

Suffer Little Children...

IMRT, Second Cancers, and the Special Case of Children

Eric J. Hall, D.Phil., D.Sc., FACR, FRCR Columbia University, New York

Knowledge of Radiation-Induced Cancer Comes from:

- A-bomb survivors.
- Accidents.
- Individuals medically exposed.
 - Includes second cancer in RT patients.

Lifetime Probabilities of Developing Fatal Secondary Malignancies by Organ Site

Organ	Probability of Fatal Cancer (%/Sv)
Bladder	0.30
Bone marrow	0.50
Bone surface	0.05
Breast	0.20
Esophagus	0.30
Colon	0.85 *
Liver	0.15
Lung	0.85 *
Ovary	0.10
Skin	0.02
Stomach	1.10 *
Thyroid	0.08
Remainder of body	0.50
Total	5.00

$3D-CRT \rightarrow IMRT$

- More monitor units (factor of 2-3)
 therefore larger total body dose.
- More fields
 - therefore bigger volume of normal tissue exposed to lower doses.

Monitor Units

- Delivery of a specified dose to the isocentre from a modulated field, delivered by IMRT, will require the accelerator to be energized for longer (hence more monitor units).
- It therefore follows that the dose due to leakage radiation will be increased.

More Fields

- A bigger volume of normal tissue exposed to lower radiation doses.
- The importance of this depends on the shape of the dose-response relationship for radiation-induced carcinogenesis.

Hall & Wu, 2003	
Conventional 6 MV	1.5
IMRT 6 MV	3.0
Kry et al., 2005	
Conventional 18 MV Varian	1.7
IMRT 6 MV Varian	2.9
Siemens	3.7
IMRT 10 MV Varian	2.1
IMRT 15 MV Varian	3.4
Siemens	4.0
IMRT 18 MV Varian	5.1

The Special Case of Children

- More sensitive to radiation-induced carcinogenesis by a factor of 10.
- Scatter from treatment volume is more important due patient size.
- Genetic susceptibility. Most children with cancer carry a germline mutation.

Genetic Susceptibility

- Haploinsufficiency for ATM, BRCA1, and RAD9 result in increased radiosensitivity to oncogenic transformation in MEF's
- Many children with cancer carry a germline mutation -- ? Radiosensitive
- Hodgkin's patients are more sensitive to radiation induced breast cancer than WT or neuroblastoma patients

ATM, BRCA1, and mRad9 in Knockout Mice

Protons

- Reduced vol. of normal tissue exposed.
- Reduce second cancer incidence.

However -

- Passive modulation results in total body neutron dose – offsets gains.
- Scanning beam allows full advantage of protons to be realized.

The Bottom Line: Radiotherapy in Older Patients

- Induced cancers increase with time after radiotherapy.
- 1½% by ten years.
- May be doubled by new techniques (IMRT).

Bottom Line (continued)

 In older patients (e.g., prostate Ca) doubling the second cancer incidence from 1.5 to 3% may be acceptable if balanced by a big improvement in local tumor control and reduced acute toxicity.

Bottom Line (continued)

- Children are special case. Second cancer incidence is much higher; doubling it may not be acceptable.
- Genetic susceptibility may be a more important factor for children.
- Present levels of leakage radiation are not inevitable; they can be reduced.

Mitigating the Problem

- Increased shielding in treatment head.
 20 cm tungsten reduces leakage by 90%.
- Secondary beam blocking. Allow backup jaws to track MLC.
- Flattening filter not needed for IMRT.
 - Removes source of scatter.Doubles dose-rate at center.
 - Distance in place of y rave
- Protons in place of x-rays.

