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In what follows we provide the omitted proofs of the statements made in our paper “Commitment

without Reputation: Renegotiation-Proof Contracts under Asymmetric Information.” In order to dis-

tinguish statements made in that paper from the ones made in this document we will add a note “(of

the main paper)” after those from the main paper.

It is well-known that if b2 is increasing, then, under increasing differences, incentive compatibility

reduces to local incentive compatibility. We state it as a claim for future reference.

Claim 1. If u2 has increasing differences in (%θ,%2) and b2 ∈ A
A1×Θ

2 is increasing in (%θ,%2), then for

any f ∈C

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θ j ),θi )− f (a1,b2(a1,θ j )), for all i , j = 1,2, . . . ,n

holds if and only if

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥u2(a1,b2(a1,θi−1),θi )− f (a1,b2(a1,θi−1)), for all i = 2, . . . ,n,

and

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θi+1),θi )− f (a1,b2(a1,θi+1)), for all i = 1,2, . . . ,n−1.

Proof of Proposition 2 (of the main paper). (Only if ) Suppose that b2 is incentive compatible, i.e., there

exists a contract f such that ( f ,b2) is incentive compatible. Fix orders (%θ,%2) in which u2 has strictly

increasing differences. Take any a1 ∈ A1 and θ,θ′ ∈ Θ and assume without loss of generality, that

θ ≻θ θ′. Suppose, for contradiction, that b2(a1,θ′) ≻2 b2(a1,θ). Sequential rationality of player 2 im-

plies

u2(a1,b2(a1,θ),θ)− f (a1,b2(a1,θ)) ≥u2(a1,b2(a1,θ′),θ)− f (a1,b2(a1,θ′))

u2(a1,b2(a1,θ′),θ′)− f (a1,b2(a1,θ′)) ≥u2(a1,b2(a1,θ),θ′)− f (a1,b2(a1,θ))

and hence

u2(a1,b2(a1,θ′),θ)−u2(a1,b2(a1,θ),θ) ≤ u2(a1,b2(a1,θ′),θ′)−u2(a1,b2(a1,θ),θ′),
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contradicting that u2 has strictly increasing differences in (%θ,%2). Therefore, b2 must be increasing

in (%θ ,%2).

[If] Suppose u2 has strictly increasing differences and b2 is increasing. We need to prove the existence

of a contract f ∈C such that

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥u2(a1,b2(a1,θ j ),θi )− f (a1,b2(a1,θ j )), for all i , j = 1,2, ...,n.

(1)

By Claim 1, (1) holds if and only if D f (a1,b2) ≤ ~U2(a1,b2). Therefore, we need to show that for

any a1 ∈ A1 there exists f (a1,b2) ∈ R
n such that D f (a1,b2) ≤ ~U2(a1,b∗

2 ). By Gale’s theorem for lin-

ear inequalities (Mangasarian (1994), p. 33), there exists such an f (a1,b2) ∈ R
n if and only if for

any y ∈ R
2(n−1)
+ , D ′y = 0 implies y ′~U2(a1,b∗

2 ) ≥ 0. It is easy to show that D ′y = 0 if and only if y1 =

y2, y3 = y4, · · · , y2(n−1)−1 = y2(n−1). Let ~U2(a1,b2)i denote the i t h row of ~U2(a1,b2) and note that since

b2 is increasing and u2 has strictly increasing differences, ~U2(a1,b2)2i−1 + ~U2(a1,b2)2i ≥ 0, for any

i = 1,2, . . . ,n −1. Therefore,

y ′~U2(a1,b∗
2 )=

n−1
∑

i=1

(~U2(a1,b2)2i−1 + ~U2(a1,b2)2i )y2i−1 ≥ 0

This proves the existence of a f (a1,b2) ∈ R
n such that (1) is satisfied for all a1 ∈ A1. We can complete

the proof by defining f̃ ∈C as

f̃ (a1, a2) =







f (a1, a2), ∃θ : a2 = b2(a1,θ)

∞, otherwise

Proof of Lemma 1 (of the main paper). By definition ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is not renegotiation-proof if

and only if there exist a1 ∈ A1, i = 1,2, . . . ,n and an incentive compatible (g ,b2) ∈C × A
A1×Θ

2 such that

u2(a1,b2(a1,θi ),θi )− g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi )) and g (a1,b2(a1,θ j )) >

f (a1,b∗
2 (a1,θ j )) for all j = 1,2, . . . ,n. For any ( f ,b∗

2 ) ∈C ×A
A1×Θ

2 , let f (a1,b∗
2 ) ∈R

n be a vector whose j -

th component, j = 1,2, . . . ,n, is given by f (a1,b∗
2 (a1,θ j )). Note that incentive compatibility of (g ,b2)∈

C × A
A1×Θ

2 is equivalent to Dg (a1,b2) ≤ ~U2(a1,b2) for all a1 ∈ A1. Therefore, ( f ,b∗
2 ) ∈ C × A

A1×Θ

2

is not renegotiation-proof if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n and (g (a1,b2),b2) ∈ R
n ×

A
A1×Θ

2 such that Dg (a1,b2) ≤ ~U2(a1,b2), u2(a1,b2(a1,θi ),θi )−g (a1,b2(a1,θi )) >u2(a1,b∗
2 (a1,θi ),θi )−

f (a1,b∗
2 (a1,θi )), and g (a1,b2) ≫ f (a1,b∗

2 ). Also note that g (a1,b2) ≫ f (a1,b∗
2 ) if and only if there ex-

ists an ε≫ 0 such that g (a1,b2) = f (a1,b∗
2 )+ε. Therefore, we have the following

Lemma 1. ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is not renegotiation-proof if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n,

b2 ∈ A
A1×Θ

2 , and ε ∈R
n such that D( f (a1,b∗

2 )+ε) ≤ ~U2(a1,b2), εi < u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (ai

1,θi ),θi ),

and ε≫ 0.

We first state a theorem of the alternative, which we will use in the sequel.

Lemma 2 (Motzkin’s Theorem). Let A and C be given matrices, with A being non-vacuous. Then either

1. Ax ≫ 0 and C x ≥ 0 has a solution x

or
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2. A′y1 +C ′y2 = 0, y1 > 0, y2 ≥ 0 has a solution y1, y2

but not both.

Proof of Lemma 2. See Mangasarian (1994), p. 28.

For any ( f ,b∗
2 )∈C×A

A1×Θ

2 , a1 ∈ A1, b2 ∈ A
A1,×Θ
2 , and i = 1,2, . . . ,n, define V = ~U2(a1,b2)−D f (a1,b∗

2 ),C =
(

V −D
)

, and

A =

(

In+1

li

)

where li = (u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ))e1 − ei+1. Note that C and A depend on and

are uniquely defined by ( f ,b∗
2 ), a1 and (i ,b2) but we suppress this dependency for notational con-

venience. The following lemma uses Motzkin’s Theorem to express renegotiation-proofness as an

alternative.

Lemma 3. ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1, i = 1,2, . . . ,n and

b2 ∈ A
A1×Θ

2 there exist y ∈R
n+2 and z ∈R

2(n−1) such that A′y +C ′z = 0, y > 0, z ≥ 0.

Proof of Lemma 3. By Lemma 1, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1 ∈ A1,

i = 1,2, . . . ,n, b2 ∈ A
A1×Θ

2 , and ε ∈R
n such that D( f (a1,b∗

2 )+ε) ≤ ~U2(a1,b2), εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (a1,θi ),θi ), and ε≫ 0. This is true if and only if for some a1, i and b2 there exists an x ∈R

n+1

such that Ax ≫ 0 and C x ≥ 0. To see this let ξ> 0 and define

x =

(

ξ

ξε

)

Then D( f (a1,b∗
2 )+ ε) ≤ ~U2(a1,b2) if and only if C x ≥ 0. Also, ε ≫ 0 and εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (a1,θi ),θi ) if and only if Ax ≫ 0. The lemma then follows from Motzkin’s Theorem.

For any ( f ,b∗
2 ) ∈C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1, and i = 1,2, . . . ,n, let ~U2(a1,b2) j denote the j -th

component of vector ~U2(a1,b2) and define α1 = 1, αi+1 = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ),

and

αk+1 =

i−1
∑

j=k

~U2(a1,b2)2 j−1 +αi+1 − f (a1,b∗
2 (a1,θk ))+ f (a1,b∗

2 (a1,θi )), for k = 1,2, . . . , i −1,

αl+1 =

l
∑

j=i+1

~U2(a1,b2)2( j−1)+αi+1 − f (a1,b∗
2 (a1,θl ))+ f (a1,b∗

2 (a1,θi )), for l = i +1, i +2, . . . ,n,

β j =~U2(a1,b2)2 j + ~U2(a1,b2)2 j−1, for j = 1,2, . . . ,n −1.

Again, note that α j and β j depend on and are uniquely defined by ( f ,b∗
2 ), a1 and (i ,b2) but we sup-

press this dependency in the notation. We have the following lemma.

Lemma 4. For any ( f ,b∗
2 ) ∈C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1 and i = 1,2, . . . ,n, there exist y ∈R
n+2 and

z ∈R
2(n−1) such that A′y+C ′z = 0, y > 0, and z ≥ 0 if and only if there exist ŷ ∈R

n+1 and ẑ ∈R
(n−1) such

that ŷ > 0, ẑ ≥ 0, and
n+1
∑

j=1

α j ŷ j +

n−1
∑

j=1

β j ẑ j = 0 (2)
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Proof of Lemma 4. Fix ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1 and i = 1,2, . . . ,n. First note that for

any y and z, A′y +C ′z = 0 if and only if

y1 + (u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ))yn+2 +V ′z =0 (3)

D ′z =
[

A′y
]

−1 (4)

where
[

A′y
]

−1 is the n-dimensional vector obtained from A′y by eliminating the first row. Recursively

adding row 1 to row 2, row 2 to row 3, and so on, we can reduce
(

D ′
[

A′y
]

−1

)

to a row echelon form

and show that (4) holds if and only if

z2 j−1 =z2 j +

j
∑

k=1

yk+1, j = 1,2, . . . , i −1 (5)

z2 j =z2 j−1 +

n
∑

k= j+1

yk+1, j = i , i +1, . . . ,n −1 (6)

yn+2 =

n
∑

k=1

yk+1 (7)

Substituting (5)-(7) into (3) we get

y1+αi+1

n
∑

k=1

yk+1+

i−1
∑

j=1

~U2(a1,b2)2 j−1

j
∑

k=1

yk+1+

n−1
∑

j=i

~U2(a1,b2)2 j

n
∑

k= j+1

yk+1+

i−1
∑

j=1

(~U2(a1,b2)2 j−1+~U2(a1,b2)2 j )z2 j

+

n−1
∑

j=i

(~U2(a1,b2)2 j−1 + ~U2(a1,b2)2 j )z2 j−1−

n
∑

k=1

( f (a1,b∗
2 (a1,θk ))− f (a1,b∗

2 (a1,θi )))yk+1 = 0 (8)

Therefore, A′y +C ′z = 0 if and only if equations (5) through (8) hold. Now suppose that there exist y ∈

R
n+2 and z ∈R

2(n−1) such that y > 0, z ≥ 0, and (5) through (8) hold. Define ŷ j = y j , for j = 1, . . . ,n +1

and

ẑ j =







z2 j , j = 1, . . . , i −1

z2 j−1, j = i , . . . ,n −1

It is easy to verify that ŷ > 0, ẑ ≥ 0, and
∑n+1

j=1 α j ŷ j +
∑n−1

j=1 β j ẑ j = 0.

Conversely, suppose that there exist ŷ ∈ R
n+1 and ẑ ∈ R

(n−1) such that ŷ > 0, ẑ ≥ 0, and (2) holds.

Define y j = ŷ j for j = 1, . . . ,n +1 and yn+2 =
∑n+1

i=1 ŷ j . For any j = 1, . . . , i −1, let z2 j−1 = ẑ j +
∑ j

k=1
ŷk+1

and z2 j = ẑ j , and for any j = i , . . . ,n −1, let z2 j−1 = ẑ j and z2 j = ẑ j +
∑n

k= j+1
ŷk+1. It is straightforward

to show that y > 0, z ≥ 0, and (5) through (8) hold. This completes the proof of Lemma 4.

Lemma 3 and 4 imply that ( f ,b∗
2 )∈C ×A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1,

i ∈ {1,2, . . . ,n} and b2 ∈ A
A1×Θ

2 , there exist ŷ ∈ R
n+1 and ẑ ∈ R

(n−1) such that ŷ > 0, ẑ ≥ 0, and equation

(2) holds. We can now complete the proof of Lemma 1 (of the main paper).

[Only if] Suppose, for contradiction, that there exist a1 ∈ A1, i = 1,2, . . . ,n and an increasing b2 ∈

A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi ) > u2(a1,b∗
2 (a1,θi ),θi ), but there is no k = 1,2, . . . , i −1 such that

(8) holds and no l = i + 1, . . . ,n such that (9) holds. This implies that α j > 0 for all j = 1, . . . ,n + 1.

Since u2 has increasing differences, β j ≥ 0 for all j = 1, . . . ,n −1. Therefore, ŷ > 0 and ẑ ≥ 0 imply that
∑n+1

j=1 α j ŷ j +
∑n−1

j=1 β j ẑ j > 0, which, by Lemma 4, contradicts that ( f ,b∗
2 ) is renegotiation-proof.

[If] Fix arbitrary a1 ∈ A1, i = 1,2, . . . ,n and increasing b2 ∈ A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi ) >
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u2(a1,b∗
2 (a1,θi ),θi ). Suppose first that there exists a k ∈ {1, . . . , i − 1} such that (8) holds. This im-

plies that αi+1 > 0 and αk+1 ≤ 0. Let ŷk+1 = 1, ŷi+1 =
−αk+1

αi+1
≥ 0, and all the other ŷ j = 0 and ẑ j = 0. This

implies that equation (2) holds and, by Lemma 3 and 4, that ( f ,b∗
2 ) is renegotiation-proof. Suppose

now that there exists an l ∈ {i +1, . . . ,n} such that (9) holds. Then, αi+1 > 0 and αl+1 ≤ 0. Let ŷl+1 = 1,

ŷi+1 =
−αl+1

αi+1
≥ 0 and all the other ŷ j = 0 and ẑ j = 0. This, again, implies that (2) holds and that ( f ,b∗

2 )

is renegotiation-proof.

Proof of Lemma 2 (of the main paper). Suppose that b∗
2 is renegotiation-proof and fix a1, i = 1, . . . ,n

and a b2(a1,θi ) ∈B(a1, i ,b∗
2 ). For any j = 1, . . . ,n, let c j = ei − e j , where e j is the j t h standard basis

row vector for Rn , and define

E j =

(

D

c j

)

Also let

wk = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1
∑

j=k

~U2(a1,b2)2 j−1

wl = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

l
∑

j=i+1

~U2(a1,b2)2( j−1)

for any k ∈ {1, . . . , i −1} and l ∈ {i +1, . . . ,n} and define

V j =

(

~U2(a1,b∗
2 )

−w j

)

Incentive compatibility of ( f ,b∗
2 ) implies that D f (a1,b∗

2 ) ≤ ~U2(a1,b∗
2 ). Renegotiation proofness, by

Lemma 1 (of the main paper), implies that ck f (a1,b∗
2 ) ≤−wk for some k ∈ {1, . . . , i −1} or cl f (a1,b∗

2 ) ≤

−wl for some l ∈ {i +1, . . . ,n}. Suppose first that there exists a k ∈ {1, . . . , i −1} such that ck f (a1,b∗
2 ) ≤

−wk . Then we must have Ek f (a1,b∗
2 ) ≤Vk . By Gale’s theorem of linear inequalities, this implies that

x ≥ 0 and E ′
k

x = 0 implies x ′Vk ≥ 0. Denote the first 2(n−1) elements of x by y and the last element by

z. It is easy to show that E ′
k

x = 0 implies that y2 j−1 = y2 j + z for j ∈ {k ,k +1, . . . , i −1} and y2 j−1 = y2 j

for j ∉ {k ,k +1, . . . , i −1}. Therefore,

x ′Vk =

n−1
∑

j=1

~U2(a1,b∗
2 )2 j y2 j +

n−1
∑

j=1

~U2(a1,b∗
2 )2 j−1 y2 j−1− zwk

=

n−1
∑

j=1

(~U2(a1,b∗
2 )2 j + ~U2(a1,b∗

2 )2 j−1)y2 j + z(−wk +

i−1
∑

j=k

~U2(a1,b∗
2 )2 j−1)

≥ 0

This implies that −wk +
∑i−1

j=k
~U2(a1,b∗

2 )2 j−1 ≥ 0 and hence k is a blocking type.

Similarly, we can show that, if there exists an l ∈ {i +1, . . . ,n} such that cl f (a1,b∗
2 ) ≤−wl , then l is

a blocking type, and this completes the proof.

Proof of Lemma 3 (of the main paper). Let b∗
2 ∈ A

A1×Θ

2 be an increasing strategy satisfying the condi-

tions of the lemma. We will show that there exist an f ∈ C such that ( f ,b∗
2 ) is incentive-compatible

and renegotiation-proof. Fix an a1 ∈ A1 and for each i = 1, · · ·,n and bi
2 ∈ B(a1, i ,b∗

2 ) pick a block-
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ing type m(bi
2) = 1, · · ·,n that satisfies the conditions given in the proposition. For each i = 1 and

bi
2 ∈ B(a1, i ,b∗

2 ) define the n-dimensional row vector cbi
2
= ei − em(bi

2), where e j is the j t h standard

basis row vector for Rn , and the scalar wbi
2

as

wbi
2
= u2(a1,bi

2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

+1{m(bi
2)≤i−1}

i−1
∑

j=m(bi
2)

~U2(a1,bi
2)2 j−1 +1{i≤m(bi

2−1}

m(bi
2)

∑

j=i+1

~U2(a1,bi
2)2( j−1). (9)

Note that for a given a1 ∈ A1 and i = 1, ···,n, B(a1, i ,b∗
2 ) is finite and let

∑n
i=1 |B(a1, i ,b∗

2 )| = p . Denote

with C (a1), the p ×n matrix composed of all the rows cbi
2

and with W (a1)the p dimensional vector

with component wbi
2

corresponding to each bi
2. Let E (a1) be the matrix

E (a1) =

(

D

C (a1)

)

and V (a1) the column vector

V (a1) =

(

~U2(a1,b∗
2 )

−W (a1)

)

Now, if for each a1 ∈ A1, we can find an f (a1,b∗
2 ) such that E (a1) f (a1,b∗

2 ) ≤V (a1) the proof would

be completed. In fact, if E (a1) f (a1,b∗
2 ) ≤ V (a1), then D f (a1,b∗

2 ) ≤ ~U2(a1,b∗
2 ), which implies that

( f ,b∗
2 ) incentive compatible. Furthermore, E (a1) f (a1,b∗

2 ) ≤ V (a1) implies W (a1) ≤ −C (a1) f (a1,b∗
2 )

and, by Lemma 1 (of the main paper), that ( f ,b∗
2 ) is renegotiation-proof. Gale’s theorem of linear

inequalities implies that there exist f (a1,b∗
2 ) ∈ R

n such that E (a1) f (a1,b∗
2 ) ≤ V (a1) if and only if x ∈

R
p+2(n−1), x ≥ 0 and E (a1)′x = 0 implies x ′V (a1) ≥ 0. Decompose x into two vectors so that the first

2(n − 1) elements constitute y and the remaining p components constitute z. Notice that for any

i = 1, . . . ,n and bi
2 ∈B(a1, i ,b∗

2 ) there is a corresponding element of z, which we will denote zbi
2
.

Recursively adding row 1 to row 2, row 2 to row 3, and so on, we can reduce E (a1)′ to a row echelon

form and show that E (a1)′x = 0 if and only if

y2 j−1 = y2 j +
∑

bi
2

zbi
2
[1{m(bi

2)≤ j≤i−1}−1{i≤ j≤m(bi
2)−1}] (10)

for j = 1, . . . ,n −1.

Let J− = { j ∈ {1, . . . ,n−1} : ∃bi
2 such that i ≤ j ≤ m(bi

2)−1} and J+ = { j ∈ {1, . . . ,n−1} : ∃bi
2 such that m(bi

2) ≤

j ≤ i−1} and note that J−∩J+ =;. To see this, suppose, for contradiction, that there exists a j ∈ J−∩J+.

Therefore, there exists a bi
2 such that i ≤ j ≤ m(bi

2)−1 and bi ′

2 such that m(bi ′

2 )≤ j ≤ i ′−1. This implies

that i < i ′, m(bi
2) > i , m(bi ′

2 ) < i ′, but m(bi
2) > m(bi ′

2 ), contradicting the conditions of the lemma. We

can therefore write (10) as

y2 j = y2 j−1 +
∑

bi
2

zbi
2
1{i≤ j≤m(bi

2)−1} (11)

for j ∈ J− and

y2 j−1 = y2 j +
∑

bi
2

zbi
2
1{m(bi

2)≤ j≤i−1} (12)

for j ∈ J+.
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Finally note that

x ′V (a1) =
n−1
∑

j=1

~U2(a1,b∗
2 )2 j y2 j +

n−1
∑

j=1

~U2(a1,b∗
2 )2 j−1y2 j−1 −

∑

bi
2

zbi
2
wbi

2

Substituting from (11) and (12) we obtain

x ′V (a1) =
∑

j∈J−

[

~U2(a1,b∗
2 )2 j + ~U2(a1,b∗

2 )2 j−1

]

y2 j−1+
∑

j∈J+

[

~U2(a1,b∗
2 )2 j + ~U2(a1,b∗

2 )2 j−1

]

y2 j

+
∑

bi
2

zbi
2



−wbi
2
+1{m(bi

2)≤i−1}

i−1
∑

j=m(bi
2)

~U2(a1,b∗
2 )2 j−1 +1{i≤m(bi

2)−1}

m(bi
2)−1

∑

j=i

~U2(a1,b∗
2 )2 j





Increasing differences, the definition of m(bi
2), and y, z ≥ 0 imply that x ′V ≥ 0, and the proof is com-

pleted.

Proof of Proposition 3 (of the main paper). Suppose, for contradiction, that there exists an a′
1 ∈ A1

such that (a′
1,θn) has right deviation at b2, i.e., there exists an a′

2 ∈ A2 such that a′
2 %2 b2(a′

1,θn) and

u2(a′
1, a′

2,θn)> u2(a′
1,b2(a′

1,θn),θn). Define

b′
2(a′

1,θ) =







a′
2, θ = θn

b2(a′
1,θ), θ ≺θ θ

n

Note that b′
2 is increasing and therefore b′

2 ∈B(a′
1,n,b2). It is easy to show that for (a′

1,n,b′
2) there is

no blocking type and therefore, by Lemma 2 (of the main paper), b2 is not renegotiation proof.

Proof of Proposition 4 (of the main paper). Fix a1 ∈ A1, i ∈ {1, · · ·,n}, and bi
2 ∈ B(a1, i ,b∗

2 ). Since A2

is linearly ordered, we have bi
2(a1,θi ) %2 b∗

2 (a1,θi ) or b∗
2 (a1,θi ) %2 bi

2(a1,θi ). First, assume that

bi
2(a1,θi ) %2 b∗

2 (a1,θi ), i.e., (a1, i ) has right deviation at b∗
2 , and note that R(a1, i ) 6= ; by assumption.

Let J = { j ∈N : i +1≤ j ≤ minR(a1, i )−1 and b∗
2 (a1,θ j ) ≻2 bi

2(a1,θ j )}. If J =;, let m(bi
2) =min R(a1, i )

and if J 6= ;, let m(bi
2) = min J . It is simple to show that

m(bi
2)

∑

j=i+1

(

u2(a1,bi
2(a1,θ j−1),θ j )−u2(a1,b∗

2 (a1,θ j−1),θ j )− [u2(a1,bi
2(a1,θ j−1),θ j−1)−u2(a1,b∗

2 (a1,θ j−1),θ j−1)]
)

+u2(a1,b∗
2 (a1,θm(bi

2)),θm(bi
2))−u2(a1,bi

2(a1,θm(bi
2)),θm(bi

2)) ≥ 0 (13)

Inequality (13) implies that m(bi
2) is a blocking type.

Now assume that b∗
2 (a1,θi )%2 bi

2(a1,θi ), i.e., (a1, i ) has left deviation at b∗
2 , and note that L(a1, i ) 6=

;. Let J = { j ∈ N : maxL(i )+1 ≤ j ≤ i −1 and bi
2(a1,θ j ) ≻2 b∗

2 (a1,θ j )}. If J = ;, let m(bi
2) = maxL(i )

and if J 6= ;, let m(bi
2) = max J and note that

i−1
∑

j=m(bi
2)

(

u2(a1,b∗
2 (a1,θ j+1),θ j+1)−u2(a1,bi

2(a1,θ j+1),θ j+1)− [u2(a1,b∗
2 (a1,θ j+1),θ j )−u2(a1,bi

2(a1,θ j+1),θ j )]
)

+u2(a1,b∗
2 (a1,θm(bi

2)),θm(bi
2))−u2(a1,bi

2(a1,θm(bi
2)),θm(bi

2)) ≥ 0 (14)

Inequality (14) implies that m(bi
2) is a blocking type.
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Finally assume that there exist (a1, i1) and (a1, i2) with i1 < i2 such that m(b
i1

2 )> i1 and m(b
i2

2 ) < i2.

This implies that (a1, i1) has right deviation and (a1, i2) has left deviation at b∗
2 , which imply that

R(a1, i1) 6= ;, L(a1, i2) 6= ; and R(a1, i1)∩L(a1, i2) 6= ;. But this implies that m(b
i1

2 ) ≤ m(b
i2

2 ) and the

proof is completed by applying Lemma 3 (of the main paper).
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