Supplement to "Commitment without Reputation: Renegotiation-Proof Contracts under Asymmetric Information"

(not for publication)

Emanuele Gerratana
SIPA, Columbia University

Levent Koçkesen

Koç University
March 12, 2015

In what follows we provide the omitted proofs of the statements made in our paper "Commitment without Reputation: Renegotiation-Proof Contracts under Asymmetric Information." In order to distinguish statements made in that paper from the ones made in this document we will add a note "(of the main paper)" after those from the main paper.

It is well-known that if b_{2} is increasing, then, under increasing differences, incentive compatibility reduces to local incentive compatibility. We state it as a claim for future reference.

Claim 1. If u_{2} has increasing differences in $\left(\succsim_{\theta}, \succsim_{2}\right)$ and $b_{2} \in A_{2}^{A_{1} \times \Theta}$ is increasing in $\left(\succsim_{\theta}, \succsim_{2}\right)$, then for any $f \in \mathscr{C}$

$$
u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right)\right) \geq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{j}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{j}\right)\right), \text { for all } i, j=1,2, \ldots, n
$$

holds if and only if
$u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right)\right) \geq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i-1}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{i-1}\right)\right)$, for all $i=2, \ldots, n$,
and
$u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right)\right) \geq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i+1}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{i+1}\right)\right)$, for all $i=1,2, \ldots, n-1$.

Proof of Proposition 2 (of the main paper). (Only if) Suppose that b_{2} is incentive compatible, i.e., there exists a contract f such that (f, b_{2}) is incentive compatible. Fix orders ($\succsim_{\theta}, \succsim_{2}$) in which u_{2} has strictly increasing differences. Take any $a_{1} \in A_{1}$ and $\theta, \theta^{\prime} \in \Theta$ and assume without loss of generality, that $\theta>_{\theta} \theta^{\prime}$. Suppose, for contradiction, that $b_{2}\left(a_{1}, \theta^{\prime}\right)>_{2} b_{2}\left(a_{1}, \theta\right)$. Sequential rationality of player $2 \mathrm{im}-$ plies

$$
\begin{aligned}
u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta\right), \theta\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta\right)\right) & \geq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{\prime}\right), \theta\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{\prime}\right)\right) \\
u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{\prime}\right), \theta^{\prime}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{\prime}\right)\right) & \geq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta\right), \theta^{\prime}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta\right)\right)
\end{aligned}
$$

and hence

$$
u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{\prime}\right), \theta\right)-u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta\right), \theta\right) \leq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{\prime}\right), \theta^{\prime}\right)-u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta\right), \theta^{\prime}\right),
$$

contradicting that u_{2} has strictly increasing differences in $\left(\succsim_{\theta}, \succsim_{2}\right)$. Therefore, b_{2} must be increasing in ($\succsim_{\theta}, \succsim_{2}$).
[If] Suppose u_{2} has strictly increasing differences and b_{2} is increasing. We need to prove the existence of a contract $f \in \mathscr{C}$ such that

$$
\begin{equation*}
u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right)\right) \geq u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{j}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}\left(a_{1}, \theta^{j}\right)\right) \text {, for all } i, j=1,2, \ldots, n . \tag{1}
\end{equation*}
$$

By Claim (1) holds if and only if $D f\left(a_{1}, b_{2}\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}\right)$. Therefore, we need to show that for any $a_{1} \in A_{1}$ there exists $f\left(a_{1}, b_{2}\right) \in \mathbb{R}^{n}$ such that $D f\left(a_{1}, b_{2}\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)$. By Gale's theorem for linear inequalities (Mangasarian (1994), p. 33), there exists such an $f\left(a_{1}, b_{2}\right) \in \mathbb{R}^{n}$ if and only if for any $y \in \mathbb{R}_{+}^{2(n-1)}, D^{\prime} y=0$ implies $y^{\prime} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right) \geq 0$. It is easy to show that $D^{\prime} y=0$ if and only if $y_{1}=$ $y_{2}, y_{3}=y_{4}, \cdots, y_{2(n-1)-1}=y_{2(n-1)}$. Let $\vec{U}_{2}\left(a_{1}, b_{2}\right)_{i}$ denote the $i^{\text {th }}$ row of $\vec{U}_{2}\left(a_{1}, b_{2}\right)$ and note that since b_{2} is increasing and u_{2} has strictly increasing differences, $\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 i-1}+\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 i} \geq 0$, for any $i=1,2, \ldots, n-1$. Therefore,

$$
y^{\prime} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)=\sum_{i=1}^{n-1}\left(\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 i-1}+\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 i}\right) y_{2 i-1} \geq 0
$$

This proves the existence of a $f\left(a_{1}, b_{2}\right) \in \mathbb{R}^{n}$ such that (1) is satisfied for all $a_{1} \in A_{1}$. We can complete the proof by defining $\tilde{f} \in \mathscr{C}$ as

$$
\tilde{f}\left(a_{1}, a_{2}\right)= \begin{cases}f\left(a_{1}, a_{2}\right), & \exists \theta: a_{2}=b_{2}\left(a_{1}, \theta\right) \\ \infty, & \text { otherwise }\end{cases}
$$

Proof of Lemma \square (of the main paper). By definition (f, b_{2}^{*}) $\in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ is not renegotiation-proof if and only if there exist $a_{1} \in A_{1}, i=1,2, \ldots, n$ and an incentive compatible (g, b_{2}) $\in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ such that $u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-g\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right)\right)>u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right)\right)$ and $g\left(a_{1}, b_{2}\left(a_{1}, \theta^{j}\right)\right)>$ $f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{j}\right)\right)$ for all $j=1,2, \ldots, n$. For any $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$, let $f\left(a_{1}, b_{2}^{*}\right) \in \mathbb{R}^{n}$ be a vector whose j th component, $j=1,2, \ldots, n$, is given by $f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{j}\right)\right.$). Note that incentive compatibility of $\left(g, b_{2}\right) \in$ $\mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ is equivalent to $D g\left(a_{1}, b_{2}\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}\right)$ for all $a_{1} \in A_{1}$. Therefore, $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ is not renegotiation-proof if and only if there exist $a_{1} \in A_{1}, i=1,2, \ldots, n$ and $\left(g\left(a_{1}, b_{2}\right), b_{2}\right) \in \mathbb{R}^{n} \times$ $A_{2}^{A_{1} \times \Theta}$ such that $D g\left(a_{1}, b_{2}\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}\right), u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-g\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right)\right)>u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-$ $f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right)\right.$, and $g\left(a_{1}, b_{2}\right) \gg f\left(a_{1}, b_{2}^{*}\right)$. Also note that $g\left(a_{1}, b_{2}\right) \gg f\left(a_{1}, b_{2}^{*}\right)$ if and only if there exists an $\varepsilon \gg 0$ such that $g\left(a_{1}, b_{2}\right)=f\left(a_{1}, b_{2}^{*}\right)+\varepsilon$. Therefore, we have the following

Lemma 1. $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ is not renegotiation-proof if and only if there exist $a_{1} \in A_{1}, i=1,2, \ldots, n$, $b_{2} \in A_{2}^{A_{1} \times \Theta}$, and $\varepsilon \in \mathbb{R}^{n}$ such that $D\left(f\left(a_{1}, b_{2}^{*}\right)+\varepsilon\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}\right), \varepsilon_{i}<u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}^{i}, \theta^{i}\right), \theta^{i}\right)$, and $\varepsilon \gg 0$.

We first state a theorem of the alternative, which we will use in the sequel.
Lemma 2 (Motzkin's Theorem). Let A and C be given matrices, with A being non-vacuous. Then either

1. $A x \gg 0$ and $C x \geq 0$ has a solution x
or
2. $A^{\prime} y_{1}+C^{\prime} y_{2}=0, y_{1}>0, y_{2} \geq 0$ has a solution y_{1}, y_{2}
but not both.
Proof of Lemma 2 See Mangasarian (1994), p. 28.
For any $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}, a_{1} \in A_{1}, b_{2} \in A_{2}^{A_{1}, \times \Theta}$, and $i=1,2, \ldots, n$, define $V=\vec{U}_{2}\left(a_{1}, b_{2}\right)-D f\left(a_{1}, b_{2}^{*}\right), C=$ $\left(\begin{array}{ll}V & -D\end{array}\right)$, and

$$
A=\binom{I_{n+1}}{l_{i}}
$$

where $l_{i}=\left(u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)\right) e_{1}-e_{i+1}$. Note that C and A depend on and are uniquely defined by $\left(f, b_{2}^{*}\right), a_{1}$ and $\left(i, b_{2}\right)$ but we suppress this dependency for notational convenience. The following lemma uses Motzkin's Theorem to express renegotiation-proofness as an alternative.

Lemma 3. $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ is renegotiation-proof if and only iffor any $a_{1} \in A_{1}, i=1,2, \ldots, n$ and $b_{2} \in A_{2}^{A_{1} \times \Theta}$ there exist $y \in \mathbb{R}^{n+2}$ and $z \in \mathbb{R}^{2(n-1)}$ such that $A^{\prime} y+C^{\prime} z=0, y>0, z \geq 0$.

Proof of Lemma 3. By Lemma 1 (f, b_{2}^{*}) is not renegotiation-proof if and only if there exist $a_{1} \in A_{1}$, $i=1,2, \ldots, n, b_{2} \in A_{2}^{A_{1} \times \Theta}$, and $\varepsilon \in \mathbb{R}^{n}$ such that $D\left(f\left(a_{1}, b_{2}^{*}\right)+\varepsilon\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}\right), \varepsilon_{i}<u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-$ $u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)$, and $\varepsilon \gg 0$. This is true if and only if for some a_{1}, i and b_{2} there exists an $x \in \mathbb{R}^{n+1}$ such that $A x \gg 0$ and $C x \geq 0$. To see this let $\xi>0$ and define

$$
x=\binom{\xi}{\xi \varepsilon}
$$

Then $D\left(f\left(a_{1}, b_{2}^{*}\right)+\varepsilon\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}\right)$ if and only if $C x \geq 0$. Also, $\varepsilon \gg 0$ and $\varepsilon_{i}<u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-$ $u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)$ if and only if $A x \gg 0$. The lemma then follows from Motzkin's Theorem.

For any $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}, b_{2} \in A_{2}^{A_{1} \times \Theta}, a_{1} \in A_{1}$, and $i=1,2, \ldots, n$, let $\vec{U}_{2}\left(a_{1}, b_{2}\right)_{j}$ denote the j-th component of vector $\vec{U}_{2}\left(a_{1}, b_{2}\right)$ and define $\alpha_{1}=1, \alpha_{i+1}=u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)$, and

$$
\begin{array}{rlr}
\alpha_{k+1} & =\sum_{j=k}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j-1}+\alpha_{i+1}-f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{k}\right)\right)+f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right)\right), & \text { for } k=1,2, \ldots, i-1, \\
\alpha_{l+1} & =\sum_{j=i+1}^{l} \vec{U}_{2}\left(a_{1}, b_{2}\right)_{2(j-1)}+\alpha_{i+1}-f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{l}\right)\right)+f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right)\right), & \text { for } l=i+1, i+2, \ldots, n, \\
\beta_{j} & =\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j}+\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j-1}, & \text { for } j=1,2, \ldots, n-1 .
\end{array}
$$

Again, note that α_{j} and β_{j} depend on and are uniquely defined by $\left(f, b_{2}^{*}\right), a_{1}$ and $\left(i, b_{2}\right)$ but we suppress this dependency in the notation. We have the following lemma.
Lemma 4. For any $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}, b_{2} \in A_{2}^{A_{1} \times \Theta}, a_{1} \in A_{1}$ and $i=1,2, \ldots, n$, there exist $y \in \mathbb{R}^{n+2}$ and $z \in \mathbb{R}^{2(n-1)}$ such that $A^{\prime} y+C^{\prime} z=0, y>0$, and $z \geq 0$ if and only if there exist $\hat{y} \in \mathbb{R}^{n+1}$ and $\hat{z} \in \mathbb{R}^{(n-1)}$ such that $\hat{y}>0, \hat{z} \geq 0$, and

$$
\begin{equation*}
\sum_{j=1}^{n+1} \alpha_{j} \hat{y}_{j}+\sum_{j=1}^{n-1} \beta_{j} \hat{z}_{j}=0 \tag{2}
\end{equation*}
$$

Proof of Lemma 4. Fix $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}, b_{2} \in A_{2}^{A_{1} \times \Theta}, a_{1} \in A_{1}$ and $i=1,2, \ldots, n$. First note that for any y and $z, A^{\prime} y+C^{\prime} z=0$ if and only if

$$
\begin{align*}
y_{1}+\left(u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)\right) y_{n+2}+V^{\prime} z & =0 \tag{3}\\
D^{\prime} z & =\left[A^{\prime} y\right]_{-1} \tag{4}
\end{align*}
$$

where $\left[A^{\prime} y\right]_{-1}$ is the n-dimensional vector obtained from $A^{\prime} y$ by eliminating the first row. Recursively adding row 1 to row 2 , row 2 to row 3 , and so on, we can reduce $\left(D^{\prime} \quad\left[A^{\prime} y\right]_{-1}\right)$ to a row echelon form and show that (4) holds if and only if

$$
\begin{align*}
z_{2 j-1} & =z_{2 j}+\sum_{k=1}^{j} y_{k+1}, \quad j=1,2, \ldots, i-1 \tag{5}\\
z_{2 j} & =z_{2 j-1}+\sum_{k=j+1}^{n} y_{k+1}, \quad j=i, i+1, \ldots, n-1 \tag{6}\\
y_{n+2} & =\sum_{k=1}^{n} y_{k+1} \tag{7}
\end{align*}
$$

Substituting (5)-(7) into (3) we get

$$
\begin{align*}
y_{1}+ & \alpha_{i+1} \sum_{k=1}^{n} y_{k+1}+\sum_{j=1}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j-1} \sum_{k=1}^{j} y_{k+1}+\sum_{j=i}^{n-1} \vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j} \sum_{k=j+1}^{n} y_{k+1}+\sum_{j=1}^{i-1}\left(\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j-1}+\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j}\right) z_{2 j} \\
& +\sum_{j=i}^{n-1}\left(\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j-1}+\vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j}\right) z_{2 j-1}-\sum_{k=1}^{n}\left(f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{k}\right)\right)-f\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right)\right)\right) y_{k+1}=0 \tag{8}
\end{align*}
$$

Therefore, $A^{\prime} y+C^{\prime} z=0$ if and only if equations (5) through (8) hold. Now suppose that there exist $y \in$ \mathbb{R}^{n+2} and $z \in \mathbb{R}^{2(n-1)}$ such that $y>0, z \geq 0$, and (5) through (8) hold. Define $\hat{y}_{j}=y_{j}$, for $j=1, \ldots, n+1$ and

$$
\hat{z}_{j}= \begin{cases}z_{2 j}, & j=1, \ldots, i-1 \\ z_{2 j-1}, & j=i, \ldots, n-1\end{cases}
$$

It is easy to verify that $\hat{y}>0, \hat{z} \geq 0$, and $\sum_{j=1}^{n+1} \alpha_{j} \hat{y}_{j}+\sum_{j=1}^{n-1} \beta_{j} \hat{z}_{j}=0$.
Conversely, suppose that there exist $\hat{y} \in \mathbb{R}^{n+1}$ and $\hat{z} \in \mathbb{R}^{(n-1)}$ such that $\hat{y}>0, \hat{z} \geq 0$, and (2) holds. Define $y_{j}=\hat{y}_{j}$ for $j=1, \ldots, n+1$ and $y_{n+2}=\sum_{i=1}^{n+1} \hat{y}_{j}$. For any $j=1, \ldots, i-1$, let $z_{2 j-1}=\hat{z}_{j}+\sum_{k=1}^{j} \hat{y}_{k+1}$ and $z_{2 j}=\hat{z}_{j}$, and for any $j=i, \ldots, n-1$, let $z_{2 j-1}=\hat{z}_{j}$ and $z_{2 j}=\hat{z}_{j}+\sum_{k=j+1}^{n} \hat{y}_{k+1}$. It is straightforward to show that $y>0, z \geq 0$, and (5) through (8) hold. This completes the proof of Lemma, 4 .

Lemma3and 4 imply that $\left(f, b_{2}^{*}\right) \in \mathscr{C} \times A_{2}^{A_{1} \times \Theta}$ is renegotiation-proof if and only if for any $a_{1} \in A_{1}$, $i \in\{1,2, \ldots, n\}$ and $b_{2} \in A_{2}^{A_{1} \times \Theta}$, there exist $\hat{y} \in \mathbb{R}^{n+1}$ and $\hat{z} \in \mathbb{R}^{(n-1)}$ such that $\hat{y}>0, \hat{z} \geq 0$, and equation (2) holds. We can now complete the proof of Lemma 1 (of the main paper).
[Only if] Suppose, for contradiction, that there exist $a_{1} \in A_{1}, i=1,2, \ldots, n$ and an increasing $b_{2} \in$ $A_{2}^{A_{1} \times \Theta}$ such that $u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)>u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)$, but there is no $k=1,2, \ldots, i-1$ such that (8) holds and no $l=i+1, \ldots, n$ such that (9) holds. This implies that $\alpha_{j}>0$ for all $j=1, \ldots, n+1$. Since u_{2} has increasing differences, $\beta_{j} \geq 0$ for all $j=1, \ldots, n-1$. Therefore, $\hat{y}>0$ and $\hat{z} \geq 0$ imply that $\sum_{j=1}^{n+1} \alpha_{j} \hat{y}_{j}+\sum_{j=1}^{n-1} \beta_{j} \hat{z}_{j}>0$, which, by Lemma4, contradicts that $\left(f, b_{2}^{*}\right)$ is renegotiation-proof.
[If] Fix arbitrary $a_{1} \in A_{1}, i=1,2, \ldots, n$ and increasing $b_{2} \in A_{2}^{A_{1} \times \Theta}$ such that $u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)>$
$u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)$. Suppose first that there exists a $k \in\{1, \ldots, i-1\}$ such that (8) holds. This implies that $\alpha_{i+1}>0$ and $\alpha_{k+1} \leq 0$. Let $\hat{y}_{k+1}=1, \hat{y}_{i+1}=\frac{-\alpha_{k+1}}{\alpha_{i+1}} \geq 0$, and all the other $\hat{y}_{j}=0$ and $\hat{z}_{j}=0$. This implies that equation (2) holds and, by Lemma3 and 4, that $\left(f, b_{2}^{*}\right)$ is renegotiation-proof. Suppose now that there exists an $l \in\{i+1, \ldots, n\}$ such that (9) holds. Then, $\alpha_{i+1}>0$ and $\alpha_{l+1} \leq 0$. Let $\hat{y}_{l+1}=1$, $\hat{y}_{i+1}=\frac{-\alpha_{l+1}}{\alpha_{i+1}} \geq 0$ and all the other $\hat{y}_{j}=0$ and $\hat{z}_{j}=0$. This, again, implies that (2) holds and that $\left(f, b_{2}^{*}\right)$ is renegotiation-proof.

Proof of Lemma 2 (of the main paper). Suppose that b_{2}^{*} is renegotiation-proof and fix $a_{1}, i=1, \ldots, n$ and a $b_{2}\left(a_{1}, \theta^{i}\right) \in \mathfrak{B}\left(a_{1}, i, b_{2}^{*}\right)$. For any $j=1, \ldots, n$, let $c_{j}=e_{i}-e_{j}$, where e_{j} is the $j^{t h}$ standard basis row vector for \mathbb{R}^{n}, and define

$$
E_{j}=\binom{D}{c_{j}}
$$

Also let

$$
\begin{aligned}
& w_{k}=u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)+\sum_{j=k}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}\right)_{2 j-1} \\
& w_{l}=u_{2}\left(a_{1}, b_{2}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right)+\sum_{j=i+1}^{l} \vec{U}_{2}\left(a_{1}, b_{2}\right)_{2(j-1)}
\end{aligned}
$$

for any $k \in\{1, \ldots, i-1\}$ and $l \in\{i+1, \ldots, n\}$ and define

$$
V_{j}=\binom{\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)}{-w_{j}}
$$

Incentive compatibility of $\left(f, b_{2}^{*}\right)$ implies that $\operatorname{Df}\left(a_{1}, b_{2}^{*}\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)$. Renegotiation proofness, by Lemma (of the main paper), implies that $c_{k} f\left(a_{1}, b_{2}^{*}\right) \leq-w_{k}$ for some $k \in\{1, \ldots, i-1\}$ or $c_{l} f\left(a_{1}, b_{2}^{*}\right) \leq$ $-w_{l}$ for some $l \in\{i+1, \ldots, n\}$. Suppose first that there exists a $k \in\{1, \ldots, i-1\}$ such that $c_{k} f\left(a_{1}, b_{2}^{*}\right) \leq$ $-w_{k}$. Then we must have $E_{k} f\left(a_{1}, b_{2}^{*}\right) \leq V_{k}$. By Gale's theorem of linear inequalities, this implies that $x \geq 0$ and $E_{k}^{\prime} x=0$ implies $x^{\prime} V_{k} \geq 0$. Denote the first $2(n-1)$ elements of x by y and the last element by z. It is easy to show that $E_{k}^{\prime} x=0$ implies that $y_{2 j-1}=y_{2 j}+z$ for $j \in\{k, k+1, \ldots, i-1\}$ and $y_{2 j-1}=y_{2 j}$ for $j \notin\{k, k+1, \ldots, i-1\}$. Therefore,

$$
\begin{aligned}
x^{\prime} V_{k} & =\sum_{j=1}^{n-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j} y_{2 j}+\sum_{j=1}^{n-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1} y_{2 j-1}-z w_{k} \\
& =\sum_{j=1}^{n-1}\left(\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j}+\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1}\right) y_{2 j}+z\left(-w_{k}+\sum_{j=k}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1}\right) \\
& \geq 0
\end{aligned}
$$

This implies that $-w_{k}+\sum_{j=k}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1} \geq 0$ and hence k is a blocking type.
Similarly, we can show that, if there exists an $l \in\{i+1, \ldots, n\}$ such that $c_{l} f\left(a_{1}, b_{2}^{*}\right) \leq-w_{l}$, then l is a blocking type, and this completes the proof.

Proof of Lemma 3 (of the main paper). Let $b_{2}^{*} \in A_{2}^{A_{1} \times \Theta}$ be an increasing strategy satisfying the conditions of the lemma. We will show that there exist an $f \in \mathscr{C}$ such that $\left(f, b_{2}^{*}\right)$ is incentive-compatible and renegotiation-proof. Fix an $a_{1} \in A_{1}$ and for each $i=1, \cdots, n$ and $b_{2}^{i} \in \mathscr{B}\left(a_{1}, i, b_{2}^{*}\right)$ pick a block-
ing type $m\left(b_{2}^{i}\right)=1, \cdots, n$ that satisfies the conditions given in the proposition. For each $i=1$ and $b_{2}^{i} \in \mathscr{B}\left(a_{1}, i, b_{2}^{*}\right)$ define the n-dimensional row vector $c_{b_{2}^{i}}=e_{i}-e_{m\left(b_{2}^{i}\right)}$, where e_{j} is the $j^{\text {th }}$ standard basis row vector for \mathbb{R}^{n}, and the scalar $w_{b_{2}^{i}}$ as

$$
\begin{align*}
w_{b_{2}^{i}}=u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{i}\right), \theta^{i}\right) & -u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{i}\right), \theta^{i}\right) \\
& +\mathbf{1}_{\left\{m\left(b_{2}^{i}\right) \leq i-1\right\}} \sum_{j=m\left(b_{2}^{i}\right)}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}^{i}\right)_{2 j-1}+\mathbf{1}_{\left\{i \leq m\left(b_{2}^{i}-1\right\}\right.} \sum_{j=i+1}^{m\left(b_{2}^{i}\right)} \vec{U}_{2}\left(a_{1}, b_{2}^{i}\right)_{2(j-1)} . \tag{9}
\end{align*}
$$

Note that for a given $a_{1} \in A_{1}$ and $i=1, \cdots, n, \mathscr{B}\left(a_{1}, i, b_{2}^{*}\right)$ is finite and let $\sum_{i=1}^{n}\left|\mathscr{B}\left(a_{1}, i, b_{2}^{*}\right)\right|=p$. Denote with $C\left(a_{1}\right)$, the $p \times n$ matrix composed of all the rows $c_{b_{2}^{i}}$ and with $W\left(a_{1}\right)$ the p dimensional vector with component $w_{b_{2}^{i}}$ corresponding to each b_{2}^{i}. Let $E\left(a_{1}\right)$ be the matrix

$$
E\left(a_{1}\right)=\binom{D}{C\left(a_{1}\right)}
$$

and $V\left(a_{1}\right)$ the column vector

$$
V\left(a_{1}\right)=\binom{\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)}{-W\left(a_{1}\right)}
$$

Now, if for each $a_{1} \in A_{1}$, we can find an $f\left(a_{1}, b_{2}^{*}\right)$ such that $E\left(a_{1}\right) f\left(a_{1}, b_{2}^{*}\right) \leq V\left(a_{1}\right)$ the proof would be completed. In fact, if $E\left(a_{1}\right) f\left(a_{1}, b_{2}^{*}\right) \leq V\left(a_{1}\right)$, then $D f\left(a_{1}, b_{2}^{*}\right) \leq \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)$, which implies that $\left(f, b_{2}^{*}\right)$ incentive compatible. Furthermore, $E\left(a_{1}\right) f\left(a_{1}, b_{2}^{*}\right) \leq V\left(a_{1}\right)$ implies $W\left(a_{1}\right) \leq-C\left(a_{1}\right) f\left(a_{1}, b_{2}^{*}\right)$ and, by Lemma 1 (of the main paper), that $\left(f, b_{2}^{*}\right)$ is renegotiation-proof. Gale's theorem of linear inequalities implies that there exist $f\left(a_{1}, b_{2}^{*}\right) \in \mathbb{R}^{n}$ such that $E\left(a_{1}\right) f\left(a_{1}, b_{2}^{*}\right) \leq V\left(a_{1}\right)$ if and only if $x \in$ $\mathbb{R}^{p+2(n-1)}, x \geq 0$ and $E\left(a_{1}\right)^{\prime} x=0$ implies $x^{\prime} V\left(a_{1}\right) \geq 0$. Decompose x into two vectors so that the first $2(n-1)$ elements constitute y and the remaining p components constitute z. Notice that for any $i=1, \ldots, n$ and $b_{2}^{i} \in \mathfrak{B}\left(a_{1}, i, b_{2}^{*}\right)$ there is a corresponding element of z, which we will denote $z_{b_{2}^{i}}$.

Recursively adding row 1 to row 2 , row 2 to row 3 , and so on, we can reduce $E\left(a_{1}\right)^{\prime}$ to a row echelon form and show that $E\left(a_{1}\right)^{\prime} x=0$ if and only if

$$
\begin{equation*}
y_{2 j-1}=y_{2 j}+\sum_{b_{2}^{i}} z_{b_{2}^{i}}\left[\mathbf{1}_{\left\{m\left(b_{2}^{i}\right) \leq j \leq i-1\right\}}-\mathbf{1}_{\left\{i \leq j \leq m\left(b_{2}^{i}\right)-1\right\}}\right] \tag{10}
\end{equation*}
$$

for $j=1, \ldots, n-1$.
Let $J_{-}=\left\{j \in\{1, \ldots, n-1\}: \exists b_{2}^{i}\right.$ such that $\left.i \leq j \leq m\left(b_{2}^{i}\right)-1\right\}$ and $J_{+}=\left\{j \in\{1, \ldots, n-1\}: \exists b_{2}^{i}\right.$ such that $m\left(b_{2}^{i}\right) \leq$ $j \leq i-1\}$ and note that $J_{-} \cap J_{+}=\varnothing$. To see this, suppose, for contradiction, that there exists a $j \in J_{-} \cap J_{+}$. Therefore, there exists a b_{2}^{i} such that $i \leq j \leq m\left(b_{2}^{i}\right)-1$ and $b_{2}^{i^{\prime}}$ such that $m\left(b_{2}^{i^{\prime}}\right) \leq j \leq i^{\prime}-1$. This implies that $i<i^{\prime}, m\left(b_{2}^{i}\right)>i, m\left(b_{2}^{i^{\prime}}\right)<i^{\prime}$, but $m\left(b_{2}^{i}\right)>m\left(b_{2}^{i^{\prime}}\right)$, contradicting the conditions of the lemma. We can therefore write (10) as

$$
\begin{equation*}
y_{2 j}=y_{2 j-1}+\sum_{b_{2}^{i}} z_{b_{2}^{i}} \mathbf{1}_{\left\{i \leq j \leq m\left(b_{2}^{i}\right)-1\right\}} \tag{11}
\end{equation*}
$$

for $j \in J_{-}$and

$$
\begin{equation*}
y_{2 j-1}=y_{2 j}+\sum_{b_{2}^{i}} z_{b_{2}^{i}} \mathbf{1}_{\left\{m\left(b_{2}^{i}\right) \leq j \leq i-1\right\}} \tag{12}
\end{equation*}
$$

for $j \in J_{+}$.

Finally note that

$$
x^{\prime} V\left(a_{1}\right)=\sum_{j=1}^{n-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j} y_{2 j}+\sum_{j=1}^{n-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1} y_{2 j-1}-\sum_{b_{2}^{i}} z_{b_{2}^{i}} w_{b_{2}^{i}}
$$

Substituting from (11) and (12) we obtain

$$
\begin{aligned}
x^{\prime} V\left(a_{1}\right)= & \sum_{j \in J_{-}}\left[\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j}+\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1}\right] y_{2 j-1}+\sum_{j \in J_{+}}\left[\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j}+\vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1}\right] y_{2 j} \\
& +\sum_{b_{2}^{i}} z_{b_{2}^{i}}\left[-w_{b_{2}^{i}}+\mathbf{1}_{\left\{m\left(b_{2}^{i}\right) \leq i-1\right\}} \sum_{j=m\left(b_{2}^{i}\right)}^{i-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j-1}+\mathbf{1}_{\left\{i \leq m\left(b_{2}^{i}\right)-1\right\}} \sum_{j=i}^{m\left(b_{2}^{i}\right)-1} \vec{U}_{2}\left(a_{1}, b_{2}^{*}\right)_{2 j}\right]
\end{aligned}
$$

Increasing differences, the definition of $m\left(b_{2}^{i}\right)$, and $y, z \geq 0$ imply that $x^{\prime} V \geq 0$, and the proof is completed.

Proof of Proposition 3 (of the main paper). Suppose, for contradiction, that there exists an $a_{1}^{\prime} \in A_{1}$ such that $\left(a_{1}^{\prime}, \theta^{n}\right)$ has right deviation at b_{2}, i.e., there exists an $a_{2}^{\prime} \in A_{2}$ such that $a_{2}^{\prime} \succsim 2 b_{2}\left(a_{1}^{\prime}, \theta^{n}\right)$ and $u_{2}\left(a_{1}^{\prime}, a_{2}^{\prime}, \theta^{n}\right)>u_{2}\left(a_{1}^{\prime}, b_{2}\left(a_{1}^{\prime}, \theta^{n}\right), \theta^{n}\right)$. Define

$$
b_{2}^{\prime}\left(a_{1}^{\prime}, \theta\right)= \begin{cases}a_{2}^{\prime}, & \theta=\theta^{n} \\ b_{2}\left(a_{1}^{\prime}, \theta\right), & \theta<_{\theta} \theta^{n}\end{cases}
$$

Note that b_{2}^{\prime} is increasing and therefore $b_{2}^{\prime} \in \mathfrak{B}\left(a_{1}^{\prime}, n, b_{2}\right)$. It is easy to show that for ($a_{1}^{\prime}, n, b_{2}^{\prime}$) there is no blocking type and therefore, by Lemma (of the main paper), b_{2} is not renegotiation proof.

Proof of Proposition 4 (of the main paper). Fix $a_{1} \in A_{1}, i \in\{1, \cdots, n\}$, and $b_{2}^{i} \in \mathfrak{B}\left(a_{1}, i, b_{2}^{*}\right)$. Since A_{2} is linearly ordered, we have $b_{2}^{i}\left(a_{1}, \theta^{i}\right) \succsim 2 b_{2}^{*}\left(a_{1}, \theta^{i}\right)$ or $b_{2}^{*}\left(a_{1}, \theta^{i}\right) \succsim_{2} b_{2}^{i}\left(a_{1}, \theta^{i}\right)$. First, assume that $b_{2}^{i}\left(a_{1}, \theta^{i}\right) \succsim_{2} b_{2}^{*}\left(a_{1}, \theta^{i}\right)$, i.e., $\left(a_{1}, i\right)$ has right deviation at b_{2}^{*}, and note that $R\left(a_{1}, i\right) \neq \varnothing$ by assumption. Let $J=\left\{j \in \mathbb{N}: i+1 \leq j \leq \min R\left(a_{1}, i\right)-1\right.$ and $\left.b_{2}^{*}\left(a_{1}, \theta^{j}\right)>_{2} b_{2}^{i}\left(a_{1}, \theta^{j}\right)\right\}$. If $J=\varnothing$, let $m\left(b_{2}^{i}\right)=\min R\left(a_{1}, i\right)$ and if $J \neq \varnothing$, let $m\left(b_{2}^{i}\right)=\min J$. It is simple to show that

$$
\begin{align*}
\sum_{j=i+1}^{m\left(b_{2}^{i}\right)}\left(u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{j-1}\right), \theta^{j}\right)-\right. & \left.u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{j-1}\right), \theta^{j}\right)-\left[u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{j-1}\right), \theta^{j-1}\right)-u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{j-1}\right), \theta^{j-1}\right)\right]\right) \\
& +u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{m\left(b_{2}^{i}\right)}\right), \theta^{m\left(b_{2}^{i}\right)}\right)-u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{m\left(b_{2}^{i}\right)}\right), \theta^{m\left(b_{2}^{i}\right)}\right) \geq 0 \tag{13}
\end{align*}
$$

Inequality (13) implies that $m\left(b_{2}^{i}\right)$ is a blocking type.
Now assume that $b_{2}^{*}\left(a_{1}, \theta^{i}\right) \succsim_{2} b_{2}^{i}\left(a_{1}, \theta^{i}\right)$, i.e., $\left(a_{1}, i\right)$ has left deviation at b_{2}^{*}, and note that $L\left(a_{1}, i\right) \neq$ \varnothing. Let $J=\left\{j \in \mathbb{N}: \max L(i)+1 \leq j \leq i-1\right.$ and $\left.b_{2}^{i}\left(a_{1}, \theta^{j}\right)>_{2} b_{2}^{*}\left(a_{1}, \theta^{j}\right)\right\}$. If $J=\varnothing$, let $m\left(b_{2}^{i}\right)=\max L(i)$ and if $J \neq \varnothing$, let $m\left(b_{2}^{i}\right)=\max J$ and note that

$$
\begin{gather*}
\sum_{j=m\left(b_{2}^{i}\right)}^{i-1}\left(u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{j+1}\right), \theta^{j+1}\right)-u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{j+1}\right), \theta^{j+1}\right)-\left[u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{j+1}\right), \theta^{j}\right)-u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{j+1}\right), \theta^{j}\right)\right]\right) \\
+u_{2}\left(a_{1}, b_{2}^{*}\left(a_{1}, \theta^{m\left(b_{2}^{i}\right)}\right), \theta^{m\left(b_{2}^{i}\right)}\right)-u_{2}\left(a_{1}, b_{2}^{i}\left(a_{1}, \theta^{m\left(b_{2}^{i}\right)}\right), \theta^{m\left(b_{2}^{i}\right)}\right) \geq 0 \tag{14}
\end{gather*}
$$

Inequality (14) implies that $m\left(b_{2}^{i}\right)$ is a blocking type.

Finally assume that there exist $\left(a_{1}, i_{1}\right)$ and $\left(a_{1}, i_{2}\right)$ with $i_{1}<i_{2}$ such that $m\left(b_{2}^{i_{1}}\right)>i_{1}$ and $m\left(b_{2}^{i_{2}}\right)<i_{2}$. This implies that $\left(a_{1}, i_{1}\right)$ has right deviation and $\left(a_{1}, i_{2}\right)$ has left deviation at b_{2}^{*}, which imply that $R\left(a_{1}, i_{1}\right) \neq \varnothing, L\left(a_{1}, i_{2}\right) \neq \varnothing$ and $R\left(a_{1}, i_{1}\right) \cap L\left(a_{1}, i_{2}\right) \neq \varnothing$. But this implies that $m\left(b_{2}^{i_{1}}\right) \leq m\left(b_{2}^{i_{2}}\right)$ and the proof is completed by applying Lemma 3 (of the main paper).

References

[1] Mangasarian, O. L. (1994) Nonlinear Programming, New York: McGraw-Hill.

