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Abstract

I present a model in which the players of a game have the option to delegate parts of

their strategies to a third party who has an interest in the outcome of the game. I analyze

whether the game with delegation to a common agent improves over the equilibrium of

the original game. This paper contributes to the literature on private common agency

and to the failure of the revelation principle with multiple principals. One contribution

of this paper is the characterization of the complete set of equilibrium outcomes for the

game with delegation, including the asymmetric outcomes. I also provide an answer to the

question whether the results of the existing models of private common agency are robust

to mixed strategy deviations and shed light on the persistence of the failure of revelation

principle.
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1 Introduction

Suppose that two firms, which compete in an oligopolistic market, are both borrowing

from the same bank. It is conceivable that the firms might try to exploit this common link by

coordinating their actions in order to achieve a more collusive outcome. At the same time it

is likely that the bank might have an interest in the performance of the firms and this could

make the coordination role of the bank less (or more) difficult to achieve. A similar situation

might occur if instead of the bank we consider a common retailer of the firms or a common

supplier of two downstream manufacturers.

As another example, consider two countries that are involved in a dispute over the control

of some resources. These countries might decide to use a neighboring country or an interna-

tional organization to which they both belong as a mediator. Also in this case, it is not far

fetched to imagine that this third party has preferences regarding the outcome of the dispute

between the two countries, and that both countries take those preferences into account when

deciding how much power to delegate to the mediator.

These examples share the following features: the actions of a group of players that we

can embed in a game impose externalities on some other agent (the bank, the international

organization). Moreover, the players of the original game may decide to use this third party

to improve the outcome they can achieve.

I call a game with externality, G, any two-person strategic form game where each player

(from now on principal) chooses his own strategy and where the third party (from now on

agent) has preferences over the strategy profiles, even if she has no action to take. For

any given game with externality, I define a delegation game (or game with menus), GM , as

follows. There are two stages: in the first stage, the principals can offer menus (a subset of

their strategies); in the second stage the agent (now a player of the game) selects a strategy for

each principal within the menu offered to her. I also allow each principal to offer a monetary

transfer depending on the strategy that the agent chooses so that the principals can try to

affect the preferences of the agent and therefore her choice. The question is whether the game

with delegation has equilibrium outcomes that are not achievable in the original game and

whether and how the answer depends on the preferences of the agent.

This paper contributes to several strands of literature. First, it is related to the literature

on common agency. In a typical common agency model there are several principals and an

agent who may sign binding contracts with the principals.1 Common agency models may be

considered as a natural extension of standard principal-agent models with the extra dimension

introduced by the strategic interaction between the principals during the contracting stage

(see Martimort 2006). This paper focuses on the strategic dimension, neglecting the issues

1In the original version of the common agency model (Bernheim and Whinston 1986a), the agent has an

action to take and the principals offer monetary transfers to influence the choice of the agent; the focus is on

efficiency that can be achieved with a particular class of contracts (truthful mechanisms).
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typical of incentive problems (i.e., asymmetric information and unobservable effort).

The common agency model has been applied to a variety of settings and generalized in

different ways.2 This paper focuses on one such generalization, namely private common agency

(also known as bidding games), which describes a situation where the monetary transfers

between each principal and the agent can depend only on a subset of the choice set of the

agent, even if the payoffs of each principal depend on the whole choice set. Martimort and

Stole (2003) and Segal and Whinston (2003, section 7) study models of private common agency

showing that efficiency cannot be achieved as a consequence of the limited contracting ability

of the principals. In fact, in their models, menus enlarge the set of equilibrium outcomes, but

without increasing the efficiency of the outcome. However, they assume that preferences of

the agent are convex and restrict the analysis to symmetric equilibria. In this paper, I allow

more general agent preferences and characterize both symmetric and asymmetric equilibria.

One contribution of this paper therefore is to assess whether we can recover efficiency in a

more general structure.3 The conclusions are that efficiency via private common agency can

be recovered either by restricting the preferences of the agent in a significant manner (constant

differences) or accepting asymmetric equilibrium outcomes (e.g. one principal produces the

monopoly outcome while the other does not produce at all).4

The literature on common agency, including the above mentioned papers by Martimort

and Stole (2003) and Segal and Whinston (2003) has restricted the principals’ strategies to

pure contracts and therefore begs the question as to whether these results are robust to the

introduction of mixed contracts. A second contribution of this paper is to provide a precise

answer to this question. As it will be made evident in the course of this paper, mixed contracts

have a peculiar role in common agency models: they result in enlarging the set of feasible

deviations thereby reducing the set of equilibrium outcomes. A mixed contract is equivalent,

in this paper, to a mixed strategy in the original game, and therefore considering their role

is more than just a theoretical curiosity. As soon as we allow the principals to play the game

themselves, rather than delegating to the agent, mixed strategies become as natural as they

are in any game. It turns out that the introduction of mixed strategy deviations has a first

order effect if the class of agent preferences are supermodular, while only a second order effect

if the agent payoffs are submodular. In the former case, it is shown that only asymmetric

outcomes can be supported as equilibria of the delegation game. In the latter case, allowing the

2A partial list includes Bernheim and Whinston (1986b), Biglaiser and Mezzetti (1993), Dixit et al.(1997),

Laussel and Le Breton (2001), Martimort (1999), Olsen and Osmundsen (2001), Parlour and Rajan (2001),

Prat and Rustichini (2003), Segal (1999).
3Both Martimort and Stole (2003) and Segal and Winston (2003) are more general than the model in this

paper in other dimensions. Martimort and Stole (2003) study both complete and incomplete information while

Segal and Winston (2003) study different ways in which the bargaining power is divided between the principals

and the agent.
4By an asymmetric outcome, I mean an outcome (yi, yj) such that for one principal the optimal action is

yj but the reverse is not true.

3



principals to deviate using a mixed strategy does not reduce the set of equilibrium outcomes

in the delegation game as long as a condition relating payoffs of principals and payoffs of the

agent is satisfied.5

This paper is also related to the literature on the failure of the revelation principle with

multiple principals. In single agency models, the revelation principle shows that for every

incentive compatible mechanism the principal might design, there is an incentive compatible

direct mechanism that gives the principal the same payoff (see, for example, Myerson 1979).

As a result, attention can be restricted to direct mechanisms with no loss of generality. This

is not true with several principals because when considering a principal-agent pair, the agent

does not have only private information about her preferences, but also information on the

contracts offered by the other principals.6

One of the proposed remedies to the failure of the revelation principle is based on the

result that all “interesting” equilibrium outcomes can be supported as equilibrium of a game

in which principals offer menus (Martimort and Stole 2002, Peters 2001).7 In other words,

the consequences of the failure of the revelation principle in common agency are captured

by the gap between the equilibrium allocations supported by direct mechanisms and the

ones supported by menus. Peters (2003a) uses this result to show that in environments in

which a “no-externality” condition is satisfied, this gap disappears, restoring the validity of the

revelation principle.8 In the simple environment of this paper, a direct mechanism corresponds

to a strategy of the original game G, while a menu corresponds to a strategy of the delegation

game GM . Moreover, since in the original game the agent has no effort, the no-externality

condition is arguably too strong as it requires the agent to rank the actions of one principal

independently of the action chosen by the other principal. Therefore, a contribution of this

paper is to investigate the consequence of the failure of the revelation principle for a large

class of preferences of the agent and to investigate whether there are reasonable assumptions

on the class of preferences of the agent for which the revelation principle holds.9 The results

suggest that in order to recover the validity of the revelation principle in an environment with

5The existing models (Martimort and Stole 2003 and Segal and Winston 2003) on private common agency

assume that the agent’s payoff are submodular and therefore are likely to be robust to mixed strategy deviations.
6See Epstein and Peters (1999), Martimort and Stole (2002) and Peck (1997) for examples and discussion.

Epstein and Peters (1999) provides a full fledged revelation principle valid with multiple principals. The limit

of the contribution rests in the difficulty of translate this result in workable models.
7The failure of revelation principle with multiple principals has received considerable attention and several

remedies have been proposed both for the case of multiple principals-one agent (common agency) and for the

case of multiple principals-multiple agents. For the latter see Attar et al. (2006b), Epstein and Peters (1999),

Han (2006, 2007a), Peters (2003b); for the former see Martimort and Stole (2002), Peters (2001, 2003a) Pavan

and Calzolari (2007), Page and Monteiro (2003).
8See also Attar et al. (2006a) for a weaker version of the no-externality condition proposed by Peters

(2003a).
9This task is made easier because I explicitly consider mixed strategy deviations: therefore the set of

equilibrium outcomes that are supportable by menus but not by Nash equilibrium of the original game shrinks.
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externality, we must either focus on a model in which monetary transfers are not allowed or

be interested exclusively in symmetric equilibria.

Finally, my paper is related to the existing literature on strategic delegation. Following

Schelling (1960), several authors (see Fershtman and Judd 1987, Katz 1991, Kockesen and Ok

2004) study whether delegation to an agent can take place as a means of credible precommit-

ment. This literature focuses on exclusive principal-agent pairs, rather than common agency

and therefore the comparison with my model is not immediate. Nonetheless, their emphasis

on the comparison between the equilibrium outcomes of the original game with those of the

delegation game is similar to mine. In particular, Fershtman, Judd and Kalai (1991) study the

extent to which the set of equilibria of a game changes when both players can use agents to

play the game instead of themselves and show that the cooperative outcome can be achieved.

The results of my paper contrast those in Fershtman, Judd and Kalai (1991) as in this model

the cooperative outcome is achievable only if the agent has a payoff function separable in the

strategies of the principals.

The paper is organized as follows: Section 2 begins with a motivating example based on

the prisoners’ dilemma game. The results obtained for the prisoners’ dilemma are stronger

than the ones I obtain in the general model, but they deliver the flavor of this paper’s themes.

Section 3 presents a simplified model in which the principals cannot offer monetary trans-

fers to the agent. Here too the results are stronger than the results obtained in the model

with monetary transfers. In particular, I recover the revelation principle for a large class of

preferences of the agent. However, since the absence of monetary transfer is an unappealing

feature, the interest in this section stems mainly from the fact that those results are used in

the analysis of the complete model with monetary transfers in section 4. Section 5 contains a

variant of a well known example based on vertical contracting and illustrates how the results

of the paper apply in a more specific setting. The conclusion is set forth in section 6. The

proofs of the propositions stated in the paper are included within the appendix.

2 Prisoners’ dilemma with externalities

In order to illustrate the basic idea of this paper, first a simple example based on the

prisoners’ dilemma with an interested mediator will be analyzed.

In the original game G, each principal selects among the actions {C,D} that in the prison-

ers’ dilemma have the usual interpretation of cooperate and defect. The agent has no action to

take. The following table contains the payoffs of the principals and the agent for any outcome

of the game; in each cell, the first two entries represent the payoff of the first principal (the

row player) and the second principal (the column player) respectively while the third entry

indicates the payoff of the agent.
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C D

C 4, 4, uCC 0, 6, uCD

D 6, 0, uDC 1, 1, uDD

The only Nash equilibrium of this game is (D,D) with payoffs of 1 for both principals and

uDD for the agent.

The delegation game GM is defined as follows: in the first stage each principal simultane-

ously and secretly communicates to the agent whether he delegates the choice of the action

to the agent or not. If principal i decides to delegate, then the agent will choose between the

actions C and D in the second stage. The principal can also indicate a monetary transfer

from him to the agent depending on which action the agent selects.10 If principal i does not

delegate, he must communicate to the agent which strategy he intends to play: this can be

either {C}, {D} or any mixed strategy (any probability distribution over the action space

{C,D}). In the second stage of the delegation game the agent chooses the actions for the

principals who chose to delegate and the game ends. For example, assume that the first prin-

cipal’s strategy is {(C, t1C), (D, t1D)}, that is to delegate the choice between C and D to the

agent, where t1C (respectively t1D) represents the monetary transfer from the principal to the

agent if she chooses outcome C (respectively D); and assume that the strategy of the second

principal is not to delegate by choosing action D. In this case, if the agent chooses C from the

first principal, the outcome will be (C,D) and the payoff will be −tC for the first principal,

6 for the second principal, and uCD + tC for the agent. If the agent chooses D from the first

principal, the outcome will be (D,D) and the payoff will be 1 − tD for the first principal, 1

for the second principal, and uDD + tD for the agent.

The question is whether the cooperative outcome (C,C) is achievable in the game with

delegation and the answer turns out to depend on the payoff function of the agent. The space

of the agent’s payoff functions can be partitioned into three regions. For payoff functions

satisfying uCC + uDD < uCD + uDC the cooperative outcome (C,C) cannot be achieved as

an equilibrium of the delegation game because giving to the agent the incentive to choose the

outcome (C,C) is incompatible with giving the agent the incentive to punish the deviation

to the action D.11

For payoff functions satisfying uCC + uDD > uCD + uDC , the cooperative outcome can be

achieved as an equilibrium of GM only if we restrict the principals to pure strategies. As soon

as we allow principals to use mixed strategies (C,C) ceases to be an equilibrium outcome of

the delegation game GM . This is one of the main themes of the paper and deserves some

clarification. Assume that uCC = 6, uCD = uDC = 2, and uDD = 1; if each principal chooses

10Each principal is restricted to choose at least one non-negative transfer, that is either ti
C ≥ 0 or ti

D ≥ 0

(or both). See the section 4 for a discussion.
11At the end of section 4 I will get back to this example to show that for such payoff functions of the agent

there might be equilibria in which the agent randomizes between the outcomes (C, D) and (D, C).
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to offer the agent the following menu Mi = {(C, tci = 0); (D, td1 = 2)}, the payoffs for the

principals and the agent become

(C, 0) (D, 2)

(C, 0) 4, 4, 6 0, 4, 4

(D, 2) 4, 0, 4 −1,−1, 5

Faced with these menus, the agent chooses the cooperative strategy (with no monetary

transfers) from each principal and the payoffs received are (4, 4, 6). Now if any principal,

say principal 2, deviates to a non-delegating strategy choosing D, the choice of the agent is

between {(C, 0),D} and {(D, 2),D}, with the agent’s payoffs as 2 and 3 respectively; the agent

will therefore punish the deviation by choosing (D, 2) from the menu offered by principal 1,

making the deviation of principal 2 unprofitable.

This is not the end of the story, though. In fact, if we allow principals to deviate to

a non-delegating strategy and to choose a mixed strategy in the original game, a principal

has a profitable deviation. Consider the following mixed deviation for principal 2: C with

probability 1
2 and D with probability 1

2 ; the choice of the agent between the two elements

of menu (C, 0) and (D, 2) offered by the non-deviating principal 1 now becomes a choice

between two lotteries: if the agent changes the selection from the menu offered by principal

1 to (D, 2), she receives an expected payoff of 3.5 while if she selects (C, 0) from the menu

offered by principal 1, her expected payoff is equal to 4. Hence, the cooperative outcome is

an equilibrium if principals can deviate by using solely pure strategy actions, but it is not

robust to mixed strategy deviations.

If the agent’s payoff function satisfies the knife-edge condition uCC + uDD = uCD + uDC ,

then the cooperative outcome (C,C) can be supported as an equilibrium of GM . Consider

for example the following payoff function: uCC = 3, uCD = uDC = 2 and uDD = 1; if each

principal chooses to offer to the agent the following menu Mi = {(C, tci = 0); (D, td1 = 1)}, the

payoffs for the principals and the agent become

(C, 0) (D, 1)

(C, 0) 4, 4, 3 0, 5, 3

(D, 1) 5, 0, 3 0, 0, 3

Since the agent is now indifferent among all the menu outcomes offered by the principals,

there exists an equilibrium strategy for the agent that selects (C,C), and that punishes all

deviations (pure and mixed) by selecting (D, 1) from the non-deviating principal.

The results obtained for the prisoner’s dilemma with an interested mediator are stronger

than those obtained for the general model studied in this paper. Nevertheless, some general

ideas carry through. In particular there is a large class of the agent’s preferences (those that

satisfy increasing differences), under which mixed strategy deviations considerably reduce the
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set of equilibrium outcomes of the delegation game. The efficient outcome can be achieved

for a small class of preferences (those that satisfy constant differences) and this equilibrium

is robust also to mixed strategy deviations.

3 Delegation without monetary transfers

Before analyzing the games with monetary transfer, this section covers a simplified version

of the delegation game, in which the principals cannot offer monetary transfers to the agent.

The interest in this simplified model goes beyond the theoretical curiosity of what is achiev-

able with delegation when principals do not have access to monetary transfers. In fact, the

model studied in this section turns out to be the only case in which it is possible to recover

the revelation principle for a large class of games. Moreover, the results of the model with

monetary transfers rely heavily on those obtained in this simplified model.

A game with externalities G is a two-person game in strategic form, with an extra player

who has no proper action.12 That is G = {(1, 2), (Y1 , Y2), (v1, v2, u)} where Yi indicates the set

of finite strategies for player i (from now on principal i), and vi represents his payoff function.

The payoff function of the “added” player (from now on agent) is designated as u.

The delegation game without transfers GM (or game with menus) is a two stage game

where the agent becomes a proper player. In the first stage, the principals (the proper players

of G) simultaneously decide whether to delegate the choice over the strategies (or part of

them) to the agent. In the second stage, the agent makes a choice among the alternatives he

has been delegated to decide upon.

More precisely, in the game with delegation GM , the strategy space for each principal j

is given by Mj = (2Yj\∅) ∪∆(Yj). Denote an element of this strategy space as Mj ∈ Mj . In

the second stage the agent chooses an element (m1,m2) ∈ M1 × M2.

In other words, if principal j decides to delegate, he chooses a subset of the pure strategies

Yj. If principal j decides not to delegate, then he chooses a single strategy either pure or

mixed (that is denoted as δj). In the second stage, the agent makes a choice among the

alternatives to which she has been delegated. Note that if no principal chooses to delegate to

the agent, then the second stage of the game is superfluous.

A crucial feature of the proposed model is the treatment of mixed strategies. In most of the

common agency models, authors do not allow principals to offer stochastic mechanisms. This

modeling choice follows a tradition of standard principal agent models and it is motivated by

realism, empirical observations as well as simplicity.13 In a common agency setting, though,

12Some results can be extended trivially to the N-person case, but for others the restriction to two players

is important. The search for the right argument to extend the results of this paper to an arbitrary but finite

number of principals, is an open question.
13See, however, Arnott and Stiglitz (1988) and Strausz (2004) for the problems of restricting the analysis

to deterministic mechanisms in principal-agent models.
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the role of stochastic contracts is different and arguably more important. As it is shown in

the previous section, it is possible to have outcomes supported by equilibria in a model where

principals are restricted to offer deterministic contracts while if we allow principals to offer

also stochastic mechanisms they fail to be supported.14 This is a distinctive feature of this

class of models. In fact, allowing for mixed strategies in this paper serves to simplify the

analysis rather than further complicating it.

Agent’s strategies and equilibrium concepts

The strategy for the agent, denoted with σA, is a mapping from M1 × M2 to ∆(Y ) ∪

∆(Y1) ∪ ∆(Y2) such that if both principals choose to delegate then σA(M1 × M2) ∈ ∆(Y ),

and only if principal i chooses to delegate σA(M1 × M2) ∈ ∆(Yi).
15

A strategy profile (M1,M2, σA) induces a finite probability distribution µ over Y in the

following way: µ(y) = σA(M)(y) if both principals choose to delegate; µ(y) = σA(M)(yi)δj(yj)

if only principal i chooses to delegate and principal j does not delegate but chooses the (mixed)

strategy δj ; and finally µ(y) = δi(yi)δj(yj) if neither principal delegates. The expected payoffs

of principals and the agent are given respectively by Vj(M1,M2, σA) =
∑

y∈Y vj(y)µ(y) and

U(M1,M2, σA) =
∑

y∈Y u(y)µ(y). At times, if there is no ambiguity on the notation, we

simply write Vj(M1,M2, σA) = Vj(µ) and U(M1,M2, σA) = U(µ)

I use standard equilibrium concepts; in particular, I want to compare the set of Nash

equilibria NE(G) of the game G and the set of subgame perfect Nash equilibria SPNE(GM ) of

the game GM . I will also compare the set of equilibrium payoffs of the principals corresponding

to the two games, which I denote respectively with ΠNE(G) and ΠSPNE(GM ).

Preliminary results

The first proposition of the paper serves to clarify the role of delegation to a common

agent. It states that the game with menus GM cannot eliminate equilibria of the original

game, but only add new equilibria, and this is true for any payoff function of the agent.

Proposition 1 For any game G, if {δ⋆
1 , δ⋆

2} is a Nash equilibrium of G, then there exists a

subgame perfect Nash equilibrium of GM that induces the same distribution over Y (that is

µ(y) = δ⋆
1(y1)δ

⋆
2(y2))

Proposition 1 is closely related to Theorem 1 in Peters (2003a) that states, in a more

general setting, that any pure-strategy equilibrium of the original game G is robust to devi-

ations of a principal to a more complicated strategy (i.e., menus of strategies) than the ones

14See Piaser (2005) for an example with a continuum of strategies for principals and a discussion of this

phenomenon.
15If neither principal delegates it does not matter how we define σA(M1 × M2).

9



allowed in the game G.16 The intuition of the result is straightforward: if neither principal is

delegating, (in the revelation principle parlance, if they are both offering direct mechanisms

to the agent), the agent does not have any way to affect the outcome. If principal j deviates

choosing to delegate (that is he offers a menu) the agent must only choose one element of the

action space of principal j. Given the strategy of the non-deviating principal, there cannot

be an action yj that gives higher payoff to principal j than his Nash equilibrium strategy.

Incidentally, I note that proposition 1 together with the assumption of finiteness of Y1

and Y2, guarantees the existence of a subgame perfect Nash equilibrium for GM .17 We can

express proposition 1 in terms of payoffs, with the following corollary.

Corollary 1 For any game G (and in particular for any payoffs of the agent u) we have

ΠNE (G) ⊂ ΠSPNE (GM ).

Corollary 1 tells us that no matter what the payoff function of the agent in the original

game G is, any equilibrium payoff for the game G is still an equilibrium payoff for the modified

game with menus GM . Therefore, in this setting, the sole purpose of menus is to enlarge the

set of equilibrium payoffs.

The main question is whether there exists some class of preferences for the agent that

sustains equilibria that Pareto dominate ΠNE (G). The next proposition provides a positive

answer and can be considered a benchmark as it sets an upper bound for the set of equilibrium

payoffs sustainable with delegation. Before presenting proposition 2, let me recall the following

definitions:18

Definition 1 Given a game G, a correlated strategy is a probability distribution µ ∈ ∆(Y ).

Definition 2 Given a game G, the minimax value vi for principal i, is given by

vi = minµj∈∆(Yj)(maxyi∈Yi

∑
yj∈Yj

vi(yi, yj)µj(yj))

Definition 3 Given a game G, a correlated strategy µ ∈ ∆(Y ) is said to be individually

rational for player i if Vi(µ) =
∑

y∈Y vi(y)µ(y) > vi

Proposition 2 If the agent’s payoff u is constant, then any individually rational correlated

strategy µ for the game G can be induced by a subgame perfect Nash equilibrium of GM .

Proposition 2 implies that if the agent is indifferent over the set of outcomes, then ΠNE (G)

is strictly contained in ΠSP (GM ), which, in turn, coincides with the set of payoffs sustained by

16Peters (2003b) offers counterexamples to this result for the case with multiple agents. Also Segal and

Whinston (2003), considering equilibria that are robust to different assumptions on the division of bargaining

power between principals and agent, obtain a different result.
17For work on the existence of an equilibrium in a more general common agency setting, see Page and

Monteiro (2003) and Carmona and Fajardo (2006).
18See Myerson (1991) pages 244-249.
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individually rational correlated strategies for the game G. Therefore, this result characterizes

environments where the role of delegation is “maximal.”19

Mixed deviations

Proposition 2 implies the existence of an agent payoff function such that GM has a set

of equilibrium payoffs much larger than does G. But it depends on the very particular case

of complete indifference of the agent over the set of outcomes Y . As soon as we perturb

the payoff function of the agent, the results change considerably. The reason is that the

requirement for the agent to have an incentive to punish all mixed-strategy deviation restricts

the class of agent payoff functions quite severely. This is formalized in the following lemma.

Lemma 1 Let y∗ be supported by a subgame perfect Nash equilibrium of GM . If there exists

an action yi such that vi(yi, y
∗
j ) > vi(y

∗
i , y

∗
j ), then there exists an action yj ∈ Mj ⊂ Yj such

that yj 6= y⋆
j and u(y∗i , yj) = u(y∗i , y

∗
j ).

Lemma 1 provides necessary conditions for an outcome y∗ ∈ Y to be supported by a

subgame perfect Nash equilibrium. It plays a very important role in this paper as it is used

to prove most of the remaining results. The lemma does not hold true if the principals are

not allowed to have mixed deviations.

In order to understand the role of mixed strategies, consider a candidate for an equilibrium

outcome y∗. What test does the equilibrium candidate have to pass in order to survive? First

of all the agent must find it optimal to chose y∗ rather than any of the other outcomes

available to her. This condition implies that the agent’s payoff function must satisfy a set

of (weak) inequalities over the menus offered by the principals (that is u(y∗) ≥ u(y) for all

y ∈ M1 × M2). Moreover, for any principal who has a pure-strategy deviation in the original

game (that is for any yi such that vi(yi, y
∗
j ) > vi(y

∗
i , y

∗
j )), the agent must find it profitable

to punish the deviation yi. This means that there exists an action yj ∈ Mj that acts as

a punishment and that the agent finds it profitable to choose over the equilibrium action,

that is u(yi, yj) ≥ u(y∗i , yj). These requirements based on inequalities are sufficient to punish

pure strategy deviations, but are not sufficient if we allow principals to deviate by choosing a

mixed strategy. In order for the agent to have an incentive to punish all the mixed-strategy

deviations, some of the inequalities above must in fact be equalities. This observation alone

(formalized in lemma 1) severely restricts the class of agent preferences for which menus add

to equilibrium payoffs.

The first application of lemma 1 provides a sufficient condition, namely agent genericity,

under which the equilibrium payoffs of GM coincide with equilibrium payoffs of G. The

19In fact proposition 2 is a reinterpretation of a well-known result: consider a normal form game G where

the players are allowed to write contracts with each other. Then any individually rational correlated strategy

profile for the game G is obtainable as an equilibrium of the “game with contracts” (see Myerson 1991).
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condition requires that if a principal changes his strategy, while the other principal does not,

the agent’s payoff must change.

Definition 4 A game G is called agent-generic if for any yj ∈ Yj, yi 6= y′i implies u(yi, yj) 6=

u(y′i, yj)

The idea of the agent-genericity condition is that the agent’s payoff function is sensitive

to each principal’s strategy. Moreover, this condition is sufficient to obtain that delegation

does not add any equilibria.

Proposition 3 If G is agent-generic, then ΠSPNE (GM ) = ΠNE (G).

The proof of proposition 3 is an immediate consequence of lemma 1. In fact, lemma 1

not only states that a necessary condition for an outcome to be supported by an equilibrium

of GM (but not of G) is that the agent must be indifferent over at least two outcomes; it

also says that this indifference must be over two outcomes generated by the same strategy

of a principal. Roughly speaking, the agent must be indifferent over at least two elements of

the same column (or row). Thus, lemma 1 implies that agent-generic games cannot have an

equilibrium in GM that is not an equilibrium in G.

Proposition 3 is the complement of proposition 2. It shows the contrast with the situation

of complete indifference of the agent. While delegating to an agent who is indifferent enlarges

the set of equilibrium outcomes, delegation to an agent who is not indifferent enough does not

add new equilibrium outcomes. In other words, propositions 2 and 3 together set an upper

bound and a lower bound for the set of equilibrium payoffs sustainable by delegation as the

agent’s payoff function changes.

The results of this section are very sharp and can be interpreted in two ways. First, if

principals cannot offer monetary transfers to the common agent, delegation is not likely to

produce any equilibrium outcome different from those that can be achieved without delegation.

The second message of this section is that in this simplified environment, the revelation

principle is valid for a large class of preferences of the agent.

In the next section I will enrich the delegation game, allowing principals to offer monetary

transfers to the agent contingent on the action chosen by the agent within the menu. This

makes the model of the next section very similar to the models of private common agency.

Notice that if the principals can offer monetary transfers to the agent, it is then possible to

generate endogenously the required indifference of the agent. Nevertheless, lemma 1 also has

important consequences in this version of the model.

4 Delegation with monetary transfers

In this section, I consider the complete model in which I allow the principals to offer menus

of their own actions together with a monetary transfer to the agent conditional upon which

12



element of the menu the agent selects. That is, I enrich the game with menus GM allowing

each principal to associate any action within the menu with a (possibly different) monetary

transfer to the agent. An element mi of the menu Mi is now a couple (yi, ti) where yi ∈ Yi is

one of the actions available to principal i and ti ∈ R is a monetary transfer from the principal

to the agent. I allow the monetary transfer to be negative, but impose the restriction that at

least one mi = (yi, ti) ∈ Mi is such that ti ≥ 0. More formally, the strategy space of principal

i can be written as Mi ∪ ∆(Yi) where

Mi ≡ {(Mi, fi)|Mi ⊂ Yi, fi ∈ R
Mi , such that ∀Mi,∃mi ∈ Mi : fi(mi) ≥ 0}

The payoffs of principals and the agent, if the elements (yi, ti) and (yj , tj) are chosen, have

the following standard expressions

ṽi(yi, yj, ti, tj) = vi(yi, yj) − ti

ũ(yi, yj, ti, tj) = u(yi, yj) + ti + tj

In the previous section it has been shown that without monetary transfers, for almost

all preferences of the agent, each equilibrium outcome of the game with delegation is also

an equilibrium outcome of the original game. The key to this result is that in order for the

agent to have an incentive to punish all mixed strategy deviations of one principal, she must

be indifferent among the elements of the menu that the other principal offers. Introducing

monetary transfers change the results because that indifference can be created endogenously

by the principals. Nevertheless, the condition required by lemma 1 restricts the outcomes

that are supported by menus even with monetary transfers. The restrictions differ depending

on the payoff function of the agent; in particular I analyze how the results differ between the

cases of supermodular and submodular payoff functions.

In this section I restrict the analysis to the class of games G that satisfy negative exter-

nalities, that is games for which the payoff function of each player is non-increasing in the

strategy of the other player. More precisely, I assume that for any j ∈ {1, 2}, (Yj ,≥j) is a

linearly ordered set (a chain) so that y′j ≥j yj implies vi(yi, yj) ≥ vi(yi, y
′
j), for all yi ∈ Yi.

It must be noted that while I present the results for games with negative externalities,

the results are readily applicable to games with positive externalities (the payoff function of

each player is non-decreasing in the strategy of the other player).20 The class of games that

satisfy this condition includes Cournot duopoly, Betrand duopoly (both with homogeneous

and differentiated goods) as well as the tragedy of commons and many others, while it does

not include games such as pure coordination or battle-of-the-sexes.

Given the orders ≥j over Yj for which the game G satisfies negative externalities I focus

attention on payoff functions of the agent that are monotone in differences, that is on pay-

20It suffices to consider, for j ∈ {1, 2}, the dual ordered sets (Yj ,≥
′
j) where y′

j ≥′
j y′′

j if and only if y′′
j ≥j y′

j .
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off functions that have either increasing differences (supermodular) or decreasing differences

(submodular).

The rest of the section is organized as follows: proposition 4 establishes that for the knife-

edge case of payoff functions with constant differences, the role of delegation is maximal,

that is, every individually rational outcome can be achieved as an equilibrium outcome of

the delegation game. If the assumption of constant differences is violated, the results change

dramatically and depend whether the agent’s payoff function is supermodular or submodular.

Lemma 2 establishes that if the agent’s payoff function is strictly supermodular, only outcomes

in which at least one of the two principals is using his best response strategy in G can be

supported as equilibria of the delegation game. Lemma 2 has no counterpart for the case

of submodularity and this is the reason why the results in this section differ between these

two cases. Propositions 5 and 6 provide respectively sufficient and necessary conditions for

an outcome to be an equilibrium of the game with delegation for the cases of a strictly

supermodular agent’s payoff function, while for the case of a strictly submodular agent’s

payoff function, the same results are presented in proposition 7 and 8. Lastly, I discuss the

consequences of these results on efficiency and present an example of an equilibrium in which

the agent randomizes among elements of the menu M1 × M2 and that Pareto-dominates the

outcome of the original game.

Let me recall the definition of a function satisfying constant differences:

Definition 5 The function u satisfies constant differences over Y , if for any y1, y
′
1 ∈ Y1 and

any y2, y
′
2 ∈ Y2, u(y1, y2) − u(y1, y

′
2) = u(y′1, y2) − u(y′1, y

′
2)

Proposition 4 If u satisfies constant differences, then any individually rational outcome

y ∈ Y is supportable as an equilibrium outcome of the game GM .

The above proposition tells us that if principals can offer monetary transfers to the agent

and u satisfies the assumption of constant differences then “everything is achievable”. This

“static version” of the folk theorem is a recurring theme for models that fall between non-

cooperative and cooperative game theory.21 Moreover, this result highlights the particular

role that the payoff functions satisfying constant differences have in this analysis: on one

hand, efficiency can be reached by means of delegation, notwithstanding the imposed limits

on contracting. On the other hand, the role of mixed strategy deviations is null.

Supermodular Agent Preferences

Since I focus attention on payoff functions of the agent that are monotone in differences, if

the assumption of constant differences is violated, there are two cases left: the class of payoff

21See for example Fershtman, Judd and Kalai (1991) who obtain it in a model where each principal has his

own agent.
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functions u with strictly increasing differences (u strictly supermodular), and the class of

payoff functions u with strictly decreasing differences (u strictly submodular). Let me recall

the following definition:22

Definition 6 If the function u(yi, y
′
j) − u(yi, yj) is increasing, decreasing, strictly increasing

or strictly decreasing in yi for all y′j ≥j yj in Yj , then u(yi, yj) has respectively increasing dif-

ferences, decreasing differences, strictly increasing differences or strictly decreasing differences

over (Yi, Yj).

Since in the framework of our model, the definition of increasing differences coincides with

the one of supermodularity, I use those terms interchangeably.23

Lemma 2 Assume that u is strictly supermodular; if (yi, yj) is supported by a subgame perfect

equilibrium of the delegation game, then yi = BRi(yj) or yj = BRj(yi).

Lemma 2 establishes that a necessary condition for an outcome (yi, yj) to be supported

by an equilibrium of the delegation game is that at least one of the two principals is playing

a best response strategy in the original game. Clearly, if this is true for both principals,

the outcome (yi, yj) is a Nash equilibrium of the original game. Therefore lemma 2 implies

that if an equilibrium of the delegation game supports an outcome (yi, yj) that is not a Nash

equilibrium of the original game, then this outcome is such that one principal is playing his

best response strategy, while the other is not. This “asymmetry” is best appreciated, if the

original game is symmetric. As an immediate corollary of lemma 2, it can be established that

a symmetric equilibrium of the delegation game for a symmetric game G must be a Nash

equilibrium of the original game.

Lemma 2 does not hold true if we do not allow the principals to have mixed deviations.

One example of this was given in section 2 in the prisoners’ dilemma with strictly increasing

differences where the (symmetric) cooperative outcome is achievable if the principals cannot

deviate to mixed strategies, but it cannot be achieved if mixed deviations are allowed.24 In

fact lemma 2 is obtained using lemma 1 (it is a consequence of allowing principals to deviate

using a mixed strategy), and simplifies considerably the task of identifying the equilibrium

outcomes of the game with delegation.

Lemma 2 provides a much stricter upper bound over the outcomes that can be supported

by an equilibrium of the game with delegation.25 To restrict further the bounds we need to

look at the set of outcomes (yi, yj) such that yi ∈ BRi(yj) and yj /∈ BRj(yi) and identify

those which can be supported by an equilibrium of the delegation game. Proposition 5 and

22See Topkis (1998) section 2.6.
23See Theorem 2.6.1 and Corollary 2.6.1 in Topkis (1998).
24The case uCC + uDD > uCD + uDC corresponds to the increasing differences case.
25Recall that proposition 4 identifies the upper bound as the set of individually rational outcomes.
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6 achieve this goal; proposition 5 provides sufficient conditions and proposition 6 necessary

conditions for an outcome to be supported as an equilibrium of the delegation game.

Proposition 5 Assume that u is strictly supermodular and let (y⋆
i , y

⋆
j ) be an individually

rational outcome such that y⋆
i = BRi(y

⋆
j ). If the following two conditions hold then (y⋆

i , y
⋆
j )

can be supported as a subgame perfect Nash equilibrium of GM .

1. No principal has a lower strategy deviation in G; that is y⋆
j >j yj implies vj(y

⋆
i , yj) ≤

vj(y
⋆
i , y

⋆
j );

2. ∃yp
i ∈ Yi such that ∀δj ∈ ∆(Yj) for which there exists a y′j <j y⋆

j in the support of δj,∑
yj

vj(y
⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ) implies

(a)
∑

yj
[u(yp

i , yj) − u(y⋆
i , yj)]δj(yj) ≥ u(yp

i , y
⋆
j ) − u(y⋆

i , y
⋆
j ),

(b)
∑

yj
vj(y

p
i , yj)δj(yj) ≤ vj(y

⋆
i , y

⋆
j ).

The conditions above are sufficient and quasi-necessary as the next proposition clarify:

Proposition 6 Assume that u is strictly supermodular and let (y⋆
i , y

⋆
j ) be an individually

rational outcome such that y⋆
i = BRi(y

⋆
j ). The outcome (y⋆

i , y
⋆
j ) can be supported as a subgame

perfect Nash equilibrium of GM only if:

1. No principal has a lower strategy deviation in G; that is y⋆
j >j yj implies vj(y

⋆
i , yj) ≤

vj(y
⋆
i , y

⋆
j );

2bis. ∀δj ∈ ∆(Yj) for which there exists a y′j <j y⋆
j in the support of δj such that

∑
yj

vj(y
⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ), ∃yp

i ∈ Yi such that

(a)
∑

yj
[u(yp

i , yj) − u(y⋆
i , yj)]δj(yj) ≥ u(yp

i , y
⋆
j ) − u(y⋆

i , y
⋆
j ),

(b)
∑

yj
vj(y

p
i , yj)δj(yj) ≤ vj(y

⋆
i , y

⋆
j ).

The condition 1 in proposition 5 and 6 is easy to understand: with u strictly supermodular,

the incentive of the agent to punish a deviation to a “lower” strategy is incompatible with

the agent choosing the equilibrium outcome from the available alternatives in the menu.

Condition 1 would still be a necessary condition even if we restrict principals to deviate only

by using pure strategies. Moreover, since lemma 2 restricted the set of outcomes that can be

supported by an equilibrium of the delegation game to outcomes where one principal is using

a best response, then condition 1 also becomes a sufficient condition if we only consider pure

deviations for principal j.

Condition 2 in proposition 5 (and 2bis in proposition 6) comes to play a role because prin-

cipal j might deviate to a mixed strategy with a support that contains yj <j y⋆
j . It guarantees
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that the outcome (y⋆
i , y

⋆
j ) is robust to such deviations. If the support of the mixed strategy

deviations contains lower strategies (yj <j y⋆
j ), then supermodularity of the agent’s payoff

function is not enough to guarantee that the agent has an incentive to choose a “punishment”

yp
i from the menu of the non-deviating principal i. It is necessary to introduce a condition

that compares the payoff function of the agent and that of principal j (the principal who has

a profitable deviation in G). Proposition 5 has an immediate and important corollary.26

Corollary 2 Assume that u is supermodular and that the outcome (y1
i , BRj(y

1
i )) is individ-

ually rational. Then (y1
i , BRj(y

1
i )) is supported as a subgame perfect Nash equilibrium of the

delegation game GM .

Proof. Since y1
i is the lowest element in Yi (that is for any yi ∈ Yi we have yi ≥i y1

i )

condition (1) of proposition 5 is satisfied. Also for any δi ∈ ∆(Yi) the support of δi cannot

contain any yi <i y1
i so that also condition (2) of proposition 5 is trivially satisfied.

One way to interpret Proposition 5 and 6 is that they provide a lower and upper bound

for the outcomes that can be supported by an equilibrium of the game with delegation, when

the agent payoff function is strictly supermodular. I first focus on the upper bound. Take

a game G and an individually rational outcome (y⋆
i , y

⋆
j ) such that y⋆

j = BR(y⋆
i ) and that no

principal has a lower strategy deviation. If (y⋆
i , y

⋆
j ) is not supported by an equilibrium of the

game with delegation, can we find another strictly supermodular agent payoff function such

that (y⋆
i , y

⋆
j ) is supported by an equilibrium of the delegation game? Proposition 5 and 6

suggest that the answer is in the affirmative.

In other words in the class of the strictly supermodular agent payoff functions, the upper

bound of the SPNE(GM ) is given by all the individually rational outcomes (y⋆
i , y

⋆
j ) such that

y⋆
j = BR(y⋆

i ) and that no principal has a lower strategy deviation.

An analogous reasoning can be carried out for the lower bound of the SPNE(GM ). If

an outcome is supported by a subgame perfect Nash equilibrium of GM , can we find another

strictly supermodular agent payoff function such that (y⋆
i , y

⋆
j ) is not supported by an equilib-

rium of the delegation game? We already know from proposition 1 that this is not possible if

(y⋆
i , y

⋆
j ) is a Nash equilibrium of the game without delegation. Corollary 2 excludes two more

outcomes.

In other words in the class of the strictly supermodular agent payoff functions, the lower

bound of the SPNE(GM ) is composed by the set of outcomes supported by the Nash equi-

librium of the original game (proposition 1) and by the two outcomes (y1
i , BRj(y

1
i )) and

(BRi(y
1
j ), y

1
j ) as long as they are individually rational (Corollary 2).

It is worth stressing the meaning of this finding. Given the assumption of negative ex-

ternalities the outcome (y1
i , BRj(y

1
i )) is not only Pareto-efficient but also the outcome that

26I denote with y1
i the first (that is lowest) strategy for principal i given the order ≥i.
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gives the highest payoff to principal i among all the outcomes y ∈ Y . If this outcome is indi-

vidually rational, then it is always possible to support it as an equilibrium with delegation.

This asymmetric outcome is the only one that is supported by any supermodular agent payoff

function. This finding also bears remarkable consequences for the validity of the revelation

principle in common agency. In section 3, it was shown that (without monetary transfers) the

introduction of mixed deviations was enough to restore the validity of the revelation principle

for a large class of preferences of the agent. In this section, it has been shown that when

the complete model is considered, there are always outcomes that cannot be supported as

equilibria of the original game, but are supported by the principals offering menus. It must

be added that the condition of individual rationality for the outcomes (y1
i , BRj(y

1
i )), and

(BRi(y
1
j ), y

1
j ), translates in different ways, in various application of the model. For example

in the prisoners’ dilemma, the two outcomes (C,D) and (D,C) cannot be supported as they

are not individually rational. Conversely, in the duopoly example in section 5, it means that

(with a concave cost function) it is always possible to support an “exclusion” equilibrium, in

which the firm i produces zero output and the firm j produces the monopoly outcome.

Submodular Agent Preferences

The case of submodular preferences differs in many respects from the case of supermodu-

larity. One crucial difference is that allowing the principals to have mixed strategy deviations

does not restrict the outcomes supportable as equilibria in the same way. With u submod-

ular, an outcome (yi, yj) can be supported by an equilibrium of the delegation game even if

neither principal is using a best response strategy. In other words, there is no counterpart of

lemma 2 when u is submodular. To see why this is the case, consider an outcome (yi, yj) such

that both principals have a profitable deviation in G. As an immediate corollary of lemma

1, for each principal there exists an action yp
i that acts as a punishment and is part of the

equilibrium menu that supports the outcome (yi, yj). But in order to be a punishment, yp
i

must be higher than yi (and the same is true for the other principal). This, together with

the fact that the agent must be indifferent between the element of the menus that is chosen

in equilibrium and those that can be used as punishment (lemma 1), implies a contradiction

when u is supermodular, but not when u is submodular.

This does not mean that for the case of u submodular, the introduction of mixed strategy

deviations for the principals does not restrict the outcomes that can be supported as an

equilibrium of GM . The restriction is rather of second order, as the next propositions clarify.

Proposition 7 provides sufficient conditions and proposition 8 necessary conditions for an

outcome to be supported as an equilibrium of the delegation game.

Proposition 7 Assume that u is strictly submodular and let (y⋆
i , y

⋆
j ) be an individually ratio-

nal outcome. If the following two conditions hold then (y⋆
i , y

⋆
j ) can be supported as a subgame
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perfect Nash equilibrium of GM .

1. No principal has a higher strategy deviation in G; that is yi > y⋆
i implies vi(yi, y

⋆
j ) ≤

vi(y
⋆
i , y

⋆
j );

2. ∃yp
i ∈ Yi such that ∀δj ∈ ∆(Yj) for which there exists a y′j >j y⋆

j in the support of δj,∑
yj

vj(y
⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ) implies

(a)
∑

yj
[u(yp

i , yj) − u(y⋆
i , yj)]δj(yj) ≥ u(yp

i , y
⋆
j ) − u(y⋆

i , y
⋆
j ),

(b)
∑

yj
vj(y

p
i , yj)δj(yj) ≤ vj(y

⋆
i , y

⋆
j ).

Also in this case, the conditions above are sufficient and quasi-necessary:

Proposition 8 Assume that u is strictly submodular and let (y⋆
i , y

⋆
j ) be an individually ra-

tional outcome. The outcome (y⋆
i , y

⋆
j ) can be supported as a subgame perfect Nash equilibrium

of GM only if:

1. No principal has a higher strategy deviation in G; that is yi > y⋆
i implies vi(yi, y

⋆
j ) ≤

vi(y
⋆
i , y

⋆
j );

2 bis. ∀δj ∈ ∆(Yj) for which there exists a y′j >j y⋆
j in the support of δj and such that

∑
yj

vj(y
⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ), ∃yp

i ∈ Yi such that

(a)
∑

yj
[u(yp

i , yj) − u(y⋆
i , yj)]δj(yj) ≥ u(yp

i , y
⋆
j ) − u(y⋆

i , y
⋆
j ),

(b)
∑

yj
vj(y

p
i , yj)δj(yj) ≤ vj(y

⋆
i , y

⋆
j ).

Condition 1 of proposition 7 and 8 excludes outcomes for which any principal has a higher

strategy deviation: with u submodular, the incentive to punish a deviation to a higher strategy

is incompatible with the agent choosing the equilibrium strategies within the menu. Condition

1 does not depend on the ability of principals to use mixed strategy deviations whereas

condition 2bis is necessary because principals could deviate by using a mixed strategy whose

support includes pure strategies higher than the equilibrium strategy. As in the case of

u supermodular, proposition 7 and 8 can be interpreted as providing a lower bound and an

upper bound to SPNE(GM ). The lower bound is composed by the set of outcomes supported

by the Nash equilibrium of the original game and by the two outcomes (yI
i , BRj(y

I
i )), and

(BRi(y
J
j ), yJ

j ) as long as they are individually rational as it is stated in the following corollary

of proposition 7.27

27I denote with yI
i the last (that is highest) strategy for principal i and yJ

i the highest strategy for principal

j, given the orders ≥i and ≥j .
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Corollary 3 Assume that u is submodular and that the outcome (yI
i , BRj(y

I
i )) is individu-

ally rational. Then (yI
i , BRj(y

I
i )) is supported as a subgame perfect Nash equilibrium of the

delegation game GM .

Proof. Since yI
i is the highest element in Yi (that is for any yi ∈ Yi we have yI

i >i yi)

condition (1) of proposition 7 is satisfied. Also for any δi ∈ ∆(Yi) the support of δi cannot

contain any yi >i yI
i so that also condition (2) of proposition 7 is trivially satisfied.

The upper bound of SPNE(GM ) is potentially very large: it is composed of all the

individually rational outcomes for which no principal has higher strategy deviations. Recall

that for u supermodular the upper bound is composed of all the individually rational outcomes

for which no principal has lower strategy deviations and at least one principal is using his

best response in G.

Let me stress the relevance of this finding: one of the objectives of the paper is to test the

robustness of the models that use only pure strategy to the introduction of mixed strategy

deviations. Propositions 5 through 8 allow us to draw the following conclusions: if the payoff

function of the agent is supermodular, then it is unlikely that outcomes supported by equilibria

in GM are robust to the introduction of mixed strategy deviations. Conversely, for submodular

agent’s payoff functions, the answer depends on the relation between the payoff function of

the principals and that of the agent.28

Efficiency Considerations and Equilibria in which the Agent Randomizes

One of the themes of this paper is to asses whether delegation to a common agent may

improve the efficiency of the equilibrium outcome of a game. In particular, assume that the

original game G has a unique equilibrium outcome (y⋆
i , y

⋆
j ). Does there exist an outcome

(yi, yj) supported by an equilibrium of the delegation game that Pareto-dominates (y⋆
i , y

⋆
j )?

For u strictly supermodular, delegation to an agent can always result in an equilibrium

outcome (yi, yj) such that one principal chooses his lowest action (that is yi = y1
i ) and the

other principal chooses his best response to it (that is yj = BRj(y
1
i )). As already pointed

out, this outcome gives the highest payoff to one of the two principals (the one who is best

responding) while the payoff of the other principal is ambiguous; if the original game G is such

that vi(y
1
i , BRj(y

1
i )) ≥ vi(y

⋆
i , y

⋆
j ), then delegation to a common agent can achieve a Pareto

improvement over the original game. The same reasoning holds if one considers the other

outcomes that can be supported as an equilibrium of the delegation game. By proposition 6,

the upper bound of this set is given by the outcomes (yi, yj), such that one principal is using his

best response and the other principal does not have a lower deviation. This characterization

28One way to express this concept is the following: for u submodular the upper bound of SPNE(GM )

coincides with the set of equilibrium outcomes of a model without mixed deviations for the principals; for u

supermodular, the upper bound of SPNE(GM ) is strictly included in the set of equilibrium outcomes of a

model without mixed deviations for the principals.
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in itself does not exclude the possibility that some of the equilibria with delegation might

Pareto-dominate the equilibria in the original game. In general this will depend on the game

G. In the duopoly example in section 5, none of the outcomes supported by delegation Pareto

dominate the unique Cournot-Nash equilibrium of the original game, as the principal who

is best-responding receives a payoff higher than the Cournot-Nash payoff, while the other

principal receives a payoff lower than the Cournot-Nash one.

For u strictly submodular, consider first the lower bound of SPNE(GM ): the two out-

comes that compose this set (apart from the Nash equilibrium of G) are such that one principal

chooses his highest action (that is yi = yI
i ) and the other principal chooses his best response

to it (that is yj = BRj(y
I
i )). These outcomes have the feature that, for the principal j (for

whom the action yj is the best response in G) the payoff achieved is equal to the minimax

value vj ; therefore, such outcomes can never Pareto dominate the Nash equilibrium outcome.

Now I turn the attention to the upper bound of SPNE(GM ). Notice that even if the set

of outcomes that can be supported by an equilibrium of the game with delegation is large,

such a set can be restricted considerably, if one is interested in the Pareto-efficient frontier.

The reason is that any outcome (yi, yj) such that neither one of the two principals has a

deviation to a higher strategy, is Pareto-dominated by an outcome (yi, y
′
j), where y′j = BR(yi).

This implies that the Pareto-frontier of the set of outcomes supported by SPNE(GM ) is

included in the set of individually rational outcomes such that one principal is best responding

and the other one does not have a deviation to a higher action (that is, (yi, yj) such that

yi = BRi(yj) and vj(yi, yj) ≥ vj(y
′
i, yj) for all y′i >i yi). As in the case of u supermodular, this

characterization does not exclude the possibility that some of the equilibria with delegation

might Pareto-dominate the equilibria in the original game. Again I refer to section 5 for an

example in which this is not the case.

Until now I focused my attention on equilibria in which the agent chooses a single outcome

with probability one. It is well known that in common agency, the principals can use the agent

as a correlating device (see for example Martimort and Stole 2002, Peters 2001, and 2003a)

and this can create equilibria sustainable with menus but not with simple contracts. If u is

submodular restricting attention to equilibria in which the agent chooses an outcome with

probability one is with loss of generality. That is, allowing the agent to randomize over the

menus offered enlarges the set of payoff profiles supported by an equilibrium in the game with

delegation. Moreover, some of these equilibria Pareto dominate the Nash equilibrium of the

original game. I show this phenomenon by means of the example used in section 2 (prisoners’

dilemma with an interested mediator). Consider the following payoffs of the agent: uCC = 3,

uCD = uDC = 2 and uDD = 0. If each principal chooses to offer to the agent the following

menu Mi = {(C, tci = 0); (D, td1 = 2)}, the payoffs for the principals and the agent are
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(C, 0) (D, 2)

(C, 0) 4, 4, 3 0, 4, 4

(D, 2) 4, 0, 4 −1,−1, 4

Consider the following strategy of the agent σA: choose {(D, 2), (C)} with probability 1
2

and {(C), (D, 2)} with probability 1
2 if the principals have chosen the above menus (M1,M2);

if one of the principal deviates, choose (D, 2) from the non-deviating principal. The strategy

profile (M1,M2, σA) is a subgame perfect Nash equilibrium of the game with menus and the

equilibrium payoffs are (2, 2, 4).

The example shows that if the agent can randomize between the two elements of the menus

that correspond to the outcomes (C,D) and (D,C) it is possible to achieve an equilibrium

that Pareto dominates the Nash equilibrium of the original game and that is robust to both

pure and mixed strategy deviations.29 An interesting feature of this example is that in order

to achieve this cooperative equilibrium the principals must pay a rent to use the agent as a

randomizing device between the two asymmetric outcomes (C,D) and (D,C).

The existence of such correlation rents for the agent (and correlation costs for the princi-

pals) is a distinctive feature of the model presented in this paper and bears some interesting

consequences. First, the agent receives a rent even if there is no asymmetric information

between principals and agent. Second, these kind of equilibria can be sustained as long as the

“correlation cost” (given by uCD − uDD) is not higher relative to the benefit of correlation.30

This creates an interesting effect on efficiency.

5 Example: duopoly with common supplier

In this section, I present a simple model of Cournot duopoly where the two firms have a

common supplier. This example is very similar to the models of private common agency in

Martimort and Stole (2003) and of bidding games in Segal and Whinston (2003). This section

serves, then, two purposes: on one hand, it illustrates the results obtained in the previous

section by means of a simple example and on the other hand, it contrasts such results with

the ones known in the literature.

Consider a duopolistic market in which the inverse demand function is given by P (Q1, Q2) =

max{A−B(Q1 +Q2), 0} where P is the market price and Qi is the ith firm’s output. Assume

that both firms can buy any (integer) quantity Qi from a common manufacturer paying the

29The example is very close to the one in Peters (2003a) who shows that there exist equilibria in which the

agent randomizes that are robust to both pure and mixed strategy deviations. The only difference is that in

this example, the payoffs of the principals Pareto dominate the Nash equilibrium of the original game, while

in the Peter’s example the opposite is true.
30For a symmetric payoff function of the agent, the condition to have an equilibrium with correlation is

uCD − uDD < v1(D, C) + v1(C, D) − 2v1(D, D).
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per unit price m. The ith firm’s profit function is given by Πi(Q1, Q2) = P (Q1, Q2)Qi −mQi.

The common supplier’s payoff function is ΠA(Q1, Q2) = mQ1 + mQ2 − C(Q1, Q2) where

C(Q1, Q2) is the common agent’s cost function. For the sake of simplicity, we further assume

that C(Q1, Q2) = α(Q1 + Q2) + β(Q1 + Q2)
2.

This model is an example of a game with externality G. The unique Nash equilibrium of

the game G is Q⋆
1 = Q⋆

2 = (A−m)
3B

and the equilibrium payoffs are Π⋆
1 = Π⋆

2 = (A−m)2

9B
for the

two firms and Π⋆
A = m(2(A−m)

3B
) − C(2(A−m)

3B
) for the common agent.31

In the resulting delegation game GM , each of the two firms offers a menu Mi to the common

supplier, where the generic element mi ∈ Mi is composed of an integer quantity and a transfer,

that is mi = (Qi, ti); the agent observes the menus M1 and M2 and chooses an element

m1 ∈ M1 and m2 ∈ M2. In other words, the delegation game GM is equivalent to a model

in which each competing firm i offers a non linear price schedule ti(Qi) to the manufacturer

who then chooses to produce the quantities (Q1, Q2) receiving monetary transfers from two

firms for an amount t1(Q1) + t2(Q2).
32

This model differs from the ones presented in Martimort and Stole (2003) and Segal and

Whinston (2003) in two important aspects: first, in their models the principals cannot offer

mixed strategies. The second important difference regards the outside option of the agent.

In the Martimort and Stole (2003) and Segal and Whinston (2003) models, as in all existing

models of common agency, it is assumed that the agent has the option to reject the offers

made by the principals. The interpretation is that while the principal has the bargaining

power to make an offer, the agent can always ensure her reservation utility (the utility she

receives rejecting both offers). In other words, the status quo is a no-trade outcome, to which

the agent can decide to resort. In the model presented in this paper, the status quo can be

seen as an agreement to trade at a given unitary price m. The agent cannot refuse to trade

at a unitary price higher than m, but she can refuse to trade at a unitary price lower than m.

This is why I assume that in GM , the principals must offer acceptable menus, that is menus

that contain at least one element m′
i = (Q′

i, t
′
i) with t′i(Q

′
i) ≥ mQ′

i.

I present the results obtained in this model first for the case of C(Q) (strictly) concave

(β < 0), and then for the case of C(Q) (strictly) convex (β > 0).33

I call the maximum collusive output any pair (Q1, Q2), such that the total output is equal

to the monopoly one and I denote with ΠM the corresponding maximum collusive profits that

the firms can achieve.

31For simplicity, I am assuming that the parameters of the model are such that (A−m)
3B

is an integer.
32The resulting payoffs for firm i are Πi(Q1, Q2) = P (Q1, Q2)Qi − ti(Qi) and for the agent ΠA(Q1, Q2) =

t1(Q1) + t2(Q2) − C(Q1, Q2).
33The case of C(Q) linear, (β = 0), is trivial as proposition 4 immediately implies that any individually

rational outcome can be achieved as a SPNE(GM ), and this result holds whether or not we allow mixed

strategy deviations.
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Strictly concave cost function

If C(Q) is strictly concave we can apply the results obtained in section 4 obtaining:

Corollary 4 If the cost function of the agent C(Q) is strictly concave (β < 0) then

1. The maximum collusive outcome can be obtained in equilibrium if and only if one of the

two firms produce zero output and receive zero profits.

2. There is no equilibrium outcome of GM that Pareto improves over the Nash equilibrium

of the original game.

Proof.

[1] The if part follows immediately from corollary 2. The only if part follows lemma 2 from

which we know that we can focus on outcomes in which Qj = BR(Qi). Therefore we can

write the total profits that can be achieved in a SPNE(GM ) as a function of Qi only:

Π(Qi) = Πi(Qi, BR(Qi)) + Πj(Qi, BR(Qi))

The result now follows from the fact that Π is a decreasing function of Qi.

[2] From proposition 6 we know that all the outcomes that can be supported as a SPNE(GM )

must have one firm choosing Qi ≤
(A−m)

3B
and the other choosing Qj = A−m−BQi

2B
. This implies

that Qi + Qj = A−m
2B

+ 1
2Qi. Therefore the profits of firm i can be written as

Πi(Qi) = (A − B(
A − m

2B
+

1

2
Qi))Qi − mQi = (

A − m

2
)Qi −

B

2
Q2

i

Therefore the profits are increasing in Qi as long as Qi < A−m
2B

. Since at Qi = A−m
3B

the profits

for firm i are equal to the ones obtained in the Nash equilibrium of G (that is Π⋆
i = (A−m)2

9B
),

this implies that the profits for firm i (the firm that is not best responding) are less than the

profits obtained in the Nash equilibrium of G.

Strictly convex cost function

The case of a convex cost function is the one considered by both Martimort and Stole

(2003) and Segal and Whinston (2003). In particular from these papers, we know that if we

focus on symmetric outcomes (Qi = Qj), all the outcomes between the Cournot outcome and

the competitive outcome (that is (Qi, Qj) such that P (Qi + Qj) = m) are supportable as

subgame perfect Nash equilibrium of the game GM . Here I extend the analysis to asymmetric

equilibria and check the robustness of these results to the introduction of mixed strategy

deviations.

Corollary 5 If the cost function of the agent C(Q) is strictly convex (β > 0), then an outcome

(Qi, Qj) can be supported by a SPNE(GM ) if and only if Qi +Qj ≤
A−m

B
and Qi ≥ BR(Qj),

for all i, j.
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Proof.

[If:] If Qi +Qj ≤
A−m

B
, the profits of each of the two firms are greater than zero, and therefore

the outcome (Qi, Qj) is individually rational. Moreover, if for both i and j, Qi ≥ BR(Qj),

then no firm has a higher strategy deviation. Therefore condition 1 of proposition 7 is verified.

Condition 2 of proposition 7 is always verified for the functional forms chosen in this example.

In fact we have that the function ∆u(Qi) is linear whereas the function vi(Qi) is concave. In

fact

∆u(Qi) = u(Qi, Q
I
j ) − u(Qi, Q

⋆
j)

= m(Qi + QI
j ) − C(Qi + QI

j) − m(Qi + Q⋆
j ) + C(Qi + Q⋆

j)

= (m − α)(QI
j − Q⋆

j ) − β(QI2

j − Q⋆2

j ) − 2β(QI
j − Q⋆

j)Qi

and

vi(Qi, Q
⋆
j ) = [A − B(Qi + Q⋆

j)]Qi − mQi

= (A − BQ⋆
j − m)Qi − BQ2

i

But then, for any δi with a support containing Qi < Q⋆
i and such that

∑
Qi

vi(Qi, Q
⋆
j)δ(Qi) >

vi(Q
⋆
i , Q

⋆
j), we have

∑
Qi

∆u(Qi)δ(Qi) ≥ ∆u(Q⋆
i ); therefore condition 2 of proposition 7 is

also verified.

[Only if:] If either Qi +Qj > A−m
B

or Qi < BR(Qj), we have that condition 1 of proposition 8

is not satisfied and therefore we obtain that (Qi, Qj) cannot be supported by a SPNE(GM ).

As its proof clearly shows, corollary 5 is still valid even if we restrict principals to use only

pure strategy deviations. This means that for the functional forms chosen for this model,

the introduction of mixed strategy deviations do not change at all the set of equilibrium

outcomes that are available with delegation. Let me clarify this result: one of the objectives

of the paper is to assess whether the results obtained in common agency models are robust

to the introduction of mixed strategies. The results of this section indicate that for the

chosen functional forms, this is indeed the case. The message is more general though. On

one hand, it is possible to choose payoff functions for the agent and the principals for which

outcomes supported as equilibria of the model without mixed strategies are not equilibrium

outcomes if principals are allowed to have mixed strategy deviations. On the other hand,

with u submodular (that is with a convex cost function of the agent), for any payoff functions

of the principals, it is always possible to find a payoff function of the agent for which mixed

strategy deviations have no role. This is not true for u supermodular (concave cost function

of the agent). Since Martimort and Stole (2003) and Segal and Whinston (2003, section 7)

consider a supplier with convex cost function, it is likely that the equilibria that they find are

robust to the introduction of mixed strategy deviations.
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Corollaries 4 and 5 give a complete picture of the role of delegation to a common agent for

the Cournot duopoly with a common supplier: if we focus only on symmetric outcomes, then

the agent can never help the principals to improve over the outcome of the original game. On

the other hand, if we consider asymmetric outcomes, the agent has always a role in enlarging

the set of equilibrium outcomes. In particular, if the cost function is convex, the Stackelberg

outcome is achievable, and if the cost function is concave, the exclusion outcome is achievable.

None of these asymmetric outcomes Pareto dominate the Cournot outcome.

6 Conclusions

In this paper, I address the issue of whether and how delegating the choice of strategies to

an interested mediator (agent) can improve upon the equilibrium outcome of two player games

in strategic form. As can be expected, the role of the agent depends on her preferences and yet

is somehow limited. This is not surprising: first of all, the agent does not have a proper action

to take, i.e., she cannot affect the payoffs of the principals, unless they decide simultaneously

and non-cooperatively to delegate part of their actions to the agent. Moreover, following

the tradition of private common agency, I assumed a “delegation” technology (or better

a “contracting” technology) that does not allow the principals to offer monetary transfers

depending on the full action of the agent. In addition to these hurdles to delegation, I added

a further obstacle: if a principal chooses not to delegate, I assumed that he can commit to a

single mixed strategy.

In fact it might be surprising to some that even in these limiting conditions the agent still

has a role in enlarging the set of outcomes achievable in equilibrium. One remarkable example

is the persistence of asymmetric outcomes as equilibria of the delegation game. Another

example of the successful role of the agent as a mediator was given in section 4, where (for

the case of u submodular) there exist equilibria that Pareto improve over the outcome of the

original game (in which the agent correlates among asymmetric outcomes).

The results presented in this paper depend crucially on the assumption that principals

can choose not to delegate and are able to commit to a single mixed strategy. This modeling

choice is a departure from most models of common agency and I see it first of all as a

simplifying assumption; once it is known that equilibria in menus in which principals are

restricted to offer deterministic menus might not be robust to mixed strategy deviations, then

it is reasonable to investigate how far this simplifying assumption brings us in characterizing

the set of equilibrium outcomes achievable with delegation. There are other reasons that make

this assumption appealing. First, with this assumption the original game without delegation

is nested in the game with delegation. That is, all the strategies available to the players in

the original game are still available to the players in the game with delegation. This has

attractive consequences: for example, we obtain immediately the existence of an equilibrium
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in the delegation game for any finite game G. Secondly, this assumption allows us to consider

the most favorable setting for the validity of the revelation principle with more than one

principal: if even in this context, the revelation principle fails, there is no chance to recover

it in a simple manner.

An important point to note is that while I allow principals to commit to a single mixed-

strategy if they decide not to delegate, I do not allow them to offer menus in which one of

the choices is a mixed strategy.34 The question of what are the outcomes supported by such

equilibria is interesting, yet it would dilute the message of this paper. Allowing such menus

of mixed strategies might potentially enlarge the set of outcomes that can be supported as

equilibria of the delegation game with respect to both the model in this paper and the model

with only pure strategies. For this reason I leave this task to further research.

7 Appendix

Proof of proposition 1. Let (δ⋆
1 , δ

⋆
2) be a Nash equilibrium of G. It is easy to show

that there exists a subgame perfect Nash equilibrium of GM where neither principal dele-

gates and both choose strategy δ⋆
i . The strategy of the agent σA in this subgame perfect

Nash equilibrium is any strategy that is sequentially rational (that maximizes agent pay-

offs after any history). If a principal j deviates by not delegating and choosing strategy

δ′j , then payoff of principal j is
∑

yi∈Yi

∑
yj∈Yj

vj(yi, yj)δ
⋆
i (yi)δ

′
j(yj) that is smaller or equal

than
∑

yi∈Yi

∑
yj∈Yj

vj(yi, yj)δ
⋆
i (yi)δ

⋆
j (yj) for definition of Nash equilibrium. If a principal j

deviates by delegating to a menu Mj , the probability distribution µ(y) induced by the strat-

egy of the agent σA(M) can be written as a product between σA(M)(yj) and δ⋆
i obtaining

again Vj(δ
⋆
i ,Mj , σA) =

∑
yi∈Yi

∑
yj∈Yj

vj(yi, yj)δ
⋆
i (yi)σA(M)(yj) that is smaller or equal than

∑
yi∈Yi

∑
yj∈Yj

vj(yi, yj)δ
⋆
i (yi)δ

⋆
j (yj) for definition of Nash equilibrium.

Proof of proposition 2. Consider an arbitrary individually rational correlated strategy

µ(y). It can be supported as a subgame perfect Nash equilibrium of GM by the following

strategies of the principals: Mi = Yi for any i = {1, 2} (that is both principals choose to

delegate the complete menu). The strategy of the agent σ⋆
A has the following 3 components:

If M = Y1 × Y2, then σ⋆
A(M) = µ(y). If only one principal j deviates to δj ∈ ∆(Yj), then

σ⋆
A(M) = arg minσA∈∆(Yi) Vj(Mi, δj , σA). If neither principal offers Mi = Yi then σ⋆

A(M) is

arbitrary. Since the agent is indifferent over all Y , any strategy of the agent is going to be a

best response for any M , in particular the strategy σ⋆
A is part of a SPNE(GM ). Moreover

given the strategy of the agent, an arbitrary deviating principal j can get at most vj and since

µ(y) is individually rational the deviation is not profitable.

Proof of lemma 1. The proof is by contradiction. Assume, that y∗ is supported by a sub-

34For example, in the prisoners’ dilemma with externality, one principal cannot offer a menu composed of

C and the mixed strategy C with probability 1
3
, D with probability 2

3
.
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game perfect Nash equilibrium of GM , {(Mi,Mj , σA)}, and that for principal i, there exist an

action yi ∈ Yi such that vi(yi, y
∗
j ) > vi(y

∗
i , y

∗
j ). Since agent must find profitable to punish the

pure strategy deviation yi, this implies that the set Pj(yi, y
⋆
j ) ≡ {yp

j 6= y⋆
j such that u(yi, y

p
j ) ≥

u(yi, y
⋆
j )} ∩ Mj 6= ∅. For any element yp

j ∈ Pj(yi, y
⋆
j ) we have

u(yi, y
p
j ) ≥ u(yi, y

⋆
j ) (1)

u(y⋆
i , y

⋆
j ) ≥ u(y⋆

i , y
p
j ) (2)

Condition 1 above holds true by definition of the set Pj(yi, y
⋆
j ) and condition 2 is necessary

for the agent to choose (y⋆
i , y

⋆
j ) in equilibrium. Now if by contradiction ∀yj ∈ Mj ⊂ Yj

we have that yj 6= y⋆
j implies u(y∗i , yj) 6= u(y∗i , y

∗
j ) then condition 2 must hold with strict

inequality. This implies that for any yp
j ∈ Pj(yi, y

⋆
j ) there exist a unique q such that 0 ≤ q < 1

such that qu(y⋆
i , y

⋆
j ) + (1 − q)u(yi, y

⋆
j ) = qu(y⋆

i , y
p
j ) + (1 − q)u(yi, y

p
j ). To indicate that such

a q depends on yp
j , I denote with q(yp

j ). Now denote with q⋆ the highest q among these;

that is q⋆ = maxy
p
j ∈Pj

q(yp
j ). Since Yj is finite, the set Pj(yi, y

⋆
j ) contains at most a finite

number of elements and therefore q⋆ < 1. Now define q′ = q⋆ + ǫ with 0 < ǫ < 1 − q⋆

(so that also q′ < 1) and consider the mixed strategy for principal i: y⋆
i with probability q′

and yi with probability (1 − q′). This mixed strategy for principal i constitutes a profitable

deviation from the outcome (y⋆
i , y

⋆
j ) a contradiction with (y⋆

i , y
⋆
j ) supported by the subgame

perfect Nash equilibrium {(Mi,Mj , σA)}. To prove this last statement, first note that when

principal j chooses the menu Mj and principal i chooses (not to delegate) the mixed strategy

q′, the agent will choose the element yj ∈ Mj. In fact, by construction of q′, we have

that q′u(y⋆
i , y

⋆
j ) + (1 − q′)u(yi, y

⋆
j ) > q′u(y⋆

i , yj) + (1 − q′)u(yi, yj), for all the yj ∈ Pj(yi, y
⋆
j ).

Moreover for all the yj /∈ Pj(yi, y
⋆
j ) but yj ∈ Mj we have both u(y⋆

i , y
⋆
j ) ≥ u(y⋆

i , yj) and

u(yi, y
⋆
j ) ≥ u(yi, yj) that imply q′u(y⋆

i , y
⋆
j ) + (1 − q′)u(yi, y

⋆
j ) > q′u(y⋆

i , yj) + (1 − q′)u(yi, yj).

To conclude the proof, note that then playing the mixed strategy q′ gives an expected payoff

to principal i equal to q′vi(y
⋆
i , y

⋆
j ) + (1 − q′)vi(yi, y

⋆
j ) by assumption higher than vi(y

⋆
i , y

⋆
j ).

That is, the agent cannot punish the mixed strategy deviation q′ even if he can punish the

pure strategy deviation yi.

Proof of proposition 3. The proof is by contradiction. Assume ΠSPNE (GM ) 6= ΠNE (G).

By Proposition 1 this implies that there exist a (v1, v2) such that (v1, v2) ∈ ΠSPNE (GM )

and (v1, v2) /∈ ΠNE (G). We have two possible cases. Case 1: (v1, v2) is supported by a

single outcome (y1, y2) ∈ Y . Case 2: (v1, v2) is supported by a non degenerate probability

distribution µ over Y . Case 1: If (v1, v2) is supported by a single outcome (y⋆
1 , y

⋆
2) ∈ Y and

(y⋆
1, y

⋆
2) is not a Nash Equilibrium of G, ∃i ∈ {1, 2} such that the set Di(y

⋆
i , y

⋆
j ) ≡ {yi ∈

Yi|vi(yi, y
⋆
j ) > vi(y

⋆
i , y

⋆
j )} 6= ∅. Therefore, by lemma 1, there exist an action yj ∈ Mj ⊂ Yj

such that yj 6= y⋆
j and u(y∗i , yj) = u(y∗i , y

∗
j ). That is a contradiction with the assumption of

u agent-generic. Case 2: If (v1, v2) is supported by a non degenerate probability distribution

µ over Y , we have two further subcases: in case 2a, there exist a ∃i ∈ {1, 2} and a (yi, yj)
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in the support of µ, such that vi(yi, yj) > vi. Then principal i could deviate to the singleton

yi leaving the agent to choose among the elements of yi × Mj. Since u is agent-generic

the arg maxyj∈Mj
u(yi, yj) is a singleton and since (yi, yj) is in the support of µ the optimal

choice for the agent is (yi, yj). But this means that principal i has a profitable deviation, a

contradiction. In the case 2b, ∀i ∈ N and ∀y in the support of µ, vi(y) = vi. This implies

that if y belongs to the support of µ, y cannot be a NE(G); we can therefore apply the

same reasoning as for the case 1, that is: there exist ∃i ∈ N such that the set Di(y) ≡ {yd
i ∈

Yi|vi(y
d
i , yj) > vi(yi, yj)} 6= ∅. Therefore, by lemma 1, there exist an action yp

j ∈ Mj ⊂ Yj such

that u(yi, y
p
j ) = u(yi, yj). That is a contradiction with the assumption of u agent-generic.

Proof of proposition 4. Let y = (y⋆
i , y

⋆
j ) ∈ Y be the outcome to be supported by a subgame

perfect Nash equilibrium of GM , {(Mi,Mj , σA)}. The two principals can offer the complete

menus Mi = {yi, ti(yi)}yi∈Yi
and Mj = {yj , tj(yj)}yj∈Yj

where the monetary transfers ti(yi)

and tj(yj) are defined as follows: ti(yi) = u(y⋆
i , y

⋆
j )−u(yi, y

⋆
j ) and tj(yj) = u(y⋆

i , y
⋆
j )−u(y⋆

i , yj).

Notice that ti(y
⋆
i ) = 0 and tj(y

⋆
j ) = 0, so that both the menus M1 and M2 are feasible (that

is M1 ∈ M1 and M2 ∈ M2). The strategy of the agent σA has the following 3 components: if

M = M1×M2, then agent chooses {(y⋆
i , ti(y

⋆
i )), (y

⋆
j , tj(y

⋆
j ))}. If only one principal j deviates to

δj ∈ ∆(Yj), then σA(M) = arg minσA∈∆(Yi) Vj(Mi, δj , σA). If neither principal offers Mi = Yi

then σA(M) is arbitrary. The strategy σA is a best response for any M , and so part of a

subgame perfect Nash equilibrium. This holds true because first, since u satisfies constant

differences, the agent is indifferent over the whole set of menus Mi×Mj and therefore choosing

{(y⋆
i , ti(y

⋆
i )), (y

⋆
j , tj(y

⋆
j ))} is part of the equilibrium strategy of the agent. Moreover if principal

j deviates to any δj ∈ ∆(Yj), the agent is indifferent over the set of choices that this deviation

produces; that is u(mi, δj) is constant for any mi ∈ Mi. This is an immediate consequence

of u satisfying constant differences. Given the agent strategy, σA, neither principal has a

profitable deviation. If principal j deviates to δj his payoffs are equal to Vj(Mi, δj , σA) =
∑

yi∈Yi

∑
yj∈Yj

vj(yi, yj)σA(M)(yi)δj(yj) = minδi∈∆(Yi)

∑
yi∈Yi

∑
yj∈Yj

vj(yi, yj)δi(yi)δj(yj) ≤

vj ≤ vj(y
⋆
1 , y

⋆
2), where the last inequality holds true because (y⋆

1 , y
⋆
2) is individually rational.

Proof of lemma 2. The proof is by contradiction. Assume there exists an outcome (y⋆
i , y

⋆
j )

supported by a subgame perfect Nash equilibrium of GM , and such that the sets Di(y
⋆
i , y

⋆
j )

and Dj(y
⋆
i , y

⋆
j ) are both nonempty where Di(y

⋆
i , y

⋆
j ) ≡ {yi ∈ Yi|vi(yi, y

⋆
j ) > vi(y

⋆
i , y

⋆
j )} and

Dj(y
⋆
i , y

⋆
j ) ≡ {yj ∈ Yj |vj(y

⋆
i , yj) > vj(y

⋆
i , y

⋆
j )}. Since (y⋆

i , y
⋆
j ) is supported by a subgame

perfect Nash equilibrium of GM , then for any yi ∈ Di(y
⋆
i , y

⋆
j ) there exist a (yp

j , tj(y
p
j )) ∈ Mj

such that vi(yi, y
p
j ) < vi(yi, y

⋆
j ). Moreover, for the assumption of negative externality, yp

j > y⋆
j

and from lemma 1 u(y⋆
i , y

⋆
j , ti(y

⋆
i ), tj(y

⋆
j )) = u(y⋆

i , y
p
j , ti(y

⋆
i ), tj(y

p
j )). The same is true for the

other principal and therefore we obtain that there exist (y⋆
i , y

p
i ) ∈ Yi, and (y⋆

j , y
p
j ) ∈ Yj with

29



y⋆
i > yp

i and y⋆
j > yp

j , such that

u(y⋆
i , y

⋆
j , ti(y

⋆
i ), tj(y

⋆
j )) = u(y⋆

i , y
p
j , ti(y

⋆
i ), tj(y

p
j )) (1)

u(y⋆
i , y

⋆
j , ti(y

⋆
i ), tj(y

⋆
j )) = u(yp

i , y
⋆
j , ti(y

p
i ), tj(y

⋆
j )) (2)

u(y⋆
i , y

⋆
j , ti(y

⋆
i ), tj(y

⋆
j )) ≥ u(yp

i , y
p
j , ti(y

p
i ), tj(y

p
j )) (3)

Condition 1 implies tj(y
p
j ) − tj(y

⋆
j ) = u(y⋆

i , y
⋆
j ) − u(y⋆

i , y
p
j ) while condition 2 implies ti(y

p
i ) −

ti(y
⋆
i ) = u(y⋆

i , y
⋆
j ) − u(yp

i , y
⋆
j ). If we substitute these expressions in the condition 3 we obtain

u(y⋆
i , y

p
j )−u(y⋆

i , y
⋆
j ) ≥ u(yp

i , y
p
j )−u(yp

i , y
⋆
j ) that is a contradiction with u strictly supermodular.

Proof of proposition 5. If conditions (1) and (2) hold, then the outcome (y⋆
i , y

⋆
j ) can

be supported by a subgame perfect Nash equilibrium (Mi, y
⋆
j , σA), where the strategies for

principals and the agent are the following: principal j does not delegate choosing action y⋆
j ;

principal i delegates the menu Mi = {(y⋆
i , ti(y

⋆
i )); (y

p
i , ti(y

p
i )); (y

I
i , ti(y

I
i ))}, where ti(y

⋆
i ) = 0,

ti(y
p
i ) = u(y⋆

i , y
⋆
j ) − u(yp

i , y
⋆
j ) and ti(y

I
i ) = u(y⋆

i , y
⋆
j ) − u(yI

i , y⋆
j ) and the agent strategy σA

requires the agent to choose (y⋆
i , ti(y

⋆
i )) from Mi if principal j chooses y⋆

j . If yI
i satisfies

condition (2), in fact the menu Mi only contains two elements (y⋆
i , ti(y

⋆
i )) and (yI

i , ti(y
I
i ));

If yI
i does not satisfy condition (2), then the menu contains also the element yp

i for which

condition (2) is satisfied. Notice that ti(y
⋆
i ) = 0, and therefore Mi is an acceptable menu. If

principal j offers y⋆
j , then the agent is indifferent between the elements of Mi and therefore the

strategy of the agent is optimal in equilibrium. Moreover since by assumption y⋆
i = BR(y⋆

j ),

principal i does not have a profitable deviation and therefore we only need to worry about

possible deviations of principal j. We first focus on possible pure strategy deviations of

principal j. Since u is strictly supermodular, if principal j deviates by choosing yj >j y⋆
j the

agent selects (yI
i , ti(y

I
i )) from Mi; conversely if principal j deviates by choosing yj <j y⋆

j the

agent selects (y⋆
i , ti(y

⋆
i )) from Mi (note that condition 2 implies yp

i >i y⋆
i ). By condition (1)

deviations to yj <j y⋆
j are unprofitable because vj(y

⋆
i , yj) ≤ vj(y

⋆
i , y

⋆
j ). Deviations to yj >j y⋆

j

are unprofitable because (y⋆
i , y

⋆
j ) is individually rational and so vj(y

I
i , yj) ≤ vj(y

⋆
i , y

⋆
j ). Now

consider mixed strategy deviations δj ; if the support of δj contains only actions yj such that

yj > y⋆
j , then again for supermodularity of u the agent will select the element (yI

i , ti(y
I
i )) from

Mi and this is sufficient to punish the deviation δj . If the mixed strategy deviation δj has

support with elements yj with yj <j y⋆
j , then (because of condition 1) the support of δj will

also contain elements y′j >j y⋆
j . Then in order for such a deviation δj to be profitable it is

necessary to have
∑

yj∈Yj
vj(y

⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ). But then for condition (2) we have that

∑
yj∈Yj

[u(yp
i , yj) − u(y⋆

i , yj)]δj(yj) ≥ u(yp
i , y

⋆
j ) − u(y⋆

i , y
⋆
j ). This last inequality is sufficient to

guarantee that the agent selects the element (yp
i , ti(y

p
i )) from menu Mi, making the deviation

to δj unprofitable.

Proof of proposition 6. The proof is by contradiction. Assume that condition 1 is not sat-

isfied and that (y⋆
i , y

⋆
j ) is supported as a subgame perfect Nash equilibrium of the game GM .
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Then ∃yj ∈ Yj with y⋆
j >j yj and vj(y

⋆
i , yj) > vj(y

⋆
i , y

⋆
j ). This implies that there must exist a

(yp
i , t

p
i ) ∈ Mi such that u(yp

i , yj)+tpi ≥ u(y⋆
i , yj)+t⋆i , and u(y⋆

i , y
⋆
j )+t⋆i ≥ u(yp

i , y
⋆
j )+tpi where the

first inequality must hold otherwise yi represent a profitable deviation for principal j and the

second inequality must hold for the agent to choose (y⋆
i , y

⋆
j ) as a part of the equilibrium strat-

egy. Rearranging the two inequalities we have u(yp
i , yj)−u(y⋆

i , yj) ≥ u(yp
i , y

⋆
j )−u(y⋆

i , y⋆
j ). This

last inequality contradicts the strict supermodularity of u as y⋆
j >j yj holds by assumption

and yp
i >i y⋆

i because of the assumption of negative externality. If condition 2 is not satisfied

this means that there exist a mixed strategy deviation δj such that
∑

yj∈Yj
vj(y

⋆
i , yj)δj(yj) >

vj(y
⋆
i , y

⋆
j ) and for all the yp

i ∈ Yi such that
∑

yj∈Yj
vj(y

p
i , yj)δj(yj) < vj(y

⋆
i , y

⋆
j ) we have

∑
yj∈Yj

[u(yp
i , yj)− u(y⋆

i , yj)]δj(yj) < u(yp
i , y

⋆
j )− u(y⋆

i , y
⋆
j ). But this implies that for any menu

Mi offered by principal i such that the agent finds profitable to select the element y⋆
i when prin-

cipal j chooses y⋆
j , the agent will not choose a yp

i such that
∑

yj∈Yj
vj(y

p
i , yj)δj(yj) < vj(y

⋆
i , y

⋆
j ),

if the principal j deviates by choosing the mixed strategy δj . But this implies that principal

j has a profitable mixed deviation, that is a contradiction.

Proof of proposition 7. If conditions (1) and (2) hold, then the outcome (y⋆
i , y

⋆
j )

can be supported by a subgame perfect Nash equilibrium (Mi,Mj , σA), where the strate-

gies for principals and the agent are the following: principal j delegates the menu

Mj = {(y⋆
j , tj(y

⋆
j )); (y

p
j , tj(y

p
j )); (y

I
j , tj(y

I
j ))}, where tj(y

⋆
j ) = 0, tj(y

p
j ) = u(y⋆

i , y
⋆
j ) −

u(y⋆
i , y

p
j ) and tj(y

I
j ) = u(y⋆

i , y
⋆
j ) − u(y⋆

i , y
I
j ) ; principal i delegates the menu Mi =

{(y⋆
i , ti(y

⋆
i )); (y

p
i , ti(y

p
i )); (y

I
i , ti(y

I
i ))}, where ti(y

⋆
i ) = 0, ti(y

p
i ) = u(y⋆

i , y
⋆
j ) − u(yp

i , y
⋆
j ) and

ti(y
I
i ) = u(y⋆

i , y
⋆
j ) − u(yI

i , y
⋆
j ); the agent strategy σA requires the agent to choose m⋆

i =

(y⋆
i , ti(y

⋆
i )) from Mi and m⋆

j = (y⋆
j , tj(y

⋆
j )) from Mj , if the menus offered by principals are

Mi and Mj. First, notice that among the elements (mi,mj) of the menu Mi × Mj we have

u(m⋆
i ,m

⋆
j ) = u(m′

i,m
⋆
j) = u(m⋆

i ,m
′
j) > u(m′

i,m
′
j), (for m′

i = {mI
i ,m

p
i } and m′

j = {mI
j ,m

p
j})

where the equalities follow by the choice of element of the menus and the inequality from

the assumption of u strictly submodular. We first focus on possible pure strategy deviations.

Since u is stritly submodular, if principal j deviates by choosing yj >j y⋆
j the agent selects

m⋆
i = (y⋆

i , ti(y
⋆
i )) from Mi (notice that condition 2 implies yp

i >i y⋆
i ); conversely if principal j

deviates by choosing yj <j y⋆
j the agent selects mI

i = (yI
i , ti(y

I
i )) from Mi. By condition (1)

deviations to yj >j y⋆
j are unprofitable because vj(y

⋆
i , yj) ≤ vj(y

⋆
i , y

⋆
j ). Deviations to yj <j y⋆

j

are unprofitable because (y⋆
i , y

⋆
j ) is individually rational and so vj(y

I
i , yj) ≤ vj(y

⋆
i , y

⋆
j ). The

same is true for pure strategy deviations of the other principal i. Now consider mixed strategy

deviations of principal j, δj ; if the support of δj contains only actions yj such that yj <j y⋆
j ,

then again for submodularity of u the agent will select the element (yI
i , ti(y

I
i )) from Mi and

this is sufficient to punish the deviation δj . If the mixed strategy deviation δj has support

with elements yj with yj >j y⋆
j , then (because of condition 1) the support of δj will also

contain elements y′j <j y⋆
j . Then in order for such a deviation δj to be profitable it is nec-

essary to have
∑

yj∈Yj
vj(y

⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ). But then for condition (2) we have that
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∑
yj∈Yj

[u(yp
i , yj) − u(y⋆

i , yj)]δj(yj) ≥ u(yp
i , y

⋆
j ) − u(y⋆

i , y
⋆
j ). This last inequality is sufficient to

guarantee that the agent selects the element (yp
i , ti(y

p
i )) from menu Mi, making the deviation

to δj unprofitable.

Proof of proposition 8. The proof follows very closely the one of prop 6 and I include it

for completeness. We need to prove that if either condition 1 or 2 are not satisfied (y⋆
i , y

⋆
j )

cannot be supported as a subgame perfect Nash equilibrium of the game GM . The proof is

by contradiction. Assume first that condition 1 is not satisfied and that (y⋆
i , y

⋆
j ) is supported

as a subgame perfect Nash equilibrium of the game GM . Then ∃yj ∈ Yj with yj >j y⋆
j

and vj(y
⋆
i , yj) > vj(y

⋆
i , y

⋆
j ). This implies that there must exist a (yp

i , t
p
i ) ∈ Mi such that

u(yp
i , yj) + tpi ≥ u(y⋆

i , yj) + t⋆i , and u(y⋆
i , y

⋆
j ) + t⋆i ≥ u(yp

i , y
⋆
j ) + tpi where the first inequality

must hold otherwise yi represent a profitable deviation for principal j and the second inequality

must hold for the agent to choose (y⋆
i , y

⋆
j ) as a part of the equilibrium strategy. Rearranging

the two inequalities we have u(yp
i , yj) − u(y⋆

i , yj) ≥ u(yp
i , y

⋆
j ) − u(y⋆

i , y
⋆
j ). This last inequality

contradicts the strict submodularity of u as yj >j y⋆
j holds by assumption and yp

i >i y⋆
i because

of the assumption of negative externality. If condition 2 is not satisfied this means that there

exist a mixed strategy deviation δj such that
∑

yj∈Yj
vj(y

⋆
i , yj)δj(yj) > vj(y

⋆
i , y

⋆
j ) and for

all the yp
i ∈ Yi such that

∑
yj∈Yj

vj(y
p
i , yj)δj(yj) < vj(y

⋆
i , y

⋆
j ) we have

∑
yj∈Yj

[u(yp
i , yj) −

u(y⋆
i , yj)]δj(yj) < u(yp

i , y
⋆
j ) − u(y⋆

i , y
⋆
j ). But this implies that for any menu Mi offered by

principal i such that the agent finds profitable to select the element y⋆
i when principal j

chooses y⋆
j , the agent will not choose a yp

i such that
∑

yj∈Yj
vj(y

p
i , yj)δj(yj) < vj(y

⋆
i , y

⋆
j ), if the

principal j deviates by choosing the mixed strategy δj . But this implies that principal j has

a profitable mixed deviation, that is a contradiction.
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