
WordPerfect
5.1 Macro Manual

Extracted by WPDOS.org

WordPerfect

Reference
for IBM® Personal Computers
and PC Networks

Appendix I: Macros and Merge, Comparison

Macros and Merge are both complex features of WordPerfect that have many
similarities, but important differences. Since these features can perform many of
the same tasks, this section is provided to help you better understand each
feature and distinguish between them.

Before reading this section, we recommend that you familiarize yourself with the
Macros and Merge features, as documented in the following sections:

• Workbook Lessons 23, 24, and 25
• Macros
• Macros, Define
• Macros, Execute
• Macros, Macro Editor
• Macros, Message Display
• Merge
• Appendix J: Macros and Merge, Expressions
• Appendix K: Macros and Merge, Programming Commands
• Appendix L: Macros and Merge, Variables

Similarities Commands
Both Macros and Merge use a similar programming command language. Many
of the major programming structures (IF structures, CASE structures, FOR and
WHILE loops, global variables, subroutine branching structures) are identical,
whether in a macro or merge file. See also Commands under Differences below.

Macro-to-Merge Interface
Either feature can initiate execution of the other, i.e., a macro can execute a
merge, and a merge can execute a macro (by nesting or chaining). This allows
you to take advantage of the abilities of both features to accomplish any given
task.

Overlap in Abilities
Often the same task can be performed by either a macro or a merge. Depending
on the nature of the task, one feature may be more efficient than the other in
accomplishing the task.

Repetition
Both Macros and Merge control repetitive processes, and greatly enhance the
flexibility of WordPerfect and its ability to assist you in creating the documents
you need.

Differences Command Insertion
Although you can define a macro at the normal editing screen when in macro
define mode, macro programming commands must be inserted in the macro via

APPENDIX I: MACROS AND MERGE, COMPARISON 777

the Macro Editor. In Merge, the codes are inserted in the document at the
normal editing screen. There is no "Merge Editor.”

In Macros, when you select a command from the command access box, only the
command itself is entered in the macro. You must then enter the arguments with
their appropriate tildes (~) yourself. In Merge, if you select a command that
requires arguments, you are prompted for each argument, and WordPerfect enters
the tildes for you.

Commands
Although there are many common programming commands between Macros and
Merge, many are very different. Sometimes even the same command has
important differences in function depending on whether it is in a macro or merge
file.

For example, the User Interface commands ((CHAR). (INPUT), (PROMPT),
(TEXT)) in Macros allow cursor positioning codes to position the message of
the command anywhere on the screen. In Merge, cursor positioning is not
allowed. You must use a scrolling technique, or nest a macro to display large
messages (see Message Display in Appendix K: Macros and Merge,
Programming Commands).

In Merge, the (LEN) and (MID) commands can take full expressions (see
Appendix J: Macros a n d M erg e . E xp re s s io n s a n d C o m m a n d S y n ta x i n A p p e n d ix
K: Macros and Merge, Programming Commands) as arguments. In Macros,
these commands can take only values as arguments. The differences between
Macros and Merge for each command are outlined in Appendix K: Macros and
Merge, Programming Commands.

In Macros, there are both programming commands and keystroke commands.
Keystroke commands (such as (Search), (Left), (Home), (Mark Text), etc.)
cannot be entered in a merge file. See Keystroke Commands in Variables in
Appendix L: Macros and Merge, Variables for more information.

Execution
You execute a macro by using the Macro (Alt-FlO) key. You execute a merge
by using the Merge/Sort (Ctrl-F9) key.

In both Macros and Merge, you then enter the name of the file that will control
the process. In the case of Macros, you enter the name of a macro file. In the
case of Merge, you enter the name of a primary merge file (see Merge in
Reference).

In Macros, execution display defaults to off, but you can turn display on to see
every keystroke as it is executed.

In Merge, execution is never displayed. You can use the (REWRITE) command
to display on the screen the state of the merged document at that point, but this
is only a checking device. You cannot display execution of a merge.

7 7 8 APPENDIX I: MACROS AND MERGE, COMPARISON

However, in both Macros and Merge, you can use the (STEP ON) command to
check each step of execution.

File Format
Macro programming commands are stored in a file in a special format (.WPM
format). All macro files must have the extension WPM (added automatically
when you define a macro) which allows WordPerfect to recognize it as a macro
file.

Merge programming commands are stored in regular WordPerfect documents.
These documents may use any extension you can use for a WordPerfect file.

Formatting of Commands
When editing a macro in the Macro Editor, pressing Tab or Enter formats the
commands, but does not place a code in the macro. The tabs and hard returns
are completely ignored when the macro executes.

In Merge, because the non-command part of the file(s) is part of the resulting
merged document, the formatting of the commands must be very carefully done.
You can still use tabs and hard returns to make the commands more readable,
hut you must he careful to enclose them in a {COMMENT) command if you
want to prevent them from appearing in the merged document (see the
description of the (COMMENT) command in Appendix K: Macros and Merge,
Programming Commands).

General Process
A macro is a recorded series of keystrokes. It is executed as if you were
performing the same keystrokes at the console. The macro programming
commands simply determine which keystrokes are executed in which order.
WordPerfect will perform only those commands that are in the macro.

A merge is the process of combining text from multiple sources into a single
document. The merge programming commands give you control over the merge,
affecting what text is merged in what order into the resultant document.

It is important, however, to know what parts of the merge WordPerfect handles
for you, without a specific command in the merge file. For example,
WordPerfect executes the primary file once for each record in a secondary file,
unless you insert commands forcing it to do otherwise. WordPerfect also
automatically moves the record pointer (see Record Pointer at the end of
Appendix K: Macros and Merge, Programming Commands) in the secondary file
from one record to the next when an iteration of the primary file is complete. If
you were not aware of how WordPerfect handles the records, you might be
tempted to put a (NEXT RECORD) command at the end of the primary file,
causing the merge to skip every other record in the secondary file and insert a
hard page between each iteration of the resulting document.

APPENDIX I: MACROS AND MERGE, COMPARISON 779

Repetition
Macros are most useful for repetitive keystroke activity. For example, you might
create an Alt-letter macro to save and print a document (see Macros, Define in
Reference). The Alt-letter macro would replace the following keystrokes with a
single keystroke: F 10,Enter,y,Shift-F7,f.

Merge is most useful for repetitive text activity. For example, you might create
a merge document that contains the text of a letter you frequently send to clients.
The text of the letter would always be the same, but the client information would
vary for each letter. When you perform the merge, the information for each
client would then be substituted into each copy of the letter. If you had certain
paragraphs that frequently but not always needed to be included in the letter, you
could create a more complex merge document that would insert the paragraphs
only when certain criteria were met.

Searching
The concept of searching is very different between Macros and Merge.
Searching in Macros is very similar to searching in a document. You use the
♦Search (F2) or 4Search (Shift-F2) key (represented by the {Search} and
(Search Left} commands in a macro) to search forward or backward in a
document for a string of text. Macro execution then depends on whether or not
the text is found. You can use the (ON NOT FOUND} command to specify
what should occur if the text is not found

In Merge, searching is carried out in the context of fields and records. You can
search a given field in all records of a secondary file, or you can check whether
the contents of a given field in the current record are the same as the contents of
a variable. But you cannot insert a (Search) or (ON NOT FOUND} command
in a merge file to search for a specific string of text and branch accordingly, as
with macros.

Records in a secondary file are searched in the order they occur in the secondary
file, from top to bottom. You cannot search “backwards” through a secondary
file. This order of procedure through records is governed by WordPerfect and
cannot be altered using programming commands, except by nesting, substituting,
or chaining secondary files. (See Chaining. Nesting, and Substituting in
Appendix K: Macros and Merge, Programming Commands for more information
on the (CHAIN ...}, (NEST ...}, and (SUBST ...} commands available in merge.
See also General Process above.)

Variables
Macros use only global variables. Merge can use the same global variables as
Macros, but Merge can also use local variables.

You can also pass information between macro variables and Shell variables. See
(SHELL ASSIGN} and (SHELL VARIABLE} in Appendix K: Macros and Merge,
Programming Commands for more information.

7 8 0 APPENDIX I- MACROS AND MERGE. COMPARISON

See Appendix L: Macros and Merge, Variables and jVARIABLEI in Appendix K:
Macros and Merge, Programming Commands for more information on variables
in Macros and Merge.

See Also: Lessons 23 through 25; Macros; Macros, Define; Macros, Execute;
Macros, Macro Editor; Macros, Message Display; Merge; Appendix J; Appendix
K; Appendix L

APPENDIX I: MACROS AND MERGE. COMPARISON 781

Appendix J: Macros and Merge, Expressions

Expressions are used to determine values in the {ASSIGN}, {CASE},
{CASE CALL}, {FOR}, {FOR EACH}, {IF}, {SHELL ASSIGN}, and
{WHILE} commands in both Macros and Merge, and additionally in the (LEN),
{LOCAL}, {MID}, and {NTOC} commands in Merge (see A p p e n d ix K :
M a c r o s a n d M e r g e , P r o g r a m m in g C o m m a n d s). You can also use expressions to
determine values for A l t- n u m b e r variables. Expressions can perform operations
on either numbers or strings of text.

An expression can contain up to 129 keystrokes. A keystroke can be a character,
an extended character, a keystroke command (in Macros), or a programming
command.

Numeric Expressions
The following is a list of numeric expressions. The values must contain only
integers (or variables which contain integers).

The highest positive number you should use is 2,147,483,647. Numbers higher
than 2,147,483,647 are considered to be negative by WordPerfect (see N e g a t iv e
N u m b e r s b e lo w). You can u s e s ig n e d num bers in ex p ression s.

When performing multiplication or division, only one number may exceed
±65,535. For example, 65535*65536 is legal; 65536*65536 is not legal.

In the table, the terms nl and n2 represent number 1 and number 2. Although
only a single operator is illustrated in each example below, you can use several
operators as well as parentheses in expressions. For definitions of the operations
used in this table, see E x p r e s s io n T erm s below.

Expression Operation

!n I Returns the logical NOT (bitwise) of the number nl (see
E x p r e s s io n T erm s below). Example: !0 is -1.

-n l Returns the negative of the number nl (see N e g a t iv e
N u m b e r s below). Example: If variable 1 holds 5,
-{VARIABLE}1' is -5

nl+n2 Returns the sum of nl and n2. Example: 5+4 is 9.

nl-n2 Returns the difference of nl and n2. Example: 10-1 is 9.

nl*n2 Returns the product of nl and n2. Example: 6*5 is 30.

nl/n2 Returns the integer quotient of nl and n2. Examples: 20/5 is
4. 5/2 is 2.

nl%n2 Returns the r e m a in d e r of the quotient of nl and n2.
Examples: 20%5 is 0. 5%2 is 1.

APPENDIX J: MACROS AND MERGE, EXPRESSIONS 783

nl&n2 Returns the logical AND (bitwise) of nl and n2 (see
Expression Terms below). Examples: 7&4 is 4. 3&4 is 0.

nlln2 Returns the logical OR (bitwise) of nl and n2 (see
Expression Terms below). Examples: 714 is 7. 314 is 7.

nl=n2 Returns a true value (-1) if nl and n2 are equal; otherwise,
returns a false value (0). Example: If variable 1 holds 5,
then {VARIABLE}1~=5 is true and {VARIABLE}1~=3 is
false.

Expression Operation

nl!=n2 Returns a true value (-1) if nl and n2 are not equal;
otherwise, returns a false value (0). Example: If variable 1
holds 5, then {VARIABLE} l'!=3 is true and
{VARIABLE}n=5 is false.

nl>n2 Returns a true value (-1) if nl is greater than n2; otherwise,
returns a false value (0). Examples: 6>4 is true. 4>6 is
false.

nl<n2 Returns a true value (-1) if nl is less than n2; otherwise,
returns a false value (0). Examples: 2<10 is true. 10<2 is
false.

If you try to use an invalid numeric expression (e.g., incorrect use of operators,
characters other than numbers and valid operators), the expression is simply
treated as a text string.

String Expressions
A string is a name for any sequence of one or more characters, including spaces.
For example, “Apple", “245”, “QB12”, “Z”, and “Personal Computer" are
strings. Keyboard commands (e.g., {Enter}, {HPg}) should be enclosed in string
delimiters (" or ') when they are part of an expression (see String Delimiters
below).

String delimiters must also be used whenever you compare strings. If you are
comparing the string contents of two variables, both variable commands must be
enclosed in string delimiters. For example,
"{VARIABLE}x~"="{VARIABLE}y~".

The expressions outlined below are used to compare strings. The terms si and
s2 represent string 1 and string 2.

784 APPENDIX J: MACROS AND MERGE. EXPRESSIONS

"sl"="s2" Returns a true value (-1) if string 1 is identical (including
case) to string 2; otherwise, returns a false value (0).
Examples: "true"="true" is true. "true"="TRUE" is
false.

Expression Operation

"sl"!="s2"

"sl">"s2"

"sl"<"s2"

Returns a true value (-1) if string 1 is not identical (including
case) to string 2; otherwise, returns a false value (0).
Examples: If variable 1 holds the string “string”, then
"{VARIABLE}l~"!="rope" is true.
"{VARIABLE}l'"!="string" is false.

Returns a true value (-1) if string 1 is greater than* string 2;
otherwise, returns a false value (0). Examples:
"abcd’V aabcd" is true. "a">"A" is true.

Returns a true value (-1) if string 1 is less than* string 2;
otherwise, returns a false value (0). Examples:
"aabcd"<"abcd" is true. "A"<"a" is true.

*In a s t r in g c o m p a r i s o n , th e W o r d P e r f e c t c h a r a c t e r s e t v a lu e s a r e c o m p a r e d . S e e
W o rd P e r fe c t C h a r a c te r S e t V a lu e s below f o r details.

If you do not use the delimiters correctly on s 1, the expression is simply treated
as a text string. If you do not use the delimiters correctly on s2, the expression
evaluates as false.

Expression Evaluation
An expression must be written according to the rules in this appendix so
WordPerfect can evaluate it correctly. The following information will help you
create and use expressions.

When an expression is encountered in a command, the expression is evaluated
first, and the result of the expression is used to complete the command. For
example, in the statement {ASSIGN} 1~{VARIABLE} 1"+1“, the expression is
“{VARIABLE} r+ 1 ”. When the expression is evaluated, the contents of
variable 1 are incremented by one. The assignment is then performed, replacing
the old contents of variable 1 with the result of the expression.

In several of the expressions, the result of the operation is either true (-1) or
false (0). WordPerfect assigns a numeric value to true and false. These values
were chosen because they are opposites (numeric complements) of each other
(see NOT under Expression Terms below).

In the following example, the first assignment statement assigns false (0) to
variable 1, the second assignment statement assigns true (-1), the complement of
false, to variable 1, and the third assignment statement assigns true (-1) to
variable 1.

APPENDIX J: MACROS AND MERGE, EXPRESSIONS 785

{ASSIGN} 1~5=4~
{ASSIGN} I'! {VARIABLE} 1“
{ASSIGN} r5!=4~

The order in which the various operators are applied in an expression is not
simply the order in which they occur. WordPerfect uses an order of precedence
that determines which operators are used first, second, etc. For example, in the
expression 4+7*8, there is a different result depending on whether the addition is
performed before or after the multiplication. Operator precedence is described
below.

Operator Precedence
WordPerfect supports expressions with several operators. Consequently, some
order of evaluation must be followed. The operator precedence used by
WordPerfect is similar to the accepted precedence for mathematical operators in
arithmetic. The following table shows the order that operators are applied:

1 - (unary minus), + (unary plus), ! (NOT)
2 * (multiply), / (divide), % (mod)
3 - (subtract), + (add)
4 < (less than), > (greater than), = (equal), != (not equal) (Relational

operators also work on strings.)
5 & (AND), I (OR)

You can override the operator precedence by placing parentheses around those
elements that you want to be evaluated first. Elements inside of parentheses are
always evaluated before the elements outside. If parentheses are nested, the
innermost parentheses are evaluated first.

In the expression 4+7*8, the multiplication (7*8) is performed first, followed by
the addition. This is because multiplication has a higher precedence than
addition. The result is 60. If you wanted the addition to be performed first, you
would type (4+7)*8. In this case, the result is 88.

Notes Expression Terms
The following are technical terms referenced in the discussion of expressions
above. An understanding of these terms is not an essential part of creating
macros or performing merges. These definitions are provided for those who are
somewhat familiar with programming.

AND (&)
A bitwise AND operation compares the bits of two numbers. When both
numbers have a 1 bit in the same position (for example, there is a 1 bit in
column 1 (right-most column) of the first number AND the second number),
a 1 is placed in that position in the result. For example, the expression
21&47 is evaluated as follows:

786 APPENDIX J: MACROS AND MERGE. EXPRESSIONS

Value Bits

21 0000000000010101
47 0000000000101111
21&47 0000000000000101

The resulting bits represent the number 5. So, 21&47=5.

Bitwise Operation
In the computer’s memory, numbers are represented as a series of sixteen Is
and 0s. Each of the 0s and Is represents a bit. The pattern for each number
is unique,
bits:

The following table c

Value Bits

0 0000000000000000
-1 1111111111111111
-3 1111111111111101
-21 1111111111101011
3 0000000000000011
4 0000000000000100
7 OOOOOOOOOOOOOl11

21 0000000000010101
47 0000000000101111

A bitwise operation works on one column at a time, using a single bit from
each number. The operation is done 16 times so each bit of each number is
operated on.

Evaluate the Expression
Perform the operation(s) on the expression.

NOT (!)
A bitwise NOT operation takes the bits of the number and complements
them. For example, if the expression is !0 (0 is 0000000000000000), the
resulting value is -1 (-1 is 1111111111111111).

O R (l) .
A bitwise OR operation compares the bits of both numbers. When either
number has a 1 bit in the same position (for example, there is a 1 bit in
column 1 (right-most column) of the first number OR the second number), a
1 is placed in that position in the result. For example, the expression 21147
is evaluated as follows:

V a lu e B it s

21 0000000000010101
47 0000000000101111
21147 0000000000111111

The resulting bits represent the number 63. So, 21147=63.

APPENDIX J: MACROS AND MERGE, EXPRESSIONS 787

Negative Numbers
In WordPerfect, negative numbers are represented as large positive numbers,
from 2,147,483,648 to 4,294,967,295. 4,294,967,295 is -1, 4,294,967,294 is -2,
and so on. To determine the number WordPerfect uses to represent any given
negative number from -1 to -2,147,483,647, use the following formula:

4.294.967.296 - Lvl

where x is the negative number whose equivalent you are trying to find. For
example, to find the WordPerfect equivalent of -3,

4.294.967.296 - 3 = 4,294,967,293

To find the negative number represented by a given WordPerfect equivalent, use
this formula:

x - 4,294,967,296

where x is the WordPerfect equivalent. For example, to find the negative
number represented by 4,294,967,293,

4,294,967,293 - 4,294,967,296 = -3

You can assign variables to be negative numbers by using the minus (-) operator
(see Numeric Expressions above), or by using the WordPerfect equivalent. Do
not use commas or other punctuation in the WordPerfect equivalent. For
example,

{ASSIGN (num ber'-1~

is the same as

{ASSIGN)number'4294967295'

String Delimiters
A string delimiter is a character which marks the beginning or end of a string.
In string operations, the " and ’ characters serve as string delimiters. Delimiters
must be paired correctly. For example, the delimiters in "string" and 'string'
are correctly paired, but in "string' they are not. However, one string can use
the " character while the other uses the ' character (e.g„ "string"='string').

Whenever you compare any two items that are not numbers, you must use string
delimiters around both strings.

WordPerfect Character Set Values
WordPerfect assigns a unique value to each character in each WordPerfect
character set (see the descriptions for the {KTON} and {NTOK} commands in
Appendix K: Macros and Merge, Programming Commands). This is called the
WordPerfect character set value. In a string comparison, the character set values
are compared.

788 APPENDIX J: MACROS AND MERGE, EXPRESSIONS

For characters in the same character set, one character is considered “less than”
another character if the first character comes before the second character. For
example, in character set 0, “3” is less than “4” and “A” is less than “a”.

For characters in different character sets, the character from the character set
with the lower numerical value is considered “less than” the character from the
higher numerical character set. For example, any character from character set 2
is less than any character from character set 3.

See Also: Macros; Macros, Define; Macros, Execute; Macros, Macro Editor;
Merge; Appendix 1; Appendix K; Appendix L

APPENDIX J: MACROS AND MERGE. EXPRESSIONS 789

Appendix K: Macros and Merge, Programming Commands

The WordPerfect Programming Language commands let you control how macros
and merges function. Those familiar with programming will recognize many
commands as similar to those in other programming languages.

S o m e o f th e c o m m a n d s d e s c r i b e d in th i s s e c t io n c a n b e u s e d o n ly in m a c r o s , o th e r s o n ly

in m e r g e f i l e s , a n d o th e r s c a n b e u s e d in b o th . T h e 0 3 ic o n d e s i g n a t e s a c o m m a n d th a t

i s a v a i l a b l e in M a c r o s ; th e >"* ic o n d e s i g n a t e s a c o m m a n d th a t i s a v a i l a b l e in M e r g e .

T h e p r e s e n c e o f b o th ic o n s i n d i c a t e s th a t th e c o m m a n d is a v a i l a b l e in b o th f e a tu r e s .

W h e n y o u s e e a n ic o n in p a r e n t h e s e s n e x t to th e c o m m a n d u n d e r th e Programming
Commands h e a d in g , i t m e a n s th a t th e c o m m a n d i t s e l f i s n o t a v a i l a b l e in th e f e a tu r e , b u t

th e r e i s a n e q u iv a l e n t (o r n e a r l y e q u i v a l e n t) c o m m a n d o r m e th o d in th e f e a t u r e th a t

p e r f o r m s th e s a m e f u n c t io n a s th e c o m m a n d b e in g d e s c r i b e d . B e s u r e t o r e a d f u r t h e r
u n d e r th e f e a t u r e s u b h e a d in g f o r a d d i t i o n a l in f o r m a t io n .

Command Types
The programming commands can be categorized by the functions they perform.
The categories are User Interface; Flow Control; Macro, Merge, or Subroutine
Termination; External Condition Handling; Macro Execution; Variables; System
Variables; E xecu tion C ontrol; P rogram m ing A ids; and K eystroke C om m ands.

User Interface
These commands communicate with the user. They display a prompt, allow
input from the keyboard, or both. ((BELL) rings a bell.)

{BELL} O >~
{CHAR} o >~
{INPUT} o
{KEYBOARD} >~
(LOOK) o >~
(ORIGINAL KEY) o
(PAUSE) o
{PAUSE KEY} o
{PROMPT} o
{STATUS PROMPT} o >~
{TEXT} o
Flow Control
These commands can change the flow of macro or merge execution.

(BREAK) O >-
(C A L L) O >~
{CASE} O >-
{C A SE C A L L) O >-
{CHAIN} o
{C H A IN M A C R O } >-
{CHAIN PRIMARY}
{CHAIN SECONDARY) >•
{ELSE} o F*

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 791

{END FOR) O F*
{END IF} O F*
(END WHILE} O F*
{FOR} O >~
{FOR EACH) O
(GO} O F*
{IF} O F*
{IF BLANK) F*
{IF EXISTS} O
{IF NOT BLANK) >~
{LABEL} O F*
{NEST} O
{NEST MACRO} F*
{NEST PRIMARY} F*
{NEST SECONDARY} F*
{NEXT} O F*
{ON CANCEL} O F*
{ON ERROR} O F*
{ON NOT FOUND} o
{OTHERWISE} o F+
{PROCESS} F*
(QUIT) o F*
{R E ST A R T } o
{RETURN} o F*
{RETURN CANCEL) o F*
(RETURN ERROR} o F*
{RETURN NOT FOUND) o
{SHELL MACRO} o
{STOP} F*
(SUBST PRIMARY} F*
{SUBST SECONDARY} > -
{WHILE} o F*

Macro, Merge, or Subroutine Termination
These commands will terminate a macro, merge, or subroutine.

{BREAK} O F*
{QUIT} O F*
(RESTART) O
{RETURN} O F*
{RETURN CANCEL} O F*
{RETURN ERROR} O F*
(RETURN NOT FOUND} O
{STOP} F*

792 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

External Condition Handling
These commands determine how a condition outside of macro or merge
execution is responded to (e.g., when Cancel is pressed), or they create the
condition.

{CANCEL OFF) O >-
{CANCEL ON} O
{ON CANCEL} O >*
{ON ERROR) O >*
(ON NOT FOUND} O
(RETURN CANCEL} O
(RETURN ERROR} O >-
{RETURN NOT FOUND} O

Macro Execution
These commands start a macro.

{ALT l e t t e r } O
{CHAIN} O
{CHAIN MACRO}
{KEY MACRO n} O
{NEST} O
{NEST MACRO)
{SHELL MACRO} o
{VAR n} o
{VARIABLE} o >~

Variables
These commands assign a value to a variable, determine the state of a
variable, or execute (write out) a variable.

{ASSIGN} O >~
{CHAR} O >-
{IF EXISTS} O >-
{LEN} O >*

{LOCAL}
{LOOK} O >~
{MID} O >~
{NEXT} O >*

{SHELL ASSIGN) o
{SHELL VARIABLE) o
{SYSTEM} o >■+
{TEXT} o
{VAR n} o
{VARIABLE} o >-
System Variables
These commands are used to determine the value of system variables.

{DATE} >■*
{ORIGINAL KEY} O

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 793

{STATE]
{SYSTEM}

O
O

Execution Control
These commands affect the speed or visibility of execution on the screen,

{DISPLAY OFF) O
{DISPLAY ON) O
{MENU OFF) O
{MENU ON) O
(REWRITE) >~
(SPEED) O
{WAIT) o >-

Programming Aids
These commands can be used as progi

{;) (Comment) O
(BELL) o >~
(COMMENT)
(DISPLAY OFF) o
{DISPLAY ON) o
(SPEED) o
{STEP OFF) o >■*
{S T E P O N) CD >■*

Keystroke Commands
These commands are mapped to certain keys if you have a keyboard with an
enhanced BIOS. However, if you do not have a keyboard with an enhanced
BIOS and you have not mapped these commands to keys on your keyboard,
you must insert these commands from the Macro Commands menu to
achieve their function in a macro (see A c tio n under K e y b o a r d L a y o u t, E d i t in
R e fe r e n c e for information on mapping keys).

{Block Append)
{Block Copy)
{Block Move)
{Item Down)
{Item Left)
{Item Right)
{Item Up)
(Para Down)
{Para U p)

o
o
o
o
oo
oo
o

Command Insertion
For information on how to insert Macro commands, see M a c ro s , M a c r o E d i to r

in R e fe r e n c e . For information on inserting Merge commands, see In s e r t in g
M e r g e C o m m a n d s under M e r g e in R e fe r e n c e .

794 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Command Syntax
Many of the commands use p a r a m e te r s or a r g u m e n ts which require a tilde (~) at
the end. If the tilde is missing, the macro or merge will not work correctly and
may use subsequent commands as part of the arguments for the current
command. If a macro or merge is not working properly, check to make sure all
the comments and commands have their tilde marks correctly placed. (See also
T r o u b le s h o o t in g under N o te s at the end of this appendix.)

The syntax and arguments for each command are displayed in the command
access box when you insert the command, and in each command heading below.
In the arguments, v a r represents a variable. E x p r represents a number, string,
variable, command, or expression (or a combination). Additional argument types
are described under each command.

Programming
Commands

The programming commands available in Macros and Merge are listed below
with information about their use. Examples are included to clarify the
instructions.

The M a cro s K e yb o a rd D efin itio n (see K ey b o ard L ay o u t in R e feren ce) co n ta in s severa l
m acros. S tu d y in g these exa m p les w ill h e lp yo u see h o w so m e o f the m acro co m m a n d s
in terrela te . The exa m p les ha ve n u m ero u s co m m en ts included , w h ich help yo u fo llo w the
co m m a n d s o f the m acro.

1;)comment~ O (>-*)
The text you type between tbe comment command {;} and the tilde (') is ignored
during macro execution. Comments are useful in helping to quickly recognize
what each part of your macro does. You can also use comments to modify
(“comment ouf') a section of your macro so it will not execute with the macro
(see C o m m e n t in g O u t under N o te s at the end of this appendix).

M acros
The comments in the following example show how comments help you to
understand what is happening in the macro.

(ASSIGN) Phrase l'O ne"
('.(Assign "One"-to-var Phrase]'

(ASSIG N) Phrase2~Two~
{;} Assign-"Two"-to-var-Phrase2~

[A SSIG N)Concatenation^ VARIABLE)Phrase 1' (VARIABLE)Phrase2~~
{; (Assign to-var-Concatenation-the-contents of-var Phrase 1 combined
with-var-Phrase2~

(VARIABLE) Concatenation'
);) Execute-var-Concatenation-(Typethe-string-"One-Two")~

N o te the cen te red d o ts (■) be tw een m a n y o f the w ords. S p a ces are re p resen ted th is
w a v in the M a cro Editor. I f the sp a c e w ere n o t be tw een P h ra se l a n d P hrase2 . the
va ria b le C o n ca ten a tio n w o u ld h o ld "O n eT w o ."

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 795

M erge
The {COMMENT) merge command is equivalent to the {;} macro
command. See {C O M M E N T j below.

(ASSIGN) v a r ~ e x p r ~ O V*
The {ASSIGN} command assigns to the global variable v a r the value returned
by e.xpr. Do not enclose the expression in quotes. Expressions are evaluated
(see A p p e n d ix J : M a c r o s a n d M e rg e , E x p r e s s io n s) and the result is assigned to
the variable. Non-numeric characters and expressions that cannot be evaluated
are treated as strings.

After a value has been assigned to a variable, the variable command
({VARIABLE}var') can be placed anywhere you would normally place the
variable contents. See A p p e n d ix L : M a c r o s a n d M e r g e , V a r ia b le s for more
information on variables.

If you want to empty the variable of its contents, leave the e x p r argument empty
(e.g., {ASSIGN}Fred). It is a good idea to empty variables at the beginning of
a macro or merge in which they are used (unless the macro or merge assigns
new contents to them). When you empty a variable, it no longer “exists” (see
(I F E X IS T S } below).

M acros
In this exa m p le , variable Fred is first a ssign ed a va lu e , then an ex p ression ,
then a string.

) ASSIGN)Fred~3~
{;}Assign-3-to-var-Fred~

(ASSIGN (F red 'l VARIABLE) Fred~*2~
{;)M ultiplyold-value-of'var-Fredby-2,-assign-the-resu]t-(6)'as'thenew
value-of-var-Fred'

(ASSIG N) Fred'WordPerfecf"
{;) Assign-" WordPerfect"-string-to-var-Fred~

See the M a c r o subheading under the following commands for additional
examples: {;} (comment), {BREAK}, {ELSE}, {Item Down}, {Item Left},
{Item Right}, {Item Up}, {KTON}, {MID}, {STATE} (in text), {WHILE}.

Merge
To assign a local variable, see {L O C A L j below.

In this example, variable Fred is first assigned a value, then an expression,
then a string.

(ASSIG N } F re d '3 ' {COM M ENT}
Assign 3 to variable Fred

'{ A SSIG N } Fred" (VARIABLE} Fred'*2~ (COM M ENT}
Multiply old value of var Fred by 2, assign the result (6) as the new value of var
Fred.

' {ASSIGN }Fred'W ordPerfect' {COM M ENT)
Assign the string "WordPerfect" to var Fred"

796 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

See the Merge subheading under the following commands for additional
examples: (CTON}, {IF}, {LEN}, {MID}, {NEST MACRO},
{PAGE ON}.

(BELLI O >■*
The {BELL} command causes your computer to sound a beep. This command
is often useful in combination with the {CHAR}, {INPUT}, {KEYBOARD},
{PROMPT}, {STATUS PROMPT), and {TEXT} commands which prompt the
user to enter information. You can also use it to signal arrival at various points
of the macro or merge, such as at the end of a lengthy process.

M acros
In this example, a bell will sound and the text "Hello name." will be typed at
the cursor position. The {BELL} command can also be placed inside the
prompts for {CHAR}, {TEXT} and {PROMPT} commands (i.e.,
{TEXT} 1~{ BELL (Please enter your name').

(BELL)
{;}Sound a bell'

{TEXT}Name~Please enter your name: ~
{;}Prompt for a name and place it in var-Name'

H e l l o - { V A R I A B L E } N a m e " .

{;}Type-the-message-with-the-name-that-was-entered~

M erge
The following example checks the DATABASE.SF secondary file to see if
the name entered by the user matches the Name field in one of the records in
the file. If so, it asks for a password. If the name is not found in the
secondary file, the user is notified that access is denied because he or she is
not in the database.

The first {BELL} command in the example sounds a bell just before the
name prompt. Within the IF structure, if the name is not found in the
secondary file (the last record in the secondary file has “End” as the Name
field), a double bell sounds ({BELL} {BELL}) at the error message “Access
denied.” If the name is found in the secondary file, another bell sounds at
the prompt to enter the password.

(BELL) (TEXT) Nam e'Enter your name: '{COM M ENT)
Sound a beep and prompt for a name. Place input in var Name

' {NEST SECONDARY} database.sf {COM M ENT}
Begin using the DATABASE.SF secondary file. The record pointer is positioned at
the first record in the file.

'{ LA BEL) CheckNam e' {COM M ENT)
' {IF)" {FIELD) Nam e'" !=" {VARIABLE) N am e'"'{ COM M ENT)

If the contents of the Name field and the var Name do not match
' {IF)" {FIELD (Nam e'" !="End"'{ COMMENT)

and if not at the end of the secondary file
'(N E X T RECORD) (COMMENT)

Move record pointer to the next record
' (G O) CheckNam e' (COM M ENT)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 797

Check the next record to find a match
~{ELSE}{COMMENT)

Otherwise (no match found in file)
'(B ELL){B ELL({PR O M PT(A ccess Denied-Y ou are not entered in the

database.' | W AIT) 30* (COM M ENT)
' (S T O P) (C O M M E N T)

End the merge
'{EN D IF) (COMMENT)

'{ELSE) {COMMENT)
Otherwise (name found in file)

'{ B ELL)(TEX T)Passw ord'Enter password: "(COM MENT)
'{EN D IF)(STO P)

(Block Append) O
(Block Append) is a keystroke command and works like the Append feature. It
appends a block of text to the end of a file that you designate. It is equivalent to
the keystrokes Move (Ctrl-F4). Block (1). Append (4).

After this command executes, you are prompted for the name of the file to which
you wish to append. See Append in Reference for details.

Macros
Suppose, for example, that you wanted to compile a new document from
parts of one or more existing documents. Simply block each section in the
order that you want it to appear in the new document, then execute the
following macro after each block. Each block is appended to the file listed
as yourfile.wp.

(Block Append)
(;)lnvokeB lockA ppend '

yourfile. wp {E nter)
{;) Indudethenam eof-your-append-file '

The following two macros are equivalent:

(Block) (Word Right}{Block Append)

{B lock} {Word Right} {M ove} ba

Merge
This command is not available in Merge.

(Block Copy) O
(Block Copy) is a keystroke command and is a shortcut to copying a block in
Macros. It is equivalent to the keystrokes Move (Ctrl-F4), Block (1), Copy (2).

After this command executes, you are prompted to press Enter at the point
where you want to copy. You can cursor to this position or have your macro
move to it (see Move. Block in Reference).

798 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Macros
For example, if you want to copy a block of text to the end of your
document, first block the text, then run the following macro.

(Block Copy)
(;) Invoke Block-Copy'

(H om e) {H om e) | D ow n)
(; 1 Move-cursor to-end-ofdocum ent'

(Enter)
); (Retrieve-block'

The following two macros are equivalent:

(Block)(Word Right)(Block Copy)

(Block)(Word Right)(Move)be

Merge
This command is not available in Merge.

(Block Move) O
(Block Move) is a keystroke command and is a shortcut to moving a block in
M acros. It is equ iva len t to the keystrok es Move (Ctrl-F4). Block (1). Move (1).

After this command executes, you are prompted to press Enter at the point
where you want to move to. You can cursor to this position or have your macro
move to it (see Move, Block in Reference).

If Block is not on when the macro encounters (Block Move), the command will
act like Ctrl-Del and delete the word at the cursor.

Macros
For example, if you want to move a line of text to the beginning of your
document, move the cursor to the line you want to move, then run the
following macro.

(H om e) (H om e) (L eft)
(;) Move-cursortobeginning-of-line'

(Block)
(;)Tum on Block'

(End) (Right)
(; (Move-cursor past the-HRt-or SRt'

(Block Move)
{; (Invoke Block M ove'

(Home) (Home) (Up)
{; (Move-cursor-to-beginning-of-doeumenf

) E nter)
| ;) Insert-blocked text'

The following two macros are equivalent:

(Block) (Word Right ((B lock Move)

(Block) (Word Right ((M ove)

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 799

Merge
This command is not available in Merge.

(BREAK) O >~
(BREAK) is useful when you want to skip some commands when a Cancel.
Error, or Not Found condition occurs. Usually it is used to break out of a loop
where several nested IF statements are used. The location of the command in
the file determines its function.

The rules that govern how this command functions are as follows:

E a c h o f th e s e r u le s a s s u m e s th a t th e p r e v i o u s r u le s d o n o t h o ld .

1 If a {BREAK} command is encountered within a FOR, FOR EACH, or
WHILE structure, execution moves to the end of the structure (just after the
{END FOR) or {END WHILE)). If these structures are nested, execution
moves after the (END FOR) or {END WHILE) command of the current
level.

2 If a (BREAK) command is encountered within an IF structure, execution
moves to the end of the structure (just after the {END IF}). If the IF
structure is nested within a {FOR}, (FOR EACH), or a (WHILE) structure,
the execution moved after the {END FOR} or the {END WHILE}. If the IF
structures are nested, execution moves after the {END IF) command of the
current IF structure.

3 If a (BREAK) command is encountered in a nested file, execution returns to
the parent file.

4 If none of the above rules hold: In Macros, if a (BREAK) command is
encountered, it is ignored. In Merge, if the (BREAK) command is
encountered in a primary file, the primary file is ended and execution returns
to the next iteration of the current primary file. If the (BREAK) command
is encountered in a secondary file, the merge is terminated.

Macros
The following macro parses a full pathname entered by the user into path
and filename portions. Notice that the (BREAK) command is within an IF
structure, but is also within a FOR structure. The FOR structure takes
precedence, so this (BREAK) command sends execution directly after the
(END FOR) command (no more iterations of the FOR loop are performed),
not after the (END IF) command (remaining iterations of the FOR loop
would be performed).

(TE X T)String 'E nterpathnam e:'
|;}Ask-user-to-enterfull-pathname-and-assign-it-tovar-String'

(ASSIG N) Length') L EN) S tring"
);]A ssignlength of-full pathname to-var-Length'

{FO R) Pos'(VARIABLE) Length'- l ' l ' 1'
{:}From-last-character-to-first...'

{ASSIGN (C har' (M ID) String') VARIABLE) P o s" I"
);)Assign-the'Characterto-varChar'

800 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

{IF)" {VARIABLE) Char~"="\"~
{:} If the-character-is a-"\"~

(ASSIGN (Pathlen' (VARIABLE) Pos'+ 1'
(;)Assign-the length of the path (not pathname) to var Pathlen'

(A SSIG N) Path ' (M ID } String'O 'j VARIABLE) Pathlen '”
{;} Assign-the-path-portion-of-var-String-to var-Path

(A SSIG N)Filelen') VARIABLE] Length'-! VARIABLE] Pathlen”
(;}Assign the-length-of the-filename-to-var Filelen'

(ASSIGN] F ile ') MID] String') VARIABLE) Path len" (VARIABLE) Filelen”
(;]Assign-the-filenameportion-of-var-String-to-var-File'

(BREAK)
(;)Break-out-of-the-FOR-loop '

(END IF)
(;}End-of-IF-structure.'

(END FOR)
{;) End-of-FOR-structure.-The-) BREAK (command-sends-execution-here-at-the-first-
"V-found-in-the-pathname'

(CH A R)Foo'Path:-(VARIABLE [path'--Filename: (VARIABLE) hie'...press-Enter'
(;)Display-the-path-and-fi]ename-portions-untiluser-presses a-key.'

Merge
In the following example, the message “Counting...#” is displayed until it has
counted up to 9. Then the message "I am no longer counting.” is displayed.

{A SSIG N) Counter'O" (COM M ENT}
Initialize var Counter

'(A S S IG N } S top '9 '(COM M ENT}
Assign the stop value

'(L A B E L) C ount'! COM M ENT)
'(IF) (VARIABLE]Counter'=(VARIABLE)Stop~(COMMENT)

If var Counter has reached 9
'(B R E A K) (COMMENT)

Break to the end of the IF statement
'(E L S E) (COM MENT)

Otherwise
' (ASSIGN [Counter' (V A R IA B LE)C ounter'+ l'(COMMENT]

Increment var Counter
' (PROMPT (Counting... (VARIABLE)Counter~(COMMENT)

Send a message
' (WAIT) 5 '(COMM ENT)

Wait .5 seconds
' (G O) C ount' {COM M ENT)

Repeat the loop
'(E N D IF) (COM MENT)

End of IF statement
'(PR O M PT)I am no longer counting.'(COM M ENT)

Send a message
' (W AIT) 2 0 ' (COM M ENT)

Display the message for 2 seconds
'(Q U IT) (COMMENT)

End the m erge'

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 801

(CALLIl a b e l ' O > *

The {CALL} command transfers execution to the subroutine la b e l . When
execution of the subroutine is completed (when a {RETURN} is encountered in
the subroutine), execution returns to the command following {CALL}. (See
S u b r o u tin e s under N o te s at the end of this appendix for more information about
subroutines. See also l e v e l s under N o te s at the end of this appendix.)

Macros
In the following example, the macro searches for “test”. When it finds it,
the macro deletes the entire line on which “test” was found. Then the macro
inserts the bolded phrase “This line was deleted."

(I .ABKL1 Searchl.oop'
1;(Begin SearchLoop subroutine*

| Search) test (Search)
(;}Search for-the-word "test"'

(CALL] Delete*
{;) Commence-Delete-subroutine*

{Bold}This line was deleted.! B old)) Enter)
{;}Place the bolded message-in the document after line is deleted*

(GO (SearchLoop*
{; (Repeat-SearchLoop-subroutine*

(LABEL [Delete*
(;) Subroutine-Delete*

(H om e} (H om e) (L eft)
(;)Move-to-beginning of line*

(Del to EOL)
(: (Delete the line*

(RETURN]
(;)End of-Delete-subroutine*

Merge
In the following example, the merge checks the Name field in the current
record of the secondary merge file. If the name is not blank, the salutation
“Dear nfl/ne:[HRt][HRt]” is written in the merged document. If the name is
blank, a generic salutation “Dear Sir or Madam:[HRtj[HRt]” is written.

(LABEL)Top'(COM M ENT)
'(IF BLANK}Name*(COMMENT)

If the name field is blank
' (CA LL) Generic') COM M ENT)

Call the subroutine "Generic"
' (ELSE ((COMMENT

Otherwise, write a name-specific salutation using the information in the Name field
'D ear (FIELD [Name*:

(COM MENT)
'(E N D IF)(CO M M EN T)

F.nd the IF statement
'(R E TU R N) (COM MENT)

End of Top routine, return to point where Top was called.

802 APPENDIX K' MACROS AND MERGE. PROGRAMMING COMMANDS

' j LABEL) Generic' {COMMENT}
'Dear Sir or Madam:

(RETURN)}

(CANCEL OFF) O
The {CANCEL OFF} command is used to stop the Cancel key from performing
its normal function. The default condition is for Cancel to be enabled
({CANCEL ON}).

Once you have turned Cancel off with this command, you can use Ctrl-Break to
cancel the macro or merge during execution.

Macros
In the following example, the macro pauses at the {INPUT} command to let
the user edit the text of the document. The {CANCEL OFF) command lets
the user press Cancel (FI) to undelete text while editing.

(CANCEL OFF)
(IN PU T(Editthe desired-text.-P ressE nterw hendone.'

{;}The- (CANCEL-OFF) command-lets the-user-press Cancel-to
undeletetexf without terminating th e (IN P U T).'

(CANCEL ON)
(;) Restoresthenorm alfunction-of-C ancel.'

(CANCEL OFF} is also useful if you want to be able to get a Cancel key as
input from the user in the {CHAR}, {LOOK}, or {PAUSE} commands.

Merge
In the following example, the merge pauses at the {INPUT} command to let
the user edit the text of the document. The {CANCEL OFF} command lets
the user press Cancel (FI) to undelete text while editing.
(CANCEL OFF) (COMMENT)
'(IN PU T)Type the text of the memo. Press F9 when done.'(CO M M EN T)

The (CANCEL OFF) command lets the user press Cancel to undelete text without
terminating the (INPUT).

'(C A N C EL O N) (COM M ENT)
Restores the normal function of Cancel.'

{CANCEL OFF} is also useful if you want to prevent a user from stopping a
merge (by pressing Cancel) at a {CHAR}, or {LOOK} command.

(CANCEL ON) O >■*
The (CANCEL ON} command is used to enable the Cancel key after it has been
disabled with the {CANCEL OFF} command (see (CANCEL OFF) above).

Macros
See the Macros subheading under (CANCEL OFF} above for an example of
how to use this command.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 803

See the Merge subheading under jCANCEL OFF} above for an example of
how to use this command.

(CASE)expr~e a s e l ~ l a b e l l c a s e N l a b e l N ~ ~ O >*
The {CASE} command allows execution to branch to different locations in the
file (designated by label I, Iabel2, etc.) (see also Subroutines under Notes at the
end of this appendix), depending on what the value returned by e x p r is. The
value returned by expr is compared to each case. When a match is found,
execution branches to the corresponding label. For example, your macro or
merge might ask the user to answer Yes or No to a prompt. If the answer is
Yes, one function will be performed. If the answer is No, another function will
be performed. It is often helpful to format the {CASE} statement (place it on
several lines) so it is more readable. Notice that there is an extra tilde (')
required at the end of the (CASE) statement.

The variable contents must match a case exactly. For example, a case of “y”
will match “y” but not “Y". If no match is found in the (CASE) statement,
execution continues after the {CASE} statement. You can use an
{OTHERWISE} command as the last case in the command to handle all cases
that do not match.

It is possible to use the {ELSE} command instead of the {OTHERWISE}
command to handle cases that do not match. However, using {ELSE} will
produce an error if the {CASE} command is within an IF statement. For this
reason, we recommend that you use {OTHERWISE}. The {CASE} command
does not require that program execution return after the routine is completed. In
o t h e r w o r d s , it does n o t call the routine rather, it goes to the routine. If you
want program execution to return, use {CASE CALL) (see jCASE CALL}
below).

Macros
In this example, the Error subroutine is not executed unless a character other
than n or y is pressed. If the {CASE} command is changed to
(CASE CALL}, the subroutines are called, and execution returns to the
{QUIT} command.

(LABEL [GetChar'
(CHAR)Answer~Continue? (Y /N)-'

{;)Assign-characterto var A nsw er'
(C A SE } {VARIABLE) A nsw er"

y'Yes"
Y 'Y es'
n 'N o '
N~No"
1OTHERW ISE) 'E rro r '

{:}If-varAnswer-contains'y-or-Y,-gotolabel-Yes;-if-var-Answer
contains n or N, go to label No. Otherwise, go to-label Error."

(QUIT)

Merge

804 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

See the M acros subheading under { C H ARj for an additional example.

Merge
In this example, the Error subroutine is not executed unless a character other
than n or y is pressed. If the (CASE) command is changed to
{CASE CALL), the subroutines are called, and execution returns to the
{STOP} command.

(LA BEL) GetChar'{ COMMENT)
'{C H A R)A nsw er'Continue? (Y/N) ‘ {COMMENT)

Assign y or n to var Answer
'(C A S E) {VARIABLE) Answer-

y 'Y es'
Y 'Y es'
n 'N o‘
N 'N o '
{OTHERWISE ('E rro r'
'{COM M ENT)

If var Answer contains y or Y, go to label Yes; if var Answer contains n or N. go to
label No. Otherwise, go to label Error.

‘ (STOP)

See the Merge subheading under jCOMMENT/ for an example of how to use
these commands.

{CASE C M A .]expr~case1~label1~ ...caseN ~labelN O >~
The {CASE CALL) command is similar to the {CASE} command in that it can
branch to different subroutines. The difference is that {CASE CALL} requires
that execution return after a subroutine has executed (see jCASEj above).

Macros
I n th e f o l l o w i n g e x a m p le , th e u s e r i s p r o m p t e d to s e le c t a n a u th o r . T h e

{CASE CALL} command allows the user to select the author by number or
letter (note the {AV}s which turn on and {AQ } s which turn off the mnemonic
attribute (see Macros, Message Display in Reference)). If a correct number
or letter is not selected, the {OTHERWISE} case executes the routine again.
Once the subroutine corresponding to the option selected is executed,
execution returns to the {LABEL }GetType~ command.

{LABEL) Ge (Author'
{CHAR) A uthor') AV) l -J{AQ)oe;-{AV)2-S{AQ)ue;-{AV)3-M {AQ)arco:-'

{;) Prompt-user-for-author'
{CASE CALL ({VARIABLE (Author-

l 'J o e '
j Joe '
J 'Jo e '

{;(If user enters-l,j,-or-J.-call-subroutine-Joe~
2~Sue'
s 'S u e '
S 'S ue '

{;}If-user-enters-2,-s,-or-S,-call-subroutine-Sue'
3 'M arco '

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 805

m'Marco'
M'Marco'

{;}If user enters-3. in,-or M.call subroutine'Marco'
(OTHERWISE }'GetAuthor~

(; (Otherwise,-send prom piugaiiv Notice the tilde-after-the-{ OTHERWISE)
com m and.'

(; (Notice-the-extra-lilde-toend the CASEstatcmenf
{LABEL (GetType'

Merge
In the following example, the user is prompted to select an author. The
{CASE CALL) command allows the user to select the author by number. If
a correct number is not selected, the (OTHERWISE) case executes the
routine again. Once the subroutine corresponding to the option selected is
executed, execution returns to the {LABEL)GetType' command.

(LA BEL) Get A uthor' {COM M ENT)
'(C H A R)A u th o r '1 Joe; 2 Sue; 3 Marco: '{COM M ENT)

Prompt user for author
'{CASE CALL ({VARIABLE (A uthor"

l 'J o e '
2 'S ue '
3 'M arco '
{OTHERW ISE) 'G etA uthor'
'{COM M ENT)

It user enters 1. call subroutine Joe. If user enters 2. call subroutine Sue. If user
enters 3, call subroutine Marco. Otherwise, send prompt again. Notice the extra
tilde to end the CASE statement.

' {LA B EL) GetType'

\CHMH\macroname ' O (>-)
The {CHAIN) command stores the name of the indicated macro and executes it
after the current macro is completed. You can enter a full pathname if you wish
(the .WPM extension is not necessary).

You can chain one macro at each level of nesting (see Levels under Notes at the
end of this appendix). If more than one macro is chained at the current nest
level, only the last macro chained is executed when the current macro is
completed.

See Chaining, Nesting, and Substituting under Notes at the end of this appendix
for more information on chaining.

806 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Macros
The following macro executes a loop until the search text is not found.
When the search fails, the loop is exited, completing the current macro.
Execution is then transferred to the chained macro (NOTFOUND.WPM).

(CHAIN)NotFound'
{ ;)Execute the NOTFOUND macro when-thismacro is com pleted'

(ON NOT FOUND) (RETU R N }-
(;)W hen the search fails, stop this macro,andstart-the-chained-m acro'

(LABEL) Loop'
(;) Begin the repeating-subroutine'

(Search) at (Search)
(:}Search-for-"at"~

(PAUSE)
(;)Pause-(alIowuser to edit)'

(GO (Loop'
(;)Search-was-successful,-repeat the search'

T h e s e c t io n o f th e m a c r o b e tw e e n th e (L A B E L) a n d (G O) c o m m a n d s is r e p e a te d l y

e x e c u t e d u n t i l th e s e a r c h f a i l s . /4.S s o o n a s th e s e a r c h f a i l s , th e N O T F O U N D m a c r o

b e g in s .

Notice the (ON NOT FOUND} (RETURN)' command. If a macro is not
nested and has not been called with {CALL} or (CASE CALL},
(RETURN} ends the macro (see (R E T U R N) below).

Merge
The (CHAIN) command in Macros is equivalent to the (CHAIN MACRO}
command in Merge. See (C H A I N M A C R O) below.

(CHAIN MACRO)m a c r o n a m e ~ (O) >-*
T h e (C H A I N M A C R O) m e r g e c o m m a n d s t a r t s t h e n a m e d macro at the end of
the merge, if the merge terminates normally. You can enter a full pathname for
the m a c r o n a m e if you wish. You need not enter the .WPM extension.

Only the last macro chained during the merge is executed.

See C h a in in g , N e s tin g , a n d S u b s t i tu tin g under N o te s at the end of this appendix
for more information on chaining.

In p r e v i o u s v e r s io n s o f W o r d P e r f e c t , th i s m e r g e c o m m a n d w a s r e p r e s e n te d a s
AGmacronameAG.

Macros
The (CHAIN) command in Macros is equivalent to the (CHAIN MACRO)
command in Merge. See (C H A I N) above.

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 807

In the following example, the chained macro PRINT.WPM prints the
resulting merge file when the merge is complete.

(CHAIN M A CRO]print'(C O M M EN T)
Chain the macro PRINT.WPM when the merge is complete

(DATE)

Dear (FIELD) Name'.

• (rest of the letter)

Sincerely.

Chris Smith

Merge

(CHAIN PRIMARY I ft/ename” >-»
This merge command continues the merge with the named primary file as soon
as the current primary file is complete. You can enter a full pathname for the
filename if you wish.

See C h a in in g , N e s t in g , a n d S u b s t i tu t in g under N o te s at the end of this appendix
for more information on chaining.

Macros
This command is not available in Macros.

Merge
Tbe (CHAIN PRIMARY [Envelope” command in the following example
executes the ENVELOPE.PF primary file after the last iteration of the
current primary file.

(CHAIN PRIM ARY)Envelope'

• (rest of current primary file)

(CHAIN SECONDARYlft/ena/ne” > -
This merge command begins using records from the named secondary file when
the end of the current secondary file is reached. This command is especially
useful if you have broken a large secondary file into several smaller files. If you
insert a {CHAIN SECONDARY) command in each smaller secondary file, they
will act like one secondary file.

You can use a full pathname for filename if you wish.

See Chaining, Nesting, and Substituting under Notes at the end of this appendix
for more information on chaining.

808 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Macros
This command is not available in Macros.

Merge
The following example shows how a large secondary file has been broken
into two smaller files. When a merge is executed using the first secondary
file, the records of the second file will be used as soon as those in the first
file are completed.

Large File:

(FIELD NAMES)
N am e'
Status'
'(E N D RECORD)

Jose (END FIELD)
Staff(END FIELD)
(END RECORD)

• (additional records)

Barbara (END FIELD)
Professional (END FIELD)
(END RECORD)

Julie (END FIELD)
Part-time (END FIELD)
(END RECORD)

• (additional records)

Shoji(END FIELD)
Leave of Absence (END FIELD)
(END RECORD)

First Small File:

(FIELD NAMES)
N am e'
Status'
'(C O M M EN T)
' (PROCESS) (CHAIN SECOND ARY) F ile2 ' (PROCESS) (COM M ENT)

The (PROCESS) commands ensure that the (CHAIN SECONDARY) command
executes. The merge remembers the (CHAIN SECONDARY) command and
filename so that it can execute it when the current secondary file has ended.

'(E N D RECORD)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 809

JosefEN D FIELD)
StafffEND FIELD)
(END RECORD)

• (additional records)

B arbara|EN D FIELD)
Professional (END FIELD)
(END RECORD)

Second Small File (named FILE2, and in the default directory):

(FIELD N A M ES)
N am e'
Status'
'(E N D RECORD)

Julie (END FIELD)
Part-time!END FIELD)
(END RECORD)

• (additional records)

ShojijEN D FIELD)
L e a v e o f A b se n c e ! E N D F IE L D)
(END RECORD)

(CHARI var "message' O > *

This command is useful for creating menus and prompts. The (CFIAR)
command prompts the user with the m e s s a g e and waits until a single key is
pressed. The key is then assigned to the indicated variable (see A p p e n d ix L :
M a c r o s a n d M e rg e , V a r ia b le s). If Cancel is pressed, the macro or merge ends
unless the {CANCEL OFF) or {ON CANCEL) commands have been previously
executed. Once the key has been assigned to the variable, a {CASE),

CASE CALL), or (IF) command can be used to perform different operations
depending on the key pressed.

See M e s s a g e D is p la y under N o te s at the end of this appendix, and M a c ro s ,
M e s s a g e D i s p la y in R e fe r e n c e for information on affecting the way messages are
displayed. See also P r o m p tin g a n d U s e r In p u t under N o te s at the end of this
appendix.

A fter the (C H A R j com m an d executes, the con ten ts o f the sta tu s line ju s t p rev io u s to the
e x e c u t io n o f th e (C H A R j c o m m a n d a r e r e s to r e d . U s e (P R O M P T } ' ’ o r
(S T A T U S P R O M P T } ~ b e f o r e th e (C H A R } c o m m a n d to c l e a r th e s ta tu s l in e .

810 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Macros
The user can press any key as the input (including a feature key such as
Search). In the following example, the user is prompted to select a type of
document, after which a subroutine is executed based on what the user
entered.

(CHAR)DocType'l-Memo;-2-Letter;-3-Itinerary:--'
(;}Prompt-the user-for-input and-assign-the character-to-var-DocType'

(CASE) (VARIABLE)DocType"
1'M em o '
2 'L etter'
3 'I tin '

) : [Check var-DocType-and-branch-to-the-appropriate-subroutine'

See the M a c r o s subheading under the following commands for additional
examples: (BREAK). (CASE), (CASE CALL), (KTON), (RESTART),
(SHELL MACRO).

Merge
See the Merge subheading under the following commands for examples of
how to use this command: (CASE), (CASE CALL), (CTON).

(COMMENTIcommenr (O) >-
Use this merge command to put comments in a primary or secondary merge file
to make it easier to understand. You can also use this command to format the
merge commands so that they are more readable, without inserting extra hard
return or tab codes in the document.

Macros
The (COMMENT) command in Merge is equivalent to the {;} (comment)
command in Macros (see (;! above).

Merge
The following shows how you can use the (COMMENT) command to
format the primary document. This merge creates a list of employees and
their salaries. The secondary file has three fields: Name, Type, and Salary.
Any record in the secondary file that has 1, 2, or 7 in the Type field is not
merged into the list.

(L ABEL)List~{ COMMENT)
This comment prevents the insertion of a [HRt] between execution of the (LABEL)
command and the (LOCAL) command.

' (LOCAL) Type' (FIELD) Type" (COMMENT)
This comment prevents the insertion of a [HRt] between execution of the (LOCAL)
and (CASE CALL) commands.

'(C A S E)) VARIABLE) T ype"
I'Next'
2'N ex t'
7'N ex t'

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 811

'(C O M M EN T)
Notice that there is no need for a (COMMENT) command between the cases.
Since these are all part of the same command, no [HRt] will be inserted. The
(COM M ENT) command after the (CASE) command is necessary to prevent the
insertion of [HRt] codes between the execution of the (CASE) command and the
(LA B EL}Writelt command.

' (LA BEL) W ritelt' (COM M ENT)
This comment prevents the hard return between the (LABEL) command and
(FIELD) command from appearing in the resulting document.

'(F IE L D)N am e'
(FIELD (Salary '

) COMMENT)
No comment command was inserted between the (FIELD) commands so that in the
document resulting from the merge, the Name and Salary field information will be
separated by a [HRt], Notice the position of this (COM M ENT) command. This
positioning will put two [HRt] codes between each Name-Salary pair in the resulting
list.

~ {LA BEL) N ext' (COM M ENT)
'(N E X T RECORD](CO M M ENT)
'(G O)L is t'

See the other Merge examples in this section to see more on how to use this
command.

1CT0N\ c h a r a c t e r ~ (O) >-*
The (CTON) merge command (Character TO Number) converts character
(which may be any character in the WordPerfect character sets) to a unique
number, its WordPerfect “key value.” (CTON) performs the inverse (opposite)
function of the {NTOC} command (see (NTOCj below). You can use the key
value to calculate the WordPerfect character set value.

To calculate the character set value for a given character,

1 Use the (CTON) command to obtain the key value.

2 Divide the key value by 256.

The quotient is the number of the WordPerfect character set (0-12). The
remainder is the character number in the character set (0-255).

Macros
This command is not available in Macros. However, the {KTON} macros
command is very similar to the {CTON} merge command. See (KTONj
below.

Merge
This example calculates the character set value for a character:

(CH A R)Char'Type a character: '(C O M M EN T)
Assign input to var Char

812 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

'[ASSIGN) Set' (CTON)(VA RI ABLE) Char'7256' {COMMENT}
Assign quotient to var Set

-{A SSIG N)N um 'fC T O N) (VARIABLE)C har"% 256 '(COM M ENT)
Assign remainder to var Num

' (VARI ABLE | Set', (VARIABLE (Num' j COMMENT}
Write out character set value'

{DATE} (0) > *
The (DATE) merge command inserts the current date and/or time in the
document, as formatted in the Date Format feature (see Date in Reference).

In p r e v i o u s v e r s io n s o f W o r d P e r fe c t , th i s m e r g e c o m m a n d w a s r e p r e s e n te d a s ''D .

Macros
Although this command is not available in Macros, you can program a macro
to access the Date feature, such as in the following example:

This-document-was-printed:-{ Date/Outline }c

l D a t e / O u t i i n e j m a y b e i n s e r t e d in th e m a c r o b y p r e s s i n g D a t e / O u t l i n e (S h if t-F 5) .
W h e n th e m a c r o is e x e c u te d , (D a t e / O u t l i n e) c w i l l s e l e c t D a t e C o d e f r o m th e

D a t e / O u t l i n e m e n u .

For more information, see Date in Reference.

Merge
You can use either this command, or the Date Code (Shift-F5,2) (see Date in
Reference) to insen the current date in merged documents. The first example
below uses the {DATE} command; the second example shows how to
achieve the same result using the Date Code.

Example 1:
(DATE)

(FIELD) Name'
(FIELD (Address'

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 813

Example 2:

October 24, 1991
{FIELD}Name"
{FIELD)Address

[M i n ngt j [Dat e : J 1,4
[Mr-g! FIELD] Name " [HB*]
(Mrg!FIELD]Address"

Press Reveal Codes to restore screen

See the Merge subheading under the following commands for additional
examples: {CHAIN MACRO), (KEYBOARD), (PRINT), (QUIT),
(REWRITE).

(DISPLAY OFF) O
The (DISPLAY OFF) macro command turns off the display of macro execution.
If this command were not present, each action of the macro would be rapidly
displayed on the screen as it was executed. In many cases, you may want to
turn the display off because macro execution is faster when it does not display.
When you create a macro, the (DISPLAY OFF) command is inserted at the
beginning of the macro. You can delete this command if you want the macro to
display execution. (Exceptions: If you create a macro at the normal editing
screen that ends at a menu or includes a (PAUSE) or (PAUSE KEY) command,
the (DISPLAY OFF) command is not inserted.)

If you use this command to turn display off, the screen is not automatically
cleared. Whatever is on the screen will remain on the screen (unless another
command overwrites it) while the macro is executing.

If display is off when a (PAUSE) or (PAUSE KEY) (see fPAUSE} and
jPAUSE KEY} below) is executed, the screen does not rewrite. The user will
probably not know what to do at the pause. You should be sure to turn on
display before using one of these commands.

Messages in the (CHAR), (INPUT), (PROMPT), and (TEXT) commands
always display on the screen, even when display is off.

8 1 4 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Macros
In the following example, display is off until the file is ready to be printed.
The (DISPLAY ON} command just before the (Print) command allows the
Print menu to display.

(DISPLAY OFF}
(H om e} {H om e} (U p)

(;)M ove tobeginning-offile '
(Replace }n[{Search}({Search}

{;(Replace "!" with "("'w/o-confirm'
(Home) (Home | (Up)

{;(Move-the-cursor-to-the-top of-the-tile'
{Replace) n] {Search}) (Search)

);(R ep lace"]"w ith ")"w /o co n firm '
(DISPLAY ON}

(;)Turn on-display to allow menu to display'
{P rin t} s

(;)Display printer select m enu'

Merge
This command is not available in Merge. Merges are always invisible unless
you use the {REWRITE} command to rewrite the screen.

(DISPLAY 0N| O
The (DISPLAY ON} macro command is used to turn on the display of macro
execution after it has been turned off by the (DISPLAY OFF} command (see
(DISPLAY OFF} above). Display On is the default for macro execution. Macro
execution is slower when display is on.

(DISPLAY ON} does not itself rewrite the screen. The screen is only rewritten
when a command subsequent to the (DISPLAY ON} command performs an
action that rewrites the screen.

Macros
See the Macro subheading under the following commands for examples of
how to use this command: (DISPLAY OFF), (MENU OFF).

Merge
This command is not available in Merge. Merges are always invisible unless
you use the (REWRITE) command to rewrite the screen.

(DOCUMENT)A7ena/ne~ (O) >-
The (DOCUMENT) merge command inserts the named document into the
merged document at the point the command is encountered. The document is
not processed, so any merge commands in the inserted document are ignored.
This command is commonly used for inserting variable paragraphs in contracts
and similar documents, often called document assembly, or to have the merge
build a primary or secondary file.

APPENDIX K. MACROS AND MERGE, PROGRAMMING COMMANDS 8 1 5

Macros
This command is not available in Macros. However, you can perform a
similar function with the following macro:

{Retrieve I document, wp (Enter}

These commands retrieve DOCUMENT.WP into the current document.

Merge
In the following example, the {DOCUMENT} command inserts the
document called ONEROOM.MRG in the merged document if variable
Rooms is equal to 1, or the document TWOROOMS.MRG if variable Rooms
is not equal to 1.

(IF) I VARIABLE)R oom s'= P{ COM M ENT(
' (DOCUMENT)OneRoom.mrg~{ COM M ENT}

'{E L S E) {DOCUM ENT) TwoRooms.mrg'{ COMMENT)
'{EN D IF)

(ELSE) O >~
The (ELSE) command is used in connection with the {IF}, (IF BLANK},
{IF EXISTS), {IF NOT BLANK), and {END IF} commands. It marks the
beginning of the commands which execute should the IF value be zero (false)
(see /IF) below).

The {ELSE} command is not a required part of an IF statement. It should be
used when there are certain steps that need to be performed only when the IF
value is zero (false). The commands below {END IF) execute whether or not
the IF value is true.
It is possible to use the (ELSEj command instead o f the jOTHERWISEj command to
handle cases that do not match in a lCASE} or /CASE CALLj command. However,
/ELSEj will not function correctly if the CASE statement is within an IF statement.

Macros
In the example below, if variable Number contains a negative number, add 2.
I f not, subtract 2.

(IF) {V ARIABLE)Num ber'<0'
{;}If-var-Number-is-less-than O'

{ASSIGN (Number'{VARIABLE)N um ber'+2 '
{;) Add-2-to-var-Number'

{ELSE)
{;) If not'

{ASSIGN [N um ber') VARIABLE [N um ber'-2 '
{;}subtract-2-fromvarNumber~

(END IF)
{;) End of - {IF) -statement'

See the Macros subheading under the following commands for additional
examples: {IF EXISTS), {Item Down}, {Item Left}, (Item Right},
{Item Up}, {RESTART}, (SHELL MACRO}, {STATE}.

8 1 6 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

See the Merge subheading under the following commands for examples of
how to use this command: (DOCUMENT), (IF), (IF BLANK),
(IF EXISTS), (LOOK), (NEST MACRO), (NEXT RECORD),
(SUBST PRIMARY).

(END FIELD) > *
The (END FIELD) merge command signals the end of a field in a secondary
file. A Flard Return (HRt) is automatically inserted with this command for better
readability.

When you insert this command, a message appears at the bottom o f the screen that lets
you know the number o f the field where the cursor is currently located. I f you use the
!FIELD NAMES) command, the name o f the field appears instead o f the number.
Pressing Home,Home. Up Arrow will temporarily remove the message from the screen.
However, as long as you have an /END FIELD), /END RECORD), or /FIELD NAMES)
command in the file, the message will display when the cursor is after the command. If
you delete all the /END FIELD), /END RECORD), and /FIELD NAMES) commands
from the file, then press Home,Home, Up Arrow, the message will not reappear.

In previous versions o f WordPerfect, this merge command was represented by AR.

Macros
This command is not available in Macros.

Merge
Records in the following secondary file have three fields:

International Exporting{END FIELD)
(801) 555-4421 {END FIELD)
George Wiley {END FIELD)
{END RECORD)

Merge

Tradewinds, Inc.{END FIELD)
(409) 555-3567{END FIELD)
Susan Escher{END FIELD)
{END RECORD)

See the Merge subheading under the following commands for additional
examples: (CHAIN SECONDARY), (FIELDNAMES).

(END FORI O >■*
This command signals the end of a (FOR) or (FOR EACH) loop (see (FOR)
and /FOR EACH) below).

Macros
See the Macros subheading under the following commands for examples of
how to use this command: (BREAK), (FOR), (FOR EACH), (NEXT).

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 81 7

See the Merge subheading under the following commands for examples of
how to use this command: (FOR), {MID}, {NEXT}.

{END IF} O >~
The {END IF} command marks the end of an IF structure and is used with the
(IF), {IF BLANK}, {IF EXISTS}, (IF NOT BLANK), and {ELSE} commands.

Macros
See the Macros subheading under the following commands for examples of
how to use this command:" {BREAK}, {ELSE}, {GO}, {IF}, {IF EXISTS),
{Item Down}, {Item Left}, {Item Right}, (Item Up}, {LEN}, {LOOK},
{NEXT}, (ORIGINAL KEY}, (RESTART), {SHELL MACRO}, {STATE}
(in text).

Merge
See the Merge subheading under the following commands for examples of
how to use this command: {BELL}, {CALL}, {DOCUMENT}, (GO),
{IF}, {IF BLANK}, {IF EXISTS}, {IF NOT BLANK), {MID},
{NEST MACRO), (NEST PRIMARY), (NEST SECONDARY}, {NEXT},
{NEXT RECORD}, {SUBST PRIMARY}, {SUBST SECONDARY}.

(END RECORD) > *
This merge command signals the end of a record in a secondary file. A hard
page break is inserted automatically with this code for better readability.

W h en y o u in s e r t th i s c o m m a n d , a m e s s a g e a p p e a r s a t th e b o t to m o f th e s c r e e n th a t l e t s
y o u k n o w th e n u m b e r o f th e f i e ld w h e r e th e c u r s o r i s c u r r e n t ly lo c a te d . I f y o u u s e th e
l F IE L D N A M E S / c o m m a n d , th e n a m e o f th e f i e l d a p p e a r s i n s t e a d o f th e n u m b e r .
P r e s s in g Home.Home, Up Arrow w i l l t e m p o r a r i l y r e m o v e th e m e s s a g e f r o m th e s c r e e n .
H o w e v e r , a s lo n g a s y o u h a v e a n (E N D F I E L D } , (E N D R E C O R D }, o r (F I E L D N A M E S }

c o m m a n d in th e f i l e , th e m e s s a g e w i l l d i s p l a y w h e n th e c u r s o r i s a f t e r th e c o m m a n d . I f

y o u d e l e t e a l l th e (E N D F I E L D } , (E N D R E C O R D } , a n d (F I E L D N A M E S } c o m m a n d s '

f r o m th e f i l e , th e n p r e s s Home.Home, Up Arrow, th e m e s s a g e w i l l n o t r e a p p e a r .

In p r e v i o u s v e r s io n s o f W o r d P e r fe c t , th i s m e r g e c o m m a n d was r e p r e s e n te d a s AE.

Macros
This command is not available in Macros.

Merge
See the Merge subheading under the following commands for examples of
how to use this command: {CHAIN SECONDARY}, {END FIELD},
{FIELD NAMES}.

(IEND WHILE) O >~
This command signals the end of a {WHILE} loop (see (WHILE} below).

Merge

818 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Macros
See the Macros subheading under the following commands for examples of
how to use this command: {SYSTEM}, {WHILE}.

Merge
See the Merge subheading under {SYSTEM} for an example of how to use
this command.

IFIELDIffeW >-
The {FIELD} merge command inserts the contents of the named (or numbered)
field in the merged document or in another merge command.

In p r e v i o u s v e r s io n s o f W o r d P e r f e c t , th i s m e r g e c o m m a n d w a s r e p r e s e n te d a s AFnameA o r

AF # A.

Macros
This command is not available in Macros.

Merge
In the following example, the contents of the Name and Address fields in the
current record in the secondary merge file are inserted in the letter.

(FIELD) Name'
(FIELD [Address'

Dear {FIELD } Name':

See the M e r g e subheading under the following commands for additional
examples: (BELL), {CALL}. {CHAIN MACRO}, {COMMENT},
(D A T E) , (G O) , (IF B L A N K) , (IF N O T B L A N K) , { M I D) ,
{MRG CMND), {NEST MACRO), {NEST PRIMARY),
(NEST SECONDARY}, (NEXT RECORD}, {PAGE OFF}, {PAGE ON},
{PRINT}, (REWRITE), {SUBST PRIMARY).

(FIELD NAMESlfiamer... nameN~~ >~
This merge command declares the names and order of the fields in a secondary
file. Using this command in the secondary file allows you to reference the fields
by name in a primary file. (Referencing fields by name in a primary file is
usually much easier than remembering the order of the fields in the secondary
file.)

The {FIELD NAMES) command must be the first command in the secondary
file. If the records have more fields than those declared in this command,
additional fields are numbered. The {FIELD NAMES} command must precede
the records. When initially inserted, the command and field names are all on
one line.

You may find it easier to read by formatting it on separate lines, as in the
example below. An {END RECORD} command and its accompanying)HPg)

APPENDIX K- MACROS AND MERGE, PROGRAMMING COMMANDS 8 1 9

code are inserted automatically when you insert this command. You are limited
to 100 named fields, and field names are limited to 39 characters.

A fter you insert this command, a m essage appears a t the bottom o f the screen that lets
you know the nam e or num ber o f the f ie ld where the cursor is currently located.
P r e s s in g Home,Home,Up Arrow w i l l t e m p o r a r i l y r e m o v e th e m e s s a g e f r o m th e s c r e e n .

H o w e v e r , a s l o n g a s y o u h a v e a n (E N D F I E L D] , (E N D R E C O R D] . o r (F I E L D N A M E S j

c o m m a n d in th e f i l e , th e m e s s a g e w i l l d i s p l a y w h e n th e c u r s o r i s a f t e r th e c o m m a n d . I f

y o u d e l e t e a l l th e (E N D F I E L D] , (E N D R E C O R D j , a n d (F I E L D N A M E S] c o m m a n d s
f r o m th e f i l e , th e n p r e s s Home.Home. Up Arrow, th e m e s s a g e w i l l n o t r e a p p e a r .

Macros
This command is not available in Macros.

Merge
In the following example, the first three fields of each record are named
using the {FIELD NAMES) command. The additional fields are not named,
and so are numbered Field 4, Field 5, etc. The {FIELD NAMES) command
shown in this example has been formatted on several lines so that it is easier
to read.

{FIELD NAMES)
Com pany'
Phone'
C ontact'
'{EN D RECORD)

International Exporting!END FIELD)
(801) 555-4421 {END FIELD)
George W ileytEN D FIELD }
Furniture{END FIELD)
4 5 (END FIELD)
$1.5 million {END FIELD)
{END RECORD)

Tradewinds. Inc.{END FIELD)
(409) 555-3567{END FIELD)
Susan Escher{END FIELD)
Memorabilia)END FIELD)
200{END FIELD)
$2.0 million {END FIELD)
{END RECORD)

See the Merge subheading under (CHAIN SECONDARY] for an additional
example.

{FOR I rar ~start ~stop ~step~ O >■*
The {FOR) command is useful for executing a series of commands a certain
number of times. The commands between the {FOR} and {END FOR)
commands are executed once for each value of var between start and stop
inclusive, as incremented by step.

8 2 0 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

The start, stop, and step values can be entered in the command as expressions,
variables, or other commands. Each expression, variable, or command is
evaluated to a value, then the value is assigned to the variable.

In any FOR loop, {END FOR) command must be used to determine the end of
the series of commands included in the loop. The (END FOR} command sends
execution to the top of loop for the next iteration. You can also use the
{NEXT} command to send execution to the next iteration (see /NEXTj below),
but you must still include an {END FOR} to mark the end of the loop.

The {FOR} command itself initializes the variable with the start value. You do
not need to pre-assign the variable. Each subsequent time the {FOR} command
is executed (at the top of the loop), the variable is incremented by the step value.

M a c r o s
The following example shows how you could use the {FOR} command to
write out a line of 20 asterisks (*). (See Merge below for a more
complicated example.)

(FOR) C oun ter'l '2 0 ' l '
(; (For every value-of-Counter-from-1 -to-20-(values incremented
by-l-eachtim e through the loop)'

*
(;}Write an as te risk f*) '

(END FOR)
(;)End-of-(FOR)-loop.- Repeat the loopunlessC ounter=20 '

See the Macros subheading under the following commands for additional
examples: {BREAK}, {NEXT}.

Merge
The following example is similar to the example under Macros above;
however, in this example the start value has been changed to 4, and the step
to 3. Counter is initialized to 4 the first time through the loop, and so the
asterisk will be written out. In subsequent iterations of the loop, only 5 more
asterisks will be written out (Counter equals 7, 10, 13, 16, 19). After that
the loop will end because 22 (the next increment after 19) is greater than 20
(the stop value).

(FO R) Counter'4 '20'3~ {COM M ENT}
For every value o f Counter from 4 to 20 (values incremented by 3 each time
through the loop)

'*{ COMMENT)
Write an asterisk (*)

'(E N D FO R)(CO M M EN T)
End of (FOR) loop. Repeat the loop unless Counter>=20~

See the Merge subheading under the following commands for additional
examples: {MID}, {NEXT}.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 821

{FOR £AGH\var~expr1~... exprN~~ O
The {FOR EACH} macro command is similar to the (FOR) command. The
difference is that instead of having a sequential step value, each value to be
assigned to the variable is included as an argument in the command. (The
values can still be included as expressions, variables, or commands. They are
evaluated before being assigned to the variable.) See [FOR/ above for more
information.

Like the {FOR} command, the (FOR EACH) command itself initializes the
variable with the start value. You do not need to pre-assign the variable. Each
time the {FOR EACH} command is executed (at the top of the loop), the
variable is assigned the next value.

Remember to end the loop with an {END FOR} command.

M a c r o s
In the following example, the macro will loop 5 times. Each time it loops,
the variable “Count" will be equal to the specified value (i.e., on the first
loop, Count=15, on the second loop, Count=10, on the third, Count=25, etc.).

1 FOR EA CH) C ount' 15'10~25~95~50~~
(;} Var-Count-is-initialized-to- I5thefirsttim ethrough-the-loop,-then
10 ..then-25 ,andsoon '

{VARIABLEJCount"
{;)W riteoutvar-Count-follow edby-a space"

(END FOR (
|;}Perform thenext-iteration-of the loop unless Count=50. ■ Inthatcase.endtheloop."

When execution is complete, "15 10 25 95 50 ” will have been written out.
N o te th e s p a c e (r e p r e s e n te d b y “ a f te r th e { V A R IA B L E (Count- command.
This is the space after each number when they are written out.

M e r g e
This command is not available in Merge.

(GO) label' O F*
The {GO} command transfers execution to the location in the macro or merge
file indicated by label. It is used in conjunction with the {LABEL} command
which marks the place to which execution is transferred.

The {GO} command is useful when you want to skip a part of your macro or
merge, or to transfer control to another part based on a condition. Unlike the
{CALL} command, (GO) does not require that execution return.

M a c r o s
This macro checks to see if the Search command has been entered in
variable Key. Notice that the steps between {END IF) and {LABEL} will
be skipped if variable Key contains {Search}.

{IF)" {VARIABLE} Key~"=" {Search}
{;) If-var- Key contains- j Search}~

(GO (Search"

8 2 2 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

{;} Go-to-the-Search-LabeF
{END IF)

• (middle section of macro)

{LA B EL) Search'
{; (Perform the search'

• (Steps of the search)

{QUIT)
{;) Stop-macro-execution'

The macro ends after the search has been completed.

See the Macros subheading under the following commands for additional
examples: (CHAIN), (Item Down), (Item Left), (Item Right), (Item Up),
{LEN), (LOOK), (ON CANCEL), (ON ERROR), (RETURN CANCEL),
(RETURN ERROR).

M e r g e
In the following example, suppose you have a secondary file where the last
record has “End” as the contents of its Name field. You could use the
following commands to stop the merge when it gets to that record.

{IF)" (FIELD) Name~"="End"~{ COM M ENT)
~ | G O } EndTheMerge" {COM M ENT}

'{EN D IF}
*
• (more of the primary file)

{LABEL) EndTheM erge' {COM M ENT)
(S T U B)

See the Merge subheading under the following commands for additional
examples: (BELL), (COMMENT), (IF), (LOOK), (ON CANCEL),
(ON ERROR), (RETURN CANCEL), (RETURN ERROR).

{IF}expr~ 0 > *
The (IF) command is used to execute a set of commands only if a certain
condition exists. If the condition exists (expr is evaluated to be true), the
commands directly after the (IF) command are executed.

The expr argument is usually a logical expression. An expression is true if it is
evaluated as a non-zero number. For example, when the expression 4=4 is
evaluated, the result is -1 (which corresponds to true). The value is false if it
results in a 0 or contains nothing at all. String values and commands must be
enclosed in quotes to be evaluated correctly. See Appendix J: Macros and
Merge, Expressions for more information on expression evaluation.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 8 2 3

If the value is true, the commands directly after the (IF) execute. If the value is
false (or there is no value at all), the commands after (IF) are skipped, and
execution continues after the (END IF} command.

An (IF) statement always begins with {IF} and ends with {END IF}. If you
want certain commands to execute only when the value is not true, use the
{ELSE} command (see / ELSE/ above).

It is possible to nest {IF} commands. See / STATEJ below for an example of
nested {IF} statements.

M a c r o s
In the example below, the Setup menu is displayed only if the appropriate
password is in variable Input.

{IF }" {VARIABLE) Inpur"=" (VARIABLE (Passw ord '" '
(;) If-var Input containsthepassw ord-(as-stored-invar Password)'

1 Setup)
(; (Enter the-Setup m enu'

(END IF)
{;) Endof- (IF) -structure'

Notice that quotes are placed around both fVARIABLEj!nput~ and
j VARIABLE)Password' because it is a string comparison.

See the Macros subheading under the following commands for additional
examples: {BREAK}, {ELSE}, {GO}, {Item Down}, {Item Left},
{Item Right}, (Item Up}, {LEN}, {LOOK}, {NEXT}, {ORIGINAL KEY),
{RESTART}, {SHELL MACRO}, (STATE) (in text).
M erg e
The following example writes “again ” each time through the loop until
variable Counter equals 0. Then it writes “Finished.” (Final output is “again
again again Finished.”) Notice that the {IF} statement does not use a logical
expression. Rather, it checks to see if the IF value is non-zero.

(A SSIG N) C ounter'3 'f COM M ENT)
Set var Counter to 3 (loop will execute 3 times before IF value is false (zero))

'(L A B E L) Loop' (COMM EN T)
'(IF) (VARIABLE [C ounter") COMMENT)

If var Counter is non-zero
'again (COMMENT)

Write "again "
' (ASSIG N) Counter') VARIA B LE) C ounter'-1' (COMMENT)

Subtract 1 from var Counter
' (G O) Loop' (COM M ENT)

Repeat the loop
'(E L S E) (COM MENT)

'Finished. (COMMENT)
Write "Finished."

'(E N D IF)(CO M M EN T)
End of (IF) statement'

82 4 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

See the Merge subheading under the following commands for additional
examples: (BELL), {DOCUMENT}, {GO}, {MID}, {NEST PRIMARY),
(NEST SECONDARY}, {NEXT}, (NEXT RECORD},
(SUBST PRIMARY).

(IF BLANK) ffe/<T > -
If the indicated field is blank, the commands after this command are executed.
Be sure to end the set of commands to be executed with an (END IF} command.
See also {IF NOT BLANK} below, and If Blank, If Not Blank, and ? under Notes
at the end of this appendix.

M acros
This command is not available in Macros.

Merge
In the following example, the secondary merge file records have a Title field
and a Name field. WordPerfect checks to see if the Title field of the current
record is blank. If so, it inserts just the Name in the merged document.
Otherwise, it inserts the Title before the Name.

(IF BLANK 1 T itle'!C O M M EN T)
If the Title field is blank in this record

'{F IEL D (N am e' {COMMENTI
Write out just the Name followed by a space

'{ELSE) (COMMENT}
Otherwise

'{ FIELD) T itle ' {FI ELD) N am e' {COM M ENT}
Write the Title before the Name

'{EN D IF)(COM M ENT)
End of {IF BLANK) statement'

See me M erge subheading under the following com mands for additional
examples: (CALL), (NEST MACRO}, (SUBST SECONDARY}.

{IF EXISTS) Far" O >-
The (IF EXISTS} command checks to see if the indicated variable has been
assigned. If it has, the commands following {IF EXISTS} are executed. Like
other IF statements, the {IF EXISTS} command requires an (END IF} and can
use an (ELSE) (see {IF} above).

Common uses for the (IF EXISTS) command include establishing a default
response at a menu (see Macro example below). (IF EXISTS} is also useful
when you want execution to wait until a key is pressed (see {LOOK} below).

M acros
The following example shows how you can use the {IF EXISTS} command
to set up a default response to a user prompt:

(TE X T)A uthor'1 Joe;-2 Sue;-3 Marco: 1 {Left}'
{;) User selects author'

(IF EXISTS (A uthor'
(ELSE)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 825

(;) If user pressed-Enterat m enu'
(ASSIGN) A u th o r 'r

{;) Use-defaultof-" l “~
(END IF)

M erge
The following example shows how you can use the {IF EXISTS) command
to set up a default response to a user prompt:

(TEXT)Author" 1 Joe; 2 Sue; 3 Marco: '(C O M M EN T)
User selects author

'(IF EXISTS)A uthor')C O M M EN T|
'(E L S E) (COM M ENT)

If user pressed Enter at menu
' (ASSIGN) A u th o r 'l '(COMMENT)

Use default of " I "
'(E N D IF)

{IF NOT BLANK|fie/<T
If the indicated field is not blank, the commands following this merge command
are executed. Be sure to end the set of commands to be executed with an
{END IF) command. See also (IF BLANK/ above.

M acros
This command is not available in Macros.

M erge
In the following example, the secondary merge file records have a Title field
and a Name field. WordPerfect checks to see if the Title field of the current
record is blank. If not, it inserts the Title before the Name. Otherwise, it
inserts just the Name.

(IF NOT BLANK (Title'(CO M M EN T)
If the Title field is not blank in this record

'(F IE L D)T itle ' (COM MENT)
Write out the title and a space

'(E N D IF)(CO M M EN T)
End of (IF NOT BLANK) statement

'(F IE L D (N am e'

lINPUTI/nessage' O >-*
This command prompts the user with the message, then pauses, allowing the user
to perform any keystroke operations. Once input is terminated (see Macros and
Merge subheadings below), the message is removed from the screen and
execution continues.

Using an (INPUTj command after a (STATUS PROMPTj command will remove the
previous (STATUS PROMPT/ message (see (STATUS PROMPT) below).

See also Prompting and User Input under Notes at the end of this appendix for
alternative means of obtaining user input.

8 2 6 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

While an executing merge is paused at an (INPUT) (or (KEYBOARD))
command, you can execute the (QUIT), (NEXT RECORD), or (STOP)
commands from the keyboard. See Inserting Merge Commands During
Execution under Notes at the end of this appendix.

In previous versions o f WordPerfect, this merge command vras represented as
A0messageAOAC.

M acros
After the command below is executed, the user can do any editing.
Execution continues when the user presses Enter.

|INPUT}Edit-the-codes.-Press-Enter-when done."

See the Macros subheading under the following commands for additional
examples: (CANCEL OFF). (MENU OFF), (Para Down), (Para Up).

M erge
After the command below is executed, the user can do any editing.
Execution continues when the user presses End Field (F9).

{INPUT)Type the memo text. Press F9 when done,'

See the Merge subheading under {CANCEL OFF} for an additional example.

(Item Down) O
The (Item Down) keystroke command is used in tables and paragraph
numbering to move down one section or cell.

M acros
The following example moves down each cell in a column of a table and
inserts the cell number in it.

1 ASSIGN (PreviousCell'O '
(LABEL (Number-Cells'

1 IF (" 1 VARIABLE} PreviousCell'" !=" {SYSTEM) C ell'" '
(SY STEM)C ell'

(;) Write-current-cell-number'
1 ASSIGN (PreviousC ell'1 SYSTEM (C ell"

(;)Assign current-cell-number-to-var-PreviousCeir
(Item Down)

(; (Move-down-to-the-next-ceir
(GO (Number-Cells'

(;}Repeat-the-loop'
(ELSE)

(QUIT)
(END IF]

(;) End-of-IF-statement'
(RETURN)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 8 2 7

Merge
This command is not available in Merge.

{Item Left) O
The (Item Left} keystroke command is used in tables and paragraph numbering
to move left one section, column, or cell.

Macros
The following example moves right to left to each cell in a table and inserts
the cell number in it.

{A SSIG N } PreviousCell'O'
(LA B EL} Number-Cells'

(IF}" {VARIABLE) PreviousCell'" !=" (SYSTEM}Ceir"
{SYSTEM) C ell'

I ;}Write-current-cell-nuinber'
{ASSIG N) PreviousCell'! SYSTEM JCell-

(;)Assign current-cell-number-to var-PreviousCeir
(Item Left)

(;) M oveleft-to the-previousceir
(GO (Number-Cells'

(;)Repeat-the-loop'
(ELSE)

(QUIT)
(END IF)

(; (End-of-IF-statement'
(RETURN)

Merge
This command is not available in Merge,

litem Right) O
The {Item Right) keystroke command is used in tables and paragraph numbering
to move right one section, column, or cell.

Macros
The following example moves left to right to each cell in a table and inserts
the cell number in it.

(A SSIG N) PreviousCell'O'
(LABEL (Number-Cells'

(IF }"(VARIABLE) PreviousCell'" !=" (SYSTEM } C e ll'" '
(SYSTEM (C ell'

{;)Write-current-cell-number~
(ASSIGN (PreviousC ell'(SY STEM) Cell

{;)Assign-current cell number to-var-PreviousCeir
(Item Right)

(; (Move-right-to-the-next-ceir
(GO (Number-Cells'

);}Repeat-the-loop'
(ELSE)

(QUIT)

8 2 8 APPENDIX K: MACROS AND MERGE. PROGRAMMING CO M M ANDS

{END IF}
{;}End-of-IF-statement~

{RETURN)

Merge
This command is not available in Merge.

{Item Upl O
The (Item Up} keystroke command is used in tables and paragraph numbering to
move up one section or cell.

Macros
The following example moves up each cell in a column of a table and inserts
the cell number in it.

{ASSIG N)PreviousCeH '0'
{LA B EL} Number-Cells'

(IF)"{VARIABLE }PreviousCell'"!=" {SYSTEM) C ell'
{SYSTEM (C ell'

{;} W rite-currentcellnum ber'
{ASSIGN (PreviousC eir) SYSTEM }C ell"

{;} Assign current-cell number to var-PreviousCelF
{Item Up}

{;} M ove-up-to thenex tcell'
{GO (Number-Cells'

);)Repeat-the-loop'
(ELSE)

{QUIT}
(END IF}

{: }E ndof-IFstatem enf
{RETURN}

Merge
This command is not available in Merge.

(KEYBOARD) (O) >*
The {KEYBOARD} merge command pauses an executing merge to rewrite the
screen and then let the user enter information from the keyboard. This command
is similar to the {PAUSE} and {PAUSE KEY) commands in Macros. When
End Field (F9) is pressed, the merge continues. See also Prompting and User
Input under Notes at the end of this appendix for additional methods of obtaining
user input.

While an executing merge is paused at a {KEYBOARD} (or {INPUT})
command, you can execute the {QUIT}, (NEXT RECORD}, or {STOP}
commands from the keyboard. See Inserting Merge Commands During
Execution under Notes at the end of this appendix.

In previous versions o f WordPerfect, this merge command was represented as AC.

APPENDIX K: MACROS AND MERGE, PROGRAMMING CO M M AND S 8 2 9

Macros
This command is not available in Macros. Use {PAUSE}, {PAUSE KEY},
or {INPUT} instead.

Merge
In the following example, the {KEYBOARD} commands pause to let the
user enter the “From:,” “To:,” and “Subject:” text as the merge is executed.
The screen is rewritten at each {KEYBOARD} command which displays the
portion of the file merged so far, so that the user knows what information to
enter.

ME\

F rom : {KEYBOARD}

To: {KEYBOARD}

D ate: {DATE}

S u b je c t: {KEYBOARD)

See the Merge subheading under {STATUS PROMPT) for an example of
how to use this command.

IKTONIHrejr 0 (> ~)
The {KTON} macro command (Key TO Number) converts key (which may be
any key on the keyboard) to a unique number, its WordPerfect “key value.”
{KTON} performs the inverse (opposite) function of the {NTOK} command (see
I N T O K l b e lo w) .

If you take the {KTON} of a function key, an editing key, or a cursor key, the
key value is the end result. This is the value you would use with the {NTOK}
command.

If key is a character (characters are a subset of all keys), you can use the key
value to calculate the WordPerfect character set value. The character set value
can be assigned to a variable, and a variable can be used to input the character
set value.

To calculate the character set value for a given key,

1 Use the {KTON} command to obtain the key value.

2 Divide the key value by 256.

The quotient is the number of the WordPerfect character set (0-12). The
remainder is the character number in the character set (0-255). For additional
values returned by the {KTON} command, see Appendix T: Macros and Merge,
Value Tables.

8 3 0 APPENDIX K MACROS AND MERGE, PROGRAMMING CO M M ANDS

Macros
For example, if you want your macro to calculate the character set value for
a character, you could use the following:

(CH A R)K ey'Type any key '
(;) Assign input to-var-Key'

(A SSIG N)S et'l KTON) (VARIABLE) Key'7 2 5 6 '
(:) Assign-quotient-to-var-Set'

) A SSIG N) N um ' {KTON) (VARIABLE) Key“ %256~
(;} A ssign-rem aim lerto-varN um '

(VARIABLE} Set', (VARIABLE)N um '
(;(W rite out character set-value'

This macro prompts for a key, then calculates and writes out the character
set value for that key.

Merge
This command is not available in Merge; however, the {CTON} merge
command is very similar to it (see {CTON} above).

ILABELI/afte/' O >~
A {LABEL} command marks a place in the macro or merge file. Execution can
be sent directly there from any place in the macro or merge file. The {CALL},
{CASE}, (CASE CALL}, and {GO} commands are used to direct execution to
the label. The (LABEL) command can also be used to mark the beginning of a
subroutine (see Subroutines under Notes at the end of this appendix).

The label name distinguishes each label from the others. Label names have no
restrictions regarding length; however, only the first 15 characters are used to
determine uniqueness. (In other words, ABCDEFGHIJKLMNO (15 characters)
and ABCDEFGHIJKLMNOP (16 characters) would be considered by
WordPerfect to be the same label name, but ABCDEFGHIJKLMN (14
characters) and ABCDEFGHIJKLMNO (15 characters) would be considered by
WordPerfect to be different label names. The only character you cannot use in
the label name is a tilde (~) because a tilde ends the label name. You can use
spaces.

There can be many labels in the same macro or merge file as long as each one
has a different name. If the name is duplicated, the first one is used. The other
is ignored.

Macros
See the Macros subheading under the following commands for examples of
how to use this command: {CALL}, {CASE}, {CASE CALL}, (CHAIN),
{GO}, {Item Down}, {Item Left}, {Item Right}, {Item Up}, (LEN),
{LOOK}, {ON CANCEL}, {ON ERROR}.

Merge
You may not use a label and local variable (see Appendix L: Macros and
Merge, Variables) of the same name. If you do, when you execute the

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 831

merge, you will receive an error message “Label is already defined.”
Rename either the label or local variable.

See the Merge subheading under the following commands for examples of
how to use this command: {BELL}, {CALL}, {CASE CALL),
{COMMENT}. (GO), {IF}, {LOOK}, {ON CANCEL}, (ON ERROR}.

(LEN)rar" or ILEN)e x p r ' O
This command determines the length of a variable or length of the value returned
by an expression (see Macros and Merge subheadings below). This command is
useful for validating or restricting the length of user input.

Macros
In Macros, you can only use a variable name for the var argument, not an
expression.

In this example, if the user enters more than two letters at the (TEXT)
prompt, the macro rejects it and the user is prompted again.

{LA BEL) Get-State'
(TEX T)Staie'Enteratw o-letter-state-abbreviatk)n:'
{IF } { LEN } State~>2~

{GO)Get State'
{END IF)

See the Macros subheading under (BREAK} for an additional example.

Merge
In Merge, you can use text. {FIELD}, {VARIABLE}, or complex
e x p r e s s io n s in a r g u m e n t e x p r .

In the following example, variable NameLength is assigned 7, which is the
number of characters in the name "Sharron”.

{A SSIG N } N am e'Sharron'
{ASSIGN)NameLength'{LEN} {VARIABLEjName

See the Merge subheading under jMID} for an additional example.

ILOCALlirar'ejrpr" >-►
The (LOCAL) merge command assigns the value returned by expr to the local
variable var. Local variables are known only to the current file, and are deleted
when the merge is finished or the file is exited. See also /ASSIGN} above, and
Appendix L: Macros and Merge, Variables for more information.

You may not use a label and local variable of the same name. If you do, when
you execute the merge, you will receive an error message “Label is already
defined.” Rename either the label or local variable.

8 3 2 APPENDIX K: MACROS AND MFRGE, PROGRAMMING COMMANDS

Macros
This command is not available in Macros.

Merge
See the Merge subheading under / COMMENTj for an example of how to use
this command.

(LOOKIrer' O >~
The {LOOK} command checks to see if a key has been pressed by the user. If
a key has been pressed, it is assigned to the variable; it is not executed. If a key
has not been pressed, the contents of the variable are deleted and execution is
continued without stopping.

Macros
In the following example, {LOOK} is used to simulate a Pause which does
not terminate with the Enter key (see PAUSE below). (You could also do
this with the {PAUSE KEY} command.)

(STATUS PROMPT (Press Exit to Q uit.'
{;}Exit term inatesthepause '

(LABEL) Loop'
(; (Top-of-the-loop'

(LOOK) Key'
(: (Check to see if akey-was-pressed'

(IF | ' (VARIABLE) K ey '= ' (E x it)"
(; } I f - F .x i t - w a s - p r e s s e d '

(GO (N ext'
| ; (drop-out of-the loop'

(END IF)
(;) E ndof ■ (IF (structure'

(VARIABLE (K ey '
{ ;) Perform-the keystroke^

{GO} Loop'
{;} Go to the top-of the loop '

See the Macros subheading under (ORIGINAL KEY} for an additional
example.

Merge
The following merge sounds a beep until the user presses “s.” Then the
message “You did it!” is written out.

(PROM PT(Press "s" to stop the beep'(C O M M EN T)
Send the message to the user

' (LA B EL) T op' (CO M M EN T)
') B ELL) (LO O K) K ey' (COM M ENT)

Sound the bell and check the last key pressed
' (IF}" (VARIABLE) Key~''="s"'{COMMENT)

If the user pressed "s”...
' (G O) E nd ' (COM M ENT)

Break out of the loop
'(E L S E) (COM MENT)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 833

Otherwise
' (G O) Top' j COM M ENT}

Repeat the loop
'(E N D IF)(COM M ENT}

' (LA BEL) E nd ' (COM M ENT)
'You did it!(Q U IT |

(MENU OFF) O
Use the (MENU OFF) macro command to turn off display of menus (except
pull-down menus).

When you define a macro from the normal editing screen using the mouse to
access pull-down menus, WordPerfect automatically inserts a (MENU OFF)
command before, and a (MENU ON) command after, the keystroke command
that displays the menu (e.g., (MENU OFF)(Font))MENU ON)). Normally, in
macro execution, the intervening menus to the final option chosen on the pull
down menu would display as regular menus. The (MENU OFF) command
prevents the display of these intervening menus.

I f execution terminates white menus are off, WordPerfect will automatically turn them on
again.

Macros
The macro in the following example displays a directory in List Files, allows
the user to mark the files, then copies the files to the diskette in drive A.

) TEX T) Direclory'Enter the directory
(;) Prompt-user-to-enter-directory'

(D I S P L A Y O N)

(; (Turn-display on so-Lisl-Files-will-display.'
(MENU OFF)

(;)Turn-offmenus-sothatthe-menu-at-the-bottom-of-theList Files
screen-will-not-display'

(L ist) (VARIABLE) Directory') Enter)
{;}List the-files-in the-direetory entered by the user'

(INPUT(Mark-files.- Press-Enter-when done.'
(; (After-sending an instructional-message,-pause-for the-userto mark the-lilcs.'

cya:) Enter)
(;)Copy-marked-files-to-A:'

(MENU ON)
(;)Turn menus-back-on-so-future-menus-will-display.'

Merge
This command is not available in Merge.

(MENU ON) O
The (MENU ON) macro command is used to turn on the display of menus after
a (MENU OFF) command has been executed (see (MENU OFFj above).

B34 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Macros
See the Macros subheading under (MENU OFF) for an example of how to
use this command.

Merge
This command is not available in Merge.

(MID\var~offset'count' or [MiO\expr~ offset'count' O >-*
Use this command to extract substrings. The substring returned is the set of
characters of the string resulting from the evaluation of expr (see Merge
subheading below) or the string in var (see Macros subheading below), starting
at the offset character and continuing count characters. This command is often
used with {LEN} to parse non-integer numbers.

Macros
In Macros, you can only use a variable name for the var argument.

In the following example, the (MID) command converts the adverb
"quickly” to the adjective “quick” by extracting the first five characters of
the adverb.

(ASSIG N } Adverb'quickly '
{;}Assign-string-"quickly"-to var Adverb'

{M ID)A dverb '0 '5 '
{;}Extract-the first-5-characters-from the stnng in var Adverb and write them ou t'

For a more complex example, see the Macros subheading under {BREAK}.

Merge
In Merge, you can use text, (FIELD), {VARIABLE}, or complex
expressions in argument expr.
In this e xam ple , tile secondary file has a N a m e field where the nam es are
stored in the format Last, First. The subroutine below uses the {MID}
command to extract the first name from the field. (For a simple example of
(MID), see the example under Macros above.)

{ASSIGN} N am e' {FIELD) N am e" {COM M ENT)
Transfer the contents of the Name field to var Name

'{FO R)C ounter'0 '{ LEN) {VARIABLE (Name l'{ COMMENT)
For each character of var Name (from the Oth character to the last character)...

'{ IF}" {MID) {V A RIA BLE)N am e~{V A RIA BLE)Counter"l'"=”,"'{COMMENT}
...Check to see if the current character is a comma (,).

'{G O (End* {COMMENT}
If it is a comma, stop checking characters (break out of the loop)

'{EN D IF)(CO M M EN T)
End of {IF} statement

'{EN D FOR) {COMMENT}
End of (FOR) statement

'{LA BEL }End'{ COMMENT}
'{ ASSIGN }ThisChar'{ VARIABLE} Counter'+2'{ COM M ENT}

Assign to var ThisChar the position in the string of the first character of the first
name

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 83 5

' (ASSIGN)FirstNam e'(MID) (VARIABLE) N am e") VARIABLE)ThisChar—(LEN) (VARIABL
E)N am e— (COMMENT)

Assign to var FirstName the substring of characters in var Name starting at the first
character of the first name ((VARIABLE (Counter) and continuing
(LEN){ VARIABLE [Name characters (to the end of the name)

'(VARIABLE [FirstNam e'(COM M EN T)
Write out the first nam e'

IMRG CMNDIcodesIMRG CMND) > -
This merge command lets you insert text, codes, and commands in the document
being created by the merge. Any text, codes, or merge commands between the
(MRG CMND} commands are sent directly to the merged document, without the
commands being interpreted or executed.

In previous versions o f WordPerfect, this merge command was represented as AVcodesAF

Macros
This command is not available in Macros.

Merge
In the following example, the merge command (FIELD)Name' is inserted in
the resulting merged document.

(MRG CM ND) (FIELD)N am e'{M RG CM ND) (COMMENT)
Insert (FIELD)Name(tilde) in the resulting docum ent'

INESTI/nacroname' O (>—)
The {NEST} macro command transfers control to another macro. When the
nested macro has finished, execution returns to the parent macro. It is somewhat
like placing the contents of the specified macro where the {NEST} command is.
See Chaining, Nesting, and Substituting under Notes at the end of this appendix
for more information on nesting.

Macros
For example, suppose you often create macros that use cursor positioning to
display large menus and messages on the screen (see Macros, Message
Display in Reference). The messages will not display correctly if Reveal
Codes is on. So. in each macro that uses cursor positioning, you need to
first check whether Reveal Codes is on, and if so, turn it off. If you have
already defined those keystrokes as a separate macro (say,
CODESOFF.WPM), you can nest that macro in each macro that uses cursor
positioning rather than re-entering the necessary commands. The macro that
nests the CODESOFF.WPM macro would look something like this:

(NEST [C odesO fr
(;)Nest the CODESOFF.WPM macro to be sure Reveal Codes is
turned off before any messages-are-senl' •

• (commands of the macro)

836 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

(PROMPT) (AP} (AA) (Up}The-macrois-altering-yoiir-file.- Please Wait'
{;} Send the-message.-positioning-it-atposition-1,23.- This should
display-correctly-because-the-CODESOFF.WPM macro turned-off Reveal Codes.'

• (rest of the macro)

See the Macros subheading under (RESTART} for an additional example.

Merge
The {NEST MACRO) merge command is equivalent to the {NEST} macro
command. See (NEST MACRO} below.

{NEST MACROImacnwame' (O) >-►
The named macro is executed when this merge command is encountered. When
the macro is finished, the merge is continued with the code following the
{NEST MACRO) command.

See also Chaining, Nesting, and Substituting under Notes at the end of this
appendix for more information on nesting.

Macros
This command is not available in Macros. However, its function is identical
to the {NEST} macro command. See (NEST) above for more information.

Merge
In the following example, the secondary hie records each have an Address,
City, State, and ZipCode held. During the merge, if a record is encountered
with a blank ZipCode field, the merge nests a macro ZIPCODE.WPM that
calculates the ZIP Code based on the address and stores it in a global
variable named ZipCode.

• (first part of primary file)

(IF BLA N K)Z ipC ode '(COM M ENT)
If the ZipCode field is blank

'{ A SSIG N) A ddress' (FI ELD) A ddress" {COMM EN T)
'{ASSIGN) City') FIELD) City") COMMENT)
'{ ASSIGN) State') FIELD) S tate") COMMENT)

Assign the contents of the Address. City, and State fields to global variables that the
nested macro can access

'(N E S T M A C R O) zipcode')COM M ENT)
This macro calculates the zip code and stores it in the global var ZipCode

'{ VARIABLE)ZipCode'(COM M ENT)
Write out the calculated ZIP code

'(E L S E) (COMMENT)
If the ZipCode field is not blank

' | FIELD)ZipCode'(COM M ENT)
Write out the contents of the ZIPCode field

'(E N D IF) (COM MENT)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 83 7

(rest o f primary file)

(NEST PRIMARY) filenam e ~ >~
This merge command is similar to (NEST MACRO). When this command is
encountered, control of the merge is turned over to the named primary file.
When the commands in the nested file have been executed, control is returned to
the original primary file, where execution is resumed after the
(NEST PRIMARY) command. To change the secondary file, use the
(NEST SECONDARY) command (see (NEST SECONDARY/ below).

You can nest primary files up to 10 deep. However, using this command
without specifying a filename ({NEST PRIMARY)') is the same as using the
[SUBST PRIMARY) command with the current primary filename as the
argument ((SUBST PRIMARY}CiirrentPrimarxFilename~) (see
/ SUBST PRIMARY/ below). In this case, the (NEST PRIMARY) command
does not use one of the 10 nest levels. See Levels under Notes at the end of this
appendix for more information.

In previous versions o f WordPerfect, this merge command was represented as
APlilenameAP Using (NEST PRIMARY}~ (without a filename) is equivalent to APAP in
previous versions, which is equivalent to the {SUBST PA7AM/fiyCuiTentPrimaryFile~
command.

Macro
This command is not available in Macros. Use the (NEST) command to
nest a macro, or use the macro to begin a merge. For example,
(M erge/Sort)m

(:)Begin-amerge~
letter.pf(Enter)

(;) Primary file=LETTER.PF~
address.sf(Enter)

(;)Secondary file=ADDRESS.SF'

will begin a merge. You can then use the (NEST PRIMARY) command in
the LETTER.PF file.

Merge
Be aware that a sort cannot be performed in a nested macro from a merge.

In the following example, the primary file is a letter to customers. It checks
to see whether there is a balance due, and if so, it nests a primary file that
creates an invoice section in the letter, using records of transactions in the
nested secondary file TRANSACT.SF.

(FIELD }Name~,

It has been a pleasure serving you this year.

838 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

| IF) | FIELD) Balance'cO'{COMMENT}
'{N EST SEC O N D A R Y [Transact.sf {COMMENT}
'{N EST P R I M A R Y }Jn v o ic e .p C {COM M ENT)

'{EN D IF)

Sincerely,

See the Merge subheading under the following commands for additional
examples: {ON ERROR}, (PAGE ON).

(NEST SECONDARY)A/e/iame- >~
The named secondary file is opened and used for the subsequent merge
commands. Use of the parent secondary file can only be continued when the
merge on the nested secondary file has been completed. (You can, however, re
nest the original secondary file from the primary file, which will open a second
copy of the secondary file and begin at the first record.) You can nest secondary
files up to 10 deep (see Levels under Notes at the end of this appendix).

If you nest a secondary file from a secondary file, the first record in the nested
secondary file effectively replaces the record containing the
{NEST SECONDARY} command in the original secondary file and execution
continues in the nested file. When execution returns to the parent secondary file,
the record pointer skips to the next record after the one containing the
{NEST SECONDARY) command. (For more information on the record pointer,
see Record Pointer under Notes at the end of this section.) Therefore, you can
only nest one secondary file per record in the parent secondary file. In addition,
any field text following the {NEST SECONDARY) command is ignored.

Using this command without specifying a filename ({NEST SECONDARY}')
returns an error.

Macros
This command is not available in Macros.

Merge
In this example, the original secondary file has a dummy record at the end of
the file with “End” in the name field. The commands shown here nest the
secondary file ADDRESS2.SF when the last record of the secondary file is
reached.

{IF | " {FIELD }N am e'"="End"' {COM M ENT)
'{N EST SEC O N D A R Y |A ddress2.sf {COMMENT)

'{EN D IF)

See the Merge subheading under the following commands for additional
examples: {BELL}, {NEST PRIMARY).

(NEXT) 0 > ~
Use this command to execute the next iteration of a {FOR}, (FOR EACH}, or
{WHILE} loop. Usually, the (END FOR} or {END WHILE) command that
ends the loop sends execution to the next iteration. However, the {NEXT}

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 8 3 9

command can be used to send execution to the next iteration from other than the
end of the loop. For example, you may use nested IF statements as part of the
loop, where when a certain condition is true, you want to abandon the rest of the
commands in the loop and go to the next iteration. In this case, you would use
the {NEXT} command at the point where you want the next iteration to begin.

Even if you use the {NEXT} command in a loop, you must still use an
{END FOR} or (END WHILE} command to mark the end of the loop.

Macros
The following macro writes out "**********@@@@@”.

(FOR) r r i r r
(;}Repeat-ihe-loop-15times,startingat-1 .ending-at-15,-in-increments-
of-1'

(IF) (VARIABLE) 1'> 1 O'
{;)If-var-1 is->-10.'

@
);} Write-an-@~

(NEXT)
j :|Skip-to -the-nex titerationoftheloop '

(END IF)
*

(;)W riiean-astensk
(END FOR)

Merge
The following merge writes out "**********@@@@@”.

{FOR | Fred' I' 15 ' 1' I COMM F.NT)
Repeat the loop IS times, starting at I. ending at 15, in increments of 1

' (IF) (VAR] A B LE) Fred~> 1 O' (COM M ENT)
If var Fred is > 10,

(COM MENT)
Write an @

'(N E X T) (COMMENT)
Skip to the next iteration of the loop

'(E N D IF) (COMMENT)
'* (COMMENT)

Write an asterisk
'(E N D FOR)

[NEXT RECORDI >~
The (NEXT RECORD) merge command moves the record pointer in the
secondary file to the next record (see Record Pointer under Notes at the end of
this appendix). If it does not find the next record, it ends the merge, or returns
the merge to the next command in the primary file if the secondary file was
nested, and un-nests the secondary file.

While an executing merge is paused at a (KEYBOARD) or {INPUT} command,
you can execute the (NEXT RECORD) command from the keyboard. See

8 4 0 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Inserting Merge Commands During Execution under Notes at the end of this
appendix.

In previous versions o f WordPerfect, this command was represented by AN.

Macros
This command is not available in Macros.

Merge
In this example, the secondary file is searched until the variable
CompanyName matches the field Company in the secondary file. When a
match is found, the contents of the Amount field of that record in the
secondary file are written to the merged document.

{LABEL) DoCompany' {COM M ENT}
'{ IF }" (VARIABLE (CompanyName'" !=" {FIELD }Company~"'{ COMMENT)

'{N EX T RECORD {{COMMENT}
'{ GO }DoCompany'{ COM M ENT}

'{ELSE} {COMMENT}
' {FIE L D } Am ount'

{END IF)

See the Merge subheading under the following commands for additional
examples: (BELL), (COMMENT), (SUBST PRIMARY).

(NTOCIn u m b e r (O) >~
The (NTOC) merge command (Number TO Character) converts a WordPerfect
key value or character set number to its character equivalent. It performs the
inverse (opposite) function of the (CTON) command (see fCTONj above). Lor
example, the (NTOC) of 294 is "(f'\

If you want to calculate the key value for a given character set value,
1 Multiply the character set number by 256, then add the number of the

character.

Lor example. “Q" is character number 38 in character set 1. Multiply 256 times
1 (256), then add 38 (294). The (NTOC) of 294 is "£"•

(NTOC) will return nothing if it is taken of a number that is not equivalent to a
character.

Macros
This command is not available in Macros. However, the (NTOK) macro
command is very similar to the (NTOC) merge command. See /NTOKj
below for more information.

Merge
The following example prompts for a number, then returns the character
equivalent.

(TEXT)Num 'Type a key value number: '{COMM ENT}
'{ N TO C }{VARIABLE } N u m ~

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 841

INTOKIfjumfier' 0 (> -)
The {NTOK} macro command (Number TO Key) converts a WordPerfect key
value to its character or function equivalent. It performs the inverse (opposite)
function of the (KTON) command (see (KTON} above). For example, if you
take the (NTOK) of 32809 (Save), a Save is executed. If you take the (NTOK)
of 1537, a “±” is written out.

You can also take the (NTOK) of a WordPerfect character set value. For
example, the character set value for “±” is 6,1. Type {NT0K}6,1~ to obtain “±”.

If you want to calculate the key value for a given character set value,

1 Multiply the character set number by 256, then add the number of the
character.

You can then use the (NTOK) command to obtain the character.

For example, “±” is character number l in character set 6. Multiply 256 times 6
(I536), then add I (1537). You can then take the (NTOK) of 1537 to obtain
“±”. (For additional values see Appendix T: Macros and Merge, Value Tables.)

Macros
The following example prompts for a number, then returns the character or
function equivalent.

(T E X T |N unrT ype a number: '
(NTOK) (VARIABLE)Num“

If the number returns a function, such as Save, and you do not want the
function to execute, you can store it in a variable (e.g.,
(ASSIGN) K e y '(NTOK) {VARIABLE) N u m ~) .

Merge
This command is not available in Merge; however, the (NTOC) merge
command is very similar to it. See (NTOC} above.

(ON CANCEL\ac tion~ O > *
The (ON CANCEL) command tells WordPerfect what to do if a user presses
Cancel (FI) or if a (RETURN CANCEL) command has been returned by a
subroutine or nested macro or merge. When a Cancel occurs, WordPerfect will
know what to do next only if it has already encountered the (ON CANCEL)
command. For this reason, it is a good idea to place the command before a
Cancel can occur, otherwise execution will terminate when Cancel is pressed.

The valid actions available with this command in Macros are:

(BREAK)
(CALL)
(GO)
(QUIT)
(RESTART)

(RETURN)
(RETURN CANCEL)
(RETURN ERROR)
(RETURN NOT FOUND)

8 4 2 APPENDIX K. MACROS AND MERGE. PROGRAMMING COMMANDS

The valid actions available with this command in Merge are:

{BREAK}
{CALL}
{GO}
{QUIT}

(RETURN)
{RETURN CANCEL}
{RETURN ERROR}
{STOP}

Since /GO) and jCALLj require a Hide O after the label, there must be two tilde marks
(~) at the end (e.g., (ON CANCEL) (GO J label").

In Macros, the default response to a Cancel (if no {ON CANCEL} command is
encountered) is {RETURN CANCEL}. In Merge, the default response to a
Cancel (if no {ON CANCEL} command is encountered) is {STOP}.

If no action is specified in the command (i.e., (ON CANCEL}'), the cancel is
ignored and execution continues as if there had been no cancel. In Macros, not
only is the cancel condition ignored, but if the Cancel key was pressed, the key
is thrown away. In other words, if either a {LOOK} or {ORIGINAL KEY) is
used, they do not detect that the Cancel key was pressed. If you want the
Cancel key to be used as input, use the (CANCEL OFF} command before the
input is requested.

Macros
When Cancel is pressed (or a {RETURN CANCEL} is encountered),
WordPerfect executes the last {ON CANCEL) command encountered at the
current level (see Levels under Notes at the end of this appendix). If no
{ON CANCEL) command was encountered during execution of the current
level, WordPerfect looks to successively higher levels and executes the last
one that was encountered. If none was encountered, the default
({RETURN CANCEL}) is executed.

If you chain or nest a macro, the (ON CANCEL) com mand is not passed
from the parent file to the nested or chained file. Rather, the default
({RETURN CANCEL}) is in effect until another {ON CANCEL} command
is encountered.

When execution returns from a lower level to a higher level, the last
{ON CANCEL} command encountered at the higher level resumes effect.

In the following example, if the user presses Cancel (FI) during the macro,
the subroutine End is executed.

(ON C A N C E L)(G O)E nd"

• (commands in macro)

(LABEL) E nd'
(;) Beginning-of-End-subroutine'

{PROMPT [Macro-cancelled prematurely.'
(;} Send notification m essage'

(WAIT) 4 0 '
(;) Display message for-4-seconds'

APPENDIX K. MACROS AND MERGE. PROGRAMMING COMMANDS 8 4 3

(Screen) (Screen)
(;)C learm essagefrom screen

(QUIT)
{;) Term inate-execution'

• (rest of macro)

See the M acros subheading under (RETU RN CAN CEL] for an additional
example.

Merge
In Merge, when Cancel is pressed, the last {ON CANCEL} command
encountered in the file is executed. If none was encountered, the default
({ON CANCEL ({STOP}') is executed.

The {ON CANCEL} command is local to the file in which it is encountered.
It cannot be seen from other files. For example, a secondary file cannot use
the {ON CANCEL} command from a primary file.

In the following example, if the user presses Cancel (FI) during the merge,
the subroutine End is executed.

(ON CA N CEL) (GO) E n d " (COMM EN T)
If Cancel (FI) is pressed during the merge, execute the End subroutine"

• (commands in primary file)

{LABEL) End~{ COMMENT)
Beginning of End subroutine

' (PROMPT) Merge cancelled prem aturely.'(COM M ENT)
Send notification message

W A IT)40'(CO M M EN T)
Display message for 4 seconds

'(S T O P) (COMMENT)
Terminate execution'

See the Merge subheading under (RETURN CANCEL] for an additional
example.

(ON ERRORIacf/o/T O > *
The (ON ERROR) command tells WordPerfect what to do if an error is detected
in macro or merge execution, or returned by WordPerfect or DOS, or if a
{RETURN ERROR) command has been returned by a subroutine or nested
macro or merge. Inserting this command without an action ({ON ERROR}")
will cause WordPerfect to ignore the error and continue execution (when
possible).

In Macros, any error that returns an error message to or from WordPerfect can
be trapped with this command. In Merge, the errors that can be trapped with
this command are:

8 4 4 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

• File not found
• Print queue errors
• End of file condition returned by a (NEXT RECORD}

If you chain a file that does not exist or is not found, the error condition is not
generated until WordPerfect tries to execute the chained file (i.e., at the end of
the current macro or merge file). See Chaining, Nesting, and Substituting under
Notes at the end of this appendix, and the descriptions for the {CHAIN j,
(CHAIN MACRO}, (CHAIN PRIMARY}, and (CHAIN SECONDARY/ commands
in this section for more information.

In Macros, the default action (if no {ON ERROR} is encountered) is
{RETURN ERROR}. In Merge, the default action is {STOP}. For a list of
other possible actions, see (ON CANCEL} above.

Macros
The range of effect of the {ON ERROR} command is the same as the
{ON CANCEL} command (see the Macros subheading under
(ON CANCEL} above).

In the following example, the macro requests that the user enter the name of
a file. The macro then tries to retrieve it. The (ON ERROR) command
specifies that the Error subroutine be executed if the file is not found when
the macro tries to retrieve it.

{ON ER R O R){GO) Error”
(;}Ifan-error-is generated,-execute-the-Error-subroutine'

{LABELJGetFile'
|TEX T)Filenam e'File to-be-retrieved:-'

{;) Prompt-user-for-file'
{Retrieve) {VA RI ABLE) Fi lenam e' {Enter)

(: IR etr ieve-thef i le '

• (more commands)

{LABEL (Error'
{;}lf-tiie tile was not found when the-macro-tried to-retrieve it,
execution-moves-here'

{Cancel)
{:)Cancel-"Document to-be-retrieved:" prom pt'

{PROMPT)The-file-you-entered is-not in the default directory.-Try again.'
{;) Tel I the user-what happened'

(WAIT) 15'
{;[Display the-message for-1.5 seconds'

(G O)G etFile '
{;)Prompt-again for-the-tile'

See the Macros subheading under (RETURN ERROR} for an additional
example.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 845

Merge
The range of effect of the {ON ERROR} command is the same as the
{ON CANCEL} command.

In the following example, a new primary file is nested. The (ON ERROR}
command specifies that the Error subroutine be executed if the file is not
found when the merge tries to nest it.

(ON ERROR}{GO}Error"(COMMENT)
If an error is generated, execute the Error subroutine'

• (more merge commands)

(NEST PRIMARY[invoice.pr

• (more merge commands)

{LABEL} Error' {COMMENT}
If the file was not found when the merge tried to nest it. execution moves here

'(PROMPT)File not found. Move INVOICE.PF to default directory and start merge
again.'(COMMENT)

Send a message to the user
'{WAIT} 15') COMMENT)

Display the message for 1.5 seconds
'(STOP) (COMMENT)

Terminate execution'

See the Merge subheading under j RETURN ERRORj for an additional
example.

(ON NOT FOUND)a c t i o n ' O
The {ON NOT FOUND} macro command tells WordPerfect what to do if a
search fails (e.g., Search, Word Search, or Name Search) or a
{RETURN NOT FOUND) is returned by a nested macro or subroutine. If no
(ON NOT FOUND} command is included before a Not Found condition occurs,
the Not Found stops that level of macro execution (an {ON NOT FOUND)
{RETURN NOT FOUND}' is executed).

For a list of valid actions for this command, see Macros under (ON CANCELj
above. The range of effect of the {ON NOT FOUND) command is the same as
the (ON CANCEL} command.

If you search for a nonexistent name with the Name Search feature, the Not
Found condition is returned at the first character that does not match. You
should insert an {Enter} command somewhere in the macro after the Not Found
is generated to terminate the name search.

If during a name search all characters before the {Enter} match, a Not Found is
not generated, even though there may be additional characters in the name of the
file at the cursor. To check whether the file is an exact match, use {HPg}
(Ctrl-Enter) to terminate the Name Search instead of (Enter). When you use
{HPg}, a Not Found is generated if the filename does not exactly match.

846 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

M a c r o s

See the Macros subheading under the following commands for examples of
how to use this command: (CHAIN), (RETURN NOT FOUND).

Merge
This command is not available in Merge.

(ORIGINAL KEY) O
The (ORIGINAL KEY) macro command evaluates the original (unmapped)
action of the last key entered from the keyboard. The last key pressed could be
either a key that was read before the macro started (which may be the key which
invoked the macro) or a character input with a (CHAR), (LOOK), (TEXT),
(PAUSE), or (PAUSE KEY) command.

M a c r o s
This command is useful if your keyboard has been remapped with a
keyboard definition (see Keyboard Layout in Reference). For example, you
might want your macro to check if a user has typed a specific key, regardless
of the keyboard definition. If you want to exit if F7 has been pressed, use
the following macro:

{LOOK (Key'
{; [Check-to-see-if’-a-key-has-been-pressed.--Assign-it-to-var-Key~

{IF)"(ORlGINAL KEY}”="(Exit}"'
1; | If the-unmapped key-is Exit'

{Exit |
{;} Exit'

(END IF)
{; 1 End of- {IF) statement'

Merge
T his com m an d is not availab le in M erge.

(OTHERWISE)
Use this command as the last case in a (CASE) or (CASE CALL) command
for cases other than the specified cases.

(PAGE OFF) >~
The (PAGE OFF) merge command eliminates the hard page (HPg) between
copies of the primary file in the merged document. Use (PAGE ON) to begin
insertion of hard page codes again after you have used (PAGE OFF). The
(PAGE ON) and (PAGE OFF) commands are global to the merge; they may be
included in any primary or secondary file and are in effect for all the files in the
merge until the opposite command is encountered.

These commands are useful for merging labels or for including multiple records
in a document. You can also use (PAGE OFF) with the (PRINT) command to
eliminate blank pages between copies of the merged document when merging to
the printer. (In previous versions of WordPerfect, this was accomplished with
the ANAPAP codes.)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 847

The (PAGE OFF} command must be separated from the previous text by a hard
return in order for the merge to perform a line feed before continuing the merge.

Macros
This command is not available in Macros.

Merge
In the following example, the records in the secondary file have 2 fields:
Name and Salary. When merged with the primary file below, a list is
created of each name and salary. Because Page is off, no hard page break is
inserted between each iteration of the primary file, thereby creating a single
list.

{PAGE OFF)
(FIELD (N am e'........... (FIELD) Salary'

See the Merge example under the following commands for additional
examples: (PAGE ON), {PRINT}.

{PAGE ON} F*
The (PAGE ON} merge command reinstates the use of hard page codes between
copies of the primary file in the merged document. See (PAGE OFFj for more
information.

Macros
This command is not available in Macros.

Merge
In the example below, the nested primary file LIST.PF creates a list of
players on a g iv en team — on e team per page.

(ASSIGN)Team'(FIELD (Team") COMMENT)
Assign the current field to a global variable so that the nested primary tile can use it

"These people are on your team (Team (FIELD)Team'):

(PAGE OFF) (COMMENT)
This command prevents the insertion of a hard page between iterations of the nested
primary tile

'(NEST PRIMARY[List.pFjCOMMENT)
This primary file uses another secondary file to produce the list. (It writes the
Name field of all records whose Team field matches the current Team variable.)

'(PAGE ON)(COMMENT)
This command restores the use of page breaks to allow one team list per page'

848 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

{Para Down) O
The {Para Down) keystroke command moves the cursor to the beginning of the
next paragraph (just beyond the next [HRt]).

Macros
The following macro swaps two paragraphs.

(INPUT }Position-cursopon'paragrapIwo-be’moved-down.-then-press’Enter.'
(;)Prompt-user-and-pause-for-user-to-position-cursor“

(Move) pm
{;)Move-paragraph-into-buffer'

(Para Down)
{;)Position cursor down one paragraph'

(Home} (Home) (Left)
(;}Position-cursor-at-beginning-of-the-line'

{Enter}
(:)Retrieve-the paragraph'

Merge
This command is not available in Merge.

(Para Up) O
The (Para Up} keystroke command moves the cursor to the beginning of the
current paragraph (to the right of the previous [HRt]) or, if the cursor is already
at the beginning, to the beginning of the previous paragraph.

Macros
The following macro swaps two paragraphs.
(INPUT)Position-cursor-on-paragraph-to-be-moved-up.-then press-Enter.'

{;) Prompt user and pause-for user toposition-cursor'
(Move) pm

{: }Move-paragraph-into-buffer'
(Para Up)

(;) Position-cursor-up-one paragraph'
(Home) (Home) (Left)

(;}Position-cursor-at-beginning-of-the-line'
(Enter)

(;) Retrievetheparagraph'

Merge
This command is not available in Merge.

(PAUSE) O (>~)
The (PAUSE) macro command causes the macro to pause until Enter is
pressed. This command lets the user edit or type new text as if there were no
macro running. Macro execution proceeds after Enter is pressed. (If you want
another key to end the pause, see {PAUSE KEY} below.)

{PAUSE} does not prompt the user. Because of this, the {PROMPT} and/or
{BELL} commands are often used with {PAUSE}. See also Prompting and
User Input under Notes at the end of this appendix for other methods of
obtaining user input.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 849

Macros
In the following example, after the {PROMPT} command is executed, the
user can do any editing. Execution continues when the user presses Enter.

(STATUS PROMPT]Edit-the-codes. -Press-Enter-when-done.'
(; 1 Send-a-prompt-to-the-screen'

(PAUSE)
(;}Pause-t'or user to edit-codes'

(STATUS PROMPT)-
(;) Clear-status-prompt message

See the Macros subheading under (CHAIN) and {RESART} for additional
examples.

M e r g e
This command is not available in Merge. However, the (KEYBOARD)
merge command is very similar to the {PAUSE} macro command. See
jKEYBOARDj above.

(PAUSE KEYDtejT O (>-►)
This command functions like the {PAUSE} command (see {PAUSE) above),
except that you specify the key that terminates the pause.

M a c r o s
If you wanted Exit (F7) to terminate the pause, you could use the following:

(STATUS PROMPTJEdit the-codes - Press-Exit-when-done.'
(;) Send-message-to-user.'

(PAUSE KEY} (Exit)'
(:) S t o p - s o - t h a t - u s e r - c a n - e d i t - c o d e s . - - E x e c u t i o n - c o n t i n u e s - w h e n .th e .uKer.p reKKeK.R xit

(F7)~
(STATUS PROMPT}'

); [Clear-prompt.'

Merge
This command is not available in Merge. However, you may be able to use
the {KEYBOARD} merge command instead. See {KEYBOARD) above.

(PRINT) >~
The {PRINT} merge command sends all text that has been merged so far to the
printer. Once the text is sent to the printer, it is cleared from the edit buffer
(i.e., it is no longer in the “resulting document"). When you merge to the printer
using this command, the usual page break is still inserted between each iteration
of the primary file. To eliminate the extra page between each copy, insert the
{PAGE OFF} command before the {PRINT} command (see the example under
Merge below).

The {PRINT} command is ignored if encountered in a substructure during a
merge.

In p r e v i o u s v e r s io n s o f W o r d P e r fe c t , th i s c o m m a n d war r e p r e s e n te d a s AT.

850 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Macros
This command is not available in Macros.

Merge
The secondary file to be used with the primary file in the following example
contains 1000 records. If you were to merge it to the screen, the resulting
document would have 1000 pages. So, this merge uses the {PRINT}
command to send each letter to the printer as soon as it is merged.

A B C Com pany
245 West Center Street
Long Beach, California 90807

(DATE|

{FIELD) Name'
{FIELD (Company'

Dear {FIELD}Salutation_:

Thank you for your inquiry regarding our new product.

Sincerely,

Amy Wilcox
Product Manager)COMMENT)

'{PAGE OFF) {PRINT)

See the Merge subheading under /SYSTEMj for an additional example.

IPROCESSIcotfesIPROCESSl >~
This merge command is designed to be used in a secondary merge file. The
text, codes, or commands enclosed in the (PROCESS) commands are executed
when they are encountered, regardless of the current location in the secondary
file. For example, if this command is encountered while the merge is scanning
the secondary file for a record, the codes are processed, even if they are not in
the record being searched for.

To prevent the codes from being executed, you can use a {GO} command to
send control of the merge to another part of the file, thus skipping over the
{PROCESS} command.

Macros
This command is not available in Macros.

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 851

See the Merge subheading under (CHAIN SECONDARY} for an example of
how to use this command.

IPROMPTImessape- O >*

The (PROMPT) command displays the message on the status line. See Message
Display under Notes at the end of this appendix for information on affecting the
way messages are displayed on the screen. See also Prompting and User Input
under Notes at the end of this appendix for other methods of prompting the user.

In p r e v i o u s v e r s io n s o f W o r d P e r fe c t , th i s m e r g e c o m m a n d w a s r e p r e s e n te d a s
/'0message/'O.

Macros
See the Macros subheading under the following commands for examples of
how to use this command; (NEST), (ON CANCEL), (ON ERROR),
(SYSTEM), (WHILE).

Merge
See the Merge subheading under the following commands for examples of
how to use this command: (BELL). (ON CANCEL), (ON ERROR),
(SYSTEM).

1QUIT1 0 > -
The (QUIT) command stops the execution of the macro or merge. If macros
are nested or chained, it stops their execution at that point.

While an executing merge is paused at a (KEYBOARD) or (INPUT) command,
you can ex ecu te the (Q U IT) com m an d from the keyboard. S ee I n s e r t in g M e r g e
Commands During Execution under Notes at the end of this appendix.

In p r e v i o u s v e r s io n s o f W o r d P e r fe c t , th i s m e r g e c o m m a n d w a s r e p r e s e n te d a s ''Q .

Macros
See the Macros subheading under the following commands for examples of
how to use this command: (CASE), (GO), (ON CANCEL).

Merge
In a merge, the rest of the primary tile after the (QUIT) command is written
out to the resulting merged document before the merge terminates, but any
commands after (QUIT) are not executed. Arguments in the commands
following the (QUIT) command are included as text in the merged
document. If you don't want the rest of the primary file written out, use the
(STOP) command instead of (QUIT) (see (STOP} below).

If (QUIT) is used in a secondary file, the secondary file is abandoned at that
point. However, the rest of the primary file is written out (but not
processed) just as if the command had been encountered in the primary file,
and then the merge terminates.

Merge

852 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

The following example is a standard memo sent by a Personnel department
to each employee before his or her six-month salary review. The merge ends
just after the {DATE} command, but the rest of the memo is written out to
the resulting merged document.

MEMO

To: (KEYBOARD)

From: Kim Charleston, Personnel

Date: (DATE) (QUIT)

Subject: Six-month Review Preparation

• (rest of memo)

{RESTART} O
The {RESTART} macro command terminates all macro execution at the end of
the current nested macro. This command can be used if you do not want a
macro to return to the macro from which it was nested. The {RESTART}
command can be inserted anywhere in the nested macro. The macro
“remembers" the {RESTART} command and executes it after all other
commands have been executed.

Macros
In the following example, the parent macro nests the macro
CONTINUE.WPM which asks the user whether he or she wants to continue
or stop. If the user elects to continue, execution returns to the parent hie. If
the user elects to stop, the {RESTART} command prevents execution from
returning after the last command of the nested file.

Parent File:

(NEST (Continue'

Nested File (CONTINUE.WPM):

(CHAR)Answer'l-Continue;-2 Stop:■■ 1 (Left)'
);(Prompt user'

(IF) {VARIABLE)Answer'^ 1'
{;) If user elects to continue...'

(RETURN)

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 853

{ELSE)
{ ; } .. .re tu rn -e x e c u t io n -to - th e -p a re n t- fi le .'

{;) Otherwise...'
{RESTART)

{;}...terminate-execution-at-the-end-of-this-file.'
(EN D IF)

(;)End of-IF statement"
{PROMPT)You-have-eleeted to-stop-the-macro.- Press-Enter-to-terminate-execution.'

{;} Prom pt-user"
(PAUSE)

{;)Wait-for user-to press-Enter"
{Screen) (Screen)

{;)Clear-the-screen.-Execution-stops-after-this-command.

M e r g e
This command is not available in Merge.

{RETURN) 0 > +

The (RETURN) command marks the end of a subroutine and signals the macro
or merge to return from a (CALL) or {CASE CALL) command.

M a c r o s
If there is no {CALL) or {CASE CALL) to return to and the macro file
containing this command is nested, (RETURN) signals the macro to return
to the file from which it was nested. If the command is not in a nested file
and there is no (CALL) or (CASE CALL) to return to, (RETURN) marks
the end of a macro (see lCALL} above).

See the Macros subheading under the following commands for examples of
how to use this command: (C A L L), (C H A IN), (Item Down), (item Left},
(Item Right). (Item Up).

M e r g e
In Merge, the (RETURN) command must be paired with a {CALL) or
{CASE CALL) command. If there is no {CALL) or {CASE CALL) to
return to. an error message will be displayed.

See the Merge subheading under {CALL} for an example of how to use this
command.

{RETURN CANCEL) O >~
The (RETURN CANCEL) command causes execution to leave the current level
and indicates a Cancel to the next higher level (see Levels under Notes at the end
of this appendix).

M a c r o s
Since (RETURN CANCEL) is the default action to Cancel when no
(ON CANCEL) command is used (see (ON CANCELj above), the
{RETURN CANCEL} command is most often used to reset the
{ON CANCEL) action back to the default after it has been changed.

854 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

In this example, the {RETURN CANCEL) is used to set the
{ON CANCEL) action to {RETURN CANCEL).

(ON CANCEL)tGO|Send Message"

• (During this part of the macro, if the user presses Cancel, execution will be transferred to
the Send Message label.)

(ON CANCEL ((RETURN CANCEL)'

• (During this part of the macro, if the user presses Cancel, a (RETURN CANCEL) is
returned to the higher level.)

M e r g e
In this example, the {RETURN CANCEL) is used to set the
{ON CANCEL) action to {RETURN CANCEL).

(ON CANCEL) (GO)Send Message"

• (During this part of the merge, if the user presses Cancel, execution will be transferred to
the Send Message label.)

•

{ON CANCEL}{RETURN CANCEL}~
• (During this part of the merge, if the user presses, a {RETURN CANCEL) is returned to

the higher level.)

(RETURN ERROR) O > -
The {RETURN ERROR) command causes execution to leave the current level
and indicate an error to the next higher level (see Levels under Notes at the end
of this appendix) (see also (ON ERROR) above).

M a c r o s
Since {RETURN ERROR) is the default action when an error occurs and no
{ON ERROR) command is used (see {ON ERROR} above), the
{RETURN ERROR) command is most often used to reset the
{ON ERROR) action back to the default after it has been changed.

In this example, the {RETURN ERROR) is used to reset the (ON ERROR)
action back to the default.

{ON ERROR} j GO} Send Message"

• (During this part of the macro, if an error occurs, execution will be transferred to the Send
Message label.)

(ON ERROR)(RETURN ERROR)'

• (Dunng this part of the macro, if an error occurs, a {RETURN ERROR} is returned to the
higher level.)

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 855

In this example, the {RETURN ERROR} is used to set the {ON ERROR)
action to {RETURN ERROR}.

(ON ERROR) [GO(Send Message-'
*

• (During this part of the merge, if an error occurs, execution will be transferred to the Send
Message label.)

(ON ERROR) (RETURN ERROR)'

• (During this part of the merge, if an error occurs, a (RETURN ERROR) is returned to the
higher level.)

Merge

(RETURN NOT FOUND} O

The {RETURN NOT FOUND} macro command terminates macro execution on
the current level and indicates a search Not Found condition to the next higher
level (see (ON NOT FOUND} above). (RETURN NOT FOUND} can be used
wherever you would use {RETURN} (see (RETURN} above).

Since {RETURN NOT FOUND} is the default action when a *Not Found*
condition occurs and no {ON NOT FOUND} command is used (see
(ON NOT FOUND} above), the (RETURN NOT FOUND) command is most
often used to reset the {ON NOT FOUND} action back to the default after it has
been changed.

M a c r o s
In this example, the (RETURN NOT FOUND} is used to reset the
{ON NOT FOUND} action back to the default.

(ON NOT FOUND) (GO)Send-Message"

• (During this part of the macro, if a search string is not found, execution will be transferred
to the Send Message label.)

(ON NOT FOUND ({RETURN NOT FOUND)'

• (During this part of the macro, if a search string is not found, a
(RETURN NOT FOUND) is returned to the higher level.)

M e r g e
This command is not available in Merge.

(REWRITE) (O) >~
This merge command causes the screen to be rewritten. Since none of the
merged document is written to the screen during a merge, you may want to use
this command to display what has been merged at a certain point.

In previous versions o f WordPerfect, this merge com m and was represented as AU.

856 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

M a c r o s
This command is not available in Macros; however, you can use the
following (inserted in the Macro Editor or while defining a macro at the
normal editing screen by pressing S c r e e n (Ctrl-F3) twice):

{Screen} {Screen}

You can also use the {DISPLAY ON) command (see jDISPLAY ON}
above).

M e r g e
In the following example, the (REWRITE) command is used so that the
letter can be seen after it is merged.

ABC Company
245 West Center Street
Long Beach. California 90807

(DATE)

{FIELD (Name'
{FIELD) Company'

Dear (FIELD(Salutation':

Thank you for your inquiry regarding our new product.

• (rest of the letter)

Sincerely,

Amy Wilcox
Product Manager{COMMENT(
'(REWRITE)

{SHELL ASSIGN\ s h e l l v a r ~ e x p r ~ Q
The {SHELL ASSIGN) command assigns the value returned by expr to the
Shell variable shellvar. Expressions are evaluated (see Appendix J: Macros and
Merge, Expressions) and the result is assigned to the variable. Non-numeric
characters and expressions that cannot be evaluated are treated as strings.

This command is only available if you are running WordPerfect under Shell 3.0
(or later). If you have a previous version of Shell (or if you do not own Shell),
this command will do nothing.

After a value has been assigned to a variable, the variable command
(SHELL VARIABLE}shellvar' can be placed anywhere you would normally
place the variable contents.

APPENDIX K: MACROS AND MERGE. PROGRAMMING COM M ANDS 857

For more information on Shell variables, see the documentation that accompanies
the Shell program.

(SHELL MACROIm a c r o n a m e ' O
The {SHELL MACRO) macro command invokes a Shell macro. This is useful
when switching between various WordPerfect Corporation products.

This command is only available if you have Shell version 3.0 If you have a
previous version of Shell (or if you do not own Shell), this command will do
nothing.

You do not need to include the .SHM extension in macroname. However, you
must include a path if the Shell macro is in a directory other than the directory
specified in Location of Macro Files in Shell Setup (see your Shell
documentation).

M a c r o s
You can use the macro in the following example to execute a Shell macro,
or to let you know why if it can't be executed.

{IF) (SYSTEM (ShellVer'>2*256'
{;) If Shell-is version-3.0 or later'

{SHELL MACRO)c:\shm\test'
{;) Executethe-Shellmacro-TEST.SHM'

(ELSE)
(IF) {SYSTEM) ShellVer'=0'

{;) Otherwise.-if no-Shell-is-running'
{CHAR) Any Key'ERROR: Shell not present. Press any key-to continue.'

(: llnform-user'
{ELSE)

{;)Olherwise-(if-a Shell is running but-is-a-version-earlier-than-3.0)'
{CHAR) AnyKey'ERROR:-Shell-wrong-version. -Press anykeyto-continue.'

{;(Inform user.'
{END IF)

{END IF)

M e r g e
This command is not available in Merge.

ISHELL VARIABLE|sAe//rar" O
This command accesses the contents of Shell variables. After a value has been
assigned to a Shell variable (see (SHELL ASSIGN} above) the
{SHELL VARIABLE)shellvar~ command can be placed anywhere you would
normally place the variable contents. It can be placed within or as an argument
for another command, or can be used by itself.

This command is only available if you have Shell version 3.0 or later. If you
have a previous version of Shell (or if you do not own Shell), this command will
do nothing.

For more information on Shell variables, see the documentation that accompanies
the Shell program.

858 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

(SPEED) 1 0 0 t h s s e c o n d ' O

The (SPEED) macro command can slow down macro execution. It causes
macro execution to wait the amount of time indicated by the lOOths second
argument between each command.

The default speed is no delay between commands (i.e., {SPEED}0~).

M a c r o s
For example, if you want macro commands to execute every 1.5 seconds,
insert the following into your macro:

(SPEED) 150'

M e r g e
This command is not available in Merge.

{STATE} O

The {STATE} macro command returns a number representing the current
operational state of WordPerfect. This lets you create macros which are aware of
the environment in which they are executing. The operational states and their
corresponding code numbers are listed below.

3 Current Document (1,2)
4 Normal Editing Screen
8 Editing Structure Other than Normal Editing Screen
16 Macro Definition Active
32 Macro Execution Active (always set)
64 Merge Active
128 Block Active
256 Typeover Active
512 Reveal Codes Active
1024 Yes/No Question Active
2048 In a list (See also the List system variable description under

/SYSTEM} below.)
4096 Help Active
32768 Cannot go to Shell

State 8 (Editing Structure O ther than N orm al Editing Screen) refers to a screen which is
used fo r editing footnotes, headers, styles, etc. M acro Execution (32) is labeled as
"always set" because the (STATE} com m and is only used in a macro as it is executing.

You can determine what the state of WordPerfect is by forming an AND (&)
expression with a value called a mask (e.g., (STATE)&3). The result of the
operation indicates the current state of WordPerfect.

To choose a mask, determine which state(s) you want to check for. Note the
numbers associated with each state and add them together to calculate the mask
value. For example, if you want to know what document you are currently in (1,
2, or 3), the mask value is 3. If you want to know if you are at the normal
editing screen (4) and/or if Reveal Codes is active (512). the mask value is 516
(4+512=516).

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 859

D o c u m e n t 3 is a t e m p o r a r y d o c u m e n t u s e d d u r in g a m e r g e . I t is n o t n o r m a l l y a c c e s s i b l e ;
h o w e v e r , y o u c a n c h e c k to s e e w h e th e r i t i s a c t i v e w i th th e { S T A T E j c o m m a n d .

After you have determined the appropriate mask, create an AND expression, then
assign the result to a variable. For example,

(ASSIGNJDocNiim' (STATE) &3'
{;) Assignthectirrentdocumentnumber tovar-DocNum'

{ASSIGN] Active'! STATE }&516'
{;)Assigntheresult(either-4,-512,-516, or-OHo-var-Active'

In th i s e x a m p le , th e m a s k v a lu e s a r e 3 a n d 5 1 6 . V a r ia b le D o c N u m c o n ta in s th e c u r r e n t
d o c u m e n t n u m b e r a n d v a r i a b l e A c t i v e c o n ta in s a n u m b e r w h ic h i n d i c a t e s w h e th e r th e

n o r m a l e d i t in g s c r e e n (4) . R e v e a l C o d e s (5 1 2) , b o th (5 1 6) , o r n e i th e r (0) a r e a c t iv e .

If the result of the AND operation is 0, then the state you were checking for is
not present. If the result is a non-zero number, then some (or all) of the states
you checked for are present.

For example, if you want to check for both types of editing screens ((4) and (8)),
the mask is 12. {STATE }& 12 gives four types of information. If the result is
0, then neither the normal editing screen nor another editing screen is active
(some type of menu is active). If the result is 4, the normal editing screen is on.
If the result is 8, a menu is active, but you are editing a style, footnote, etc. (e.g.,
you pressed Format while editing a footnote). If the result is 12, you are in the
normal editing screen, and you are editing a style, footnote, etc.

Since the (IF) command interprets 0 as false, you can form {IF} statements that
will perform functions when a certain condition exists. For example, the
following macro returns you to the normal editing screen if Reveal Codes, Block,
both, or neitlier is on.

(LABEL)Top'
{IF 1(STATE)&4'

); }Ifat-thenormaleditingscreen~
{IF} {STATE) &512'

(;) AndRevealCodes-isorf
(Reveal Codes)

(;)TurnRevealCodes-ofF
(ELSE)

(; (Otherwise'
(IF) (STATE) & 128'

(;)If-Block-is-on'
(Block)

{;)TurnoffBlock'
(ELSE)

{; (Otherwise'
(RETURN)

(;)Exittheloop'
(E N D IF)

(END IF)
(END IF)
(GO) Top'

(;)Repeat the loop until the-(RETURN) command exits it'

860 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

When {STATE} is executed by itself (not in an expression), it returns a number
which represents the total state of WordPerfect. All applicable numbers are
added together. For example, if the cursor is in the normal editing screen (4) of
document 1(1) and if Block is on (128) and a macro is executing (32), then the
executional state of WordPerfect is 4+1 + 128+32=165.

See also / SYSTEMj for information on accessing other system variables.

M a c r o s
See the examples in the above description of this command.

M e r g e
This command is not available in Merge.

ISTATUS PROMPTImessajfe" O >~

This command puts a message on the status line. Although you can use cursor
positioning commands (see Message Display under Notes at the end of this
appendix) to position the message elsewhere on the screen, the message may not
redisplay correctly when the screen is rewritten if you do. Also, the
(STATUS PROMPT) message only displays when the status line normally
displays. So, for example, in Merge, the message would only display when a
{KEYBOARD} command pauses the merge for input from the keyboard, and
when the merge is finished.
I f y o u p o s i t i o n th e m e s s a g e o n th e s ta tu s l in e , o n ly th e f i r s t 4 8 c h a r a c t e r s w i l l s h o w .

When you use this command, the message is stored in memory, much like a
variable. However, this spot in memory is shared with the (INPUT) command.
If you use an {INPUT} command after a (STATUS PROMPT} command, the
(STATUS PROMPT} message will be replaced in memory by the (INPUT)
message. Since the {INPUT} command clears its own message from memory
when execution continues after the command, the (ST A T U S P R O M P T) message
no longer exists after the (INPUT) command. This is one way to clear the
(STATUS PROMPT} message from memory.

To clear a status prompt message without using (INPUT), insert another
(STATUS PROMPT) command with no message ({STATUS PROMPT}')- If
you do not clear the message with an (INPUT) or (STATUS PROMPT}'
command, the message will be on the screen whenever the status line is
displayed until you exit WordPerfect.

For additional methods of prompting the user, see Prompting and User Input
under Notes at the end of this appendix.

M a c r o s
In the following example, the (STATUS PROMPT} is used to display the
date the macro was created on the status line before the rest of the macro
executes.

(DISPLAY ON)
{;}Turn D isplay on-so-the subsequent-(STA TU S-PR O M PT) m essage-w ill-show '

(STATUS PROMPT (Macro-created: ■ 10/25/89'

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 861

(WAIT) 15"
{;} Give the user-1.5-seconds to read the message"

(STATUS PROMPT)'
(;) Clear-the- {STATUS PROM PT) -message-from-memory"

(DISPLAY OFF)
{; (Turn-Display-off-so that-the-rest of-execution-will-not display."

• (Rest of macro)

See the Macros subheading under the following commands for additional
examples: (LOOK), {PAUSE).

M e r g e

The first command puts the message “Press F9 when done.” on the status
line. The second command erases the message.

(STATUS PROMPT)Press F9 when done."(COMMENT)
' (KEYBOARD) (COMMENT)

When the merge pauses at the (KEYBOARD) command, the message is displayed
on the status line.

"(STATUS PROMPT)')COMMENT)
This clears the (STATUS PROMPT) message from memory"

{STEP OFF) O >~

The {STEP OFF) command turns off single step execution after it has been
turned on (see / STEP ON} below).

M a c r o s
See the example under / STEP ON} below.

M e r g e
See the example under {STEP ON} below.

{STEP ON) 0 > ~
The {STEP ON) command is useful for debugging macros and merges. It
causes the macro or merge to execute one step at a time. Between each step, a
message on the status line indicates what the next key or command is. The key
or command executes when any key is pressed (see the Macros and Merge
subheadings below).

During macro execution, press E x it (F 7) to turn off the Step mode. Pressing
C a n c e l (F I) terminates execution unless Cancel is turned off or is redefined (see
!CANCEL OFF} and /ON CANCEL} above).

M a c r o s
While step is on in macro execution, if the next step in the macro is a
character (e.g„ A), that character will be displayed. If it is a command, a
label followed by a number will be displayed. The four labels are as
follows:

{ ; } D is p la y th e c re a t io n da te o n th e s ta tu s - lin e "

862 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

L a b e l M e a n in g

ALT X
KEY CMD n
KEY MACRO n
MACRO CMD n

Alt-letter Macro Execution
WordPerfect Command, Cursor Control, etc.
Soft Keyboard Macro Execution
Specific Macro Command

The X and n in the table above represent the letter or number that identifies
the specific command of that type. Alt-letter macro commands are identified
by the letter to which they are assigned. Soft keyboard macro commands are
identified by the number assigned to the macro by the Keyboard Layout
feature (see Keyboard Layout in Reference). Variables are identified by
name. Keystroke commands and macro commands are identified by special
code numbers that are listed below.

K e y s t r o k e C o m m a n d C o d e s (K E Y C M D)

1 AA
2 AB - Page Number
3 AC - Merge from Console
4 AD - Merge Date
5 AE - Merge End Record
6 AF - Merge Field
7 AG - Merge Macro
8 AH - Home
9 AI - Tab
10 AJ - Enter
11 AK - Delete to End of Line
12 AL - Delete to End of Page
13 AM - Search Value for

[SRt]
14 AN - Merge Next Record
15 A0 - Merge Output Prompt
16 AP - Merge Primary

Filename
17 AQ - Merge Quit
18 AR - Merge End Field
19 AS - Merge Secondary

Filename
20 AT - Merge Text to Printer
21 AU - Merge Update the

Screen
22 AV - Ignore Meaning of

Following Code
23 AW - Up
24 AX - Right & Search

Wildcard - Same as
Typical “?”

25 AY - Left

26 AZ - Down
27 A

[- Escape
28 A\
29 A]
30 AA - Reset Keyboard Map
31 A_
32 Cancel
33 Forward Search
34 Help
35 Indent
36 List
37 Bold
3 8 E x i t

39 Underline
40 End Field
41 Save
44 Setup
45 Backwards Search
46 Switch
47 Left/Right Indent
48 Date/Outline
49 Center
50 Print
51 Format
52 Merge Codes
53 Retrieve
56 Thesaurus
57 Replace
58 Reveal Codes
59 Block
60 Mark Text

APPENDIX K; MACROS AND MERGE. PROGRAMMING COMMANDS 863

61 Flush Right
62 Columns/Table
63 Style
64 Graphics
65 Macro
68 Shell
69 Spell
70 Screen
71 Move
72 Text In/Out
73 Tab Align
74 Footnote
75 Font
76 Merge/Sort
77 Macro Define
80 Backspace
81 Delete Right
82 Delete Word (Ctrl-

Backspace)
83 Word Right
84 Word Left
85 Home,Home,Right (by

pressing end key)
86 Home,Home,Left (by

pressing begin key on the
Victor computer)

88 G oT o (C trl-H om e)

M a c r o C o m m a n d C o d e s (M A C R O

1 {ASSIGN}
2 {BELL}
3 {BREAK}
4 {CALL}
5 {CANCEL OFF)
6 {CANCEL ON}
7 {CASE}
8 {CASE CALL}
9 {CHAIN}
10 {CHAR}
11 {;} (comment)
12 {DISPLAY OFF}
13 {DISPLAY ON}
14 {ELSE}
15 {END FOR)
16 {END IF)
17 {END WHILE}
18 {FOR}

89 PgUp
90 PgDn
91 Screen Down (by hitting “+”

on numeric keypad)
92 Screen Up (by pressing

on numeric keypad)
93 Typeover
94 Left Margin Release

(reverse tab)
95 Hard Page (Ctrl-Enter)
96 Soft Hyphen (Ctrl—)
97 Hyphen
98 Required (Hard) Space

(Home,Space Bar)
99 Para Up
100 Para Down
101 Item Left
102 Item Right
103 Item Up
104 Item Down
105 Alt-Home
106 Delete Row (Ctrl-Delete)107

Menu Bar (Alt-=)
108 Block Append
109 Block Move
110 Block Copy

CMD)

19 {FOR EACH}
20 {GO}
21 {IF}
22 {LABEL}
23 {LOOK}
24 {NEST}
25 {NEXT}
26 {SHELL MACRO}
27 {ON CANCEL}
28 {ON ERROR}
29 {ON NOT FOUND}
30 {PAUSE}
31 {PROMPT} 32

{QUIT}
33 {RESTART}
34 {RETURN}
35 {RETURN CANCEL}
36 {RETURN ERROR}

864 APPENDIX K. MACROS AND MERGE, PROGRAMMING COMMANDS

37 {RETURN NOT FOUND} 50 {STATUS PROMPT)
38 {SPEED} 51 (INPUT)
39 {STEP ON} 52 (VARIABLE)
40 {TEXT} 53 {SYSTEM}
41 {STATE} 54 {MID}
42 {WAIT} 55 (NTOK)
43 {WHILE} 56 (KTON)
44 {Macro Commands) 57 (LEN)
45 {STEP OFF) 58 (~) (hard tilde)
46 {ORIGINAL KEY) 59 {PAUSE KEY)
47 {IF EXISTS) 61 (OTHERWISE)
48 (MENU OFF) 62 {SHELL ASSIGN)
49 (MENU ON) 63 {SHELL VARIABLE)

In Macros, the {STEP ON} feature is particularly useful when you want to
track the contents of a variable. When a variable is encountered during
macro execution with Step on. MACRO CMD 52 (for {VARIABLE}) is first
displayed, then each letter of the name of the variable is displayed. Then its
contents (if they exist) are displayed one character at a time. For example, if
variable Num contains 14, the first message, MACRO CMD 52, is followed
by an N, then a u, then an m, then a tilde ('), which are then followed by a
1, then a 4.

I f th e e x e c u t io n c o m m a n d f o r a v a r ia b l e w a s e n t e r e d a s (V A R # } , V A R # i s d i s p l a y e d
in s t e a d o f M A C R O C M D 5 2 . T h e c o n te n ts a r e th e n d i s p l a y e d o n e c h a r a c t e r a t a

t im e a s u s u a l.

• (This section will execute normally.)

{ST E P ONI}
♦

* (This section will execute one keystroke at a time.)
«

{STEP OFF)

• (This section will execute normally.)

M e r g e
When step is on in Merge, if the next thing to be executed is a command
(e.g„ {FIELD}), the command is displayed (there are no code lists as in
Macros). Each character is displayed after it is written out to the resulting
document.

You may find it more useful to step through merges with Reveal Codes on. •

• (This section will execute normally.)

APPENDIX K: MACROS AND MERGE, PROGRAMMING CO M M ANDS 865

{STEP ON}

• (This section will execute one keystroke at a time.)

(STEP OFF}

• (This section will execute normally.)

(STOP) (0)> ~
This merge command stops all execution when it is encountered. It is similar to
the (QUIT) command (see }QUIT} above) except that the rest of the primary
file is not read in. If this command is found in a nested file, execution is not
returned to the parent file. Chained files are also not executed.

While an executing merge is paused at a {KEYBOARD} or {INPUT} command,
you can execute the {STOP} command from the keyboard. See Inserting Merge
Commands During Execution under Notes at the end of this appendix.

M a c r o s
This command is not available in Macros; however, {QUIT} in Macros is
equivalent to {STOP} in Merge (see / QUITJ above).

M e r g e
See the Merge subheading under the following commands for examples of
how to use this command: {BELL}, {CASE}.

{SUBST PRIMARY|f/7e/J3/ne~ >-
This merge com m and is similar to the {NEST PR IM A R Y} and
(CHAIN PRIMARY} commands, except with this command, the named primary
file is used instead of the current primary file from the point of this command
on. You are never returned to the original primary file; no commands following
this one in the original primary file are executed. Local variables in a previous
primary file are erased.

If you substitute a file that is not found, or no file ({SUBST PRIMARY}'), an
error will be returned. You can use the {ON ERROR) command to determine
what should happen if this error occurs (see (ON ERROR} above).

M a c r o s
This command is not available in Macros.

M e r g e
In the following example, the secondary file has a field named
DaysOverDue. The merge begins using the primary file INVOICE.PF,
which substitutes a different primary file depending on the number in the
DaysOverDue field. At the end of each substituted file, the record pointer is
moved to the next record and INVOICE.PF is substituted so that it will
execute again.

866 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

Primary file INVOICE.PF:

{IF}{FIELD) Day sOverDue~<30~ (COMMENT)
'(SUBST PRIMARY]0-29.PF"{COMMENT)

'(ELSEHCOMMENT)
- (IF) (FIELD) DaysOverDue~<60' (COMMENT]

'(SUBST PRIMARY}30-59.P P)COMMENT)
'(ELSE) (COMMENT)

' (IF} (FIELD) DaysOverDue'<90'{ COMMENT)
'{SUBST PRIMARY)60-89.PF’{COMMENT)

'(ELSEHCOMMENT)
'{SUBST PRIMARY)Over90.PF~(COMMENT)

'(END IF) (COMMENT)
'{END IF){COMMENT)

'{END IF)

Structure of primary files 0-29.PF, 30-59.PF, 60-89.PF, and Over90.PF:

• (body of file)

(NEXT RECORD) (COMMENT)
'(SUBST PRIMARY[Invoice.pf

{SUBST SECONDARY)A/ena/ne" >~
This merge command changes to the named secondary file and uses the first
record in that file. If you substitute a file that is not found or no file
({SUBST PRIMARY}'), an error will be returned. You can use the
{ON ERROR} command to determine what should happen if this error occurs
(see (ON ERROR/ above).

In p r e v i o u s v e r s io n s o f W o r d P e r f e c t , th i s m e r g e c o m m a n d w a s r e p r e s e n te d a s
ASfilenameAS.

M a c r o s
This command is not available in Macros.

M e r g e
In the following example, two secondary files are used, each sorted by ZIP
Code in descending order so that any records where the Zip field is blank
will be at the end of the file. The {SUBST SECONDARY) command in the
primary file below causes the records with no ZIP Code to be skipped, and
the next secondary file to be used.

(IF BLANK (Zip'{SUBST SECONDARY }File2'{ COMMENT)
If the Zip field is blank, substitute the secondary file

'(END IF)

{SYSTEM)sysrar‘ O >~
The {SYSTEM} command returns the value of the given system variable. These
system variables allow the macro or merge to be aware of the current state of

APPENDIX K. MACROS AND MERGE. PROGRAMMING COMMANDS 867

WordPerfect. You can use mask values (see (STATE) above) to check for
multiple system variables. Valid system variables are listed below.

R a th e r th a n u s e th e n a m e o f th e s y s t e m v a r ia b l e in th e / S Y S T E M j c o m m a n d , y o u c a n u s e

th e n u m b e r g iv e n in p a r e n t h e s e s n e s t to e a c h s y s t e m v a r ia b l e n a m e b e lo w . U s in g th e
n u m b e r in s t e a d o f th e n a m e is e s p e c i a l l y u s e fu l w h e n y o u w a n t to u s e th e s a m e m a c r o in

d i f f e r e n t in t e r n a t io n a l v e r s io n s o f W o r d P e r f e c t . S in c e th e s y s te m v a r ia b l e n a m e s a r e
t r a n s l a t e d in in t e r n a t io n a l v e r s io n s , r u n n in g a n E n g l is h v e r s io n o f a m a c r o w o u ld c r e a te
a n e r r o r a t th e (S Y S T E M) c o m m a n d . T h e n u m b e r s , h o w e v e r , a r e th e s a m e a c r o s s

in t e r n a t io n a l v e r s io n s .

S o m e o f th e s e s y s t e m v a r i a b l e s h a v e r e s t r i c t i o n s w h e n u s e d in M e r g e . S e e th e d e s c r ip t io n
o f e a c h v a r i a b l e f o r p o s s i b l e r e s t r ic t io n s .

S y s v a r

Attrib (1)

V a lu e (s) R e t u r n e d

Current font attribute:

0 Normal
1 Extra Large
2 Very Large
4 Large
8 Small
16 Fine
32 Superscript
64 Subscript
128 Outline
256 Italics
512 Shadow
1024 R edline
2048 Double Underline
4096 Bold
8192 Strikeout
16384 Underline
32768 Small Caps

If two attributes are present, their respective numbers will be added together.

Cell (2) Current cell position in a table, e.g., A4, E7, etc. This
system variable is undefined if the cursor is not in a
table when the command is encountered.

CellAttr (23) Attributes of the current cell (see Attrib above for
values). This system variable is undefined if the cursor
is not in a table when the command is encountered.

CellState (24) State of a cell. Divide the value returned by 256 (value
returned/256—see Appendix J: Macros and Merge,
Expressions) to determine the following states:

0 Left justified.
1 Full justified.
2 Center justified

868 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

S y sv a r V a lu e(s) R e tu r n e d

3 Right justified.
4 Decimal aligned.

Mod the value returned by 256 (v a l u e

returned%256—see Appendix J: Macros and Merge,
Expressions) to determine the following states:

1 Justify is cell-specific.
2 Attribute is cell-specific.
4 Cell is bottom-aligned.
8 Cell is center-aligned.
16 Contents type is “text.”
32 Contents is a formula.
64 Cell is locked.

This system variable is undefined if the cursor is not in a
table when the command is encountered.

Column (3) Current column number (numbered sequentially from left
to right) in a table or in columns.

Direction (31) Text entry direction.

0 Direction is left-to-right.
1 Direction is right-to-left (e.g., the Arabic version

of WordPerfect).

Document (4) Current modification status of the document on the
screen:
1 D o c u m e n t h a s b e e n m o d ifie d

4 Document has been modified since last
generated.

256 Document is blank. (Blank documents are those
that appear in document screens 1 and 2 when
you first start WordPerfect, and when you exit
to a clear screen. A document from which you
delete all text and codes is not “blank.”)

512 Cursor is between [Tbl Def] and [Tbl Off]
codes (in a table).

1024 Cursor is between [Math On] and [Math Off] or
the end of the file (Math is on).

2048 Cursor is between [Outline On] and [Outline
Off] or the end of the file (Outline is on).

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 869

S y sv a r

EditType (33)

Endnote (5)
Entry (29)

Equation (6)

Figure (7)

Footnote (8)

KeyState (26)

4096 Cursor is between [Column On) and [Column
Off] or the end of the file (Column is on).

All other values are undefined and not guaranteed to be
0.

Current editing mode. Returns information useful for
international keyboards that need to use ASCII
mnemonics in menus.

0 Cursor is in a menu prompt.
1 Cursor is in a main editing screen (e.g., Doc 1

or 2).
2 Cursor is in a substructure editing screen (e.g.,

Header/Footer edit).
4 Cursor is in line editing mode (e.g., entering a

description for a paper/size type).
8 Cursor is in window editing (e.g., the Document

Comment window).

Number of the current endnote.
When in a list, the string name of the currently
highlighted entry. This system variable is not available
when the cursor is not in a list (see List below) or in the
following lists: Keyboard Edit, Macro Commands, Merge
Commands, and Equation Palette.
Number of the current equation, according to the
following formula:

Return value/32=first level
Return value%32=second level

For example, if the current equation is 1.2,
[SYSTEM(Equation" will return 34 (i.e., 34/32=1,
34%32=2).

Number of the current figure, according to the formula
described under system variable Equation above.

Number of the current footnote.

V a lu e(s) R e tu r n e d

Current keyboard status.

1 Right Shift key pressed
2 Left Shift key pressed.
4 Ctrl key pressed.
8 Alt key pressed.
16 Scroll Lock active.
32 Num Lock active.

870 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

S y sv a r V a lu e(s) R e tu r n e d

Language

Left (9)

Line (10)

List (11)

64 Caps Lock active.
128 Insert active.

(32) Current language as found under Format: Other
(Shift-F8,4,4). A two-letter abbreviation is returned.

AF Afrikaans
CA Catalan
HR Croatian
CZ Czechoslovakian
DK Danish
NL Dutch
OZ English—Australia
CE English—Canada
UK English—United Kingdom
US English—United States
SU Finnish
CF French—Canada
FR French—France
GA Galician
DE German—Germany
SD German—Switzerland
GR Greek
MA Hungarian
IS Icelandic
IT Italian
NO Norwegian
BR Portuguese—Brazil
PO Portuguese—Portugal
RU Russian
SL Slovak
ES Spanish
SV Swedish
YK Ukranian

Item (character or code) immediately to the left of the
cursor (see Appendix T: Macros and Merge, Value
Tables).

Vertical position of the cursor in 1200ths of an inch.

Number of items in the current list. (For purposes of
this system variable, a list is any list in WordPerfect
where you can perform a name search.)

65535 The cursor is not in a list.

0 The list is empty.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 871

S y sv a r

Menu (13)

Name (12)

Network (30)

Page (14)

Path (15)

Pos (16)

Print (17)

Other The number of items in the list. In List Files,
“Current" and “Parent” each count as an item
on the list. Therefore, {SYSTEM}List' while in
List Files returns 2 plus the number of files in
the list (e.g., if there are 3 files in the list,
{SYSTEM}List' returns 5; if there are no files
in the list, it returns 2).

Number of the menu currently active (see Appendix T:
Macros and Merge Value Tables).

Name of the current document, (e.g., JONES.LTR.)
Since there is no filename associated with the merged
document while the merge is executing, this system
variable is not available in Merge.

Current network status.

0 WordPerfect is not operating in a network
environment.

1 WordPerfect is operating in a network
environment.

Current page number.

Path to the current document, (e.g., C:\WP51\). (Note
the slash on the end of the path.) Since there is no path
a sso cia ted w ith the m erged d ocum ent during a m erge,
this system variable is not available in Merge.

Current horizontal cursor position in WordPerfect units
(I200ths of an inch).

Current print status.

1 No characters have been sent to printer.
2 An attempt has been made to send characters to

printer.
8 Printer is waiting for a Go.
16 Trying to rush job.
32 Trying to cancel job.
64 Network down.
128 Printing in progress.
256 Downloading a file.
2048 Last print job aborted abnormally.

All others are undefined and not guaranteed to be 0.

V a lu e(s) R e tu r n e d

872 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

S y s v a r V a lu e (s) R e t u r n e d

Right (18) Item on which the cursor is resting. In Merge, this
command will return 0 if the cursor is resting on a Soft
Return or Soft Page code (see Appendix T: Macros and
Merge, Value Tables).

Row (22) Current row number in a table (equals 0 if the cursor is
not in a table when the command is encountered).

RowState (27) Header status of current row.

0 Not in a table, or in a table but current row is
not a header row.

1 In a table, and current row is a header row.

ShellVer (25) Current Shell version number. (Shell is an optional
WordPerfect Corporation program.) The formula for
determining the version from the number returned is:

(Major Version# * 256) + Minor Version#

For example, if you were running WordPerfect under
Shell version 1.1, 257 would be returned (i.e.,
(1*256)+1). If you were running under Shell 2.0, 512
would be returned (i.e., (2*256)+0).

TableBox (19) Number of the current Table box, according to the
formula described under system variable Equation above.

TextBox (20) Number of the current Text box, according to the
formula described under system variable Equation above.

UserBox (21) Number of the current User-Defined box, according to
the formula described under system variable Equation
above.

Version (28) Current WordPerfect version number. This system
variable works for version 5.1 and later, but will produce
an error in version 5.0. The formula for determining the
version from the number returned is:

(Major Version# * 256) + Minor Version#

For example, if you are running WordPerfect version 5.1,
1281 is returned (i.e., (5*256)+l).

M a c r o s
The following example sends a message to the screen while printing is in
progress, then another message when printing has stopped.

{PROMPT[Printing is-in progress...'
{;} Sendmessageto-user'

(WHILE) {S YSTEM) Pri nt'& 128*
{;)While printingisinprogress'

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 873

{WAIT} 100'
(;) Let-WordPerfecTprinf

(END WHILE)
| ;) End- (WHILE (loop'

(PROMPT)Printinghas-stopped.'{ WAIT)40'
) ;)Send-new-messageto-user.- Display itfor4seconds.~

The {WAIT} command is very important in this macro because it gives the
computer processor time to print. If it weren’t there, nothing would print
because the macro loop would take all of the computer processor’s time.

See the Macros subheading under the following commands for additional
examples: {Item Down}, {Item Left}, {Item Right), {Item Up},
(SHELL MACRO}.

M e r g e
In the following example, the message "Document is printing...” displays
while printing is in progress.

(PRINT) {COMMENT)
Print what has been merged to this point

'(PROMPT(Document is printing...'(COMMENT)
Send message to user

' (WHILE) {SYSTEM)Print'* 128'(COMMENT)
While printing is in progress

'(WAIT) 100'(COMMENT)
Wail 10 seconds to allow printing to continue

'(END WHILE) (COMMENT)
Repeat the WHILE loop'

(TEXT}var~message' O >-►
The {TEXT} command prompts the user by displaying a message on the status
line. The input (up to 129 characters) from the user is then assigned to the
variable (see {CHAR} above). See Message Display under Notes at the end of
this appendix for information on affecting the way messages are displayed. See
also Prompting and User Input under Notes at the end of this appendix for
additional methods of obtaining user input.

A f te r th e { T E X T j c o m m a n d e x e c u te s , th e c o n te n t s o f th e s ta tu s l in e j u s t p r e v i o u s to th e
e x e c u t io n o f th e f T E X T S c o m m a n d a r e r e s to r e d , e v e n i f th e c o n te n t s a r e th e m e s s a g e o f a
p r e v i o u s l y e x e c u t e d j P R O M P T) o r { S T A T U S P R O M P T) m e s s a g e to r e a p p e a r a f t e r th e
) T E X T) c o m m a n d . U s e { P R O M P T) ' o r {S T A T U S P R O M P T) ' b e f o r e th e { T E X T)

c o m m a n d to c l e a r th e s ta tu s lin e .

M a c r o s
See the Macros subheading under the following commands for examples of
how to use this command: {BELL}, {BREAK}, {BREAK}, {IF EXISTS),
{LEN}, {MENU OFF), {NTOK}, {ON ERROR}.

874 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

See the Merge subheading under the following commands for examples of
how to use this command: (BELL), {IF EXISTS), {NTOC}.

(VARIABLE! r a r ' O >*
This command accesses the contents of global and local (Merge) variables. If
you have both a global and local variable by the same name, this command
accesses the local variable. There is no way to access global variables while
local variables of the same name exist. (For an explanation of global and local
variables, see Appendix L: Macros and Merge, Variables.)

You can also pass information between macro variables and Shell variables
(Shell version 3.0 or higher) using the {SHELL ASSIGN) and
{SHELL VARIABLE) commands (see (SHELL ASSIGN} and
(SHELL VARIABLE} above).

After a value has been assigned to a variable (see (ASSIGN) and (LOCALj
above), the {VARIABLE }var~ command can be placed anywhere you would
normally place the variable contents. It can be placed within or as an argument
for another command, or by itself.

A variable can hold no more than 129 keystrokes (characters).

M a c r o s
See the Macros subheading under the following commands for examples of
how to use this command: {;} (comment), {ASSIGN}, {BELL}, {BREAK},
{CASE}, {CASE CALL}, (CHAR), (ELSE). (FOR EACH}, {GO}, {IF},
{Item Down}, (Item Left), {Item Right), {Item Up}, (KTON), {LOOK},
{MENU OFF}, {NEXT}, {NTOK}, {ON ERROR}, {RESTART},
(SHELL ASSIGN}, {SHELL VARIABLE}, {WHILE}.
Merge
See the Merge subheading under the following commands for examples of
how to use this command: {ASSIGN}, {BELL}, {BREAK}, {CASE},
{CASE CALL}, (COMMENT), {CTON}, {DOCUMENT}, {IF}, (LEN),
{LOOK}, {MID}, {NEST MACRO}, (NEXT), {NEXT RECORD}.
{NTOC}.

\m \1 \1 0 th s second' O >~
The {WAIT} command delays further execution of the macro or merge for the
indicated time. This command is useful when you want a message to be
displayed for a certain amount of time.

M a c r o s
See the Macros subheading under the following commands for examples of
how to use this command: (ON CANCEL}, {ON ERROR},
(STATUS PROMPT}, {SYSTEM}.

Merge

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 875

See the Merge subheading under the following commands for examples of
how to use this command: {BELL}, (ON CANCEL}, (ON ERROR),
(SYSTEM}.

IWHILEIarpr' O
While the expression expr is true, the commands between the (WHILE) and the
{END WHILE} are repeatedly executed. This command is like the (FOR)
command, except that it does not increment a value each time through the loop.
In order to end the loop, use another command that will force the expression to
be evaluated as false (see Loops under Notes at the end of this appendix).

Remember that if you use a variable in expr, the variable must already exist
before the (WHILE) command is executed.

M a c r o s
In this example, the message “Counting” will be displayed until variable
“Count” reaches 50.

(ASSIGN (Count'O'
(;(Initialize-^Count. (This-command-creates-the-variable.-then
assigns it "0")~

(WHILE) (VARIABLE) Count'<50'
(PROMPT (Counting'

{ ; } Send the prompt-"Counting”.'
(ASSIGN) Count') VARIABLE }Count~+1'

(;(Increment var Count each time through-theloop'
(END WHILE)

See the Macros subheading under fSYSTEM} for an additional example.

M e r g e
See the Merge subheading under / SYSTEMj for an example of how to use
this command.

Merge

Notes Chaining, Nesting, and Substituting
Chaining a macro or merge file causes the named file to take over control of
execution as soon as execution of the current file is complete. A single file
(whether a macro file, a primary merge file, or a secondary merge file) can only
use one chain command. If you include more than one chain command, the last
one encountered during the merge or macro will be the only one executed. The
chained file only executes when the current macro or merge file is completely
finished.

The commands that chain are as follows:

(CHAIN) O
(CHAIN MACRO) >~
(CHAIN PRIMARY) >~
(CHAIN SECONDARY) >~

876 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Nesting is the process of moving control of execution to another file (such as
another macro file or primary file). Execution then returns to the parent file
(directly after the nest command) when execution of the nested file terminates.

Nesting a macro is similar to calling a subroutine (see Subroutines below),
except that the nested macro is not a part of the calling macro. It is a separate
macro, referenced by giving the macro name or the full pathname if it is not in
the Keyboard/Macro Files directory currently specified in Location of Files (see
Location of Files in Reference). You do not need to include the .WPM
extension in the filename or pathname. Because execution is automatically
returned when the nested macro has finished, you do not need to place a
(RETURN) command at the end of a nested macro.

If there are certain procedures which you frequently use in your macros or
merges, you can put them in smaller macros and nest them when they are
needed.

You can nest macro and merge files several levels deep (see Levels below). The
main file nests a second file; the second file nests a third. After the third file
has finished, the rest of the second file is executed. After the second file has
finished, the remaining part of the main file is executed.

The commands that nest are as follows;

(NEST) O
(NEST MACRO) >-
(NEST PRIMARY) >-
(NEST SECONDARY) >•

Substituting is the process of permanently changing control of execution to
another file. The substitution takes effect as soon as the command is
encountered, and control is never returned to the file that contained this
command.

The commands that substitute are as follows;

(SUBST PRIMARY) >-
(SUBST SECONDARY) >*

Commenting Out
You can use the (;} or (COMMENT) commands to comment out sections of a
macro or merge that you don't want to execute. This practice is useful for
testing and debugging your macros and merges.

Anything (including commands) between the (;) or (COMMENT) command
and the next tilde is ignored in execution. It is easy to comment out commands
such as (NEST), (CHAIN), etc., where there is only one tilde associated with
the command:

{;} {NEST} thefi le~

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 877

However, if the commands to be commented out have more than one tilde, you
must insert a {;} or (COMMENT) to correspond to each one:

(COMMENT)) ASSIGN}Number~{COMMENT]45~

When multiple tildes are involved, you may find it easier to delete the additional
tildes in the section to be commented out so that you only have to use one (;} or
(COMMENT) command. The tildes would have to be re-inserted if you later
decided to restore the section.

In Merge, a frequent use of (COMMENT) is to comment out Hard Return and
Tab codes you use to format commands in the file. If you do not comment out
these codes, they are included in the resulting merged document. See the Merge
subheadings in this appendix for examples. The example under the
(COMMENT} command may be especially useful.

If Blank, If Not Blank, and ?
In previous versions of WordPerfect, a question mark (?) was used to avoid
merging a field if it was blank (e.g„ AF1?A). This system had certain drawbacks,
such as that anything in the primary file after the question mark but on the same
line was also not printed if the field was blank. The (IF BLANK) and
(IF NOT BLANK) commands in WordPerfect 5.1 have eliminated this problem,
plus added all the flexibility of a standard IF structure.

Although you can still use the question mark construction (represented as either
{FIELD f/ieldnamel or A¥fieldnamelA in 5.1), you will probably find the
(IF BLANK) and (IF NOT BLANK) commands more flexible.

In some cases, however, you may want to use the question mark as a shortcut
for the (IF BLANK) and (IF NOT BLANK) commands. So, for example, if
you had a list of addresses where you wanted to include the company name if it
existed, but not if it didn't, you could use the question mark as a short cut
method of handling the “company name line.” For example:

{FIELD}name~
(FIELD)company?'
(FIELD) address'

In this example, if the company field is blank, no information is merged and the
entire line is eliminated, moving the address up one line. To accomplish the
same task with the (IF NOT BLANK) command, you could do the following:

| FIELD) name'
(IF NOT BLANK (company'(COMMENT)
' (FIELD) company'
(END IF)(COMMENT)
'(FIELD)address-

To insert the question mark, simply type it as the last character of the field
name. If you are using numbered fields, type the question mark after the
number.

8 7 8 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Inserting Merge Commands During Execution
While an executing merge is paused at a {KEYBOARD) or {INPUT} command,
you can execute the (QUIT), {NEXT RECORD), or (STOP) commands from
the keyboard.

1 Press Merge Codes (Shift-F9).

2 Select Quit (1), Next Record (2), or Stop (3).

Selecting the command from this menu functions as if the command had been
encountered in the primary file. See the description of each of these commands
in this appendix for more information on their functions.

Levels
In Macros, you can have up to 30 levels of execution. Each (NEST) command
uses 2 levels (one for executing the macro and one for a possible CHAIN
command). Each {CALL), {CASE CALL), nested (IF), (FOR),
(FOR EACH), or {WHILE) command uses 1 level.

In Merge, you can have up to 20 levels of execution per file. {IF) commands
do not require a level (they can be nested indefinitely). Each {CASE},
{CASE CALL), {FOR), or (WHILE) uses 1 level.

Execution levels are maintained in stacks. In general, Macros and Merge use
separate stacks to maintain levels. However, all expressions use the Macros
stack. Generally, expressions use one level, but may use more if they are very
complex. However, since expressions use the Macros stack, they effectively use
no levels in Merge.

In Merge, the levels for the nesting commands ({NEST MACRO),
{NEST PRIMARY), or {NEST SECONDARY}) are maintained in a separate
stack. They do not require an execution level (because for each file nested you
have 20 new execution levels), but they do require a nesting level. Files can be
nested 10 deep.

The levels used by these commands are released when the command ends normally. For
example, the level used by a ICALL} command is released when a (RETURN} command
ends the subroutine. The level used by the (IF} command is released when the (END IF}
is executed, and the level used by the (FOR} command is released at the (END FOR}
after the last iteration o f the FOR loop. I f any o f these level-using structures are exited
abnormally, the level is not released. For example, if you use a (GO} or (CASE} in the
subroutine executed by a (CALL} command, the level corresponding to the (CALL} is
never released. I f you "lose" 28 levels in this way, the macro will terminate.

Loops
Whenever the same commands repeat several times, that section of the macro or
merge is called a loop. For example,

(LABEL [Top'
{;) Top-of the loop"

endless-loop
{;)Type-,,endless-loop"~

APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS 8 7 9

{;)Go-to-top'

In this example, the words “endless loop” are written continuously to the screen
There is no way to stop execution without pressing Cancel (FI), Ctrl-Break, etc
When you create a loop, it is very important to have a way for the loop to end.

In the following example, a count is kept of the number of times the text has
been written to the screen. After the tenth time, the loop ends.

(ASSIGN ICounter'O*
(;}AssignOtovarCounter'

(LABEL) Top'
(;)Topofthe-loop'

(ASSIGN (Counter') VARIABLE) Counter'+1'
(;) Add-1 tovar-Counter'

Loop-(VARIABLE (Counter') Enter)
{;)Type"loop"#'

(IF) {VARIABLE(Counter'=10'
(;)If-this-is-thetenthtime'

(QUIT)
(;)Quit-the-macro'

(ELSE)
(; [Otherwise,'

(GO) Top'
(; (Go-totop(repeat-the-loop)'

(END IF)
(;}End-of-(IF)structure~

There are many types of loops you can create with Macros and Merge
commands. You can use an IF structure as in the above examples, or you can
use the (FOR), [FOR EACH), or (WHILE) commands (see each command
above). You can also create loops by going to or calling subroutines (with the
(GO) or (CALL) command). The structure you should use for any given loop
will depend on the task you are trying to accomplish.

Message Display
The following commands send a message to the screen when executed:

(GO (Top'

(CHAR) O >~
(INPUT) o >~
(PROMPT) o
(STATUS PROMPT) o
(TEXT) o

In Macros, you can use control characters to both position the message on the
screen, and affect the display attributes (such as Bold, Mnemonics, etc.) of the
message. For information on using control characters and display attributes, see
Macros. M essage Display in Reference.

8 8 0 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

In Merge, neither control characters nor display attributes are available when
sending messages to the screen. However, there are techniques for affecting the
display of messages:

Soft Wrapping
If you include a message that is longer than you have room for on the status
line, it will automatically wrap to the next line. The first line of the message
will scroll up to the next line. The message will continue to scroll until the
entire message is displayed. (You can also use this method in Macros.)

Hard Wrapping
If you want to determine where a message will wrap (rather than letting it
soft wrap), insert a hard return [HRtl at each point in the message where you
want it to wrap.

Nesting a Macro
If you decide you need or want the positioning and attributes available for
message display in Macros, you can put the command that sends the message
in a nested macro (see /NEST MACRO) above).

See also Prompting and User Input below.

Previous Merge Commands
In previous versions of WordPerfect, some of the Merge programming
commands were available, although they were represented using a caret (A) and a
letter as a control character, instead of a command made up of a word or words
in braces, as they are in WordPerfect 5.1. The following is a list of these
command equivalents:

Old Command New Command
A C {KEYBOARD)
AD {DATE}
AE (END RECORD}
APnameA or AF#A (FIELD)
AGmacronameAG (CHAIN MACRO}
AN (NEXT RECORD}
A0messageA0 (PROMPT)
APfiienameAP (NEST PRIMARY}
AQ {QUIT}
AR (END FIELD)
ASfilenanieAS (SUBSTSECONDARY)
AT (PRINT)
AU (REWRITE)
AV (MRG CMND}

If you have files that use the old code format, see Previous Versions under
Merge in Reference for information on whether or not they will have to be
converted for use with WordPerfect 5.1.

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 881

Prompting and User Input
The following commands can be used to prompt the user of your macro or
merge, and/or obtain input from the user:

{CHAR| o >~
{INPUT} o >-
{KEYBOARD} >*•
{LOOK} o >-►
{PAUSE} o
{PAUSE KEY} o
{PROMPT} o >-
{STATUS PROMPT} o >-
{TEXT} o

These commands are similar to each other in some ways, yet different in others.
The following chart shows some of these differences and similarities.
Comparisons are based on the following features of each command:

• Whether or not a message is sent with the command or command
combination.

• If a message is sent, whether the message remains on the screen until 1) the
screen is rewritten or the message is overwritten with a new command, 2)
input is terminated, or 3) you exit WordPerfect or the message is overwritten
with a new command.

• Whether or not execution stops at the command or command combination for
user input.

• I f e x e c u t i o n s t o p s f o r i n p u t , w h e t h e r t h e i n p u t g o e s d i r e c t l y i n t o t h e
document or into a variable.

• If execution stops for input, the method of terminating input.

• Whether the command or command combination is available in Macros only,
Merge only, or in both features.

8 8 2 APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS

Commands

Sends
Message?

Message
Duration

Stops
for
user
Input?

Input
Goes
To:

Input
Termination
method:

Available
In:

(CHAR) Yes R/O Yes Var. 1 Char. Both

(INPUT) Yes T Yes Doc. Enter
(Macros)
F9 (Merge)

Both

(KEYBOARD) No n/a Yes Doc. F9 Merge

(LOOK) No n/a No Var. 1 Char, or
nothing

Both

(PAUSE) No n/a Yes DOC. Enter Macros

(PAUSE KEYI No n/a Yes Doc. Specified key Macros

(PROMPT) Yes R/O No n/a n/a Both

(STATUS PROMPT) Yes E/O No n/a n/a Both

(TEXT) Yes R/O Yes Var. Enter Both

Command Combinations

(PROMPT) with
(KEYBOARD)

Yes R/O Yes Doc. F9 Merge

"(PROMPT) with
(PAUSE)

Yes R/O Yes Doc. Enter Macros

•(PROMPT) with
(PAUSE KEY)

Yes R/O Yes Doc. Specified key Macros

(STATUS PROMPT)
with (KEYBOARD)

Yes E/O Doc F9 Merge

(STATUS PROMPTI
with (PAUSE)

Yes E/O Yes Doc. Enter Macros

(STATUS PROMPT) Yes E/O Yes Doc. Specified key Macros
with (PAUSE KEV1

Legend
n/a Not applicable
T Termination
R/0 Rewrite Screen or Overwrite Message
E/0 Exit WordPerfect or Overwrite Message

•Although I PROMPT) messages normally appear only until the screen is rewritten or the message is overwritten, the message
w ill reappear even after these normal terminations if the (PROMPT) command is followed by a (CHAR) or (TEXT) command.

This occurs because the (CHAR) and (TEXTI commands take a ■'picture" of the status line, execute, and then redisplay the "picture.''

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 8 8 3

Record Pointer
In a secondary merge file, there are several records. As a merge is executed, the
primary file is repeated once for every record in the secondary file (unless you
use commands to alter this procedure). The record pointer is the internal device
that WordPerfect uses to keep track of which record it is currently using from
the secondary file. (You cannot see the record pointer.)

At the start of a merge, the record pointer points to the first record in the
secondary file. As the merge progresses, the pointer automatically moves to
each subsequent record as the primary file is repeated. You can force the record
pointer to move to the next record by using the jNEXT RECORD) command
(see / NEXT RECORD) above). This is useful when you want to change to the
next record without repeating the primary file.

Subroutines
A subroutine is a set of commands you may want to execute several times in a
macro or merge. Instead of repeating the commands each time you need them,
you can include them only once, then send execution to that spot each time you
want the commands performed. Inserting a call to a subroutine functions as if its
commands were placed at each point of the call. There is no limit to the number
of subroutines you can have in a macro or merge file.

A subroutine is identified by two commands. The first command, (LABEL),
marks the beginning of a subroutine. The second command, (RETURN), marks
the end.

S o m e su b r o u tin e s d o n o t n e e d a /R E T U R N) a t th e en d , i f th e c o m m a n d s in th e su b r o u tin e
g u a ra n te e c o r r e c t b ra n c h in g o r re tu rn in g .

The commands you can use to send execution to a subroutine are as follows:

(CALL) © >*
(CASE) o y *
(CASE CALL) o y *
(GO) © >*
(ON CANCEL) © y *
(ON ERROR) o y*
(ON NOT FOUND) o

Since there may be more than one subroutine in a macro, the name associated
with each one must be unique. The label name must be entered as an argument
in the command that sends execution to the subroutine, and must match the name
following the (LABEL) command identifying the beginning of the subroutine.

I f y o u u se lo c a l v a r ia b le s in M e rg e , y o u c a n n o t u se th e sa m e n a m e f o r b o th a su b r o u tin e
a n d a lo c a l v a r ia b le .

Troubleshooting
If you have trouble getting your macros or merges to work, check to see that you
have not made one of the following errors:

8 8 4 APPENDIX K: MACROS AND MERGE. PROGRAMMING COMMANDS

• Incorrect number or placement of tildes. (See the descriptions of the
commands you are using.)

• Using a variable name instead of the {VARIABLE\var~ command, or vice
versa. (See the description of the commands you are using, and Appendix L:
Macros and Merge, Variables.)

• Other syntax errors. (See the descriptions of the commands you are using.)

• Infinite loops. (See Loops above.)

• Trying to reference a global variable while a local variable of the same name
is accessible. (See Appendix L: Macros and Merge, Variables.)

• Using a local variable and label of the same name. (See (LOCAL) and
(LABELj above.)

• In a merge, accessing a global variable that contains keystrokes. (See Keys
troke Commands in Variables in Appendix L: Macros and Merge, Variables.)

• Missing a (RETURN) at the end of a subroutine. (See Subroutines above.)

• Misspelled variable or label names.

• Going to or calling non-existent labels, or accessing non-existent variables.

• In a merge, incorrect placement of (COMMENT) command and its tilde, or
lack of use of the (COMMENT) command. (See (COMMENT) and
Commenting Out above.)

• Nesting files too many deep or using too many levels. (See Levels above.)

• Performing a numeric operation on a string. This usually happens when you
use an invalid character (such as a space, period, or comma) in an expression
w h ic h is a s s ig n e d to a v a r ia b le . (S e e A p p e n d ix J : M a c r o s a n d M e rg e ,
Expressions.)

• Missing loop terminators (see (END FOR), (END IF), (END WHILE)).

• Missing or improper nested files, or improper termination of nested files (see
(NEST) (NEST MACRO), (NEST PRIMARY), (NEST SECONDARY), and
Chaining, Nesting, and Substituting above).

• In a merge, using an open code (such as a Tab Set or Margin Set) in a
primary file that is not reset at the beginning of the file. (Any open code
encountered during the merge will be in effect in the resulting merged
document until another open code of the same type is found to counteract it.)

See Also: Lessons 23 through 25; Macros; Macros, Define; Macros, Execute;
Macros, Macro Editor; Macros, Message Display; Merge; Appendix I; Appendix
J; Appendix L

APPENDIX K: MACROS AND MERGE, PROGRAMMING COMMANDS 8 8 5

Appendix L: Macros and Merge, Variables

A variable represents a place in memory where data is stored. As its name
indicates, the data in a variable is changeable. You might want to use variables
to calculate and/or keep track of values and text which change during execution.

System Variables vs. User-Defined Variables
There are two major types of variables in WordPerfect: system variables and
user-defined variables. System variables are variables that WordPerfect creates
and maintains, and that contain information about the current state of
WordPerfect. You cannot change the names or contents of these variables, but
you can find out and use their contents at any given time. The names and
possible contents of system variables are listed in Appendix K: Macros and
Merge. Programming Commands under the description of the {SYSTEM}
command.

User-defined variables are variables that you create and name, and whose
contents you determine. You can perform operations on these variables to
change their contents. There are two sub-categories of user-defined variables:
global variables and local variables.

Global vs. Local Variables
Global variables are accessible from anywhere inside a macro or merge.

Local variables are available only in Merge, and are stored in a separate place in
memory from global variables. They are only accessible from the file in which
they are created. For example, if you create a local variable named Number in a
primary file, the secondary files or other primary files cannot access the
information stored in it. When you nest merge files, the local variables in the
parent file are not v isib le to the nested file. W hen you return to the parent file,
the local variables in the nested file no longer exist, but the local variables in the
parent file are once again accessible.

Local variables take precedence over global variables. For example, suppose you
have both a global and local variable named Number. If you try to access the
global variable Number from inside a file where the local variable Number is
accessible, you will get the contents of the local variable. The global variable
Number still exists, but is inaccessible until execution moves to where the local
variable Number is no longer accessible (out of the merge file).

Naming Variables
Variables, whether local or global, must have a unique name by which you refer
to them. The name may consist of any combination of the characters in the
WordPerfect character sets. However, in Macros, only the first 7 letters are used
to determine uniqueness. So, in Macros, ABCDEFG and ABCDEFGH are
considered by WordPerfect to refer to the same variable. In Merge, however, 15
characters are used to determine uniqueness. In Merge, ABCDEFG (7 characters
long) and ABCDEFGH (8 characters long) would be considered two separate,

APPENDIX L: MACROS AND MERGE, VARIABLES 8 8 7

unique variables, but ABCDEFGHIJKLMNO (15 characters long) and
ABCDEFGHIJKLMNOP (16 characters long) would be considered the same

Variable names are not case sensitive. Abe, AbC, ABC, abc, are all considered
by WordPerfect to be the same variable.

Variables receive their names when they are assigned. See Assigning Variables
below for more information.

Variable Contents
All user-defined variables can contain text or numbers. In addition to text and
numbers, global variables can also contain keystrokes. The method you use to
assign variables may affect the kinds of codes, commands, and keystrokes that
can be assigned to a variable (see Assigning Variables and Keystroke Commands
in Variables below). A user-defined variable can only hold 129 keystrokes. A
keystroke can be a character, an extended character, a keystroke command (in
Macros), or a programming command.

Assigning Variables
You assign a global variable with the {ASSIGN} command, and a local variable
with the {LOCAL} command. For example, the following two statements assign
Iwo different variables, one global, and one local:

{ASSIGN }Number'45~
{LOCAL}Number~36~

The (ASSIGN) command creates a global variable named Number and puts in
“45" as its conten ts. T he {L O C A L } command creates a separate, local variable
named Number and puts in "36” as its contents. (See the description of the
{ASSIGN} and {LOCAL} commands in Appendix K: Macros and Merge,
Programming Commands.)

In a macro, the {ASSIGN} command can only be entered from within the Macro
Editor (see Inserting Commands under Macros, Macro Editor in Reference). In
a merge file, the {ASSIGN} and (LOCAL) commands are inserted from the
normal editing screen by pressing M erge Codes (Shift-F9) twice, then selecting
the command from the command access box (see Inserting Merge Commands
under Merge in Reference).

In addition to using the {ASSIGN} and {LOCAL} commands, the following
commands also assign variables:

See Appendix K: Macros and Merge. Programming Commands for a description
of each of these commands.

variable.

{CHAR}
{FOR}
{FOR EACH}

{LOOK}
{SHELL ASSIGN)
{TEXT}

888 APPENDIX L: MACROS AND MERGE, VARIABLES

The following rules determine whether the variable assigned by the {CHAR},
{LOOK}, and {TEXT} commands are local or global in a merge:

• If a local variable by the name used in the command exists, the command
will assign to the local variable.

• If no local variable by the name used in the command exists, but a global
variable by that name does exist, the command will assign to the global
variable.

• If no variable exists by the name used in the command, a global variable of
that name is created and assigned by the command.

The (FOR) command in Merge assigns by the same rules as above, except that
if no variable exists by the name used in the command (the third rule), a local
variable is created and assigned by the command. This feature allows recursion
using the {FOR} command in Merge.

You can also assign global variables without using a command from the normal
editing screen or while in macro definition mode (see Macros, Define in
Reference for an explanation of macro definition mode). To assign the variable,

1 Press M acro Com m ands (Ctrl-PgUp).

2 If you are in macro definition mode, a menu appears. Select Assign (3).
Otherwise, skip to the next step.

3 Enter the variable name.

You are prompted for the value.

4 Enter the variable contents.

Using this m ethod, you can o n ly assign characters and numbers to the variable.
You can enter up to 79 characters. If the characters you enter form a valid
expression (see Appendix J: Macros and Merge, Expressions), the expression is
evaluated and the result is assigned to the variable.

To assign a block of existing text to the variable (from the normal editing screen
or while in macro definition mode),

1 Block the text (Alt-F4).

2 Press M acro Com m ands (Ctrl-PgUp).

3 If you are in macro definition mode, a menu appears. Select Assign (3).
Otherwise, skip to the next step.

4 Enter the variable name.

The first 128 characters are assigned to the variable.

When codes are encountered in the block, they are converted (if possible) to the
keystroke command that would normally insert that code. For example, if the
b lock in c lu d es a [Tab] co d e , it is converted to the keystroke com m an d {T ab).

APPENDIX L: MACROS AND MERGE. VARIABLES B89

The codes that can be converted are:

Code Converted To

(Undent]
[♦Indent*]
[Tab]
[Center]
[Fish Rgt]
[♦Mar Rel]
[-] (Hyphen character)
- (Hard Hyphen)
[HRt]
[Hrt-Spg]
[Dorm HRt]
[SRt]
[SPg]
[HPg]

(Indent]
[Indent]
[Tab]
[Tab]
[Tab]
[Tab]
- (dash)
- (dash)
[Enter]
[Enter]
(Enter)
(space)
(space)
I HPg)

See Keystroke Commands in Variables below for information on limitations to
using variables that contain keystroke commands.

If a variable already exists, assigning new contents to it replaces the previous
contents without warning.

Executing Variables
You can execute or write out a variable anywhere you would want its contents.
For example, by executing a variable you can do the following:

• Use the contents of the variable as a subroutine.

• Insert the contents as text in a document, or in the message strings of
programming commands.

• Provide variable arguments in other programming commands.

To execute a variable, you use the [VARIABLE] command. For example, the
statement [VARIABLE]Number" would execute the variable named Number.

If a global variable is named with a single-digit number (1, 2, 3, 4, 5, 6, 7, 8, 9,
or 0) (see Naming Variables above), the Macro Editor allows a short-cut method
of inserting the command to execute the variable in the macro. You can press
Ctrl-v.Alt-#, where # is the number of the variable, or if you have pressed
M acro Define (Ctrl-FlO) to turn on command insert mode, just press Alt-#. The
command that is inserted looks like this: [VAR #}. This command is equivalent
to [VARIABLE]#'. Remember, however, that this shortcut is only available in
the Macro Editor.

A nother advantage o f naming global variables with a single digit is that you can
execute them at the normal editing screen. For example, if you are at the normal
editing screen and want to know the current contents of variable 5, press Alt-5.

8 9 0 APPENDIX L: MACROS AND MERGE. VARIABLES

The contents are executed/wntten out. You cannot use this method to execute
variables of other names at the normal editing screen.

Variable Duration
Local variables exist only in the hie in which they are created. Once the tile
that created the variables is exited or the merge ends, the local variables are
erased (and the memory assigned to them is released). However, the contents of
global variables remain in memory until you exit WordPerfect. To conserve
memory, local variables instead of global variables whenever possible.

If you want to erase a variable before WordPerfect does it for you, assign the
variable "nothing" by using the following commands: (ASSIGN)var~ or
(LOCAL }var~~. These commands not only empty the variable of its contents,
but also release the memory used by the variable. After this command, the
variable no longer exists. It is a good idea to empty variables at the beginning
of a macro or merge in which they are used (unless the macro or merge assigns
new contents to them).

Operations on Variables
All variables can be compared to each other, and user-defined variables can have
other operations performed on them. Operations are performed using various
programming commands (see Appendix K: Macros and Merge, Programming
Commands and Appendix J: Macros and Merge, Expressions).

Keystroke Commands in Variables
In Macros, variables are executed as keystrokes. Therefore, if in a macro you
assign keystroke commands (such as (Search), (Tab), (Enter), (Home)) to a
variable, then execute the variable, the keystrokes will be performed.

K e y s t r o k e c o m m a n d s d o n o t e x i s t in M e r g e , s o it i s im p o s s i b l e t o a s s i g n

keystroke commands to a variable in a merge.* (You also cannot enter
keystroke commands in the merge files themselves.)

However, since all variables assigned in macros are global, it is possible to
execute within a merge a global variable that was assigned keystroke commands
by a macro. If you do so, the keystrokes will not be executed as they would be
in a macro. Instead, the character equivalents of the keystroke commands will
be written out to the document.* If you are combining macros and merges and
find unexpected control characters (such as AI. AF, AH) or extended characters in
the merged document, see that you have assigned your variables properly.

*There is one exception to this rule. When you use a fCHARj command in a merge, the
user can press Enter at the prompt to assign the variable the keystroke command f Enter j.
If you then execute the variable, a /HRt] is inserted in the resulting document. See
(CHAR) in Appendix K: Macros and Merge, Programming Commands for more
information on using the fCHARj command.

See Also: Macros; Macros, Define; Macros, Execute; Macros, Macro Editor;
Macros, Message Display; Merge; Appendix I; Appendix J; Appendix K

APPENDIX L: MACROS AND MERGE. VARIABLES 891

Appendix T: Macros and Merge, Value Tables

(KTON) and INTOK)

This appendix lists the values returned by various macro and merge
programming commands.

The following table shows the WordPerfect key values used with the {KTON}
and {NTOK} programming commands. For more information on using these
commands, see Appendix K: Macros and Merge, Programming Commands.

Value Key Name Key Macro Command

32768 Com pose C trl-2 I C om pose)1
32769 AA C trl-a l AA)
32770 AB C trl-h 1AB)
32771 AC C trl-c P C I
32772 AD C trl-d 1AD }
32773 AE C trl-e (AE)
32774 AF C trl-t (AF |
32775 AG C trl-g (AG)
32776 Home or AH Home or C trl-h (H om e]
3277 7 Tab o r Al Tab (Tab)
32778 Enter or AJ Enter or C trl-j (Enter]
32779 Delele to End o f Line or AK C trl-End o r C trl-K (D el EOLI
32780 Delete to End o f Page o r AL C trl-P gD n or C trl-I (Del EOP)
32781 AM C trl-m (AM)
32782 AN C trl-n l AN)
32783 A0 C trl-o (A0)
32784 AP C trl-p I AP1
32785 AQ C trl-q (AQ1
32786 AR C trl-r (AR!
32787 AS C trl-s (AS)
32788 AT C trl-t (ATI
32789 AU C trl-u (AU)
32790 AV C trl-v (AV I
32791 Up A rrow o r AW T o r C trl-w (U p)
32792 Right Arrow or AX -> o r C trl-x (R igh t)
32793 Lett A rrow o r AY « - o r C trl-y (Le ft]
32794 Down A rrow or AZ i o r C trl-z (D ow n]
32795 Escape or A[Esc or Ctrl-1 (Esc!
32796 A\ C trl-\ i A\)
32797 A1 C trl-] (Al)
32798 AA C tr l-A (K eyb oard)1
32799 A C trl- (S H y l
32800 Cancel F1 (C ancel)
32801 ♦ S earch F2 (Search)
32802 Help F3 (H e lp)
32803 Indent F4 (Indent)
32804 List F5 (L is t)
32805 Bold F6 (B o ld)
32806 Exit F7 (Exit)
32807 Underline F8 (U nde rline)
32808 End Field2 F9 (End Fie ld)
32809 Save F10 (Save)
32810 Reveal Codes F113 (Reveal Codes)
32811 Block F123 (B lo ck l
32812 Setup Shift-F1 (Setup)
32813 ♦ S e a rc " S h ift-F2 (Search Left)
32814 Switch S h ift-F3 (Sw itch 1
32815 ♦ in d e n t* S h ift-F4 (L /R Indent)
3281 6 Date/O utline S h ift-F5 (D ate /O utline)
32817 Center S h ilt-F 6 (Center)

APPENDIX T: MACROS AND MERGE, VALUE TABLES 96 3

Value Key Name Key Macro Command

32818 Print S h ift-F 7 (P rin t)
32819 Format S h ift-F8 (Form at)
32820 M erge Codes S h ift-F9 (M erge Codes)
32821 Retrieve S h ift-F lO (Retrieve)
32822 smtt-Fir* IS h ft F 1 1) ’
32823 S h ift-F 124 IS h lt F 12)'
32824 Thesaurus Alt-F1 (Thesaurus)
32825 Replace AI1-F2 (Replace)
32826 Reveal Codes A II-F3 {Reveal Codes)
32827 Block AII-F4 (B lock)
32828 M ark Text A lt-F 5 (M ark Text)
32829 Flush R ight AI1-F6 (F lush R ight)
32830 C olum ns/Table A lt-F 7 (C o lum ns/Tab les)
32831 Style A lt-FB (S tyle)
32832 Graphics AII-F9 (G raphics)
32833 M acro A II-F10 (M a cro l
32834 A i t - F i r 1 (A lt F i l l 1
32835 A II-F 1 24 (A lt F 1 2)1
32836 Shell C tr l-F I (S he ll)
32837 Spell C trl-F2 (S pe ll)
32838 Screen C trl-F3 (Screen)
32839 M ove C trl-F4 (M ove)
32840 Text In/O ut C trl-F5 (Text In/O ut)
32841 Tab A lign C trl-F6 (Tab A lig n)
32842 Footnote C trl-F7 (Footnote)
32843 Font C trl-F8 (Font)
32844 M erge /S ort C trl-F 9 (M erge /S ort 1
32845 M acro Define C trl-F 1 0 (M a cro Deline)
32846 C lrl-F 1 1 4 (C trl F 11)'
32847 C lrl-F 1 2 4 (C trl F12)'
32848 Backspace Backspace (Backspace)
32849 Delete Del (D e l)
32850 Delete W ord C trl-Backspace (D el W o rd l
32851 W ord R ight C t r l - - . (W ord R ight)
32852 Word Left Ctrl-«- (Word Lell)
32853 End o l L ine End or Home, Home, -> 5 I End I
32854 B eg inn ing o f Line Begin (V ic to r com puter)

or Home, Home. <-5
32855 (In va lid)
32856 Go To C trl-H om e I Goto)
32857 Page Up PgUp (Page Up)
32858 Page Down PgDn (Page Dow n)
32859 Screen Down + (Screen Dow n)
32860 Screen Up - (Screen Up)
32861 Typeover Ins ITypeover)
32862 M arg in Release Shift-Tab (Left M ar R ell
32863 Hard Page Ctrl-En ter IH P g)
32864 Soft Hyphen C t r l - - (SHy)
32865 Hyphen Character A lt— (- I
32866 Hard Space Home, Space Bar5 () '
32867 Paragraph Up C trl-T (Para Up)
32868 Paragraph Down Ctrl-4. (Para Dow n)
32869 Item Lett A II-< - (Item Left)
32870 Item Right A lt— ► (Item R ight)
32871 Item Up A lt-T (Item Up)
32872 Item Down A lt-4 (Item Dow n)
32873 A lt-H o m e4 (A lt Hom e)
32874 Delete Row C trl-D e l (B lock M ove)
32875 M enu Bar A lt- = IM e n u B ar)'
32876 Block Append (B lock Append)
32877 Block M ove C trl-D e l (B lock M ove)
32878 B lock Copy C trl- ln s (B lock C opy l
64513 (ASSIGN)

9 6 4 APPENDIX T: MACROS AND MER3E, VALUE TABLES

Value

64514
64515
64516
64517
64518
64519
64520
64521
64522
64523
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549

64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64573
64574
64575

Key Nam e Key M acro Com mand

M acro C om m ands

IBELL}
IBREAKI
IC A L L)
{CANC EL OFF)
{CANC EL ONI
{CASE)
{CASE CALL)
(C H AIN)
{CHAR)
{;)
{D ISPLAY OFF)
{D ISPLAY ON)
{ELSE)
{END FOR)
{END IF)
{END W HILE)
IFOR)
IFOR EACH)
(GO)
{IF)
{LAB EL)
{LOO K)
{NESTI
{NEXT!
{SHELL MACRO)
{ON CANCEL)
{ON ERROR)
{ON NOT FOUND)
{PAUSE)
{PRO M PT)
{QUIT)
{RESTART)
{RETURN)
{RETURN CANCEL)
{RETURN ERROR)
{RETURN NOT

FOUND)
I SPEED)
(STEP ON)
(TEXT)
{STATE)
(W AIT)
{W HILE)

C trl-P g U p {M ac ro Com m ands)
{STEP OFF)
{ORIGINAL KEY)
{IF EXISTS)
{M EN U OFF)
{M EN U ON)
{STATUS PROM PT)
{IN PU T)
(VARIABLE)
{SYSTEM)
(M ID)
IN TO K)
IKTO N)
1LEN)
l~)
{PAUSE KEY)
{OTHERWISE!
{SHELL ASSIGN)
{SHELL VARIABLE)

APPENDIX T: MACROS AND MERGE, VALUE TABLES 9 6 5

ISYSTEMIRighf
(SYSTEMlLeff

'To insert this command in a macro, you must define a macro containing (NTOKj\~,
where x is the value listed on the table. Then map this macro to a ke\ using
Keyboard Layout (see Keyboard Layout in Referenced. With the keyboard containing
the mapping selected, enter the Macro Editor. Press the key to which the macro is
mapped to insert the command.

2Pressing End Field (F9) inserts “[Mrg.End FieldJfHRlJ" into the document.

!F11 and F I2 are remapped on the original keyboard to correspond to Alt-F3 and
Alt-F4, respectively.

4This key is not mapped on the original keyboard.

'Although it is impossible to take the /KTON) o f multiple keys, you can produce
(e x e c u te) th is keys tro ke se q u en ce by ta k in g the (N T O K f o f its key value.

The following table shows the values returned by the (SYSTEM)Right' and
{SYSTEM}Left~ commands when the item to the right or left of the cursor is a
WordPerfect code. In most cases, a five-digit number is returned. For some
codes, however, the keystroke corresponding to the code is returned instead of a
number. These codes are listed at the end of the table.

For some codes, the value returned differs depending on whether it was returned
by the (SYSTEM)Right' or (SYSTEM(Left' command. These values are
marked with (R) and (L), respectively, in the table below.

For more information on using these commands, see Appendix K: Macros and
Merge, Programming Commands.

Value Code

33024 [Just On]
3328 0 [Just Off]
34304 [Center Pg]
34560 [C ol Onl
34816 [C ol O ffj preceded by [HPg]
35328 [W /0 On]
35584 [W /0 Oft]
35840 [HR t-S Pg]
36096 [Note Num]
36352 [Box Num]
36608 [End C/A]
36864 [DSRtl
37376 [S P g l (not a space or [H R fc
37632 [ISR tl
38656 (R). 3840 0 (L) [B lock]
39168 [D orm HRt]
39424 [/] (Cancel Hyphenation)
39680 [End D e ll
40448 [Hyph Off]
40704 [Hyph On]
40960 [] (Hard Space)
41216 1+1
41472 [t]
41728 H
41984 [T]
42240 [*1
42496 HI
42752 [M ath On]

96 6 APPENDIX T: MACROS AND MERGE. VALUE TABLES

Value Code

43008
43264
44032
44800
45056
45312
45568
49408
49410
49424
49426
49474
49480
49482
49490
49496
49498
49504
49520
49536
49608
49610
49624
49626
49632
49648
49664
49665
49920
49921
49922
49923
49924
49925
49926
49927
49928
43929
49930
49931
49932
49933
49934
49935
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50432
50433
53248

[M ath Off]
[-] (Hyphen Character)
- (S o ft Hyphen)
[C o l Off] if created by [H P g l but not preceded by [HPg]
[C o l Off] if created by [SPg] bu t not preceded by [H Pg]
[N]
[O utline Off]
[TAB]
[Tab]
[TAB] (w ith dot leader)
[Tab] (w ith do t leader)
[Dec Tab]
[RGT TAB]
[Rgt Tab]
[D ec Tab] (w ith do t leader)
[RGT TAB] (w ith do t leader)
[R gt Tab] (w ith dot leader)
[F ish Rgt]
[F ish Rgt] (w ith do t leader)
[M a r Rel]
[CNTR TAB]
[C n tr Tab]
[CNTR TAB] (w ith do t leader)
[C n tr Tab] (w ith dot leader)
[Center]
[C enter] (w ith dot leader)
M n d e n t]
[—»lndent«—]
[EXT LARGE]
[VRY LARGE]
[LARGE]
[S M A LL]
[FINE]
[SUPRSCPT]
[SUBSCPT]
[OUTLN]
[ITALC]
[SHADW]
[REDLN]
[DBL UND]
[BOLD]
[S TK 0U T]
[U N D]
[S M CAP]
[ext large]
[vry large]
[large]
[sm a ll]
[fine]
[sup rscp t]
[subscpt]
[o u tln]
[ila lc]
[shadw]
[red ln]
[d b l und]
[b o ld]
[stkout]
[und]
ism cap]
[B lock ProrOn]
[B lock ProrOft]
[Ln H eigh t]

APPENDIX T: MACROS AND MERGE, VALUE TABLES 96 7

9 6 8 APPENDIX T: MACROS AND

[L /R M ar]
[Ln S pacing]
[HZone]
[Tab Set]
[T /B M ar]
[Just]
[S uppress]
[Pg N um bering]
[Paper Sz/Typ]
[C o lo r]
[Font]
[M ath Det]
[C ol Det]
[Par Num Det]
[Ftn Opt]
[End Opt]
[F ig Opt]
[Txt Opt]
[U sr Opt]
[Equ Opt]
[Tbl Del]
[L in k]
[L in k End]
[Tbl Opt]
[B rd r Opt]
[D ecm l/A lgn Char]
[L lnd rln]
[New Ftn Num]
[New End Num]
[Pg Num]
[Ln N um]
[A dv]
[Force]
[B L ine]
[Wrd/Ltr Spacing]
[Just L im]
[New Fig Num]
[New Tbl Num]
[New Txt Num]
(New Usr Num]
[New Equ Num]
[Lang]
[Pg Num Style]
[Header A]
[Header B]
[Footer A]
[Footer B]
[Footnote]
[Endnote]
[M ark]
[End M ark]
[D et M ark]
[Index]
[ToA]
[Endnote Placem ent]
[Ret]
[Target]
[S ubdoc]
[S ubdoc Start]
[S ubdoc End]
[Date]
[Par Num]
[O vrstk]

Code

TABLES

Value

53249
53250
53251
53252
53253
53254
53255
53256
53259
53504
53505
53780
53761
53762
53763
53764
53765
53767
53768
53769
53771
53773
53774
53776
53777
54016
54017
54018
54019
54020
54021
54022
54023
54024
54026
54027
54028
54029
54030
54031
54032
54033
54034
54528
54529
54530
54531
54784
54785
55040
55041
55042
55043
55044
55045
55047
55048
55049
55050
55051
55296
55297
55298

MERGE, V ALU E

Value Code

55299 [Inse rt Pg Num]
55552 [P tr Cm nd]
55553 [C nd l EOP]
55554 [C om m ent]
55555 [Kern)
55556 [O utline On]
55557 [Leading A dj]
55808 [F ig Box]
55809 [Tbl Box]
55810 [Text Box]
55811 [U sr Box]
55812 [Equ Box]
55813 [H Line]
55814 [V L ine]
56064 (R) 56067 (L) [S ty le :O n] o r [O utline Lvl # Style On]
56065 (R), 56067 (L) [S tyle :O ff] or [O utline Lvl # Style Off]
56066 (R), 56067 (L) [Open Style] or [O utline Lvl # Open Style]
56320 [C e ll]
56321 [Row]
56322 [Tb l Off]
56579 [H rd Row]
56864 [M rg A S SIG N]
56865 [M rg :B E LL]
56866 [M rg:BREAK]
56867 [M rg :C A LL]
56868 [M rg :C A N C E L OFF]
56869 [M rg:C AN C EL ON]
56870 [M rg:C ASE]
56871 [M rg CASE CALL]
56872 [M rg :C H A IN M ACRO]
56873 [M rg :C H A IN PRIMARY]
56874 [M rg :C H A IN SECONDARY]
56875 [M rg :C H A R]
56876 [M rg :C O M M E N T]
56877 [M rg:C TO N]
56878 [M rg.D ATE]
56879 [M rg DOCUM ENT]
30000 [M rg.ELSE]

56881 [M rg :E N D FIELD]
56882 [M rg :E N D FOR]
56883 [M rg :E N D IF]
56884 [M rg :E N D RECORD]
56885 [M rg :E N D WHILE]
56886 [M rg:F IELD]
56887 [M rg:FO R]
56889 [M rg:G O]
56890 [M rg :IF]
56891 [M rg :IF BLANK]
56892 [M rg ;IF EXISTS]
56893 [M rg :IF NOT BLANK]
56894 [M rg:KEYBOARD]
56895 [M rg iA B E L]
5689 6 [M rg lO C A L]
5689 7 [M rg lO O K]
56898 [M rg :M ID]
56899 [M rg :M R G CM ND]
56900 [M rg:N EST MACRO]
56901 [M rg:N EST PRIMARY]
56902 [M rg:N EST SECONDARY]
56903 [M rg:N EXT]
56904 [M rg:N EXT RECORD]
56905 [M rg :N TO C]
56906 [M rg.PROCESS]

APPENDIX T: MACROS AND MERGE, VALUE TABLES 9 6 9

(SYSTEMIMenif

Value Code

56907 IM rgrO N CANCEL]
56908 [M rgrO N ERROR}
56909 [MrgrPAGE OFF]
56910 [MrgrPAGE ON]
56911 [M rgrPRINT]
56912 IM rg:PROM PT]
56913 [M rg .Q U IT]
56914 [MrgrRETURN]
56915 [Mrg:RETURN CANCEL]
56916 [MrgrRETURN ERROR]
56917 [MrgrREW RITE]
56918 [M rg.S TEP OFF]
56919 [M rgrSTEP ON]
56920 [M rgrS U BST PRIMARY]
56921 [M rgrS U BST SECONDARY]
56922 [M rgrS YSTEM]
56923 [M rgrTEXT]
56924 [M rgrVARIABLE]
56925 [M rg .W A IT]
56926 [M rgrW H ILE]
56927 [MrgrSTATUS PROMPT]
56928 [M rgrIN PU T]
5692 9 [M rgrLEN]
56930 [M rgrF IELD NAME]
56931 [M rg S T O P]
{ AA} AA
{* B (AB
r c i AC
m AD
1AE1 AE
OF} AF
lAG) AG
(H om e) AH
{Enter} [HRt]
I 'N I •*
l A0 } A0
1AP) AP
l AQ) AQ
l ARI AR
l AS} AS
(AT| AT
I AU1 AU
(AV) AV
{U p} AW
{R igh t} AX
{Lett} AY
{D ow n} AZ
{Esc} A[
!AM A\
H) A]
(a a) AA

IS H y} - (Soft Hyphen, C t r l - -)

The tables below list the values returned by the {SYSTEM }Menu~ command.
The first table lists the values by menu, the second by number. The Keystrokes
column of both tables lists the keystrokes required to produce the menu.
Bracketed keystrokes indicate that any one of the given keys may be pressed at
that point in the keystroke series to produce the menu. Other conditions required
to produce the menu appear in the Conditions column. Block is assumed to be
off unless otherwise specified.

9 7 0 APPENDIX T: MACROS AND MERGE. VALUE TABLES

For more information on using the (SYSTEM)Menu' command, see Appendix
K: Macros and Merge, Programming Commands.

By Menu
This table lists the menus by general menu name and then by the keystrokes
required to produce the menu. Use this table when you know the menu but not
the value that will be returned at that menu.

Value Keystrokes Conditions

Cancel Menu (F1)
49 F1

Setup Menu (S h ift-F 1)
177
346
363
221
221
190
180
187
221
341
341
342
343
347
68
44
181
348
349
101
55
45
344
45
345
400
400
379
380
220
105
252
369
202
199
11
208
209
235
303
235
56

Shilt-F1
Shift-F1,1
S h ilt-F i 1,2
S h ift-F1 ,2
S h ift-F 1 ,2,1
S h itt-F I .2,1
S h itt-F 1 ,2,1
S h ift-F 1 ,2,1
S h ift -F I ,2,12,3]
S h ift-F 1 ,2,4
S h if t -F I ,2 ,4 ,[1 ,2 ,3 ,5 ,6],[1 ,2]
S h ift-F 1 ,2,5
S h ift-F 1 ,2,6
S h ift-F1 ,3
S h ift-F 1 ,3,1
S h ift-F 1 ,3,2
S h ift-F 1 ,3,3
S h ift-F 1 ,3,4
S h ift-F 1 ,3.6
S h ift -F I .3.7
S h ift -F I .3,8
S hift-F1,4
S h ift-F 1 ,4,1
S h ift-F 1 .4,2
S h ift-F 1 .4.3
S h ift-F 1 ,4,3,2
S h ift-F I ,4,3,2,2
S h ift-F 1 ,4,3,3
S h ift-F 1 ,4,3,4
S h ift-F 1 ,4,7
S h ift-F 1 ,4,8
S h ift-F1,4,8,2 ,Enter
Sh ilt-F 1 ,4 ,8 ,2 ,E nter
S h ift-F 1 ,4,8,3
S h ift-F 1 ,4,8,4
S h ift-F I ,4,8,5
S h ift-F1 ,5
S h ift-F 1 ,5,7
S h ift-F 1 ,5,7,1
S h ift-F 1 ,5,8
S h ift-F 1 ,5,8,2
S h ift-F1 ,6

m onochrom e graph ics card
Hercules RAM Font graph ics card
CGA graph ics card
EGA,VGA graph ics card

runn ing on a network

Thesaurus Menu (A lt-F1)
3282 4 AI1-F1 w ord not found
110 AII-F1 w ord found

Shell Menu fC trl-F 1)
103 Ctrl-F1 not under Shell
102 Ctrl-F1 under Shell

APPENDIX T: MACROS AND MERGE, VALUE TABLES 971

Value Keystrokes Conditions

Search M enus (F2 and S h ift-F2)
32801 F21
32813 Shift-F21
32776 Home,F2

Replace Menu (A II-F2)
32825 AI1-F2

Spell Menu (C trl-F 2)
17 C trl-F2
64 C trl-F 2 ,[1 ,2 ,3]

Help Menu (F3)
32802 F3

Switch Menu (S h ift-F3)
31 S h ift-F3

Screen (C trl-F 3)
38 C trl-F3
362 C trl-F3 ,2
365 C trl-F 3 ,2 ,4

Move (C trl-F 4)
30 C trl-F4
23 C lrl-F 4
32 C trl-F 4 ,[1 ,2,3]
112 C trl-F4 ,4

List Files (F5)
389 F5
305 F 5 ,tf /7 a ® y ,E n te r
401 F5,rt'rec/o/y,Enter,5
114 F5,tf//BCto/y,Enter,6
3 3 4 r5 ,t» e c® ry ,E n te r,e
335 F5.rf/rectofy,Enter,6,3
232 F5,cfra ;fo /y ,E nter,9
241 F 5 , rf/recto/y, E n te r, 9,5

Date/Outline (S h itt-F5)
24 S h ift-F5
57 S h lft-F5 ,3
350 S hift-F5,4
79 S h ift-F5 ,6
256 S h itt-F5 ,6 ,9
263 S h ift-F5 ,6 ,9 ,2
339 Shitt-F5 ,6 ,9 ,2 ,3
201 Sh lft-F5 ,6 ,9 ,2 ,4
263 S h ift-F5 ,6 ,9 ,3
339 Sh ift-F5 ,6 ,9 ,3 ,3
201 Sh lft-F5 ,6 ,9 ,3 ,4
370 S h ift-F5 ,6 ,9 ,4
390 S h ift-F5 ,6 ,9 ,6

Mark Text (AI1-F5)
78 AH-F5
2 AU-F5
159 AII-F5.1
154 A lt-F 5 ,1 ,[1 ,3]
244 A lt-F 5 ,1 ,[1 ,3],5
32806 A lt-F5 ,4,Enter
121 A lt-F5 ,5
88 Alt-F5,5,1
89 A lt-F5 ,5 ,1 ,3

word not found

B lock on

B lock on
B lock on or off

no docum ent sum m ary
Document sum m ary

B lock on

B lock on

972 APPENDIX T: MACROS AND MERGE, VALUE TABLES

Value Keystrokes Conditions

85 A lt-F 5 ,5 ,2 ,[1 ,3]
36 Alt-F5 ,5,4,1
176 A lt-F5 ,6

Text In/Out (C trl-F 5)
60 C trl-F5
32840 C trl-F5 B lock on
70 Ctrl-F5,1
249 C trl-F5 ,2
388 C trl-F5 ,3
250 C trl-F5 ,4
259 C trl-F5 ,5
260 C trl-F 5 .5 ,[1 ,2,3)
390 C trl-F 5 ,5,[1,2,31,1
261 C trl-F 5 ,5,[1,2,31,3
314 C trl-F5 .5,4

Center (S h ift-F6)
32817 S h ift-F6 Block o r

Flush Right W t-F 7)
32829 AH-F7 B lock on

Exit (F7)
32806 F7,y Long Docum ent Name=No
65027 F7,y Long Docum ent Name=Yes

Print (S h ift-F7)
74 S h ift-F7
126 S h ift-F 7 runn ing on a network
32818 S hift-F7 B lock on
217 S h ift-F7 ,4
153 S h itt-F7 ,6
76 S h ift-F7 ,s
76 S h ift-F7 ,s ,2
133 S h ilt-F 7 ,s ,2 ,3
47 S h ift-F7 ,s ,2 ,4
134 Shift-F7,s,3

46 S hift-F7 ,s ,3 ,2
21 S h ift-F 7 ,s ,3 ,2 ,[4 ,5 ,6 ,7]
184 S h ift-F7 ,s , 3,2, [4 ,5,6,7],1
191 S h ift-F 7 ,s ,3 ,2 ,[4 ,5 ,6 ,7],2
75 S h ift-F7 ,s ,3 ,3
42 S h ift-F7 ,s ,3 ,4
182 Shift-F7,s,3,4 ,1 curso r on Soft Fonts; soft fonts available
132 S h ift-F7 ,s ,3 ,5
410 Sh ift-F7 ,s ,3 ,7 ,3
252 S h itt-F7 ,u
202 S h ift-F 7 ,g
199 S h ift-F 7 ,t

Columns/Table (AH-F7)
353 AH-F7 curso r not in a table
298 A II-F7 curso r in a table
301 A lt-F 7 ,lns curso r in a table
309 Alt-F7 ,D el curso r in a table
318 A lt-F 7 ,C trl-F 4 curso r in a table
324 A lt-F 7 ,C trl-F 4 ,[1 ,2,3] curso r in a table
16 AH-F7.1 curso r not in a table
325 A!t-F7,1 curso r in a table
33 A II-F 7 .1 ,3 curso r not in a table
255 A II-F 7 ,1,3,1 curso r no t in a table
296 A II-F7 .2 cursor not in a table

APPENDIX T: MACROS AND MERGE, VALUE TABLES 973

Value Keystrokes Conditions

311 A II-F7 .2 curso r in a lable
296 AH-F7.2.1 curso r not in a table
306 AII-F7.2.1 curso r in a table
323 AI1-F7,2,1.1 cursor in a table
351 A lt-F7 ,2 ,1 ,2 curso r in a table
148 A lt-F 7 ,2 ,1 ,2,1 curso r in a table
149 A ll-F 7 ,2 ,1 ,2 ,2 curso r in a table
352 A lt-F7 ,2 ,1 ,3 curso r in a table
308 A lt-F7 ,2 ,1 ,4 curso r in a table
367 A lt-F7 ,2 ,1 ,5 curso r in a table
298 A lt-F7 ,2 ,2 curso r not in a table; a table exists in docum ent
307 A lt-F7 ,2 ,2 cursor in a table
301 A lt-F 7 ,2 ,2 ,lns curso r not in a table; a table exists in docum ent
309 A lt-F7 ,2 ,2 ,D e l curso r not in a table; a table exists in docum ent
318 A lt-F 7 ,2 ,2 .C trl-F 4 curso r not in a table; a table exists in docum ent
324 A lt-F 7 ,2 .2 .C trl-F 4 ,[1 .2.3] curso r no t in a table; a lable exists in docum ent
325 Alt-F7 ,2,2,1 curso r no t in a table; a table ex ists in docum ent
307 Alt-F7,2,2,1 curso r in a table
311 A lt-F 7 ,2 ,2 ,2 curso r not in a table a table exists in docum ent
231 A lt-F 7 ,2 ,2 ,2 curso r in a table
306 Alt-F7 .2,2,2,1 curso r not in a lable; a table exists in docum ent
148 Alt-F7 .2,2,2,1 curso r in a table
323 A lt-F 7 ,2 ,2 ,2,1,1 cu rso r no t in a table: a table ex ists in docum ent
351 A lt-F 7 ,2 ,2 ,2 ,1 ,2 curso r not in a table; a table ex ists in docum ent
148 A lt-F7 ,2,2,2,1 ,2,1 curso r not in a table; a table ex ists in docum ent
149 A lt-F 7 .2 .2 ,2 ,1,2,2 curso r not in a table; a table exists in docum ent
352 A lt-F 7 ,2 ,2 ,2 ,1 ,3 curso r not in a table; a table exists in docum ent
308 A lt-F 7 ,2 .2 .2 1,4 curso r not in a table; a table exists in docum ent
367 A lt-F 7 ,2 ,2 ,2 ,1 ,5 curso r no t in a table; a table exists in docum ent
307 A lt-F 7 ,2 ,2 ,2 ,2 curso r not in a table, a table exists in docum ent
149 A lt-F 7 ,2 ,2 ,2 ,2 curso r in a table
307 A lt-F 7 ,2 ,2 ,2,2,1 curso r not in a table; a table exists in docum ent
231 A lt-F 7 ,2 ,2 ,2 ,2 ,2 curso r not in a table; a table exists in docum ent
148 A lt-F7 ,2,2,2,2 ,2,1 cursor not in a table; a table exists in docum ent
149 Alt-F7,2,2,2,2,2,2 cursor not in a table; a table exists in document
317 A lt-F7 ,2 ,2 ,2 ,2 ,3 curso r not in a table; a table exists in docum ent
312 A lt-F 7 ,2 ,2 ,2 ,3 curso r not in a table, a table exists in docum ent
299 A lt-F7 ,2 ,2 ,3 curso r not in a lable; a table exists in docum ent
317 A lt-F7 ,2 ,2 ,3 curso r in a table
145 A lt-F 7 ,2 ,2 ,3 ,[1 ,2 ,3 ,4 ,5 ,6 ,7] curso r not in a table; a table exists in docum ent
300 A lt-F 7 ,2 ,2 ,3 ,8 cursor no t in a table; a table exists in docum ent
298 A lt-F7 ,2 ,2 ,4 cursor no t in a table; a table exists in docum ent
297 A lt-F7 ,2 ,2 ,5 curso r not in a table; a table exists in docum ent
366 A lt-F 7 ,2 ,2 ,5 ,3 curso r not in a table, a table exists in docum ent;

fo rm u la exists in cell
313 A lt-F7 ,2 ,2 ,6 cursor not in a table; a table exists in docum ent
333 A lt-F 7 ,2 ,2 ,6 ,3 curso r no t in a table; a lable exists in docum ent
298 A lt-F7 ,2 ,2 ,7 cursor no t in a table; a table exists in docum ent
302 A lt-F7 ,2 ,2 ,8 curso r not in a table; a table exists in docum ent
312 A lt-F 7 ,2 ,3 curso r in a table
28 AK-F7.3 curso r not in a table
299 A lt-F7 ,3 curso r in a table
145 A lt-F 7 ,3 ,[1 ,2,3,4,5,6,71 curso r in a table
300 A lt-F 7 ,3 ,8 curso r in a table
298 AI1-F7.4 curso r in a table
297 AK-F7.5 curso r in a table
366 A lt-F 7 ,5 ,3 curso r in a table; fo rm u la ex ists in cell
313 A II-F7 .6 curso r in a table
333 A II-F7 .6 .3 curso r in a table
298 AH-F7.7 cursor in a table
302 A II-F7 .8 curso r in a table

9 7 4 APPENDIX T: MACROS AND MERGE. VALUE TABLES

Value Keystrokes Conditions

Footnote (C trl-F7)
3 C trl-F7
137 Ctrl-F7,1
67 C trl-F7 ,1 ,4
92 C trl-F 7 ,1,4,5
223 C trl-F 7 ,1,4,7
392 C trl-F7 ,2
135 C trl-F7 ,2 ,4
92 C trl-F 7 ,2 ,4 ,5

Format (S h itt-F8)
32819 S h ift-F8 Block on
155 S h ilt-F 8
5 S h llt -F 8 1
331 S hift-F8 ,1 ,3
20 S h itt-F 8 ,1 ,4
122 S h ift-F 8 ,1 ,5 ,y
12 S llift-F 8 ,1 ,8
358 S h ift-F 8 ,1 ,8 ,t
1 S h ift-F8 ,2
156 S h ift-F8 ,2 ,2
6 S h ift-F8 ,2 ,3
240 S h ift-F 8 ,2 ,3 ,[1 ,2 l
117 S h ift-F8 ,2 ,4
240 S h ift-F 8 ,2 ,4 ,[1 ,2]
368 S h ift-F8 ,2 ,6
9 S h ift-F8 ,2 ,6 ,4
328 S h ift-F8 ,2 ,7
229 S h ilt-F 8 ,2 ,7 ,2
230 Shift-F8,2,7,2,Enter,1
229 Shift-F8,2,7,2 ,Enter,2
330 Shift-F8,2,7,2 ,Enter,3
234 Shifl-F8,2,7,2 ,Enter,5
359 Shift-F8,2,7,2 ,Enter,7
356 S h ift-F8,2,7,2 ,Enler,8,y
329 Shift-F8,2,7,2 ,Enter,9
337 Shift-F8.2.7,S form ig n o t [A L L O THERS1

230 S h ift- F8,2,7,5,1 form is not [A LL OTHERS]
229 Shift-F8 ,2 ,7 ,5 ,2 form is not [A LL OTHERS]
330 Shift-F8 ,2 ,7 ,5 ,3 form is not [A LL OTHERS]
234 Shift-F8 ,2 ,7 ,5 ,5 form is not [ALL OTHERS]
359 S h ift-F 8 ,2 ,7 ,5 ,7 form is not [A LL OTHERS]
356 S h ift-F 8 ,2 ,7 ,5 ,8 ,y form is not [A LL OTHERS]
329 S h ift-F 8 ,2 ,7 ,5 ,9 fo rm is not [A LL OTHERS]
326 S h itt-F8 ,2 ,7 ,5 form is [ALL OTHERS]
234 S h ift-F 8 ,2 ,7 ,5 ,3 fo rm is [ALL OTHERS]
329 36111-88,2,7,5,4 form is [ALL OTHERS]
10 S h ift-F8 ,2 ,8
169 S h ift-F8 ,3
132 S h ift-F8 ,3 ,3
11 S h ift-F 8 ,3 ,4
125 S h ift-F8 ,3 ,5
25 S h ift-F8 ,4
150 Shift-F8,4,1
164 S h ift-F 8 ,4 ,5
7 S h ift-F 8 ,4 ,6
84 S h ift-F 8 ,4 ,6 ,2
93 S h ift-F8 ,4 ,6 ,3
151 S h ift-F8,4,6,3 ,Enter
403 S h ift-F 8 ,4 ,8

APPENDIX T: MACROS AND MERGE, VALUE TABLES 9 7 5

Value Keystrokes Conditions

Style (A lt-F8)
59 A lt-F8
387 AII-F8 .3
174 AI1-F8.3.2
201 A II-F8 .3 .5 paired styles on ly
387 AH-F8.4 not outline style
263 AH-F8.4 outlin e style
174 A lt-F 8 ,4 ,2 no t ou tlin e style
339 A lt-F 8 ,4 ,3 outlin e style
201 A lt-F 8 ,4 ,4 outlin e style
201 A lt-F 8 ,4 ,5 not o u tlin e style; paired styles on ly
370 A II-F8 .5

Font (C trl-F 8)
147 C trl-F8
63 C trl-F8 B lock on
148 Ctrl-F8,1 B lock on o r off
149 C lrl-F 8 ,2 Block on or off
132 C trl-F8 ,4
146 C trl-F8 ,5

Merge Codes (S h ift-F9)
340 S h ift-F9
340 S h ift-F9 ,6

Graphics (A II-F9)
136 AI1-F9
393 AH-F9.1
138 AIL-F9.1,1
257 AU -F9.1,1,2
139 AU-F9.1.1.4
140 A lt-F 9 ,1 .1,5 anchor type=Page
152 A II-F 9 ,1,1,5 anchor type=Character
142 A K -F9 .1 .1.6 anchor lyoe=Paraoraoh
141 AH-F9.1,1,6 anchor type=Page
142 A lt-F 9 ,1 ,1,6,1 anchor type=Page
142 AH-F9.1,1,6,2,

n u m b e r o l c o lu m n s ,Enter
210 A H -F9.1,1,7
402 A U -F9.1,1,9 C ontents=G raphics; DrawPerlect on Shell
374 AU-F9.1,1,9 Contents=Equa1ion; DrawPerlect on Shell
373 AH-F9.1,1,9 DrawPerfect not on Shell
225 AI1-F9.1,1 ,9 ,A lt-F9 Contents=Text
399 AH -F9.1,1 ,9.F5 Contents=Equation
399 AH -F9.1,1 ,9 ,S h ift-F3 Contents=Equation equation palette active
374 A II-F 9 .1 ,1 ,9 ,S h ift-F3 Contents=Equation; ed itin g w indo w active
375 A II-F 9 .1 ,1 ,9 ,S h ift-F3 Contents=Equation; d isp lay w indo w active
381 A lt-F9 ,1,1 9,Shitt-F1 C ontenls=Equation
400 A lt-F 9 ,1 ,1 ,9 ,S h itt-F 1 ,2 Contents=Equation
379 A lt-F 9 ,1 ,1 ,9 ,S h ift-F 1 ,3 Contents=Equation
380 AI1-F9.1,1 ,9 ,S h itt-F 1 ,4 Contents=Equation
144 A lt-F9 ,1 ,4
145 AH -F9 ,1,4,1
239 A H -F9 .1 ,4 ,[4 ,5]
183 AU -F9.1,4,7 Contents=Equation
143 A lt-F 9 ,1,4,7 Contents?sEquation
115 A lt-F 9 ,1 ,4 ,7 ,[1 ,2] C o n te n ts rfq u a tio n
394 AH-F9.2
138 Alt-F9 ,2,1
144 A lt-F 9 ,2 ,4
395 AH-F9.3
138 Att-F9,3,1
144 A lt-F 9 ,3 ,4

9 7 6 APPENDIX T: MACROS AND MERGE. VALUE TABLES

Value Keystrokes

396 A lt-F 9 ,4
138 A lt-F9,4,1
144 A lt-F 9 ,4 ,4
227 A lt-F9 ,5
224 A lt-F9,5,1
243 A lt-F 9 ,5,1,1
361 A lt-F9 ,5 ,1 ,2
226 A lt-F 9 ,5 ,1 ,2,2
226 A lt-F 9 ,5 ,2
242 A II-F 9 ,5.2,1
140 A lt-F9 ,5 ,2 ,2
226 A lt-F9 ,5 ,2 ,2 ,5
224 A lt-F9 ,5 ,3
226 A lt-F9 ,5 ,4
397 A lt-F 9 ,6
138 Alt-F9 ,6,1
144 A lt-F 9 ,6 ,4

Merge/Sort (C trl-F9)
62 C trl-F9
390 Ctrl-F9,1
52 C trl-F 9 ,2, file , Enter, file , Enter
61 C trl-F 9 ,2, fife,Enter, ft'fe,Enter,3
109 C trl-F 9 ,2, file , Enter, f ile , Enter, 5
108 C trl-F 9 ,2, l ile , Enter, f ile , Enter, 6
107 C trl-F 9 ,2, file , Enter, file , Enter, 7

Save (F10)
65027 F1
32809 F10

Retrieve (S h ift-F10)
32821 S h ift-F10

Macro (AI1-F10)
32833 A lt-F10

M a c r o D e f i n e < C t r l - F 1 0)

32845 C trl-F10
222 C trl-F10
236 C trl-F10,2

Other Keys
32795 Esc
3284 8 Backspace
32776 Home
32856 C trl-H om e
3284 9 Del
32780 C trl-P gD n
253 C trl-P gU p
32790 C trl-v

Pull-Down Menus
264 M enu Bar (A lt- =)
265 File
273 F ile ,Text In
321 F ile ,Text In,Spreadsheet
272 File,Text O ut
293 File ,P assw ord
377 File.Setup
266 E dit
270 E dit.Append
274 E dit,Select

Conditions

Select active

Long Docum ent Name^Yes
Long Docum ent Name=No

m acro already defined
m acro already defined

repeat value
dele ting code and Reveal Codes oft

de le ting code and Reveal Codes off

m acro d e fin ition or execution active

Block on

APPENDIX T: MACROS AND MERGE. VALUE TABLES 9 7 7

Keystrokes Conditions

322
275
287
277
268
276
378
286
279
280
283
290
376
288
289
285
295
294
271
281
284
282
269
278
267
279
291
292

Value

E d it,C om m ent
E d it,C onvert Case
Search
Search,Extended
Layout
Layout,C o lum ns
Layout,Tables
Layout,M ath
Layout,Footnote
Layout,Endnote
Layoc .Justify
Layout,A lign
Mark
M ark,Cross-Reference
M ark,Table o f A u th orities
M ark,Define
M ark,M aster Docum ents
M ark,Docum ent Compare
Too ls
T o o ls .M acro
T o o ls ,O u tlin e
T o o ls ,M erge Codes
Font
Font,Appearance
G raphics
G raph ics,[F igu re ,T ab le ,Text B ox.U ser Box,E qua tion]
G raph ics.L ine
Help

'The value re lu m ed corresponds to the original key pressed, not to the direction of
the search. For example, i f you press Shift-F2, then press to change the search to
a fo rw a rd search. {S Y S T E M /M en u ' still returns 32813.

By Number
This table lists the menus by menu number (value returned by
(SYSTEM[Menu'). Use this table when you know the value but not the
menu(s) at which that value is returned.

Value Keystrokes Conditions

1 S hilt-F 8 ,2
2 A!t-F5 Block on
3 C trl-F7
5 Shift-F8,1
6 S h ift-F 8 ,2 ,3
7 S h i!t-F8 ,4 ,6
9 S h ift-F8 .2 ,6 ,4
10 S h ifi-F 8 ,2 ,8
11 S h ift-F 1 ,4,8,5

S h ift-F8 ,3 ,4
12 S h ift-F8 .1 .8
16 AH-F7.1 curso r not in a lable
17 C trl-F2
20 S h ift-F 8 ,1 ,4
21 S h ift-F 7 ,s ,3 ,2 ,[4 ,5 ,6 ,7]
23 C trl-F4 Block on
24 S h ift-F5
25 S h ift-F8 ,4
28 AH-F7.3 curso r not in a table
30 C trl-F4
31 S h ift F3 Block on

9 7 8 APPENDIX T: MACROS AND MERGE, VALUE TABLES

Value Keystrokes Conditions

32 C tr l-F 4 ,[1 ,2,3] B lock on or off
33 A H -F7 .1 ,3 curso r not in a table
36 A lt-F 5 ,5,4,1
38 C trl-F3
42 S h ift-F7 .s .3 ,4
44 S h ift-F 1 ,3,2
45 S h ift -F l ,4

S h ift-F1 ,4 ,2
46 S h ift-F7,s,3,2
47 S h ift-F7 ,s ,2 ,4
49 F1
52 Ctrl-F9,2,//7e.Enter,ffle, Enter
55 S h ift-F 1 ,3,8
56 S h ift -F l .6
57 S h ift-F 5 ,3
59 AIFF8
60 C trl-F5
61 C trl - F9,2 ,7/te, En te r, 7/'/e, E n te r,3
62 C trl-F9
63 Ctrl-FS B lock on
64 C trl-F 2 ,[1 ,2 ,3] w ord not found
67 C trl-F7 ,1 ,4
68 S h ift-F 1 ,3,1
70 Ctrl-F5,1
74 S h ift-F7
75 S h ift-F7 ,s ,3 ,3
76 S h ift-F7 ,s

S h ift-F 7 ,s ,2
78 AH-F5
79 S hift-F 5 ,6
84 S h ift-F8 ,4 ,6 ,2
85 A lt-F 5 ,5 ,2 ,[1 ,3]
88 Alt-F5 ,5,1
89 A lt-F5 ,5 ,1 ,3
92 C trl-F 7 ,[1 ,2],4 ,5
93 S h ift-F8 ,4 ,6 ,3
101 S h ift-F 1 ,3,7
102 C tr l-F l under Shell
103 C tr l-F l not under Shell
105 S h ift -F l ,4,8
107 C trl-F9,2,ffle,Enter,///e,Enter,7
108 Ctrl-F9,2,ffle,Enter,///e,Enler,6
109 C trl-F9 ,2 , A7e,Enter,/ra(Biter,5 Select active
110 AI1-F1 w ord found
112 C trl-F4 ,4
114 F 5 ,d ire c to ry ,E n te r ,6 no docum ent sum m ary
115 A lt-F 9 ,1 .4,7,11,2] C onten ts^E quation
117 S h ift-F 8 ,2 ,4
121 A lt-F5 ,5
122 S h ift-F 8 ,1 ,5 ,y
125 S h ift-F8 ,3 ,5
126 S h ift-F7 runn ing on a network
132 C trl-F8 ,4

S h ift-F7 ,s ,3 ,5
S h ift-F8 ,3 ,3

133 S h ift-F7 ,s ,2 ,3
134 S h itt-F7,s,3
135 C trl-F 7 ,2 ,4
136 A lt-F 9
137 Ctrl-E7,1
138 A IF E 9 ,[1 ,2 ,3,4,6],1
139 A lt-F 9 .1 ,1,4

APPENDIX T; MACROS AND MERGE, VALUE TABLES 9 7 9

Value Keystrokes Conditions

140 AI1-F9,1,1,5
A lt-F9 ,5 ,2 ,2

anchor type^Page

141 A lt-F 9 ,1 ,1 ,6 anchor type=Psge
142 AI1-F9.1,1,6 anchor type^Paragraph

A lt-F 9 ,1 ,1,6,1 anchor type=Page
A lt-F 9 ,1 ,1 ,6 ,2 ,n « m to '

o f c o lu m n s ,Enter
anchor type=Page

143 A II-F 9 ,1,4,7 C o n te n ts rfq u a tio n
144 A lt-F 9 ,[1 ,2,3,4,61,4
145 A lt-F 7 ,2,2,3 ,[1 ,2,3,4.5,6.71 curso r not in a table; a table exists in docum ent

A lt-F 7 ,3 ,[1 .2,3,4,5,6,71
A II-F 9 ,1,4,1

curso r in a table

146 C trl-F8 ,5
147 C trl-F8
148 A lt-F 7 ,2 , [1,2],2 ,1 cu rso r in a table

A lt-F 7 ,2 ,2 ,2 .[1 ,2],2 ,1 curso r not in a table; a table exists in docum ent
C trl-F8,1 B lock on or off

149 A lt-F 7 ,2 ,[1 ,21,2,2 curso r in a table
A lt-F 7 ,2 ,2 ,2 ,[1 ,2 l,2 ,2 curso r not in a table; a table exists in docum ent
C trl-F8 ,2 B lock on o r off

150 Shift-F8,4,1
151 S h ift-F8.4.6,3 ,Enter
152 A lt-F9 ,1 ,1 ,5 anchor type=Character
153 S hift-F7,6
154 A lt-F5 ,1 ,[1 ,3]
155 Shift-F8
156 S h ift-F8 ,2 ,2
159 AII-F5.1
164 S h ift-F8 ,4 ,5
169 S h ift-F8,3
174 A lt-F8 ,3 ,2

A lt-F 8 .4 ,2 not ou tlin e style
176 A lt-F 5 ,6
177 Shift-F1
181 Shift-F1,3,3

182 Shift-F7,s,3,4 .1 curso r on S o il Fonts; soft fonts available
183 A lt-F 9 ,1,4,7 Contents=Equation
184 S hift-F7 ,s ,3 ,2 ,[4 ,5 ,6 ,7],1
190 S h ift-F 1 .2,1
191 S h ift-F 7 ,s ,3 ,2 ,[4 ,5 ,6 ,7 l,2
199 Sni1t-F1,4,8,4

S h ift-F7 ,t
201 A lt-F 8 ,3 ,5 t paired styles only

AI1-F8.4.4 outlin e style
A lt-F8 ,4 ,5
S h ift-F 5 ,6 ,9 ,[2 ,3),4

not ou tline style; paired styles on ly

202 S h ift-F 1 ,4,8,3
S h ift-F7 ,g

208 S h ift-F1 ,5
209 S h ift-F 1 ,5,7
210 A lt-F 9 ,1 .1,7
217 S h ift-F7 ,4
220 S h ift-F 1 ,4.7
221 S h ift-F1 ,2

S h ift-F 1 ,2 ,[2 ,3 l
222 C trl-F10 macro a lready defined
223 C lr l-F 7 ,1,4,7
224 Alt-F9 ,5,1

A lt-F 9 ,5 ,3
225 A lt-F 9 ,1 ,1 ,9 ,A lt-F 9 Contents=Text
226 A lt-F 9 ,5 ,1 ,2,2

A lt-F 9 ,5 ,[2 ,4]
A lt-F 9 ,5 ,2 ,2 ,5

9 8 0 APPENDIX T: MACROS AND MERGE, VALUE TABLES

Value Keystrokes

227 A lt-F 9 ,5
229 S h ift-F8 ,2 ,7 ,2

Shift-F8,2.7,2 ,Enter,2
Sh ift-F8 ,2 ,7 ,5 ,2

230 SI1I1LF8,2 ,7 .2 ,Enter,1
Shlft-F8,2,7,5 ,1

231 A lt-F7 ,2 ,2 ,2
A lt-F 7 ,2 ,2 ,2 ,2 ,2

232 F 5 , fc to /y ,E n te r ,9
234 Shift-F8,2,7,2 ,Enter,5

S h ift-F8 ,2 ,7 ,5 ,3
Shift-F8 ,2 ,7 ,5 ,5

235 S h ift-F 1 ,5,7.1
S h ift-F 1 ,5.8.2

236 C trl-F10,2
239 A lt-F 9 ,1 ,4 ,[4 ,5]
240 S h ift-F 8 ,2 ,[3 ,4],[1 ,2]
241 F 5 ,rfe c to ry ,E n te r.9 ,5
242 AH-F9,5,2,1
243 A lt-F 9 ,5,1,1
244 A lt-F 5 ,1 ,[1 ,3],5
249 C trl-F5 ,2
250 CtrHF5,4
252 S h ift-F1,4,8,2 ,E nter

S h ift-F7 ,u
253 CtrHPgUp
255 A lt-F 7 ,1,3,1
256 S h ift-F5 ,6 ,9
257 A lt-F 9 ,1 ,1,2
259 C trl-F 5 ,5
260 C tri-F 5 ,5 ,[1 ,2,3]
261 C trl-F 5 ,5 ,[1 .2 ,3],3
263 A lt-F 8 ,4
263 S h ift-F 5 ,6 ,9 ,[2 ,3]
264 (p u ll-d o w n) M enu Bar (A lt - -)
265 (p u ll-d o w n) F ile
266 (p u ll-d o w n) E dit
2G7 (p u ll-d o w n) G raphics

268 (p u ll-d o w n) Layout
269 (p u ll-d o w n) Font
270 (p u ll-d o w n) E dit,Append
271 (p u ll-d o w n) T oo ls
272 (p u ll-d o w n) Fiie.Text O ut
273 (p u ll-d o w n) F iie.Text In
274 (p u ll-d o w n) Ed it.S e lect
275 (p u ll-d o w n) E d it.C onvert Case
276 (p u ll-d o w n) Layout,C o lum ns
277 (p u ll-d o w n) Search,Extended
278 (p u ll-d o w n) Font,Appearance
279 (p u ll-d o w n) G raph ic :' [E quation ,F igure ,

Table ,Text B ox,U ser Box]
279 (p u ll-d o w n) Layout.Footnote
280 (p u ll-d o w n) Layout,Endnote
281 (p u ll-d o w n) T o o ls ,M a c ro
282 (p u ll-d o w n) Too ls ,M erge Codes
283 (p u ll-d o w n) Layo ut,Justify
284 (p u ll-d o w n) T o o ls ,O u tline
285 (p u ll-d o w n) M ark,Define
286 (p u ll-d o w n) Layout.M ath
287 (p u ll-d o w n) Search
288 (p u ll-d o w n) M ark,Cross-Reference
289 (p u ll-d o w n) M ark,Table n f A u th o rities
290 (p u ll-d o w n) Layout,A lign

fo rm is not [ALL OTHERS]

form is not [ALL OTHERS)
cursor in a table
cu rso r not in a table; a table ex ists in docum ent

form is [A LL OTHERS]
form is not [ALL OTHERS]

macro already defined

Conditions

macro de fin ition or execution active
curso r not in a table

outlin e style

B lock on

APPENDIX T: MACROS AND MERGE, VALUE TABLES 981

Value Keystrokes Conditions

291 (p u ll-d o w n) G raphics.L ine
292 (p u ll-d o w n) Help
293 (p u ll-d o w n) File.Password
294 (p u ll-d o w n) M ark,Docum ent Compare
295 (p u ll-d o w n) M ark,M aster Docum ents
296 A lt-F7 .2
296 A lt-F7.2.1
297 A lt-F7 ,2 ,2 ,5

A lt-F7 ,5
298 A lt-F7

A lt-F7 ,2 ,2
A lt-F 7 ,2 ,2 ,[4 ,7]
A lt-F 7 ,[4 ,7]

299 A lt-F 7 ,2,2.3
A lt-F7 ,3

300 A lt-F 7 ,2 ,2 ,3 ,8
A lt-F 7 ,3 ,8

301 A lt-F 7 ,2 ,2 ,lns
A lt-F 7 ,lns

302 A lt-F7 .2 .2 ,8
AK-F7.8

303 S h ift-F I .5 ,8
305 F 5, o'/recToxy, Enter
306 AI1-F7.2.1

A lt-F7 ,2,2,2,1
307 A lt-F 7 ,2 ,2

Alt-F7,2,2,1
A lt-F7 ,2 ,2 ,2 ,2
A lt-F7 ,2,2,2,2 ,1

308 A lt-F7 ,2 ,1 ,4
A lt-F 7 ,2 ,2 ,2 ,1,4

309 A lt-F7 ,2,2,D el
A lt-F7 .D el

311 A ILF 7.2
A lt F7,2,2,2

312 A lt-F7 ,2 ,2 ,2 ,3
A lt-F7 ,2 ,3

313 A lt-F7 ,2 ,2 ,6
AI1-F7.6

314 C trl-F5 ,5 ,4
317 A lt-F7 ,2 ,2 .2 ,2 ,3

A lt-F7 ,2 ,2 ,3
318 A lt-F 7 ,2 ,2 ,C trl-F 4

A lt-F 7 ,C trl-F 4
321 (p u ll-d o w n) F ile ,Text In,Spreadsheet
322 (p u ll-d o w n) Edit,C om m ent
323 A !t-F 7 .2 ,1 ,l

A lt-F7 ,2,2,2,1 ,1
324 A lt-F 7 ,2 ,2 ,C trl-F 4 ,[1 ,2 ,3]

A lt-F 7 .C trl-F 4 ,[1 ,2 ,3]
325 AI1-F7.1

A lt-F7 ,2,2,1
326 S h ift-F8 .2 ,7 ,5
327 S h ift-F8 ,2 ,7 ,5
328 S h ift-F8 ,2 ,7
329 Shilt-F8,2,7,2 ,Enter,9

Shift-F8 ,2 ,7 ,5 ,4
S h ift-F 8 ,2 ,7 ,5 ,9

330 Shift-F8,2,7,2 ,Enter,3
Shift-F8 ,2 ,7 ,5 ,3

331 S h ift-F8 ,1 ,3
333 A lt-F7 ,2 ,2 ,6 ,3

A lt-F7 ,6 ,3

9 8 2 APPENDIX T: MACROS AND MERGE, VALUE TABLES

curso r not in a table
curso r not in a table
curso r not in a table; a table exists in docum ent
curso r in a table
cu rso r in a table
curso r not in a table; a table exists in docum ent
curso r not in a table; a table exists in docum ent
curso r in a table
cu rso r not in a table; a table exists in docum ent
curso r in a table
curso r not in a table; a table exists in docum ent
curso r in a table
curso r not in a table; a table exists in docum ent
cursor in a table
cursor not in a table; a table exists in docum ent
curso r in a table

cursor in a table
cursor not in a table; a table exists in docum ent
curso r in a table
curso r in a table
cursor not in a table; a table exists in docum ent
cursor not in a table; a table exists in docum ent
curso r in a table
curso r not in a table; a table exists in docum ent
curso r not in a table; a table exists in docum ent
curso r in a table
curso r in a table
cursor not in a tatrle; a table exists iri Uocument

curso r no t in a table; a table exists in docum ent
curso r in a table
curso r not in a table; a table exists in docum ent
curso r in a table

cursor not in a table; a table exists in docum ent
cursor in a table
curso r not in a table; a table exists in docum ent
curso r in a table

cursor in a table
curso r not in a table; a table exists in docum ent
curso r not in a table; a table exists in docum ent
cursor in a table
cursor in a table
curso r not in a table; a table exists in docum ent
form is [ALL OTHERS]
form is not [A LL OTHERS]

form is [A LL OTHERS]
form is not [A LL OTHERS]

form is not [A LL OTHERS]

curso r not in a table; a table exists in docum ent
cursor in a table

Value Keystrokes Conditions

334 F5,d/recto/y,Enter,6 docum ent sum m ary
335 F5.d /recffl/y.Enter,6,3
339 A lt F8,4,3

S h ift-F 5 .6 .9 .[2 .3],3
outlin e style

340 S h ift-F9
Shi1t-F9,6

341 S h ift-F 1 ,2.4
Shi1 t-F1,2,4 l [1 l2 l3 ,5 l6] l [1 ,2]

342 S h ift-F 1 ,2,5
343 S h ift -F I.2 ,6
344 ShifLF1,4,1
345 S h ift-F 1 .4,3
346 Shift-F1,1
347 S h ift-F 1 ,3
348 S h ift-F 1 ,3,4
349 S h ift -F I ,3 ,6
350 S h ift-F5 ,4
351 A lt-F7 ,2 ,1 ,2 cu rso r in a table

A ILF 7,2 ,2 ,2 ,1 ,2 cursor not in a table; a table exists in docum ent
352 A lt-F7 ,2 ,1 ,3 curso r in a table

A lt-F 7 ,2 ,2 ,2 ,1 ,3 curso r not in a table; a table exists in docum ent
353 AI1-F7 curso r not in a table
356 S hift-F8,2,7,2 ,Enter,8,y

S h ift-F 8 ,2 ,7 ,5 ,8 ,y fo rm is not [ALL OTHERS]
358 S h ift-F 8 ,1 ,8 ,t
359 Shift-F8,2,7,2 ,Enter,7

S h ift-F 8 ,2 ,7 ,5 ,7 form is not [ALL OTHERS]
361 A lt-F 9 ,5 ,1 ,2
362 C trl-F3 ,2
3 6 3 S hift-F1 ,1 ,2
365 C trl-F 3 ,2 ,4
366 A lt -F 7 2 ,2 ,5 -3 cursor not in a table; a table exists in docum ent; fo rm u la

exists in cell
366 A l (B | l3 curso r in a table; fo rm u la exists in cell
367 A lt-F 7 ,2 ,1 ,5 curso r in a table

A lt-F7 ,2 ,2 ,2 ,1 ,5 curso r not in a table; a table exists in docum ent
368 S h ift-F8 ,2 ,6
3 6 9 S hift-F1 ,4 ,8 ,2 ,E n te r n e tw o rk

370 AH-F8.5
S h ift-F 5 ,6 ,9 ,4

373 A lt-F 9 ,1 ,1,9 DrawPerfect not on Shell
374 A lt-F 9 ,1 ,1,9 Contents=Equation; DrawPerfect on Shell

A lt-F 9 ,1 ,1 ,9,Sh ift-F3 Contents=Equation; ed itin g w indo w active
375 A lt-F 9 ,1 .1 ,9 ,S h ift-F 3 Contents=Equation, d isp lay w indo w active
376 (p u ll-d o w n) Mark
377 (p u ll-d o w n) File,Setup
378 (p u ll-d o w n) Layout.Tables
379 A lt-F 9 ,1 ,1 ,9 ,S h ift-F 1 .3

S h ilt-F 1 ,4,3,3
Contents=Equation

380 A lt-F 9 ,1 ,1 ,9 ,S h ift-F 1 ,4
S h ift-F 1 ,4,3,4

Contents=Equation

381 A lt-F9 ,1 ,1 ,9 ,S h ift-F1 Contents=Equation
387 AU-F8.3

A lt-F8 ,4 no l ou tlin e style
388 C trl-F5 ,3
389 F5
390 C trl-F 5 ,5,[1,2,31,1

C trl-F9,1
S h ift-F5 ,6 ,9 ,6

392 C trl-F7 ,2
393 Alt-F9 ,1
3 9 4 A H -F 9 .2

395 A lt-F 9 ,3

APPENDIX T: MACROS AND MERGE, VALUE TABLES 9 8 3

Value Keystrokes Conditions

396 AII-F9 .4
397 A ILF 9 .6
399 A lt-F9 ,1 .1 ,9 .F 5 Contents=Equation

A lt-F9 ,1 ,1 ,9 ,S h ift-F 3 Contents=Equatlon; equation palette active
400 A lt-F9 ,1,1,9,S hi1t-F1,2

S h ift-F 1 ,4,3,2
Shift-F1 ,4 ,3 ,2 ,2

Contents=Equation

401 F5, tf/recto/y, Enter,5
402 AI1-F9,1,1.9 Contents=G raphics; DrawPerfect on Shell
403 S h ift-F8 ,4 ,8
410 S h ift-F7 ,s ,3 ,7 ,3
32776 Home

Home,F2
32780 C trl-PgD n
32790 C trl-v
32795 Esc repeat value
32801 F21
32802 F3
32806 Alt-F5 ,4,Enter Block on

F7,y Long D ocum ent Nam e^No
32809 F10 Long D ocum ent Name=No
32813 S h ift-F 2 '
32817 Shift-F6 Block on
32818 Shift-F7 Block on
32819 S hift-F8 B lock on
32821 S hift-F10
3 2 8 2 4 Alt-F1 word not found
32825 A lt-F2
32829 A II-F7 B lock on
32833 AII-F10
32840 C trl-F 5 Block on
32845 C trl-F10
32848 Backspace deleting code and Reveal Codes off
32849 Del deleting code and Reveal Codes off
3 2 0 5 6 C trl-H o m e
65027 F10 Long D ocum ent Name=Yes
65027 F7,y Long D ocum ent Name^Yes

'T h e v a lu e r e tu r n e d c o r r e s p o n d s to th e o r ig in a l k e y p r e s s e d , n o t to th e d ir e c t io n
th e se a rc h . F o r e x a m p le , i f y o u p r e s s S h if t-F 2 , th e n p r e s s l to c h a n g e th e se a r c h to
a fo r w a r d se a rc h , {S Y S T E M } M e n u ~ s t i l l r e tu r n s 3 2 8 1 3 .

9 8 4 APPENDIX T: MACROS AND MERGE, VALUE TABLES

