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Abstract

The CHIPS and Science Act, enacted in August 2022, is a key element of the revival of U.S. industrial

policy. We examine the short-term employment effects of the act. Drawing on quarterly industry-by-

county data from the Quarterly Census of Employment and Wages (QCEW), we implement two county-

level difference-in-difference designs, the first comparing counties with pre-existing semiconductor fa-

cilities to other counties with high-tech industries and the second comparing counties with semicon-

ductor fabrication facilities (which were targeted for the bulk of the CHIPS funding) to counties with

non-fabrication semiconductor facilities. Using both approaches, we find robust, positive employment

impacts in affected counties. The effects began at the time of the passage in the Senate of a precursor

bill, in anticipation of the signing of the CHIPS Act. Our preferred estimates suggest an increase of 110

jobs per affected county in the first design and 180 jobs per affected county in the second design. We

also find robust positive impacts on local construction employment. Evidence on total employment and

GDP at the county level, as well as on employment in upstream input sectors, is mixed. Simple back-

of-the-envelope calculations (which come with caveats) suggest national direct employment effects of

approximately 15,000-16,000 jobs in the core semiconductor sector and indirect effects of 28,000-35,000

jobs in related sectors.

JEL Codes: E24, H25, O25

Keywords: Industrial policy, semiconductor industry, CHIPS Act

*This paper has been prepared for the Fall 2025 Brookings Papers on Economic Activity. We are grateful to Taha Barwahwala,
Victor Ortega and Max Saenz for excellent research assistance; to Greg LaRocca of the Semiconductor Industry Association for
sharing data; to Hassan Khan and Franklin Keller helpful conversations; and to our discussants (Gabriel Chodorow-Reich and Penny
Goldberg) and the editors (Janice Eberly and Jón Steinsson) for thoughtful comments that have greatly improved the paper. We
thank the Alfred P. Sloan Foundation (grant no. G-2023-21088) and Center for Political Economy Firms and Industrial Policy Idea
Lab at Columbia University for funding. All errors are our own.

†Northeastern University, b.erten@northeastern.edu.
‡Columbia University, jes322@columbia.edu.
§Columbia University, eric.verhoogen@columbia.edu.



1 Introduction

Under the Biden administration, industrial policy underwent a revival in the United States. One

of the key elements was the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and

Science Act, passed in August 2022, through which the federal government committed tens of

billions of dollars to revitalize the domestic semiconductor industry. A main selling point of the

act — and, arguably, a key basis of its political viability — was that it would create jobs. Has

it? How many? In this paper, we provide some of the first empirical evidence on the short-term

labor-market impacts of the CHIPS Act.

Data constraints are a key challenge: micro-data on individual firms or plants are not yet avail-

able for years following the Act’s passage. Our approach is to focus on outcomes at the county

level, using the Quarterly Census of Employment and Wages (QCEW), and to implement two

difference-in-difference designs. In the first, we compare counties with pre-existing semicon-

ductor production facilities (which we refer to as “semiconductor counties”) to counties with pre-

existing high-tech employment but no semiconductor producers (“high-tech non-semiconductor

counties,” or “non-semiconductor” counties for short). In the second, we compare counties with

a pre-existing semiconductor fabrication facility (“fab counties”) to counties with semiconductor

facilities but no fabrication facility (“fabless counties”).

From these county-level difference-in-differences, we are able to draw three conclusions about

the short-term consequences of the Act. First, there were significant anticipation effects. The em-

ployment response appears to have begun with the introduction of a precursor act, the United

States Innovation and Competition Act (USICA), which passed in the Senate in June 2021. It ap-

pears that the industry concluded quickly that final passage of a semiconductor-support law was

likely and began making employment decisions accordingly. This finding is consistent with pre-

vious work on anticipatory responses to increases in U.S. defense spending (Ramey, 2011b).

Second, we find significant short-term impacts of the Act on semiconductor employment.

Our preferred estimates using the semiconductor vs. non-semiconductor county design indicate

direct impacts of 110 jobs in the core semiconductor per affected county (for the 149 semicon-

ductor countries). This represents an increase of 12.7% on average for these counties (relative

to pre-USICA means). Our preferred estimates using the fab vs. fabless county design indicate
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impacts of 180 jobs per affected county (for the 83 fab counties) — an 11.8% increase on average

for these counties.

Third, we find robust evidence of spillover effects on non-residential construction employ-

ment in affected counties. Our preferred estimates for the two designs suggest that the act gen-

erated 136 and 203 construction jobs per affected county, respectively. We also investigate the

impacts of the Act on wages in semiconductors, on employment in upstream input sectors, and

on total employment and GDP at the county level. Although the estimates for these outcomes are

mostly positive, they are generally not statistically significantly different from zero.

It is important to note that our difference-in-difference approach estimates the relative im-

pact on counties with pre-existing semiconductor employment compared to counties with high-

tech employment but no pre-existing semiconductor presence. Any impact that is common

across both treated and control counties is absorbed in the intercept term in our regressions and

is not reflected in the difference-in-difference estimate — an issue often referred to as the “miss-

ing intercept” problem. There is little consensus in the academic literature about how to deal

with this issue; the most common approach is to structurally estimate a fully specified macroe-

conomic model, which is beyond the scope of the current paper. But below we argue, drawing

on insights from Chodorow-Reich (2020), that in our setting the spillovers to other counties and

to the macroeconomy as a whole are likely to be small and that the aggregate impacts of the Act

are reasonably well approximated by simply scaling up the per-county effects. Multiplying the

estimates mentioned above by the number of affected counties in each design, we arrive at di-

rect employment effects of approximately 15,000-16,000 in the core semiconductor sector and

indirect effects of approximately 28,000-35,000 in related sectors.

A natural question in this context is whether the employment impacts that we estimate should

be considered large or small. On the one hand, given the amounts of money slated to be spent

under the Act ($52.7 billion appropriated), the employment effects seem modest.1 On the other

hand, given the highly capital-intensive nature of semiconductor production — it is among the

most capital-intensive in U.S. manufacturing — one would not have expected enormous employ-

ment effects. It is also worth emphasizing that generating employment was just one of several

justifications offered for the Act, along with boosting supply chain resilience and strengthening

1Our direct estimate of 15,000-16,000 jobs is below the May 2021 forecast of 42,000 new jobs in the industry by the
main industry association (Semiconductor Industry Association and Oxford Economics, 2021).
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national security, and many policy-makers viewed the latter justifications as primary. From this

perspective, the employment gains seem larger than many expected.

Another question one might reasonably ask is: if the key goal was to foster a resilient semi-

conductor supply chain within the U.S., why focus just on employment impacts? One answer

is simply that employment data become available more quickly than the data that would be re-

quired to characterize the full supply-chain impacts of the Act. But beyond that simple answer,

we would emphasize that employment impacts are an important input into any calculation of

the net cost of resilience. Increases in employment generate additional tax revenue, reducing

the net fiscal cost of the policy. They also reduce public spending on unemployment benefits,

further mitigating the burden on government budgets. To the extent that they generate learning-

by-doing or other forms of productivity gains, those gains should also be included in a net cost

of resilience calculation. For all of these reasons, we view rigorous estimates of the employment

impacts of the Act as a crucial first step in evaluating the success of the policy.

Our analysis also raises the question of whether the CHIPS Act was designed in the best way

to achieve its various objectives. The design issues are complex, and the policy process is subject

to many constraints. Below we raise several conceptual issues that we see as salient, with a view

toward improving the design of similar interventions in the future.

Our paper contributes to several strands of literature. First, it adds to a small but growing lit-

erature using quasi-experimental approaches to evaluate industrial-policy interventions, which

includes Kline and Moretti (2014), Criscuolo, Martin, Overman, and Van Reenen (2019), Freed-

man, Khanna, and Neumark (2023), and Lane (2025). Juhász, Lane, and Rodrik (2023) provide a

recent review.2 Second, it relates to the expanding body of empirical research on the semiconduc-

tor industry, a sector that is widely regarded as strategic (Flamm, 2019; Goldberg, Juhász, Lane,

Lo Forte, and Thurk, 2024; Thurk, 2022; Miao, 2024). We are not aware of other academic studies

on the regional or employment impacts of the CHIPS Act.3 Finally, our findings intersect with

the broader literature on the local effects of government spending and fiscal multipliers (Ramey,

2011a,b, 2019; Nakamura and Steinsson, 2014; Ramey and Zubairy, 2018; Chodorow-Reich, 2019,

2020; Wolf, 2023). Much of that literature has focused on the effects of defense spending. One

2On the theoretical justification for industrial-policy interventions, see e.g., Eaton and Grossman (1986), Harrison
and Rodríguez-Clare (2010), Stiglitz and Greenwald (2014), and Liu (2019).

3The closest work we are aware of is a lengthy blog post by Politano (2024).
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contribution of the current study is to show that a sector-focused industrial policy can also boost

employment in the targeted industry.

The next section provides background on the CHIPS Act and broad trends. Section 3 describes

the data used in the analysis. Section 4 presents our empirical strategy. Section 5 presents the

results, both the “direct” results on the semiconductor sector and “indirect” spillover results in

related sectors and county-level aggregates. Section 6 discusses how to aggregate the county-

level estimates to an overall, national effect. Section 7 discusses conceptual issues in the design

of industrial policies raised by our analysis and Section 8 concludes.

2 Background

2.1 Legislative History

The CHIPS Act had several precursors. The Endless Frontiers Act, a bicameral bill introduced in

May 2020 (S. 3832/H.R. 6978), sought to boost investment in high-tech research. In June 2020,

Senators Warner and Cornyn introduced the CHIPS for America Act (S. 3933), which proposed

$52 billion in direct support for semiconductor investment and manufacturing. These bills were

combined into the United States Innovation and Competition Act (USICA), which was introduced

by Senator Schumer on May 18, 2021 and passed the Senate by a vote of 68-32 on June 8, 2021.

The House version of the Bill, the America COMPETES Act (H.R. 4521), passed on Feb. 4, 2022.

The final, amended legislation, named the CHIPS and Science Act, passed the Senate and House

on July 27-28, 2022 (by votes of 64-33 and 243-187-1, respectively), and was signed into law by

President Biden on August 9, 2022.

From the earliest stages, the Act had bipartisan support. Nineteen Republicans, including Mi-

nority Leader Mitch McConnell, voted for USICA in the Senate. The New York Times article on

the bill the day after passage described the vote as “lopsided” and “overwhelming” (Edmondson,

2021). One reason was that the Covid-19 pandemic, and related chip shortages, had raised aware-

ness of the need to bolster supply-chain resilience. Another was that both main parties shared

concerns regarding Chinese competition in the industry. Press accounts suggested that the bi-

partisan support for USICA led many observers to have high expectations that a semiconductor-

support bill would be passed in some form.
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The passage of the CHIPS Act was nearly contemporaneous with the passage of the much

larger and more sprawling Inflation Reduction Act (IRA), which aimed to promote investment

in clean energy and green technologies and was signed on Aug. 21, 2022. In addition, the $1.2

trillion Infrastructure Investment and Jobs Act (IIJA), also known as the Bipartisan Infrastructure

Law (BIL), was signed on Nov. 21, 2021. Distinguishing the employment effects of CHIPS from

the effects of these other large spending commitments requires some care; we will return to this

issue below.

2.2 Details of CHIPS Act

The CHIPS Act allocated funding for a range of semiconductor-related initiatives, building on

authorizations provided by the National Defense Authorization Act (NDAA) of 2021, with appro-

priations detailed in Appendix Table A1. The bulk of the funding, $50 billion, has been channeled

through the Department of Commerce, including $39 billion in incentives to support the financ-

ing, expansion, and modernization of semiconductor manufacturing facilities, and $11 billion

for R&D through programs and institutes such as the National Semiconductor Technology Cen-

ter (NSTC) and the National Institute of Standards and Technology (NIST). In addition, the Act

granted the Department of Commerce up to $75 billion in loan authority. An additional $2 billion

was allocated to the Department of Defense to establish a Microelectronics Commons, aimed at

advancing microelectronics innovation and leadership in the United States (Blevins, Sutter, and

Grossman, 2023).

Funding under the CHIPS Act is provided through grants, loans, loan guarantees, and tax cred-

its, with disbursements tied to recipients’ completion of specific project milestones (NIST, 2023;

Department of Commerce Office of Inspector General, 2025). Funding recipients are prohibited

from engaging in certain transactions with “foreign countries or entities of concern,” notably the

Chinese government, for 10 years following an award. To date, the Department of Commerce’s

National Institute of Standards and Technology (NIST) has issued eight Notices of Funding Op-

portunities (NOFOs) across its CHIPS programs, awarding $33.7 billion in direct funding and

$5.5 billion in loans through the CHIPS Program Office (CPO) and nearly $8.3 billion through

the CHIPS Research and Development Office (CRDO).
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The largest NOFO by total award size, the Commercial Fabrication Facilities NOFO, was issued

on February 28, 2023, to support the construction, expansion, and modernization of facilities

for semiconductor fabrication, wafer manufacturing, and materials production. By the June 18,

2024, application deadline, the CPO received 692 statements of intent, 167 pre-applications, and

92 full applications. The CHIPS Program Office required applicants to demonstrate support from

state and local governments, which proved to be a binding constraint for some applicants (Keller,

2025). As of January 31, 2025, the CPO had made 19 awards under this NOFO, totaling $30.7

billion in direct funding and $5.5 billion in loans. The first major awards were finalized in Nov.

2024. Notable awards include $7.9 billion in direct funding to Intel for facility construction and

modernization in Arizona, Oregon, and Ohio (the largest direct funding award), and $6.6 billion

in direct funding plus $5 billion in loans to Taiwan Semiconductor Manufacturing Corporation

(TSMC) for the construction of three advanced chip fabrication facilities in Arizona (the largest

combined federal investment). Other recipients of awards exceeding $1 billion include Micron,

Samsung, Texas Instruments, and GlobalFoundries.

The CHIPS Act also envisioned support for the manufacturing of semiconductor equipment

and materials used in semiconductor production. A NOFO covering these activities was issued

on Sept. 29, 2023, and applications were accepted through July 1, 2024. To date, there have been

no awards finalized under this NOFO and the status of the submitted applications is unclear.

The other six NOFOs issued to date cover various aspects of research and development (R&D)

activities. The status of individual NOFOs is detailed in Appendix Table A2.

The Act also included the Advanced Manufacturing Investment Credit (AMIC), administered

by the IRS, a tax credit equal to 25% of qualified investments in facilities primarily engaged in the

production of semiconductors or semiconductor equipment. The credit applies to projects that

begin construction between January 1, 2023, and December 31, 2026, regardless of whether the

project receives CHIPS award funding. President Trump’s so-called “One Big Beautiful Bill Act,”

passed on July 4, 2025, increased the AMIC rate from 25% to 35%, effective December 31, 2025.4

While the main motivations for the CHIPS Act regarded security and supply chain resilience,

various employment-related requirements were included and were widely seen as important to

the passage of the legislation. Applicants for CHIPS awards have to meet certain worker and

community investment guidelines, which include paying prevailing wage rates to workers and

4For details, see https://www.congress.gov/bill/119th-congress/house-bill/1/text
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working with regional entities to provide workforce training. These have operationalized in a few

ways; one is a requirement that the state and local jurisdictions where the project was located

provide incentives, which were considered a signal of local buy-in. Similarly, almost all fund-

ing has come with requirements for programs to reach economically disadvantaged individuals

through workforce development and regional partnerships (NIST, 2023). For example, many of

the workforce training programs have been encouraged to provide some form of childcare and

projects that have applied for more than $150 million in direct funding have had to have a plan to

provide facility and construction workers with access to child care. This requirement has arguably

lowered barriers for women entering the workforce.5 Other requirements of workforce develop-

ment plans included commitments to skills-based hiring, robust outreach and recruitment plans

to ensure a diversity of talent, and sectoral partnerships for skills development (NIST, 2023).

As of this writing, other provisions of the CHIPS Act appear to remain in place and companies

that received Preliminary Memoranda of Terms (PMTs) with the CHIPS Program Office appear

to remain eligible for finalized awards (Department of Commerce Office of Inspector General,

2025), although it has been reported that the Trump administration is reviewing existing awards

and the CHIPS Program Office has seen significant staff cuts (Reuters, 2025; Stone, Potkin, and

Lee, 2025).

2.3 Trends in Investment, Employment, and Stock Prices

In this section, before turning to our main estimation strategy, we present a descriptive analysis

of the evolution of investment, employment, and stock prices over the study period.

The standard source for manufacturing investment is the U.S. Bureau of Economic Analysis

(BEA) series on real private fixed investment in non-residential manufacturing structures. This

series is not available at the sector or county level but illustrates broader trends. Figure 1 plots

this series over time, by quarter, with the dates of various key events indicated by vertical lines.

Private manufacturing investment began rising in mid-2021, at roughly the time that USICA was

introduced in the Senate. It rose from $70 billion per year in 2021Q2 to almost $150 billion per

year by mid-2024. Investment levels plateaued in 2024Q2, at about the time President Biden

abandoned his re-election bid. An obvious challenge in interpreting this figure is that the IRA

5Recent research has found that a 10 percent decrease in the cost of childcare leads to a 0.5 to 2.5 percent increase in
maternal employment, which is even higher for low-income mothers; Morrissey (2017) provides a review.
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and the Bipartisan Infrastructure Law were roughly contemporaneous with the CHIPS Act. Our

difference-in-difference strategy, explained below, will help to separate the effects of the CHIPS

Act from these other laws.

Another way to get a sense of investment trends is to examine reports of purchases of property,

plant and equipment reported in semiconductor companies’ Securities and Exchange Commis-

sion (SEC) 10-K filings, which are available annually.6 Appendix Figure A1 sums these reports for

semiconductor firms and plots the total over the 2015-2024 period. There appears to have been

an increase in investment in the semiconductor industry starting in 2021 and continuing in 2022.

(Note that the 10-K filings cover calendar years, so approximately half of the totals reported for

2021 follow the Senate passage of USICA.) Investment was then relatively flat in 2023 and 2024.

Turning to employment, we focus first on the monthly data from the Census Bureau’s Current

Employment Statistics (CES). The disadvantage of these data, relative to the QCEW data used

in the main analysis below, is that they are based on a survey of establishments rather than a

census and are noisier (and less suited to the comparison at the county level we conduct below),

but the advantages are that they are available on a monthly basis and are available for a more

recent period than the QCEW. Figure 2 plots national employment in the semiconductor industry

from these data. We see that employment in the sector rose sharply around the time that the

USICA passed the Senate in June 2021 and continued to increase until the final signing of the

law in August 2022. It then flattened and remained roughly steady until approximately the time

President Biden withdrew from the presidential race in July 2024, and declined sharply thereafter.

From Figure 2, it appears that the increase in employment may have begun in May 2021, rather

than June, the month the bill was passed. We are not able to make precise statements on the ba-

sis of employment data alone, given that the CES data are monthly (and the QCEW data used

in our main analysis are quarterly). To get a better sense of the precise timing, we consider the

stock market valuation of semiconductor firms, in particular semiconductor firms with produc-

tion facilities, which stood to benefit from the support envisioned in USICA. The standard way

of gauging the stock market reaction is to examine Cumulative Abnormal Returns (CARs) for par-

ticular stocks or sets of stocks, in excess of average returns for the broader market (Kothari and

6We are grateful to Greg LaRocca of the Semiconductor Industry Association (SIA) for sharing the SIA’s collation of
these data (which are publicly available). Following the SIA, we include data for the following companies: Akoustis, AMD,
Analog Devices, Broadcom, Cirrus Logic, Global Foundaries, Intel, Lattice Semiconductor, Littelfuse, Luminar, Marvell,
Microchip, Micron, Nvidia, ONSEMI, Qorvo, Qualcomm, Silicon Labs, Skywater, SkyWorks, Texas Instruments, Western
Digital, and Wolfspeed.
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Warner, 2007). Figure 3 plots the average cumulative abnormal returns for semiconductor firms

with production facilities in the U.S. for 5-day windows around three key dates: May 18, 2021,

the day Senator Schumer introduced USICA in the Senate (late in the day); June 8, 2021, the day

USICA passed the Senate; and July 28, 2022, the day the final version of the CHIPS Act passed

the House. Appendix Table A3 presents corresponding regression estimates and reports standard

errors. There is a clear increase in abnormal returns for semiconductor firms on May 19, 2021.

There is little evidence of a stock-market reaction either to the actual passage of USICA on June 8,

2021, or to the signing of the CHIPS Act on August 9, 2022. Our interpretation of these patterns is

that it was likely already clear on the day of the USICA’s introduction that there would be biparti-

san support for some form of a law to support the semiconductor industry. In our main analysis

below, we use quarterly data and the precise timing of reactions to news about the bill does not

play an important role. The key point to take away from the abnormal returns is that the market

appears to have formed expectations of forthcoming government support for the industry in this

period.

Contemporary press accounts reinforce the view that the early progress toward the CHIPS Act

influenced firms’ expectations and employment decisions. For instance, in April 2021, Thomas

Caulfield, the CEO of GlobalFoundries, a leading producer, told Bloomberg News, “I think the im-

portant thing right now is let’s get that chips bill funded so that we can accelerate manufacturing

capacity in the U.S.”7 Then on July 19, 2021, he held a press conference with Senator Schumer

and Commerce Secretary Gina Raimondo to announce both that the company would expand

production at one of its existing facilities in Malta, New York, investing $1 billion and expanding

employment by approximately 1,000 workers, and that the company was planning a new fabri-

cation plant at the same site (Moore, 2021). Notably, the company reported that it prioritized

building capacity at existing facilities over greenfield investments; Caulfield later told CNBC, “We

believe that for economies of scale and the ability to bring capacity online quicker it’s better to ex-

pand existing facilities.”8 This emphasis on expansion of existing facilities may help to explain the

sharp increase in employment beginning in May-June 2021 evident in Figure 2. By contrast, it can

take 1-3 years to get new greenfield facilities up and running, although there may be short-term

increases in planning/design staff and construction-related employment.

7Bloomberg News interview, April 7, 2021, https://www.youtube.com/watch?v=BeHMuypxHtc.
8CNBC interview, March 23, 2022, https://www.youtube.com/watch?v=lEETIGM4MG4.
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Several companies explicitly discussed their optimism about forthcoming government sup-

port, soon after the passage of USICA, well before the House passed its version of the bill. The

comments of Thomas Sonderman, CEO of SkyWater Technology, a Minnesota-based foundry, on

the company’s 2021 Q3 earnings call on Nov. 3, 2021, are worth quoting at some length:9

“As the country is coalescing around the concept of semiconductor sovereignty, Sky-

Water plays an increasingly critical role in supporting the vision of reestablishing the

U.S. as a technology manufacturing leader... The CHIPS Act received bipartisan sup-

port in the Senate, and we remain confident that it will ultimately become law... [A]

lot of the mechanics of what the CHIPS Act will actually look like are yet to be de-

fined. There’s USICA, which is the broader component tied to innovation investment

in addition to manufacturing investment... Skywater will make a lot of money off the

mere fact that there’s going to be more innovation, more investment going into R&D...

[W]e’re talking with the state of Minnesota, both the executive branch as well as the

senators and representatives from the U.S. government in terms of how we can accel-

erate adding capacity into our Minnesota fab so that [we] can resolve some of these

near-term supply constraints. So I believe that we have a great long-term strategy tied

to CHIPS, tied to USICA.”

At roughly the same time, the company added 100 jobs at its Bloomington, Minnesota site (Hauser,

2021).

It is worth noting that persistent shortages of chips, especially specialized chips tailored for

use in particular products, were part of the motivation for the CHIPS Act and reactions to the

shortages could conceivably explain the increase in employment in the industry from May-June

2021 to August 2022. But the timing of the employment changes are difficult to explain by ref-

erence to the shortages alone. Acute shortages of chips were already evident by late 2020 (King,

Wu, and Pogkas, 2021). It is not clear why companies would have reacted to the shortages by in-

creasing employment only with a 5-6 month lag. In our view, the sharpness of the trend break in

May-June 2021 and the jump in stock market returns on May 19, 2021 point to the expectation of

government support for the industry as the more likely explanation.

9Source: https://earningscall.biz/e/nasdaq/s/skyt/y/2021/q/q3.
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Another way to get at the question of whether chips shortages were driving the increase from

May-June 2021 to August 2022 is to compare semiconductor employment in the U.S. to semi-

conductor employment in other countries. Such comparisons are made difficult by the fact that

countries use different classification systems and often do not report employment at as disag-

gregated a level as the U.S. But one natural comparison is Canada, which has a small semicon-

ductor sector and uses the same classification system as the U.S. Figure 4 plots employment over

the study period Canada in Semiconductors and Other Electronic Component Manufacturing

(NAICS 3344), the most disaggregated data publicly available. There was a dip in employment

due to Covid-19 in early 2021 and by mid-2022 employment had just recovered to its pre-Covid

level; we do not see a shift in levels that we see in the U.S. in Figure 2. Another country that reports

data for a reasonably comparable industry is Germany. Appendix Figure A2 plots employment for

industry WZ 2611, Manufacture of Electronic Components (the equivalent of ISIC rev 4 industry

2610). Leaving aside the increases in Jan. 2020 and Jan. 2021, which are due to changes in sur-

veys or reporting requirements (Marder-Puch, 2023a,b), the overall trend is one of steady growth

in employment from 2018 through 2024. Given that the chips shortage occurred in many coun-

tries but the CHIPS Act only in the U.S., the fact that the mid-2021 to mid-2022 increase appears

to be a U.S.-specific phenomenon supports the argument that the increase can be attributed to

anticipation of CHIPS funding.

3 Data

Our main source of employment and wage data is the Quarterly Census of Employment and

Wages (QCEW), published by the U.S. Bureau of Labor Statistics (BLS), which provides quarterly

employment and wages by county and industry. The primary source for the QCEW is adminis-

trative data from state unemployment-insurance systems; these are supplemented by responses

to two BLS surveys, the Annual Refiling Survey and the Multiple Worksite Report. Employment

and wage data are reported by 6-digit NAICS (North American Industry Classification System) in-

dustries at various geographical levels, county being the most disaggregated. We focus on QCEW

data at the 6-digit industry/county/quarter level, using employment reported in the first month

of each quarter. We focus on the period from 2015Q1 to 2025Q1, the most recent quarter available

as of this writing. Semiconductor production is NAICS 334413 (“Semiconductor and Related De-
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vice Manufacturing”); the corresponding four-digit category (3344) is “Semiconductor and Other

Electronic Component Manufacturing.” Manufacturers of semiconductor equipment are typi-

cally classified under NAICS 333242 (“Semiconductor Equipment Manufacturing”) and manu-

facturers of materials for semiconductors under NAICS 325120 (“Industrial Gas Manufacturing”)

and 325180 (“Other Basic Inorganic Chemical Manufacturing”), although the latter two include

producers of inputs not dedicated to semiconductor production. The QCEW suppresses informa-

tion in many country-industry-quarter cells for confidentiality reasons (when information about

particular companies might be revealed). In our baseline results, we impute zeros for these sup-

pressed observations. To check robustness, we will also report results when these observations

are simply dropped. In another set of robustness checks, we supplement the QCEW data with in-

formation from the Quarterly Workforce Indicators (QWI), published by the U.S. Census Bureau.

The QWI data are only available at the 4-digit NAICS level, rather than 6-digit, but contain more

information when there are small numbers of firms or individuals in a given cell.10

To identify the location of semiconductor facilities by county, we use the Semiconductor In-

dustry Association’s (SIA) U.S. Semiconductor Ecosystem Map, which catalogs locations across

the U.S. conducting research on, designing, and/or manufacturing semiconductors.11 The SIA

is the main trade association and lobbying group for the industry; it represents 99% of the U.S.

semiconductor industry by revenue. The Ecosystem Map data are at the facility level, with details

about each facility’s location and activity.

4 Empirical Strategy

A key empirical challenge is to estimate the effects of the CHIPS Act separately from other changes

that occurred at roughly the same time, notably the Inflation Reduction Act (IRA) and the Bipar-

tisan Infrastructure Law. As mentioned above, we address this challenge with two difference-in-

difference designs. In the first, we compare counties with at least one semiconductor facility in

the SIA Ecosystem Map data as of the date of passage of USICA (which we label “semiconduc-

tor counties”) to counties with at least 100 employees in high-tech sectors but no semiconductor

10When the number of firms in a given cell is small, the QCEW typically suppresses the information and reports a
missing value, while the QWI includes “fuzzed” values, with imputed noise. When not suppressed, the QCEW data are
thus more accurate (i.e., we know there is no imputed noise) but the QWI data provide information when the QCEW
values are suppressed.

11The SIA U.S. Semiconductor Ecosystem Map is available at https://www.semiconductors.org/ecosystem/. Ac-
cessed on June 4, 2025.
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production facilities (“high-tech non-semiconductor counties,” or “non-semiconductor coun-

ties” for short).12 In the second, we compare counties with a pre-existing semiconductor fabrica-

tion facility (“fab counties” – listed in the SIA data as having either a foundry or Integrated Device

Manufacturer (IDM)) to counties with at least one semiconductor facility but no fabrication facil-

ity (“fabless counties”). In both cases, the key assumption for this approach to be valid is that the

“treated” and “control” counties would have had parallel trends in the absence of the CHIPS Act.

Under this assumption, deviations in trends in treated counties from trends in control counties

can be attributed to the causal effect of the CHIPS Act. Both designs arguably allow us to iden-

tify the effects of the CHIPS Act separately from the IRA, Bipartisan Infrastructure Law, and other

macroeconomic changes. The assumption is that the these other changes had similar effects on

the treated and control counties, and hence will be absorbed by time effects in the regressions

below.

We present both difference-in-difference designs because they have different strengths and

weaknesses. On one hand, in the semiconductor vs. non-semiconductor county design, we can

be reasonably confident that the control group experienced few direct effects of the CHIPS Act.

Fabless counties, by contrast, may have been directly affected by the CHIPS Act provisions for

funding of R&D and manufacturing of semiconductor equipment and materials, as well as the

AMIC investment tax credit.13 On the other hand, an advantage of the fab vs. fabless design is

that the treatment and control counties may be more comparable, and the control counties may

provide a more plausible counterfactual for what would have happened in the treated counties

in the absence of the Act. Given that the great majority of the CHIPS funding was earmarked for

fabrication facilities, it is plausible that the fab vs. fabless design captures the most important

effects of the Act. In interpreting the results, we will emphasize findings that are robust across the

two designs.

12To define high-tech sectors, we use the following 11 four-digit NAICS sectors identified by Census Bureau (2024)
as high-tech: Computer and Peripheral Equipment Manufacturing (3341), Communications Equipment Manufacturing
(3342), Semiconductor and Other Electronic Component Manufacturing (3344) Navigational, Measuring, Electromedical,
and Control Instruments Manufacturing (3345), Aerospace Product and Parts Manufacturing (3364), Software Publishers
(5112), Data Processing, Hosting and Related Services (5182), Other Information Services (5191), Architectural, Engineer-
ing and Related Services (5413), Computer Systems Design and Related Services (5415), and Scientific Research and De-
velopment Services (5417). Below we explore robustness to different definitions of high-tech counties, using high-tech
employment cutoffs of 0, 500, or 1000; we will see that the results are not sensitive to this definition.

13While pre-USICA employment in high-tech non-semiconductor counties is by construction very low, we note that
nothing prevents semiconductor employment from rising in these counties, for instance due to greenfield investment, in
the post-USICA period. The fact that semiconductor employment in these counties is initially low, in other words, does
not in itself invalidate their use as a comparison group.
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Within each design, we implement two econometric estimators, a simple difference-in-difference

(DID) estimator and a synthetic difference-in-difference (SDID) estimator. In the simple DID ap-

proach, the specification is the following:

Yit = µ+ αi + γt + β · Treatedi · Postt + εit (1)

whereYit denotes the outcome of interest (e.g., the level of semiconductor employment) in county

i and year-quarter t. Treatedi is an indicator which takes the value 1 for treated counties and 0

for control counties. The αi and γt are county and year-quarter fixed effects, which absorb all

time-invariant county-specific factors and all common temporal shocks, respectively. We cluster

standard errors at the county level to adjust for potential serial correlation of outcomes within

counties.

We face an important choice in how to define the pre-CHIPS and post-CHIPS periods, embod-

ied in the Postt variable. Our preferred specification uses the date of passage of USICA — June,

8, 2021 — to define pre and post; in this specification, Postt takes the value 0 from 2015Q1 to

2021Q2, and 1 from 2021Q3 to 2025Q1. We also explore robustness to an alternative specification

in which the post-period is defined as post-CHIPS, rather than post-USICA; in this specification,

Postt takes the value 0 from 2015Q1 to 2021Q2 and 1 from 2022Q3 to 2025Q1, and the quarters

2021Q3-2022Q2 are dropped. Given the likelihood of positive anticipation effects, our preferred

definition is the more conservative one. We will see that the results are robust to this choice.

To get a better sense of the timing, we also estimate an “event study” version of the simple

difference-in-differences, using the following specification:

Yit = µ+ αi + γt +

2025q1∑
τ=2015q2

βτ ·Dτ
i,t + εit (2)

where Yit, αi, and γt are defined as above and Dτ
i,t is an indicator that takes the value 1 if t = τ and

county i is treated and 0 otherwise. (We omit the indicator for 2015Q1.) We recover the coefficient

estimates βτ and plot them over time. We would expect the estimates of βτ corresponding to

periods before the Senate passage of USICA to be zero; this is a way to check the parallel trends

assumption. An advantage of the event-study specification is that it allows us to avoid taking a
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stand on the definition of pre and post. As in equation (1), we cluster standard errors at the county

level.

While the simple difference-in-differences has the virtues of transparency and simplicity, one

may be concerned about the assumption of parallel trends between treated and control counties.

To address this concern, we implement the synthetic difference-in-difference (SDID) estimator

of Arkhangelsky, Athey, Hirshberg, Imbens, and Wager (2021). The idea is that there may ex-

ist a weighted average of control counties that more closely mirrors the pre-treatment outcome

trajectory of treated counties and hence more accurately represents the trend that would have

been observed in the treated counties post-CHIPS in the absence of the Act. The method re-

tains key advantages of the simple difference-in-differences, such as invariance to additive unit-

level shocks and valid inference in large panels. Unlike traditional synthetic-control methods,

which minimize differences in pre-treatment levels (Abadie, 2021), the synthetic difference-in-

differences minimizes differences in pre-treatment trends, which helps address bias concerns

when pre-treatment fit is imperfect and treatment is potentially correlated with unobserved con-

founders (Ferman and Pinto, 2021). Importantly, both unit and time weights are derived solely

from the outcome data, minimizing researcher discretion. Arguably, this design strengthens sta-

tistical power while better satisfying the assumption of parallel trends, without requiring subjec-

tive decisions about which units or covariates to include (Arkhangelsky et al, 2021).

The SDID procedure solves the problem:

(
β̂, µ̂, α̂, γ̂

)
= argmin

β,µ,α,γ

{
n∑

i=1

2024q4∑
t=2015q1

(Yit − µ− αi − γt −Witβ)
2
ω̂iλ̂t

}
(3)

where Wit is an indicator of treatment, which takes the value of 1 for treated counties in the post-

period and 0 otherwise. As above, our preferred definition of post-period is post-USICA, but we

explore robustness to using post-CHIPS as the post-period. The weights, ω̂ij and λ̂t, are chosen

to minimize trend differences in the pre-treatment periods. The optimal unit-specific weights

ω̂i (but not the time-specific weights λ̂t) are subject to a regularization penalty, which prevents

overfitting while increasing the variance and uniqueness of the weights. These features improve

the robustness and precision of the SDID estimator (Arkhangelsky et al, 2021). For statistical

inference, we rely on a block bootstrap and cluster standard errors at the county level. Using

the weights from the SDID procedure, we also estimate event-study coefficients with confidence
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intervals, following Clarke, Pailañir, Athey, and Imbens (2024). Specifically, we compute the dif-

ference between treated and control groups in each period, relative to the average difference in

the time-weighted pre-treatment period, and again use a block bootstrap to construct confidence

intervals. By optimally calculating weights to match pre-treatment outcome trends more closely

than in the simple DID, the SDID estimator reduces the risk of attributing spurious differences to

treatment (Arkhangelsky et al, 2021) and we prefer it for this reason. Below we start by reporting

both the simple DID and the SDID but move to just reporting the SDID for secondary outcomes

and robustness checks.

To illustrate our research design, Figure 5 displays a map of U.S. counties. High-tech non-

semiconductor counties are indicated in red. Fabless counties (counties with at least one semi-

conductor facility but no fab) are in blue. Fab counties are in green. The semiconductor vs. non-

semiconductor design compares the red counties to the union of the green and blue counties.

The fab vs. fabless design compares the green counties to the blue counties. By the above def-

initions, there are 149 semiconductor counties and 752 high-tech non-semiconductor counties,

and 83 fab and 66 fabless counties.14

The map highlights the pronounced spatial inequality in the distribution of semiconductor

production facilities across the United States. A relatively small number of counties host large-

scale fabrication facilities, while most high-tech counties have no semiconductor presence at all.

This pattern reflects the industry’s tendency toward geographic clustering, where production is

embedded in local ecosystems of suppliers, skilled labor, and infrastructure (Goldberg, Juhász,

Lane, Lo Forte, and Thurk, 2024).

Table 1 presents summary statistics for the two sets of treated and control counties. In the first

four columns, we see that, compared to the high-tech non-semiconductor counties, the semicon-

ductor counties tend to be larger in terms of total employment, to have a higher manufacturing

share of employment, and to be less rural than the non-semiconductor counties. In the fifth

through eighth columns, we see that the fab counties again tend to have higher total employ-

ment and be less rural than the fabless counties, but the manufacturing shares of the two sets of

counties are comparable. On the various demographic dimensions reported in Panel B, the sets of

counties are reasonably similar. We emphasize again that any time-invariant differences across

14Inconveniently, Connecticut changed from using nine counties to eight planning regions for statistical purposes in
2024; because of the difficulties in tracking outcomes over time, we drop Connecticut from the sample.
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counties will be captured by the county fixed effects and any common trends over time will be

captured by the year-quarter effects. The key question for our designs is whether the treated and

control counties would have had parallel trends in the absence of the CHIPS Act; to shed light on

this question, we will examine pre-trends below.

Two features of both of our difference-in-difference designs are important to highlight. First,

our estimates will only capture impacts of the Act in counties with pre-existing semiconductor

facilities (any seminconductor facility in the semiconductor vs. non-semiconductor design, a

fabrication facility in the fab vs. fabless design). Greenfield investment in counties without an

existing facility will not be reflected. In this sense, our estimates are likely to under-estimate the

true impacts of the Act. Second, our analysis does not use information on actual grants under

the CHIPS Act; our estimates are based on firms’ reactions to the expectation of funding un-

der the Act. A reasonable alternative strategy would be to compare counties with firms whose

CHIPS awards were finalized and disbursed to counties with semiconductor facilities that did not

receive awards — perhaps in particular to counties with firms that received Preliminary Memo-

randa of Terms (PMTs) from the CHIPS Program Office, a key formal step in the process of receiv-

ing awards, but did not receive final approval. The main difficulty with this alternative strategy

is timing, given current data constraints. The first major CHIPS awards were not finalized until

November 2024 and, as explained above, the QCEW data currently end in 2025Q1. Another diffi-

culty is that it is not yet clear whether the firms with PMTs but not final awards as of the end of

the Biden administration on Jan. 20, 2025 are still being considered for a final award. While this

alternative strategy is not currently feasible, it remains a promising potential avenue for future

research.

5 Results

5.1 Employment Impacts in Semiconductors

To illustrate the main empirical patterns, we begin with event-study-type figures to show the evo-

lution of impacts over time. Figures 6a and 6b plot the coefficient estimates from the event-study

version of the simple difference-in-differences (equation (2)) for employment in the core semi-

conductor sector (NAICS 334413) for the semiconductor vs. non-semiconductor and fab vs. fa-
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bless designs, respectively. In both designs, there is little evidence of differential pre-trends be-

tween the treated and control counties prior to 2021, which is reassuring about the parallel trends

assumption. Beginning in 2021Q3, when USICA passed the Senate, we see a relative increase in

semiconductor employment for five quarters in treated counties in both figures. Semiconductor

employment stabilized in 2022Q3, about the time the CHIPS Act was signed.

Figures 7a and 7b plot the event-study estimates from the synthetic difference-in-difference

(SDID) specification (equation (3)) for the two designs. The SDID evidence is even stronger than

the simple DID: again, there are no differential pre-trends and the increases beginning with the

passage of USICA are clear. Consistent with the descriptive evidence in Section 2.3, all four event-

study specifications suggest that the eventual passage of government support for the semicon-

ductor industry was anticipated already in mid-2021, at the time of Senate passage of the precur-

sor USICA bill. Note that the scale of the y-axes differ between Figures 6a and 6b and between

Figures 7a and 7b; the fab vs. fabless design suggests impacts that are 50-80% larger in levels,

consistent with the idea that the fab counties saw the largest impacts among the semiconductor

counties. But the time-pattern of changes is quite similar across the designs and specifications.

Table 2 reports estimates of average treatment effects from the simple difference-in-difference

(DID) specification in equation (1), which constrains the post-treatment employment effect to be

constant across quarters. The Column 1 outcome is the level of employment in semiconductor

production; the Column 2 outcome is the level of employment in semiconductor equipment and

materials (pooled); and the Column 3 outcome is employment in production, equipment and

materials combined. Panel A reports the semiconductor vs. non-semiconductor comparison,

and Panel B the fab vs. fabless comparison. The Panel A estimate of the impact of CHIPS on

semiconductor employment in semiconductor counties is 106 jobs (Column 1), or 141 jobs if em-

ployment in semiconductor equipment and materials is included (Column 3). The Panel B esti-

mates are larger: 191 jobs in semiconductors in fab counties (Column 1), or 270 jobs if equipment

or materials are included.

Table 3 shows average treatment effects using the synthetic difference-in-difference (SDID)

approach. For the reasons cited in Section 4 above, the SDID estimates are our preferred esti-

mates. The organization of the table is similar to Table 2. The results are also similar. In Panel

A, using the semiconductor vs. non-semiconductor comparison, we estimate treatment effects

of 110 jobs per county in semiconductor production alone and 124 if we include semiconductor
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equipment and materials. Relative to the pre-USICA mean employment numbers for semicon-

ductor counties, these represent increases of 12.7% and 12.0%, respectively, in treated counties.

In Panel B, using the fab vs. fabless comparison, the corresponding numbers are 180 and 211.

Relative to the pre-USICA mean employment for fab counties, these represent increases of 11.8%

and 12.0%. We return in Section 6 below to the question of how to estimate national-level em-

ployment impacts of the CHIPS Act on the basis of these difference-in-difference estimates.

Several robustness checks are reported in the appendix. Appendix Table A4 reports results

similar to Table 2 but dropping the observations with suppressed data. The results are qualita-

tively similar to those in Table 2 but of larger magnitude; in this sense, our baseline approach

of imputing zeros is conservative. Appendix Tables A5 and A6 report results analogous to Ta-

bles 2 and 3 but using post-CHIPS as the post-period. The results are again similar with larger

magnitudes — unsurprisingly given the visual evidence in Figures 6, 6a-6b, and 7a-7b. Appendix

Table A7 reports results using the combined QCEW/QWI data at the 4-digit level (described in

Section 3); results are qualitatively similar to the baseline results. Appendix Table A8 explores

the robustness of our findings to the inclusion of time-varying county demographics (Panel A)

and to allowing for differential trends associated by 2010 rural share (Panel B). Appendix Table A9

checks robustness to using different cutoffs for high-tech employment in the definition of high-

tech non-semiconductor counties. Overall, the employment results are quite robust to the choice

of specification, data processing, and comparison group definitions.

In our view, the employment increases most likely reflected two changes: expansions of pro-

duction workforces driven by increases in output at existing facilities (as mentioned for instance

in the quotes from GlobalFoundries’ CEO in Section 2.3 above); and expansions of planning staff

to design and in other ways prepare for the construction of new facilities. It is also possible that

firms hired even before either type of expansion, in order to be prepared to expand when (or

if) CHIPS funding was approved. The overall increase in employment in the industry, and the

presumably tight labor market for employees with specialized skills needed by the industry, may

have accentuated this latter motive. It is difficult to distinguish between these mechanisms in

existing data; more light will be able to be shed once more detailed information on output and

skill composition at semiconductor facilities becomes available.
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5.2 Wage Impacts in Semiconductors

We next examine the effects on real average weekly wages per worker in the semiconductor sector.

Given that semiconductor employment is very low in the high-tech non-semiconductor counties,

the fab vs. fabless comparison is the more natural one for examining wage effects, but we report

the results from both designs for completeness. Table 4 reports wage estimates for the DID and

SDID estimators for each design.15 The outcomes are average weekly wages in semiconductors

(Column 1), average weekly wages in semiconductor equipment and materials (Column 2), and

average weekly wages combining semiconductors and semiconductor equipment and materials

(Column 3). The point estimate for the SDID in the fab vs. fabless design, our preferred specifica-

tion, indicates a positive effect on average weekly wages of $166, on a pre-USICA mean of $1,086

— an increase of 15.3% — but this estimate is not statistically significant at conventional levels of

confidence, and caution is warranted in interpreting it. In addition to the lack of statistical signif-

icance, we note that average weekly wages at the county-industry level may reflect changes in the

composition of the workforce, as well as wage changes for continuing workers. Although there

is stronger evidence of positive wage effects using the semiconductor vs. non-semiconductor

county design, overall we would characterize the evidence on wage effects as no stronger than

suggestive. It is worth noting that if the supply of labor is very elastic, for instance because work-

ers are very willing to move across counties or across industries within affected counties to take

up semiconductor jobs, then a positive employment demand shock, of the sort that the CHIPS

Act appears to have generated, would not be expected to generate large positive wage effects.

5.3 Local Spillover Effects

In this section, we examine the local spillover effects of the CHIPS Act on related sectors in the

same county as well as on total county employment and county GDP. First consider the effects

on upstream input suppliers. Semiconductor production facilities are often embedded within re-

gional ecosystems that include suppliers of components such as printed circuit boards, electronic

connectors, capacitors and resistors, plastics films, industrial gases, and nonferrous metals. To

determine the list of sectors that supply material inputs to semiconductor production, we use

15Average weekly wages in the QCEW are calculated as total quarterly wage bill in the county-industry-quarter divided
by employment in first month of quarter and by 13 (the number of weeks per quarter). To adjust for seasonality, we then
calculate a moving average of the wage bill over the current quarter and the three preceding quarters (quarters t-3 through
t).
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the Bureau of Economic Analysis (BEA) input-output tables.16 Column 1 of Table 5 reports results

from the SDID specification with the sum of employment in input sectors as the outcome. The

estimate from the semiconductor vs. non-semiconductor design in Panel A indicates a positive,

statistically significant impact of approximate 54 jobs in these input sectors. But this effect is not

robust to using the fab vs. fabless design. The estimate from the latter design is negative but not

statistically significant. The results for upstream input sectors are thus mixed and we do not draw

strong conclusions from them.

A clearer message emerges about the impact of the CHIPS Act on another related sector: con-

struction. Column 2 of Table 5 reports SDID estimates with non-residential construction employ-

ment as the outcome. We see positive, statistically significant effects of 136 jobs per county using

the semiconductor vs. non-semiconductor design and 203 jobs per county using the fab vs. fab-

less design. To get a better sense of the timing, Figure 8 shows SDID event-study graphs for non-

residential construction employment. We see a significant rise following the passage of USICA,

with the upward trend continuing after the CHIPS Act was enacted. An important qualification

is that these construction jobs may be temporary jobs, lasting only as long as the construction

projects stimulated by the Act, but they nonetheless contribute toward the job-creation goals of

the Act. Given the necessarily local nature of construction spillovers, it is perhaps not surprising

that the results for construction are more robust than for upstream inputs, but we view it as quite

reassuring about our research designs that non-residential construction, which makes up a non-

trivial share of employment in both treatment and control counties in both designs, responded

as expected to the positive shock generated by the Act.

We also examine two county-level aggregates: total employment and county Gross Domestic

Product (GDP). First consider total employment. Figures 9a and 9b present event-study SDID

graphs for the two designs. In both cases, we see a relative decline in total employment in treated

16In particular, we use the BEA “Use” table available at https://apps.bea.gov/industry/Release/XLSX/IOUse_
After_Redefinitions_PRO_Detail.xlsx. The input sectors we consider are the following: nonferrous metal (except alu-
minum) smelting and refining (NAICS 331410), printed circuit assembly (electronic assembly) manufacturing (NAICS
334418), bare printed circuit board manufacturing (NAICS 334412), capacitor, resistor, coil, transformer, and other induc-
tor manufacturing (NAICS 334416), electronic connector manufacturing (NAICS 334417), other electronic component
manufacturing (NAICS 334419), plastics packaging film and sheet (including laminated) manufacturing (NAICS 326112),
unlaminated plastics film and sheet (except packaging) manufacturing (NAICS 326113), computer terminal and other
computer peripheral equipment manufacturing (NAICS 334418), instrument manufacturing for measuring and testing
electricity and electrical signals (NAICS 334515), and commercial and industrial machinery and equipment (except au-
tomotive and electronic) repair and maintenance (NAICS 831100). While manufacturing of semiconductor equipment
(NAICS 333242), industrial gases (NAICS 325120) and other basic inorganic chemicals (NAICS 325180) may also have
been affected by spillovers from semiconductor production, they were also in part targeted directly by the CHIPS Act as
part of the semiconductor supply chain; for this reason, we do not include them in the set of “spillover” sectors.
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counties in the second quarter of 2020 due to the Covid-19 pandemic. It is possible that the

pandemic had a greater negative effect on employment in the treated counties because they are

more urban (refer to Table 1) and hence were more affected by high infection rates and the en-

suing lockdowns. Following the pandemic, the two graphs tell somewhat different stories. The

semiconductor vs. non-semiconductor graph (Figure 9a) shows that it took several quarters for

total employment semiconductor counties to recover relative to non-semiconductor counties,

and there is no apparent effect of the CHIPS Act in the longer term. The fab vs. fabless graph

(Figure 9b) indicates that employment in fab counties recovered quickly in relative terms and

rose relative to fabless counties in the longer term. Column 3 of Table 5 reports the correspond-

ing SDID results. The estimate for the semiconductor vs. non-semiconductor design is in fact

negative, although not significant, but the estimate for the fab vs. fabless design is positive and

significant at the 90% level. The point estimate suggests an increase of 2.2% in total employment

in fab counties (8,503/386,371). We consider this to be suggestive evidence that the Act was able

to move total employment in fab counties, but the fact that the estimate is significant only at the

90% level and the lack of robustness across designs warrant caution.

For county-level GDP, the results are easily summarized: we find little evidence of an effect

of the Act. The available county-level GDP numbers are from the Bureau of Economic Analysis,

which publishes data annually but not quarterly. For this analysis, we extend the sample back

to 2010, to have more data in which to match pre-trends. Column 4 of Table 5 presents the re-

sults. The point estimates have the same signs as those for total employment, and the positive

estimate for the fab vs. fabless design is consistent with the hypothesis that the Act has a positive

aggregate effect particularly for fab counties, but the estimates are imprecise and not statistically

significant. Our interpretation is that the CHIPS Act was not large enough to have detectable ef-

fects on GDP at the county level, at least over the short-term time horizon we are able to focus

on.

6 Estimates of National Aggregate Effects

As noted above, our difference-in-difference approaches estimate the relative impact on treated

vs. control counties. Part of the absolute impact of the CHIPS Act on national aggregate em-

ployment in semiconductors may be absorbed in the intercept term in our regressions. This is
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often referred to as the “missing intercept” problem. There is an ongoing debate in the aca-

demic literature about what can be inferred about aggregate impacts from relative impacts in

such approaches; see, for example, Nakamura and Steinsson (2014), Ramey (2019), Chodorow-

Reich (2019, 2020), Wolf (2023), and Moll and Hanney (2025). The most widely accepted strat-

egy for characterizing aggregate impacts is to structurally estimate a fully specified model of the

macro-economy (as for instance in Nakamura and Steinsson (2014)), which is beyond the scope

of the current paper. Nonetheless, it is possible to draw some tentative conclusions based on the

reduced-form evidence we have presented.

Chodorow-Reich (2020) very usefully draws a distinction between several causal effects that

one may want to estimate: the difference-in-difference effect, which he calls βDID; the true effect

of a program on a treated region only, βmicro; the economy-wide impact of a local shock, βall regions;

and the aggregate impact of an aggregate shock, βagg. Differences between βDID and βmicro arise if

there are spillovers between treated and control regions (counties in our application) — in tech-

nical terms, if assignment of one county to treatment affects the potential outcomes under treat-

ment and control of other counties (i.e., there are violations of the Stable Unit Treatment Values

Assumption (SUTVA)). Differences between βmicro and βall regions arise if spillovers between regions

aggregate to a substantial shock, even if spillovers between particular regions are small on aver-

age. Differences between βall regions and βagg arise if other aggregate variables (including monetary

policy) respond to the shock.

Following arguments in Chodorow-Reich (2020), we argue that the differences between these

effects are likely to be small in our context, and that the aggregate direct and indirect effects on

employment can be plausibly summarized by simply multiplying our per-county estimates by

the number of treated counties. First consider spillovers between treated and untreated areas.

Chodorow-Reich (2020) argues that in settings with geographical units the size of U.S. states or

smaller and demand shocks that do not induce factor mobility, the difference between βDID and

βmicro can usually be safely ignored. Although we do not directly observe migration flows, the low

semiconductor employment in the control counties in our two designs, particularly in the high-

tech non-semiconductor counties (refer to Table 1), means that the scope for within-sector factor

mobility from untreated to treated counties is limited and suggests that the difference between

βDID and βmicro is not likely to be large in our setting.
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Next, consider the aggregate effects of treatment of one county, which may give rise to a

difference between βmicro and βall regions even if between-county spillovers are small on average.

Chodorow-Reich (2020) argues that if factors do not move in response to the program, then

the demand spillover effects of a program or shock are unambiguously positive and the county-

specific estimate, βmicro, provides a lower bound on the aggregate effect, βall regions. It is plausible

that this argument applies in our setting. It is also worth noting that we do not detect effects on

GDP at the county level. This suggests that the aggregate effects of the program are probably very

limited and hence that βmicro is quite close to βall regions, not just that the former provides a lower

bound for the latter.

Turning to the difference between βall regions and βagg, we note that the CHIPS Act expenditures

were quite small relative to the size of the U.S. economy and hence seem unlikely to have induced

changes in monetary policy or other macroeconomic variables. The $52.7 billion in funding ap-

propriated for spending under the Act, which did not start flowing until Nov. 2024, well after the

employment increases we observe, pales in comparison to the spending forecasted under the

IRA or the defense spending that has been the focus of much of the related academic literature

(Ramey, 2011b; Nakamura and Steinsson, 2014). This suggests that there is unlikely to be a large

difference between βall regions and βagg in our setting.

A final piece of evidence comes from the time-series variation we observe in aggregate semi-

conductor employment we observe in Figure 2, based on unprocessed data from the Current Em-

ployment Statistics (CES). Estimating level effects from a single time series is often challenging,

but in this case it is evident that total employment was relatively flat, at approximately 185,000,

in the two years before the USICA introduction in May 2021 and then relatively flat again, at ap-

proximately 203,000, in the two years after the final signing of the CHIPS Act in Aug. 2022. This

suggests an impact of the CHIPS Act on aggregate semiconductor employment of approximately

18,000 jobs.

When we scale up our county-specific employment impacts to the national level, we arrive at

numbers similar to this time-series estimate. In the semiconductor vs. non-semiconductor de-

sign, we have 149 treated semiconductor counties. Simply multiplying our preferred per-county

estimate of 110 additional semiconductor jobs (Column 1 of Table 3 Panel A) by the number of

treated counties, we get an estimate of 16,390 jobs nationally. In the fab vs. fabless design, we

have 83 treated fab counties. Multiplying by our preferred estimate of 180 jobs (Column 1 of
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Table 3 Panel B), we get 14,490 jobs. The time-series estimate of 18,000 jobs is well within the

intervals that would be generated by scaling up the 95% confidence intervals by the number of

treated counties. This supports our argument that both the “micro” (between particular coun-

ties) and “macro” (from one county to the macroeconomy) spillovers appear to be small in this

setting. We make no claim that this is generally true for government spending — the current set-

ting is special in that we focus on a single, small (relative to the size of the county economies)

spending program in a particular industry — but it does suggest that in our case the simple ap-

proach of multiplying the per-county effect by the number of treated counties gives a reasonable

estimate of the aggregate employment effect.

The calculations above refer to direct effects on employment in the core semiconductor in-

dustry (NAICS 334413). To derive an estimate of the indirect effect of the Act on related sectors,

we include the impacts on employment in semiconductor equipment and materials manufactur-

ing, in upstream inputs, and in non-residential construction in the affected counties. Although

many of these coefficients are not statistically significant, as discussed above, they still represent

our best estimates of the indirect employment impacts of the Act. Using our preferred SDID es-

timates from Tables 3 and 5, we have an effect on related sectors of 235 jobs per affected county

in the semiconductor vs. non-semiconductor design (16 + 59 + 160) and 334 jobs per affected

county in the fab vs. fabless design (27 + 57 + 250). Scaling these up by the number of affected

counties, we arrive at national indirect impacts of 35,015 jobs (235 * 149) and 27,971 jobs (334 *

83) for the semiconductor vs. non-semiconductor and fab vs. fabless designs, respectively.

While we do not observe actual CHIPS spending (on which we have incomplete data as ex-

plained above) and therefore cannot compute a traditional fiscal multiplier, our findings of sig-

nificant employment gains in semiconductor counties align with the broader literature showing

that targeted public investment can stimulate local labor markets (Ramey, 2011a). Our findings

complement earlier work such as Nakamura and Steinsson (2014), who find large regional mul-

tipliers using variation in military spending, and Chodorow-Reich (2019), who synthesizes cross-

sectional and panel estimates of local multipliers, highlighting the importance of labor market

slack, industrial structure, and labor mobility. Our results support the notion that well-targeted

federal investments — particularly in high-tech tradable sectors — can generate positive employ-

ment effects, extending the multiplier logic to the area of industrial policy.

25



7 Design Issues

A natural question that our analysis raises is whether the CHIPS Act was well designed, given its

various objectives. Would the impacts on employment have been larger if it had been designed

differently? One could pose a similar question about output and, more broadly, economic effi-

ciency and welfare, which (in part because of data constraints) have not been our focus here. How

could the provisions of the Act be modified to improve these outcomes, and how should similar

interventions be designed in the future? To address these questions, we need to step briefly out

of the realm of quasi-experimental policy evaluation to consider some theoretical issues.

One important design issue is whether to use Pigouvian subsidies (which incentivize invest-

ment by any firm that chooses to undertake it) or targeted grants (for particular, selected firms).

Although the CHIPS Act included a provision for investment tax credits, a form of Pigouvian sub-

sidy, the majority of the funds were earmarked for direct grants, for which firms had to apply and

be approved by the CHIPS Program Office. On this dimension, there is a contrast in the design of

the CHIPS and IRA programs, with the latter largely based on tax benefits.

The targeted-grants approach has several advantages relative to the tax-credit approach. One

is less uncertainty about the fiscal burden. As the IRA has demonstrated, even though the expan-

sion of renewable energy that these credits induced may well be socially desirable, uncapped tax

credits create substantial fiscal uncertainty.17 Arguably, another advantage of the targeted-grants

approach is that it is more transparent; it is often difficult to ascertain which firms are benefit-

ing from the tax credits. In addition, tax credits are often ill-suited to supporting new entrants

with little taxable income; the ability to support new entrants is another potential advantage of

the targeted-grants approach. Finally, it can be shown theoretically that when redistribution is

a social goal and there are multiple market failures and the government has limited instruments

for redistribution, it may desirable to use multiple instruments, including regulation, non-linear

taxes and subsidies, and targeted grants, in addition to, or in place of, Pigouvian subsidies; Stiglitz

(2019) provides a discussion in the context of emissions regulation.

But the targeted-grants approach also has some potential disadvantages. One is related to the

fact that estimating the returns to investment is difficult and the approaches differ in who bears

17Initial estimates indicated that the IRA would include approximately $369 billion in spending on climate- and
energy-related funding (Dennis, 2022), but subsequent analyses suggested that spending could rise to $1.2 trillion or
more (Della Vigna and others, 2023).
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the burdens of mistakes. In the case of tax credits, a greater share of the costs of overestimates are

typically borne by the investors, rather than the public. A second disadvantage of targeted grants

is that the discretion associated with the evaluation of projects opens up the possibility of political

capture. This is the standard argument for a restriction to a rules-based allocation mechanism.18

Of course, a country with good governance can construct administrative procedures that reduce

the likelihood of abuse, and in a country with poor governance, a government unconstrained by

democratic norms will find some way of abusing not just industrial policies, but virtually any

policy, including bank regulation and monetary policy. Nevertheless, it is important to recognize

that political capture is a real concern.

A second important design issue is whether and how the government should claim a share

of the upside potential of incentivized investments, an issue that is front-and-center of policy

debates in light of the Trump demanding 10% of the value of Intel in exchange for CHIPS Act

subsidies. On one hand, such claims can help to defray the costs to taxpayers and insisting on

participating in the upside potential may also deter unbridled rent seeking. On the other hand,

there is again a conflict here between rules-based systems and discretion; the discretion asso-

ciated with the Trump Administration stake in Intel, but not other companies receiving CHIPS

subsidies, provides a notable recent example. If market investors behave in a risk averse manner

in areas subject to industrial policy, then loans combined with warrants (i.e. options to purchase

at a set price at a later date) may be a superior way for government to share in the risk than taking

an ownership share, and may avoid some of the problematic issues arising out of government

control/ownership.

A third important design issue is the extent to which social policy should be embedded in

industrial policy. The CHIPS Act carried a number of requirements for provision of childcare,

paying of prevailing wages, and provision of workforce training. Are these sorts of provisions ap-

propriate to include in a law like the CHIPS Act? In our view, there are two ways of looking at

these requirements. One is to see them as an “experiment,” combining the experiment of a new

industrial policy with that of a social policy experiment, showing the way for a new economic

model that differs from that which would emerge from the market on its own. The other is that

these provisions are part of the complex political process by which policies are set. One set of

18There is, of course, discretion in the choice of rules and their interpretation and enforcement. A thoroughly corrupt
administration can abuse both systems with perhaps equal ease. Rules-based systems are, however, more constraining
for normal governments complying with democratic norms.
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actors believes that all firms should be required to pay higher wages, but opposition means that

legislation to that effect cannot be passed. Another set of actors is concerned with the risks to the

economy of excessive dependence on Taiwan for semiconductors. Politics is the art of compro-

mise, and while the embedding social goals in industrial policy might admittedly pose problems

for intellectual consistency — if we really believe it is desirable to have childcare, it is not clear

why we should limit the requirement to just the semiconductor industry —– the compromise is

pragmatic and necessary, especially so given legitimate sensitivities among some quarters about

government subsidizing firms that do not engage in good labor market practices.

The CHIPS Act is not the only model for industrial policy, nor would we argue that it got every

design feature exactly right. There are many issues (e.g. the role of procurement policies) that

we have not touched on here. There remains much to be learned and, more than in many other

policy arenas, the devil is in the details. But we do believe that the short-term impacts we have

presented provide some grounds for optimism about the longer-term impacts of the CHIPS Act

and of other industrial policies. We note that among the countries that have been most successful

in development, industrial policies have often been central. The hope is that the US, which has

not openly engaged in industrial policies in the past (though it has effectively had such policies,

typically buried in the defense or energy departments) can learn from both the successes and

failures elsewhere to design an efficient and effective strategy.

8 Conclusion

This paper has provided early empirical evidence on the labor market impacts of the CHIPS Act

using two county-level difference-in-difference designs, one comparing counties with semicon-

ductor facilities to counties with high-tech employment but no semiconductor facilities and the

other comparing counties with a semiconductor-fabrication facility to counties with at least one

semiconductor facility but not a fabrication plant. Our preferred estimates indicate direct im-

pacts on employment in the core semiconductor sector of 110 jobs per affected county in the for-

mer design and 180 jobs per affected county in the latter design — approximately 12% increases

relative to the treated group pre-treatment means in both cases. Aggregating to the national level,

which comes with caveats as discussed above, we estimate a total direct impact of roughly 15,000-

16,000 jobs in both designs. Our best estimates of the indirect employment impacts, on employ-
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ment in semiconductor equipment and materials manufacturing, in manufacturing of upstream

inputs, and in non-residential construction are roughly 28,000-35,000 jobs. Combining the di-

rect and indirect impacts, we arrive at total impacts of roughly 40,000-50,000 jobs that can be

attributed to the CHIPS Act.

One key message of our study is that industrial policies can deliver measurable employment

benefits in targeted strategic sectors, even in the short run. The results speak not only to the

question of whether the Act generated employment, a widely cited and politically salient policy

objective, but are also potentially useful as an input into the “net cost of resilience,” which should

take into account the additional tax revenue and lower spending on unemployment benefits that

the additional employment generates.

Another key message is that there were important anticipation effects. We find that the em-

ployment increases began at the time of passage of a precursor act (USICA) in the Senate in June,

2021. But the time the CHIPS Act was signed in Aug. 2022, the employment increases that we ar-

gue were due to the Act had already largely occurred. The argument that the market anticipated

the effects of the Act is supported by evidence from stock-market returns as well as contemporary

press accounts and corporate earnings calls. This finding reinforces earlier work on anticipation

effects, for instance by Ramey (2011b).

One argument that we are not making is that estimating short-term employment impacts is

the only or even the best way to evaluate the overall success of an industrial policy such as the

CHIPS Act. The extent to which the Act has increased investment in the sector and generated

learning-by-doing within subsidized firms and learning spillovers to other firms may well be more

important for growth and hence worker welfare in the long run than short-term job creation. We

view this paper as a first step in understanding the consequences of the Act. We hope that it

will be followed by many more analyses of other impacts, including on capital deepening and

productivity improvements, as well as on employment and wages in the longer term, once the

necessary data become available.
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FIGURE 1: REAL PRIVATE FIXED INVESTMENT IN NONRESIDENTIAL MANUFACTURING STRUCTURES

Notes: Source is U.S. Bureau of Economic Analysis, Gross Private Domestic Investment and Capital Transfers: Private
Fixed Investment in Structures by Type, Chained dollars: Manufacturing. Data are seasonally adjusted and annualized
(by BEA). The dotted vertical lines indicate (from left to right) Q2 of 2022, when the USICA was passed; Q3 of 2022 when
the CHIPS Act and Inflation Reduction Act (IRA) were passed; Q3 of 2024, when Biden dropped out of the presidential
race; and Q4 of 2024 when the presidential election occurred. Y-axis is investment per quarter. Data can be accessed at
https://apps.bea.gov/iTable/?isuri=1&reqid=19&step=4&categories=flatfiles&nipa_table_list=1.

FIGURE 2: EMPLOYMENT IN SEMICONDUCTOR INDUSTRY

Notes: Figure plots the total number of workers in the semiconductor industry (NAICS 334413) across the United States,
as reported in the Current Employment Statistics (National Series). Data can be accessed at https://download.bls.gov/
pub/time.series/ce/ce.data.0.AllCESSeries.
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FIGURE 3: CUMULATIVE ABNORMAL RETURNS FOR SEMICONDUCTOR FIRMS

A. May 18, 2021

B. June 8, 2021

C. July 28, 2022

Notes: Cumulative Average Abnormal Returns (CAARs) around major semiconductor policy events are calculated as
follows (using the Stata estudy command). We first calculate Abnormal Returns (ARs) by estimating the regression
Rit = γiRmt + αi + εit, where Rit is firm i’s return and Rmt is the S&P 500’s return, over the period 250 days to 30
days before the event, and then defining ARit = Rit − γ̂iRmt − α̂i for the indicated event window. The ARs are averaged
across firms and then summed across the event window to get CAARs. The sample is the set of firms included in Figure
A1, excluding Global Foundries and Skywater, who began trading on October 28, 2021 and April 21, 2021, respectively. See
also Appendix Table A3. Data for historical stock prices taken from https://finance.yahoo.com/.
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FIGURE 4: EMPLOYMENT IN SEMICONDUCTORS AND RELATED INDUSTRIES: CANADA

Notes: Source is Survey of Employment, Payroll and Hours (SEPH) conducted by Statistics Canada, for semiconductor and
other electronic component manufacturing (NAICS 3344). Data can be accessed at https://www150.statcan.gc.ca/t1/
tbl1/en/cv.action?pid=1410020101
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FIGURE 5: COUNTY COMPARISON GROUPS

Notes: The data are from the Semiconductor Industry Association’s (SIA) U.S. Semiconductor Ecosystem Map. Counties with employment >100 in 11 high-
tech sectors (defined by Census Bureau (2024)) but no private semiconductor production facility (“non-semiconductor counties”) are marked in red. Counties
with a semiconductor fabrication facility (“fab counties”) are marked in green. Counties with a semiconductor facility but no fabrication facility (“fabless
counties”) are marked in blue.
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FIGURE 6: EMPLOYMENT IN SEMICONDUCTORS: SIMPLE DID

A. Semiconductor vs. High-Tech Non-Semiconductor Counties

B. Fab vs. Fabless Counties

Notes: Estimates are from event-study specification of simple difference-in-differences, equation (2) in text. Com-
parison groups are defined in Section 4. Outcome is the number of workers employed in the semiconductor sector
(NAICS industry code 334413). Source is QCEW 6-digit data. Sample includes all counties with at least 100 workers
in 11 high-tech sectors, as defined in Census Bureau (2024), as of 2021Q1. Shaded area represents 95% confidence
interval. Standard errors are clustered at the county level.
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FIGURE 7: EMPLOYMENT IN SEMICONDUCTORS: SYNTHETIC DID

A. Semiconductor vs. High-Tech Non-Semiconductor Counties

B. Fab vs. Fabless Counties

Notes: Estimates are from synthetic difference-in-difference (SDID) specification, equation (3) in text. Outcome
is the number of workers employed in the semiconductor sector (NAICS industry code 334413). Source is QCEW
6-digit data. Comparison groups are defined in Section 4. Estimated treatment effects produced by implementing
the event-study estimator proposed by Clarke, Pailañir, Athey, and Imbens (2024). The shaded area represents the
confidence interval at the 95% level.
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FIGURE 8: NON-RESIDENTIAL CONSTRUCTION EMPLOYMENT: SYNTHETIC DID

A. Semiconductor vs. High-Tech Non-Semiconductor Counties

B. Fab vs. Fabless Counties

Notes: Estimates are from synthetic difference-in-difference (SDID) specification, equation (3) in text. Outcome
is the number of workers employed in either industrial building construction (NAICS 236210) or commercial and
institutional building construction (NAICS 236220). Source is QCEW 6-digit data. Comparison groups are defined
in Section 4. Estimated treatment effects produced by implementing the event-study estimator proposed by Clarke,
Pailañir, Athey, and Imbens (2024). The shaded area represents the confidence interval at the 95% level.

39



FIGURE 9: TOTAL COUNTY EMPLOYMENT: SYNTHETIC DID

A. Semiconductor vs. High-Tech Non-Semiconductor Counties

B. Fab vs. Fabless Counties

Notes: Estimates are from synthetic difference-in-difference (SDID) specification, equation (3) in text. Outcome is
the number of workers employed in all NAICS 6-digit sectors. Source is QCEW 6-digit data. The sample includes
all counties with at least 100 workers in the 11 high-tech sectors, as defined in Census Bureau (2024) as of 2021Q1.
Comparison groups are defined in Section 4. Estimated treatment effects produced by implementing the event-
study estimator proposed by Clarke, Pailañir, Athey, and Imbens (2024). The shaded area represents the confidence
interval at the 95% level. The employment numbers are obtained from the BLS Quarterly Census of Employment
and Wages.
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TABLE 1: SUMMARY STATISTICS: TREATED AND CONTROL COUNTIES

Semiconductor vs. Non-Semiconductor Fab vs. Fabless

Control Treated Control Treated

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Panel A: General County Characteristics

Total Empl. (in thousands) 61.6 108.0 291.8 507.9 199.6 382.1 365.2 580.9
Manufacturing, as % of total emp 3.2 4.9 4.2 3.9 4.1 4.5 4.3 3.4
Empl. in Semiconductors 3.4 43.1 850.1 3538.0 53.9 158.8 1483.1 4653.7
Empl. in Semi. Materials/Equip. 10.4 78.4 141.5 622.8 72.2 512.1 196.6 696.7
Avg. Weekly Wage, all Industries 734.6 179.1 909.7 300.4 876.5 346.3 936.1 257.4
Unemployment Rate 5.8 1.9 5.3 1.2 5.6 1.3 5.1 1.1
Rural % 28.2 20.5 17.3 19.4 24.5 24.2 11.5 11.7

Panel B: Demographics

Panel B.1: Gender
Male % 49.6 1.4 49.5 0.9 49.6 0.9 49.4 0.8
Female % 50.4 1.4 50.5 0.9 50.4 0.9 50.6 0.8

Panel B.2: Race/Ethnicity
White % 83.8 14.1 82.7 11.9 85.1 10.3 80.8 12.7
Black % 11.7 13.1 9.4 9.2 7.9 6.8 10.6 10.6
Asian % 3.2 5.5 6.4 6.6 5.2 6.7 7.4 6.5
Hispanic % 10.6 12.6 14.8 13.4 12.6 13.6 16.6 13.0

Panel B.3: Age
Ages under 19 % 25.8 3.3 25.5 2.9 25.2 3.0 25.8 2.7
Ages 20 to 24 % 7.3 3.0 7.6 3.2 7.5 3.2 7.6 3.2
Ages 25 to 34 % 11.5 2.1 12.2 2.3 11.8 2.5 12.6 2.1
Ages 35 to 44 % 13.4 1.5 14.0 1.5 13.6 1.4 14.3 1.6
Ages 45 to 54 % 13.3 1.6 13.5 1.6 13.4 1.4 13.5 1.6
Ages 55 to 64 % 13.2 2.0 12.8 1.7 13.2 1.7 12.5 1.7

Number of counties 752 149 66 83

Notes: Comparison groups are defined in Section 4. Employment and wages are from the QCEW for 2015Q1. Employment in semiconductors for NAICS industry code 334413.
Employment in semiconductor materials/equipment is for NAICS 333242 (equipment) and NAICS 325120, 325180 (material inputs). Unemployment data are from the BLS Local
Area Unemployment Statistics (https://www.bls.gov/lau/) for 2015. Rural share is from the Census Bureau Urban and Rural Geographic Area data (https://www.census.gov/
programs-surveys/geography/guidance/geo-areas/urban-rural.html) for 2010. County demographic data taken from SEER U.S. County Population Data (https://seer.
cancer.gov/popdata/download.html#19) for 2010.
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TABLE 2: EMPLOYMENT IN SEMICONDUCTORS: SIMPLE DID

Semiconductor
production

employment

Semiconductor
equipment &

materials
employment

Semiconductor
production,

equipment &
materials

employment

(1) (2) (3)

Panel A: Semiconductor vs. Non-Semiconductor Counties

Treated x Post-USICA 106.09*** 34.81** 140.90***

(39.90) (16.82) (50.17)

Observations 36941 36941 36941

Pre-USICA outcome mean (treated counties) 868.7 165.3 1034.0

County FE Y Y Y

Year-Quarter FE Y Y Y

Panel B: Fab vs. Fabless Counties

Treated x Post-USICA 191.35*** 78.53** 269.88***

(70.80) (31.21) (88.81)

Observations 6109 6109 6109

Pre-USICA outcome mean (treated counties) 1523.6 239.4 1763.0

County FE Y Y Y

Year-Quarter FE Y Y Y

Notes: Estimates are from simple difference-in-difference (DID) specification, equation (2) in text. Comparison groups are
defined in Section 4. Post-USICA indicator identifies quarters after USICA passed in the U.S. Senate (2021Q3 or later). Outcome
in Column 1 is the number of workers employed in the semiconductor sector (NAICS industry code 334413). Outcome in Column
2 is the number of workers employed in the manufacturing of equipment (NAICS 333242) or material inputs (NAICS 325120,
325180) for semiconductors. Outcome in Column 3 is the number of workers employed in either the semiconductor industry or
the manufacturing of equipment (NAICS 333242) or material inputs (NAICS 325120, 325180) for semiconductors. The pre-USICA
outcome mean is the outcome mean for treated counties for the 2015Q1-2021Q2 period. *p <0.10; **p <0.05; ***p <0.01.
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TABLE 3: EMPLOYMENT IN SEMICONDUCTORS: SYNTHETIC DID

Semiconductor
production

employment

Semiconductor
equipment &

materials
employment

Semiconductor
production,

equipment &
materials

employment

(1) (2) (3)

Panel A: Semiconductor vs. Non-Semiconductor Counties

Treated x Post-USICA 110.41*** 15.75 124.08***

(35.19) (12.00) (38.53)

Observations 36941 36941 36941

Pre-USICA outcome mean (treated counties) 868.7 165.3 1034.0

Panel B: Fab vs. Fabless Counties

Treated x Post-USICA 180.13*** 27.27 210.94***

(52.48) (18.31) (64.34)

Observations 6109 6109 6109

Pre-USICA outcome mean (treated counties) 1523.6 239.4 1763.0

Notes: Estimates are from synthetic difference-in-difference (SDID) specification, equation (3) in text, using Stata sdid com-
mand. Comparison groups are defined in Section 4. Post-USICA indicator identifies quarters after USICA passed in the U.S.
Senate (2021Q3 or later). Outcome in Column 1 is the number of workers employed in the semiconductor sector (NAICS indus-
try code 334413). Outcome in Column 2 is the number of workers employed in the manufacturing of equipment (NAICS 333242)
or material inputs (NAICS 325120, 325180) for semiconductors. Outcome in Column 3 is the number of workers employed in ei-
ther the semiconductor industry or the manufacturing of equipment (NAICS 333242) or material inputs (NAICS 325120, 325180)
for semiconductors. The pre-USICA outcome mean is the outcome mean for treated counties for the 2015Q1-2021Q2 period. *p
<0.10; **p <0.05; ***p <0.01.
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TABLE 4: WEEKLY WAGES IN SEMICONDUCTORS

Semiconductor
wages

Semiconductor
equipment &

materials
wages

Semiconductor
production,

equipment &
materials

wages

(1) (2) (3)

Panel A: Semiconductor vs. Non-Semiconductor Counties, Simple DID

Treated x Post-USICA 254.23** 95.03** 268.96***

(99.66) (38.29) (99.65)

Observations 36941 36941 36941

Pre-USICA outcome mean (treated counties) 829.2 411.0 931.0

Panel B: Fab vs. Fabless Counties, Simple DID

Treated x Post-USICA 239.90 70.59 269.65

(187.13) (73.44) (187.79)

Observations 6109 6109 6109

Pre-USICA outcome mean (treated counties) 1085.7 535.7 1191.4

Panel C: Semiconductor vs. Non-Semiconductor Counties, Synthetic DID

Treated x Post-USICA 223.48** 95.39** 199.97**

(91.05) (47.41) (79.84)

Observations 36941 36941 36941

Pre-USICA outcome mean (treated counties) 829.2 411.0 931.0

Panel D: Fab vs. Fabless Counties, Synthetic DID

Treated x Post-USICA 166.22 77.75 234.75*

(144.59) (77.49) (140.20)

Observations 6109 6109 6109

Pre-USICA outcome mean (treated counties) 1085.7 535.7 1191.4

Notes: Estimates in Panels A & B are of simple difference-in-difference (DID) specification, equation (1) in text. Panels C & D
are of synthetic difference-in-difference (SDID) specification, equation (3) in text. Comparison groups are defined in Section 4.
Post-USICA indicator identifies quarters after USICA passed in the U.S. Senate (2021Q3 or later). Outcome in Column 1 is the
average weekly wage for workers employed in the semiconductor sector (NAICS industry code 334413). Outcome in Column 2
is the average weekly wage for workers employed in either the manufacturing of equipment (NAICS 333242) or material inputs
(NAICS 325120, 325180) for semiconductors. Outcome in Column 3 is the average weekly wage for workers employed in either
the semiconductor industry or the manufacturing of equipment or material inputs for semiconductors. The pre-USICA outcome
mean is the outcome mean for treated counties for the 2015Q1-2021Q2 period. *p <0.10; **p <0.05; ***p <0.01.
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TABLE 5: LOCAL SPILLOVERS: SYNTHETIC DID

Semiconductor
inputs

employment

Non-residential
construction
employment

Total county
employment

County GDP
(00,000s USD)

(1) (2) (3) (4)

Panel A: Semiconductor vs. Non-Semiconductor Counties

Treated x Post-USICA 53.81** 135.78** -2246.02 -4.59
(25.69) (56.64) (2643.47) (5.06)

Observations 36941 36941 36941 7920
Pre-USICA outcome mean (treated counties) 1067.6 1800.1 307465.5 590.9

Panel B: Fab vs. Fabless Counties

Treated x Post-USICA -48.10 202.61** 8503.87* 13.20
(55.70) (101.87) (5089.69) (8.49)

Observations 6109 6109 6109 1314
Pre-USICA outcome mean (treated counties) 1516.4 2058.4 386371.7 706.2

Notes: Notes: Estimates are from synthetic difference-in-difference (SDID) specification, equation (3) in text. Comparison groups are defined in
Section 4. Post-USICA indicator identifies quarters after USICA passed in the U.S. Senate (2021Q3 or later). Outcome in Column 1 is the aggregate
number of workers employed in the input sectors for semiconductors (NAICS codes 331410, 334418, 334412, 334416, 334417, 334419, 326112,
326113, 334118, 334515 and 811310; see Section 5.3 for sector descriptions.). Outcome in Column 2 is the number of workers employed in non-
residential construction building construction (NAICS 541713 and 541715). Outcome in Column 3 is the total county employment (All 6-digit
NAICS industries aggregated). The pre-USICA outcome mean is the outcome mean for treated counties for the 2015Q1-2021Q1 period. Outcome
in Column 4 is the yearly county GDP in hundred thousands of chained US dollars (from the Bureau of Economic Analysis, available only through
2023; data can be accessed at https://apps.bea.gov/regional/downloadzip.htm). *p <0.10; **p <0.05; ***p <0.01.
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