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In what follows I provide the omitted proofs of the statements and calculations for the paper

“Comment to Why Selective Colleges Should Become Less Selective-And Get Better Students.”

An immediate consequence of Moldovanu and Sela (2001) is that if γ(x) is linear or concave, then

∫1

m
γ(xsq (c))dF (c)>

∫1

m
γ(xmp (c))dF (c) (1)

Assumption 1.
∫1

m
γ(xsq (c))dF (c)>

∫1

m
γ(xmp (c))dF (c)

implies
∫1

m
cγ(xsq (c))dF (c)>

∫1

m
cγ(xmp (c))dF (c)

Corollary 1. Assume that assumption 1 holds, and that γ(x) is a strictly increasing function. Then the

total students welfare is higher with the modified proposal than with the status quo

Proof of Corollary 1. The total welfare of the students in the status quo game is given by

PU −K

∫1

m
cγ(xsq (c))dF (c) (2)

and the total welfare of the students in the modified proposal game is given by

PU −K

∫1

m
cγ(xmp (c))dF (c) (3)

We have that (3) is greater than (2) if and only if

∫1

m
c(γ(xsq (c))−γ(xmp (c)))dF (c) > 0 (4)

If γ(x) = x, then (4) follows from proposition 2 of Moldovanu and Sela (2001) and assumption 1

and we are done. If γ(x) 6= x we know again from Moldovanu and Sela (2001) that xsq (c) =γ
−1(x̃sq (c))

and that xmp (c) = γ
−1(x̃mp (c)) where x̃sq (c) and x̃mp (c) are the equilibrium effort functions that



would arise in equilibrium if γ(x) = x. Therefore (4) holds if and only if

∫1

m
c(x̃sq (c)− x̃mp (c))dF (c)> 0 (5)

that follows again from proposition 2 of Moldovanu and Sela (2001) and assumption 1.

Derivation of equations (1) and (2) in the paper. Using proposition 1 of Moldovanu and Sela (2001)

xsq (c)= A(c)U (6)

where A(c) = (K −1)
∫1

c
1
a (1−F (a))K−2 ×F ′(a)d a

with our parametrization, it becomes

A(c) = 9

∫1

c

1

a
(2−2a)8

×2d a (7)

that is equation (1) in the paper.

Again using proposition 1 of Moldovanu and Sela (2001)

xmp (c) =
1

2
A(c)U +

1

2
B (c)U (8)

where A(c) is given by (7) and B (c) is given by

B (c)= (K −1)
∫1

c
1
a (1−F (a))K−3 × [(K −1)F (a)−1]F ′(a)d a

with our parametrization, it becomes

B (c)= 9

∫1

c

1

a
(2−2a)7

× [9(2a −1)−1]2d a (9)

Therefore we obtain

xmp (c) =
1

2
(9

∫1

c

1

a
(2−2a)8

×2d a)+
1

2
(9

∫1

c

1

a
(2−2a)7

× [9(2a −1)−1]2d a) (10)

that is equation (2) in the paper.

Proof of Proposition 2. From proposition 1 in the paper (again from Moldovanu and Sela, 2001) we

know that xsq (c) is a decreasing function of c and that xsq (1) = 0. Moreover the expected utility of stu-

dent with type c in the status quo, EUsq (xsq (c),c) is also a decreasing function of c and EUsq (xsq (1),1) =

0. Since 0 < f −1(1) < xT < xT , and since xsq (c) is continuous in c , there exist a c1 ∈ (m,1) such that

xsq (c1) = xT . This implies that for all c < c1, xsq (c) > xT . Since for all c < c1, we have EUsq (xsq (c),c) >

0, then we have xsp (c) = xT < xsq (c). Since f −1(1) < xT , student with type c = 1 prefers to choose

x = 0 rather than x = xT in the Schwartz proposal game. Also since xT < xT < f −1(m), the student

of type c = m prefers choosing x = xT rather than x = 0. Since the expected utility EUsp (xs p(c),c) is

continuous in c , we have that there exist c2 ∈ (m,1) such that f (xT ) = c2. Also, notice that we must

have c1 < c2. Since c2 is the marginal student for the threshold xT , it implies that for all c ∈ (c2,1),

xsp (c) = 0 < xsq (c). Finally , we need to show that for all c ∈ (c1,c2), we have xsp (c) > xsq (c). Since

c2 = f (xT ), for all c < c2, xsp = xT . Since c > c1 xsq (c) < xsq (c1) = xT therefore we obtained that

xsp (c) > xsq (c).

2



Calculations to derive the threshold xT = 0.552338. In the numerical example part 2, in the paper, I

assume that the college sets a threshold xT = 0.552338. Here I show that like stated in the paper “such

a threshold induces a marginal student with cost parameter equal to c ′ = 28
44 and an average ex-ante

quality for the admitted students in line with the average ex-ante quality obtained in the modified

proposal with α= 2.”

First, I show that in the numerical example part 1, the average quality of the admitted student is

c =
25
44 . In general the quality of the best student out of N candidates is equal to

AV1 =

∫1

m
xN (1−F (x))N−1 f (x)d x (11)

and the average quality of the second best student is

AV2 =

∫1

m
xN (N −1)F (x)(1−F (x))N−2 f (x)d x (12)

For m =
1
2 and uniform distribution, we have

AV1 =

∫1

1
2

x2N (2−2x)N−1d x (13)

and

AV2 =

∫1

1
2

x2N (N −1)(2x −1)(2−2x)N−2 d x (14)

With 10 candidates, one spot in a selective college and a randomization over the two best candi-

dates, the average ex-ante quality of the admitted college student is

1

2

∫1

1
2

x(20(2−2x)9)d x +
1

2

∫1

1
2

x180(2x −1)(2−2x)8d x =
1

2

6

11
+

1

2

13

22
=

25

44
(15)

Next, we need to find the quality of the marginal student, c ′ such that the average ex-ante quality

of the admitted college student with the Schwartz proposal is equal to c =
25
44 . In order to do this,

we make the simplifying (but wrong) assumption that there will be always at least one student with

threshold above c ′. If this were the case the marginal student must be c ′ = 28
44 .1

Finally, we need to find the level of the threshold xT that induces a marginal student with param-

eter c ′ = 28
44 . The threshold xT that induces a marginal student with parameter c ′ is defined implicitly

by the following equation

Cost of effort at the threshold xT equal to gain from making effort xT rather than zero.

That is

c ′γ(xT ) =
N−1
∑

j=0

(

N −1

j

)

F (c)N−1− j (1−F (c)) j 1

N − j
−

(1−F (c))N

N
(16)

1As discussed in the paper, see footnote 7, there is a positive probability, although small and vanishing as the number

of candidates increases, that none of the candidate has parameter c ≤ c′. This event complicates the calculation of what is

the marginal student c′ that induces an average ex-ante quality c =
25
44 . In fact, it turns out that for the choice of parameters

of the numerical example, it is impossible to find a threshold that induces an average ex-ante quality of student with the

Schwartz proposal equal to c =
25
44 . The highest possible average quality is in fact lower than c =

25
44 . Since the use of these

calculations is only to find a level of threshold xT comparable with the ex-ante average quality of obtained in the modified

proposal with α= 2, we take the short-cut of assuming that the event “no student with c ≤ c′” has zero probability.
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The left hand side of the equation (16) is the cost of exerting the effort threshold for the marginal

student; the first term of the right-end side of the equation (16) is the probability of being admitted to

college2 for type c conditional to c being the worse quality student who exerts effort and the second

term of the right-end side of the equation (16) is the probability of being admitted to college by not

making any effort. This last term is very close to zero and it is calculated under the assumption that

if no applicant has produced an effort eT , the college chooses randomly over all the applicants. By

employing the same simplifying assumption above, we impose that the probability of being admitted

to college by exerting zero effort is equal to zero and in doing so the equation (16) becomes

c ′γ(xT ) =
N−1
∑

j=0

(

N −1

j

)

F (c)N−1− j (1−F (c)) j 1

N − j
(17)

Now, by substituting the parameter values of the numerical example in the paper, that is γ(x) = x,

N = 10 and F (c)= 2c −1) we obtain

c ′xT =

9
∑

j=0

(

9

j

)

(2c −1)9− j (2−2c) j 1

10− j
(18)

that for c ′ = 28
44 gives us the value of xT = 0.552338.

2The value of being admitted is normalized to 1.
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