. On the other hand, the rate at which
a TCP transmits data packets adapts to current conditions
along the forward path, while the ack transmission rate does
not adapt to conditions along the reverse path unless either
an entire flight of acks is lost, causing a sender timeout; or
there is significant correlation between the loss rates in the
forward and reverse directions, which we show in 5.2 is
not the case. Thus, we argue that ack losses give a clearer
picture of overall Internet loss patterns, while data losses tell
us specifically about the conditions as perceived by TCP con-
nections.
In , 2.88% of the acks were lost and 2.65% of the

data packets, while in the figures are 5.14% and 5.28%.
Clearly, the bulk of the difference between the and

Region No-loss No-loss If-loss If-loss
Europe 48% 58% 5.3% 5.9% %
U.S. 66% 69% 3.6% 4.4% %
Into Europe 40% 31% 9.8% 16.9% %
Into U.S. 35% 52% 4.9% 6.0% %
All regions 53% 52% 5.6% 8.7% %

Table 1: Conditional ack loss rates for different regions

loss rates is not due to the use of bigger windows in . We
conclude that, overall, packet loss rates nearly doubled dur-
ing 1995. We can refine these figures by conditioning on ob-
serving at least one loss during a connection. Here wemake a
tacit assumption that the network has two states, “quiescent”
and “busy,” and that we can distinguish between the two be-
cause when it is quiescent, we do not observe any (ack) loss.
We will term a connection “loss-free” if it did not experi-

ence any lost acks, and “lossy” if at least one of the acks was
lost. In both and , about half the connections were
loss-free. For lossy connections, the loss rates jump to 5.7%
in and 9.2% in . Thus, even in , if the network was
busy (using our simplistic definition above), loss rates were
quite high, and for they shot upward to a level that in
general will seriously impede TCP performance.
Geography also plays a crucial role. We partitioned

the connections into four groups: “Europe,” “U.S.,” “Into
Europe,” and “Into U.S.” European connections have both
a European sender and receiver, U.S. have both in the
United States. “Into Europe” connections have U.S. data re-
ceivers (since they are what transmit the packets of interest,
namely the acks, into Europe). Similarly, “Into U.S.” are
connections with European data receivers.
Table 1 summarizes loss rates for the different regions,

conditioning on whether any acks were lost (“loss-free” or
“lossy”). The second and third columns give the proportion
of all connections that were loss-free in and , respec-
tively. We see that except for the trans-Atlantic links go-
ing into the U.S., the proportion of loss-free connections is
fairly stable. Hence, loss rate increases are primarily due to
higher loss rates during the already-loaded “busy” periods.
The fourth and fifth columns give the proportion of acks lost
for all of the lossy connections aggregated together, and the
final column summarizes the relative change of these figures.
None of the “lossy” loss rates is especially heartening, and
the trends are all increasing. The 17% loss rate going
into Europe is particularly glum.
Within regions, we find considerable site-to-site variation

in loss rates, as well as variation between loss rates for pack-
ets inbound to the site and those outbound ( 5.2). We did
not, however, find any sites that seriously skewed the above
figures.
In [Pa97c] we also analyze loss rates over the course of the

day, here omitted due to limited space. We find the expected
diurnal pattern of “busy” periods corresponding to working
hours and “quiescent” periods to late night and early morn-
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ing hours. However, we also find that our successful mea-
surements involving European sites exhibit a definite bias
towards oversampling the quiescent periods, due to effects
discussed in 2. Consequently, the European loss rates given
above are underestimates.

5.2 Data packet loss vs. ack loss
We now turn to evaluating how patterns of packet loss differ
among data packets (those carrying any user data) and ack
packets. We make a key distinction between “queued” and
“unqueued” data packets. A “queued” data packet is one
that presumably had to queue at the bottleneck link behind
one of the connection's previous packets, while an unqueued
data packet is one that we know did not have to queue at the
bottleneck behind a predecessor. We distinguish between the
two by computing each packet's waiting time, as follows.
Suppose the methodology in 4 estimates the bottleneck

bandwidth as . It also provides bounds on the estimate,
i.e., a minimum value and a maximum . We can then
determine the maximum amount of time required for a -byte
packet to transit the bottleneck, namely: sec,
which is simply Eqn 1 using the lower bound on .
Let be the time at which the sender transmits the th

data packet. We then associate a maximum waiting time
with each packet (assume for simplicity that is constant).
The first packet's waiting time is:

Subsequent packets have a waiting time:

reflects the maximum amount of extra delay the th
packet incurs due to its own transmission time across the
bottleneck link, plus the time required to first transmit any
preceding packets across the bottleneck link, if will arrive
at the bottleneck before they have completed transmission.
In queueing theory terms, reflects the th packet's (max-
imum) waiting time at the bottleneck queue, in the absence
of competing traffic from exogenous sources.
If , then we will term packet “queued,”

meaning that it had to wait for pending transmission of ear-
lier packets. Otherwise, we term it “unqueued.” (We can also
develop “central” estimates rather than maximum estimates
using instead of in this chain of reasoning. These are
the values used in 6.3.)
Using this terminology, in both and , about 2/3's

of the data packets were queued. Figure 5 shows the distri-
butions of loss rates during for unqueued data packets,
queued data packets, and acks. All three distributions show
considerable probability of zero loss. We see that queued
packets are much more likely to be lost than unqueued pack-
ets, as we would expect. In addition, acks are consistently
more likely than unqueued packets to be lost, but generally
less likely to be lost than queued packets, except during times
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Figure 5: loss rates for data packets and acks

of severe loss. We interpret the difference between ack and
data loss rates as reflecting the fact that, while an ack stream
presents a much lighter load to the network than a data packet
stream, the ack stream does not adapt very much to the cur-
rent network conditions along its forwarding path, while the
data packet stream does, lowering its transmission rate in an
attempt to diminish its loss rate.

It is interesting to note the extremes to which packet loss
can reach. In , the largest unqueued data packet loss
rate we observed was 47%. For queued packets it climbed
to 65%, and for acks, 68%. As we would expect, these con-
nections all suffered egregiously. However, they did man-
age to successfully complete their transfers within their al-
loted ten minutes, a testimony to TCP's tenacity. For all of
these extremes, no packets were lost in the reverse direction!
Clearly packet loss on the forward and reverse paths is some-
times completely independent. Indeed, the coefficient of
correlation between combined (queued and unqueued) data
packet loss rates and ack loss rates in is 0.21, and in ,
the loss rates appear uncorrelated (coefficient of 0.02), per-
haps due to the greater prevalence of routing asymmetry.

A final puzzle is that the non-zero portions of both the un-
queued and queued data packet loss rates agree closely with
exponential distributions, while the distribution for acks is
not so persuasive a match. Perhaps the better fit for data loss
rates reflects the fact that the sender transmits data packets at
a rate that adapts to the current network conditions based on
observing data packet loss. The difference highlights that if
we passively measure the loss rate by observing the fate of
a connection's TCP data packets, then we in fact are making
measurements using a mechanismwhose goal is to lower the
value of what we are measuring (by spacing out the measure-
ments). Consequently, we need to take care to distinguish
between measuring overall Internet packet loss rates, which
is best done using non-adaptive sampling, versus measuring
loss rates experienced by a transport connection's packets—
the two can be quite different.
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Type of loss

Queued data pkt 2.8% 4.5% 49% 50%
Unqueued data pkt 3.3% 5.3% 20% 25%
Ack 3.2% 4.3% 25% 31%

Table 2: Unconditional and conditional loss rates

5.3 Loss bursts
In this section we look at the degree to which packet loss
occurs in bursts of more than one consecutive loss.
The first question we address is the degree to which packet

losses are well-modeled as independent. In [Bo93], Bolot in-
vestigated this question by comparing the unconditional loss
probability, , with the conditional loss probability, ,
where is conditioned on the fact that the previous packet
was also lost. He investigated the relationship between
and for different packet spacings , ranging from 8 msec
to 500 msec. He found that approaches as in-
creases, indicating that loss correlations are short-lived, and
concluded that “losses of probe packets are essentially ran-
dom as long as the probe traffic uses less than 10% of the
available capacity of the connection over which the probes
are sent.” The path he analyzed, though, included a heavily
loaded trans-Atlantic link, so the patterns he observed might
not be typical.
Table 2 summarizes and for the different types of

packets and the two datasets. Clearly, TCP packet loss events
are not well-modeled as independent. Even for the low-
burden, relatively low-rate ack packets, the loss probability
jumps by a factor of seven if the previous ack was lost. We
would expect to find the disparity strongest for queued data
packets, as these must contend for buffer with the connec-
tion's own previous packets, as well as any additional traffic,
and indeed this is the case. We find the effect least strong for
unqueued data packets, which accords with these not hav-
ing to contend with the connection's previous packets, and
having their rate diminished in the face of previous loss.
The relative differences between and in Table 2 all

exceed those computed by Bolot by a large factor. His great-
est observed ratio of to was about 2.5:1. However,
his were all much higher than those in Table 2, even for

msec, suggesting that the path he measured differed
considerably from a typical path in our study.
Given that packet losses occur in bursts, the next natural

question is: how big? To address this question, we group
successive packet losses into outages. Figure 6 shows the
distribution of outage durations for those lasting more than
200 msec (the majority). We see that all four distributions

It is interesting that queued packets are unconditionally less likely to
be lost than unqueued packets. We suspect this reflects the fact that lengthy
periods of heavy loss or outages will lead to timeout retransmissions, and
these are unqueued. Note that these statistics differ from the distributions
shown in Figure 5 because those are for per-connection loss rates, while
Table 2 summarizes loss probabilities over all the packets in each dataset.
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Figure 6: Distribution of packet loss outage durations ex-
ceeding 200 msec
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Figure 7: Log-log complementary distribution plot of ack
outage durations

agree fairly closely.

It is clear from Figure 6 that outage durations span several
orders of magnitude. For example, 10% of the ack out-
ages were 33 msec or shorter (not shown in the plot), while
another 10% were 3.2 sec or longer, a factor of a hundred
larger. Furthermore, the upper tail of the distributions are
consistent with Pareto distributions. Figure 7 shows a com-
plementary distribution plot of the duration of ack out-
ages, for those lasting more than 2 sec (about 16% of all the
outages). Both axes are log-scaled. A straight line on such
a plot corresponds to a Pareto distribution. We have added
a least-squares fit. We see the long outages fit quite well to
a Pareto distribution with shape parameter , except
for the extreme upper tail, which is subject to truncation be-
cause of the 600 sec limit on connection durations ( 2).

A shape parameter means that the distribution has
infinite variance, indicating immense variability. Pareto dis-
tributions for activity and inactivity periods play key roles in
somemodels of self-similar network traffic [WTSW97], sug-
gesting that packet loss outages could contribute to how TCP
network traffic might fit to ON/OFF-based self-similarity
models.

Finally, we note that the patterns of loss bursts we observe
might be greatly shaped by use of “drop tail” queueing. In
particular, deployment of Random Early Detection (RED)
could significantly affect these patterns and the correspond-
ing connection dynamics [FJ93].
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Type of RR
% all packets 1% 2%
% retrans. 26% 28%
Unavoidable 44% 17%
Coarse feed. 51% 80%
Bad RTO 4% 3%

Table 3: Proportion of redundant retransmissions (RRs) due
to different causes

5.4 Efficacy of TCP retransmission
The final aspect of packet loss we investigate is how effi-
ciently TCP deals with it. Ideally, TCP retransmits if and
only if the retransmitted data was indeed lost. However,
the transmitting TCP lacks perfect information, and conse-
quently can retransmit unnecessarily. We analyzed each TCP
transmission in our measurements to determine whether it
was a redundant retransmission (RR), meaning that the data
sent had already arrived at the receiver, or was in flight and
would successfully arrive.
In [Pa97b] we identified one TCP implementation as suf-

fering from significant errors in computing RTO, which the
other implementations do not exhibit. We removed the corre-
sponding traces from the analysis in this section, as the TCP
generated an abnormally large number of RRs.
We classify three types of RRs:

unavoidable because all of the acks for the data were lost;

coarse feedback meaning that had earlier acks conveyed
finer information about sequence holes (such as pro-
vided by SACK), then the retransmission could have
been avoided; and

bad RTO meaning that had the TCP simply waited longer,
it would have received an ack for the data (bad retrans-
mission timeout).

Because we have traces of connections at both sender and
receiver, we can unambiguously determine for each retrans-
mission which acks had arrived or would subsequently arrive
at the sender, and so can readily detect RRs and classify them
by type. Table 3 summarizes the prevalence of the different
types of RRs in and . We see that in , a fair pro-
portion of the RRs were unavoidable. (Some of these might
however have been avoided had the receiving TCP generated
more acks.) But for , only about 1/6 of the RRs were un-
avoidable, the difference no doubt due to 's use of bigger
windows ( 2) increasing the mean number of acks in flight.
“Coarse feedback” RRs presumably would all be fixed us-

ing SACK, so we see that SACK provides a major benefit in
improving TCP retransmission.
“Bad RTO” RRs indicate that the TCP's computation of

the retransmission timeout was erroneous. Bad RTO RRs are
rare, providing solid evidence that the standard TCP RTO es-
timation algorithm developed in [Ja88] performs quite well

for avoiding RRs. A separate question is whether the RTO
estimation is overly conservative. A thorough investigation
of this question is complex because a revised estimator might
take advantage of both higher-resolution clocks and the op-
portunity to time multiple packets per flight. Thus, we leave
this interesting question for future work.
In summary: ensuring standard-conformant RTO calcu-

lations and deploying the SACK option together eliminate
virtually all of the avoidable redundant retransmissions. The
remaining RRs are rare enough to not present serious perfor-
mance problems.
The last aspects of TCP retransmission we investigate are

the patterns of packet loss during fast recovery sequences.
Two known problems with TCP loss recovery are that if
multiple packets are lost in a single flight, then the re-
covery is likely to stall until a retransmission timeout oc-
curs, seriously diminishing throughput; and if a retransmit-
ted packet is itself lost, the connection will also incur a time-
out [FF96, Ho96]. While these problems have been recog-
nized for quite a while, extensive data has not been available
in order to gauge the degree to which they actually present
difficulties for Internet connections. We analyzed the and

measurements to provide such data.
In , out of 1,178 packets retransmitted using fast recov-

ery, only 3.9% were themselves lost, while in , only 4.5%
of 15,444 packets were lost. (These proportions are quite
close to the unconditional loss rates we examined in 5.1,
and much lower than the conditional loss rates examined in
5.3, indicating that congestion often drains on time scales

of RTTs.) We conclude that the concern of suffering a time-
out due to a lost retransmitted packet is, in practice, not an
especially serious problem.
However, in both and , one third of the time more

than one packet was lost in the flight prior to a fast recovery,
and about 15% of the time, more than two packets were lost.
These proportions are high enough to give solid support for
refining the fast recovery mechanism to cope with multiple
losses, such as by adding SACK; though we note again, as in
5.3, that deployment of RED may significantly alter these

proportions.

6 Packet Delay
The final aspect of Internet packet dynamics we analyze is
that of packet delay. Here we focus on network dynamics
rather than transport protocol dynamics. Consequently, we
confine our analysis to variations in one-way transit times
(OTTs) and omit discussion of RTT variation, since RTT
measurements conflate delays along the forward and reverse
paths.
For reasons noted in 1, we do not attempt frequency-

domain analysis of packet delay. We also do not summa-
rize the marginal distribution of packet delays. Mukherjee
found that packet delay along a particular Internet path is
well-modeled using a shifted gamma distribution, but the pa-
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rameters of the distribution vary from path to path and over
the course of the day [Mu94]. Since we have about 1,000 dis-
tinct paths in our study, measured at all hours of the day, and
since the gamma distribution varies considerably as its pa-
rameters are varied, it is difficult to see how to summarize
the delay distributions in a useful fashion. We hope to revisit
this problem in future work.
Any accurate assessment of delay must first deal with

the issue of clock accuracy. This problem is particularly
pronounced when measuring OTTs since doing so involves
comparingmeasurements from two separate clocks. Accord-
ingly, we developed robust algorithms for detecting clock
adjustments and relative skew by inspecting sets of OTT
measurements [Pax98]. The analysis in this section assumes
these algorithms have first been used to reject or adjust traces
with clock errors.
OTT variation was previously analyzed by Claffy and col-

leagues in a study of four Internet paths [CPB93]. They
found that mean OTTs are often not well approximated by
dividing RTTs in half, and that variations in the paths' OTTs
are often asymmetric. Our measurements confirm this latter
finding. If we compute the inter-quartile range (75th per-
centile minus 25th) of OTTs for a connection's unqueued
data packets versus the acks coming back, in the coef-
ficient of correlation between the two is 0.10, and in it
drops to 0.006.

6.1 Timing compression
Packet timing compression occurs when a flight of packets
sent over an interval arrives at the receiver over an in-
terval . To first order, compression should not
occur, since the main mechanism at work in the network for
altering the spacing between packets is queueing, which in
general expands flights of packets (cf. 4.1). However, com-
pression can occur if a flight of packets is at some point held
up by the network, such that transmission of the first packet
stalls and the later packets have time to catch up to it.
Zhang et al. predicted from theory and simulation that

acks could be compressed (“ack compression”) if a flight
arrived at a router without any intervening packets from
cross traffic (hence, the router's queue is draining) [ZSC91].
Mogul subsequently analyzed a trace of Internet traffic and
confirmed the presence of ack compression [Mo92]. His def-
inition of ack compression is somewhat complex since he
had to infer endpoint behavior from an observation point in-
side the network. Since we can compute from our data both

and , we can instead directly evaluate the presence
of compression. He found compression was correlated with
packet loss but considerably more rare. His study was lim-
ited, however, to a single 5-hour traffic trace.
Ack compression. A simple metric for detecting ack

compression would be to compute , which, if less than 1,
indicates that the packets arrived with their timing com-
pressed. However, we need to take into account the uncer-
tainties in and due to the limited resolution of the
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Figure 8: Data packet timing compression

clocks used to measure them. Let and be the receiver
and sender's clock resolutions, per the discussion in [Pax98].
Then the actual sending spacing is bounded by ,
and similarly for the receiving spacing. There-
fore, the actual degree of compression ranges from
to .
To be conservative in concluding that a set of packets had

compressed timing, we use the latter end of this range. Then,
to detect ack compression, for each group of at least 3 acks
we compute:

(2)

While generally the acks in our traces were generated for
every-other data packet, we also included acks sent more fre-
quently, such as duplicate acks.
We consider a group compressed if . We term

such a group a compression event. In , 50% of the connec-
tions experienced at least one compression event, and in ,
60% did. In both, the mean number of events was around 2,
and 1% of the connections experienced 15 or more. Almost
all compression events are small, with only 5% spanning five
or more acks. Finally, a significant minority (10–25%) of the
compression events occurred for dup acks. These are sent
with less spacing between them than regular acks sent by
ack-every-other policies, so it takes less timing perturbation
to compress them.
Were ack compression frequent, it would present two

problems. First, as acks arrive they advance TCP's sliding
window and “clock out” new data packets at the rate re-
flected by their arrival [Ja88]. For compressed acks, this
means that the data packets go out faster than previously,
which can result in network stress. Second, sender-based
measurement techniques such as SBPP ( 4.1) can misinter-
pret compressed acks as reflecting greater bandwidth than
truly available. Since, however, we find ack compression
relatively rare and small in magnitude, the first problem is
not serious, and the second can be dealt with by judiciously
removing upper extremes from sender-based measurements.
Data packet timing compression. For data packet timing

compression, our concerns are different. Sometimes a flight

Indeed, it has been argued that occasional ack compression is benefi-
cial, since it provides an opportunity for self-clocking to discover newly-
available bandwidth.
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of data packets is sent at a high rate due to a sudden advance
in the receiver's offered window. Normally these flights are
spread out by the bottleneck and arrive at the receiver with
a distance between each packet ( 4). If after the bottle-
neck their timing is compressed, then use of Eqn 2 will not
detect this fact unless they are compressed to a greater degree
than their sending rate. Figure 8 illustrates this concern: the
flights of data packets arrived at the receiver at 170Kbyte/sec
(T1 rate), except for the central flight, which arrived at Eth-
ernet speed. However, it was also sent at Ethernet speed, so
for it, .
Consequently, we consider a group of data packets as

“compressed” if they arrive at greater than twice the upper
bound on the estimated bottleneck bandwidth, . We only
consider groups of at least four data packets, as these, cou-
pled with ack-every-other policies, have the potential to then
elicit a pair of acks reflecting the compressed timing, leading
to bogus self-clocking.
These compression events are rarer than ack compression,

occurring in only 3% of the traces and 7% of those in
. We were interested in whether some paths might be

plagued by repeated compression events due to either pecu-
liar router architectures or network dynamics. Only 25–30%
of the traces with an event had more than one, and just 3%
had more than five, suggesting that such phenomena are rare.
But those connections with multiple events are dominated by
a few host pairs, indicating that the phenomenon does occur
repeatedly, and is sometimes due to specific routers.
It appears that data packet timing compression is rare

enough not to present a problem. That it does occur, though,
again highlights the necessity for outlier-filtering when con-
ducting timing measurements.

6.2 Queueing time scales
In this section we briefly develop a rough estimate of the
time scales over which queueing occurs. If we take care to
eliminate suspect clocks, reordered packets, compressed tim-
ing, and traces exhibiting TTL shifts (which indicate routing
changes), then we argue that the remaining measured OTT
variation reflects queueing delays.
We compute the queueing variation on the time scale

as follows. We partition the packets sent by a TCP into in-
tervals of length . For each interval, let and be the
number of successfully-arriving packets in the left and right
halves of the interval. If either is zero, or if or
vice versa, then we reject the interval as containing too few
measurements or too much imbalance between the halves.
Otherwise, let and be the median OTTs of the two
halves. We then define the interval's queueing variation as

. Finally, let be the median of
over all such intervals.
Thus, reflects the “average” variation we observe in

packet delays over a time scale of . By using medians,
this estimate is robust in the presence of noise due to non-
queueing effects, or queueing spikes. By dividing intervals
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Figure 9: Proportion (normalized) of connections with given
timescale of maximum delay variation ( )

in two and comparing only variation between the two halves,
we confine to only variations on the time scale of .
Shorter or longer lived variations are in general not included.
We now analyze for different values of , confining

ourselves to variations in ack OTTs, as these are not clouded
by queueing at the bottleneck and adaptive transmission rate
effects. The question is: are their particular 's on which
most queueing variation occurs? If so, then we can hope to
engineer for those time scales. For example, if the dominant
is less than a connection's RTT, then it is pointless for the

connection to try to adapt to queueing fluctuations, since it
cannot acquire feedback quickly enough to do so.
For each connection, we range through

msec to find , the value of for which
is greatest. reflects the time scale for which the connection
experienced the greatest OTT variation. Figure 9 shows the
normalized proportion of the connections in and
exhibiting different values of . Normalization is done by
dividing the number of connections that exhibited with
the number that had durations at least as long as . For both
datasets, time scales of 128–2048 msec primarily dominate.
This range spans an order of magnitude, and exceeds typical
RTT values. Furthermore, while less prevalent, values
all the way up to 65 sec remain common, with having
a strong peak at 65 sec (perhaps due to periodic outages
caused by router synchronization [FJ94], eliminated by the
end of 1995).
We summarize the figure as indicating that Internet delay

variations occur primarily on time scales of 0.1–1 sec, but
extend out quite frequently to much larger times.

6.3 Available bandwidth
The last aspect of delay variation we look at is an interpre-
tation of how it reflects the available bandwidth. In 5.2
we developed a notion of data packet 's “waiting time,” ,
meaning the total delay it incurs due to both queueing at the
bottleneck behind its predecessors, and the time required for
its own transmission across the bottleneck ( , per Eqn 1).
For simplicity, we assume that is the same for each data
packet, though the following discussion can be extended to
the case of variable .
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Since every packet requires time to transit the bottle-
neck, variations in OTT do not include , but will reflect

. is the expected additional delay that packet
will experience because it will have to queue behind its pre-
decessors at the bottleneck.
Let denote the difference between packet 's measured

OTT and the minimum observed OTT. Using the same as-
sumptions as in 6.2, we interpret as reflecting queueing
delays.
If the network path is completely unloaded except for

the connection's load itself (no competing traffic), then we
should have . That is, the measured extra delay ( )
can all be account for by the expected extra delay due to
queueing behind its predecessors.
More generally, define

then reflects the proportion of the packet's delay due to
the connection's own loading of the network. If , then
overall we have a situation approximating , namely
all of the delay variation is due to the connection's own
queueing load on the network. On the other hand, if ,
then the delays experienced by the packet are much higher
than those simply due to their own transmission times across
the bottleneck and their own queueing behind their prede-
cessors. In this case, the connection's load is insignificant
compared to that of other traffic in the network.
Similarly, we can say that reflects the

resources consumed by the connection itself, while
reflects

the resources consumed by the competing connections.
Thus, captures the proportion of the total resources that

were consumed by the connection itself, and we interpret
as reflecting the available bandwidth. Values of close to
1 mean that the entire bottleneck bandwidth was available,
and values close to 0 mean that almost none of it was actually
available.
Note that we can have even if the connection does

not consume all of the network path's capacity. All that is
required is that, to the degree that the connection did attempt
to consume network resources, they were readily available.
This observation provides the basis for hoping that we might
be able to use to estimate available bandwidthwithout fully
stressing the network path, unlike other available bandwidth
estimation techniques [MM96b, CC96b]. Fully evaluating
this possibility remains for future work.
We can roughly gauge how well truly reflects available

bandwidth by computing the coefficient of correlation be-
tween and the connection's overall throughput (normal-
ized by dividing by the bottleneck bandwidth). For , this
is 0.44, while for , it rises to 0.55.
Figure 10 shows the density and cumulative distribution

of for . We find that Internet connections encounter
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Figure 10: Density and cumulative distribution of
inferred available bandwidth ( )

a broad range of available bandwidth. As is generally the
case with Internet characteristics, a single figure like this can
oversimplify the situation. We note, for example, that con-
fining the evaluation of to European connections results in
a sharp leftward shift in the density, indicating generally less
available bandwidth, while for U.S. connections, the den-
sity shifts to the right. Furthermore, for paths with higher
bottleneck bandwidths, we generally find lower values of
, reflecting that such paths tend to be shared among more
competing connections. Finally, we note that the predictive
power of tends to be fairly good. On average, a given ob-
servation of will be within 0.1 of later observations of
for the same path, for time periods up to several hours.

7 Conclusions
We analyzed packet traces of 20,800 TCP connections be-
tween 35 Internet sites, in an attempt to characterize the
spectrum of packet dynamics observed along Internet paths.
Our analysis of “pathological” network behavior found that
packet reordering is surprisingly common, with 36% of the
100 KB connections in one dataset, and 12% in the other, ex-
periencing at least one reordered packet. Reordering varies
considerably from site to site, and while it sometimes occurs
in groups as large as dozens of packets, it usually involves
only one or two packets and is correlated with routing fluctu-
ations. The timing differences leading to reordering are such
that the TCP fast retransmission threshold could be safely
lowered from 3 duplicate acks to 2 by introducing a 20 msec

The depressed density at reflects a measurement bias [Pa97c].
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wait before retransmitting, increasing the fast retransmission
opportunities by 2/3's.
Our assessment of bottleneck bandwidth uncovered four

difficulties with the common “packet pair” approach: out-
of-order delivery, limited clock resolution, bottleneck band-
width changes, and multi-pathing. We sketched a robust es-
timator, “Packet Bunch Modes” (PBM), to address these dif-
ficulties, and then with it as a reference found that receiver-
based packet pair estimation works very well, agreeing with
PBM 97–98% of the time, while sender-based packet pair
agrees only about 60% of the time.
We found that packet loss rates nearly doubled during the

course of 1995, with most of the increase coming from larger
loss rates during the same busy periods, rather than longer
busy periods. There are considerable geographic differences
in loss rates, with European and especially the trans-Atlantic
paths having higher rates than the United States. Loss rates
along the forward and reverse directions of a network path
show little correlation. We found that loss patterns of data
packets differ significantly from those of acks, which appears
to be due to the fact that the rate at which data packets are
sent adapts to current network conditions in an attempt to di-
minish the experienced loss rate, while the rate of ack pack-
ets adapts much less. Loss is not well-modeled as indepen-
dent, with the likelihood that a packet is lost increasing by an
order of magnitude if its predecessor was lost. Sustained loss
“outages” have heavy-tailed durations with a Pareto shape
parameter of , indicating infinite variance which
could contribute to finding self-similar traffic behavior. Fi-
nally, we find that when correctly implemented the TCP re-
transmission algorithms perform well in terms of avoiding
unnecessary retransmissions, if coupled with the use of se-
lective acknowledgements.
Our analysis of packet delay found that while 50–60% of

the connections experienced at least one timing compression
event, such events tend to be isolated and small in magnitude,
so their impact is minor. We made a preliminary assessment
of delay variation time scales, finding that variations occur
primarily on time scales of 0.1–1 sec, but not infrequently
extend out to much larger time scales. Our assessment of
available bandwidth was conducted in terms of gauging the
degree to which a connection's own load along a path com-
pared to the total load along the path, finding that this ratio
varied fairly evenly all the way from the connection's load
being insignificant to the connection's load being the entire
load along the path.
Finally, our study has implications for several measure-

ment considerations:

With due diligence to remove packet filter errors, TCP-
based measurement provides a viable means for assess-
ing end-to-end packet dynamics.

We find wide ranges of behavior, such that we must ex-
ercise great caution in regarding any aspect of packet
dynamics as “typical.”

Some common assumptions such as in-order packet
delivery, FIFO bottleneck queueing, independent loss
events, single congestion time scales, and path symme-
tries are all violated, sometimes frequently.

The combination of path asymmetries and reverse-
path noise render sender-only measurement tech-
niques markedly inferior to those that include receiver-
cooperation.

This last point argues that when the measurement of interest
concerns a unidirectional path—be it for measurement-based
adaptive transport techniques such as TCP Vegas [BOP94],
or general Internet performance metrics such as those in de-
velopment by the IPPM effort [PAMM98]—the extra com-
plications incurred by coordinating sender and receiver yield
significant benefits.
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