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1 Introduction

1.1 Motivation

Sequential screening models have been used extensively in economics and revenue management to study

optimal contract design when buyers learn their valuations over time. In the classic formulation of

sequential screening pioneered by Courty and Li (2000), a profit-maximizing seller faces buyers that

have initial partial-private information about their valuation, for example the mean, and privately learn

their full valuation after some time. In the classic setting, buyers are required to participate from an

interim perspective: their expected gains at the time of contracting have to offset their outside option.

A salient example discussed by Courty and Li (2000) is the airline industry in which, for example,

travelers purchase tickets in advance, but may only realize their actual valuation once the date of the

trip approaches.

Even though the optimal contracts that arise may offer partial refunds, the initial advanced price

is large enough such that some travelers experience negative ex-post utility while still being willing to

participate interim. This situation arises in other industries as well, such as hotels, theaters or even

railroads where advanced pricing/refunds type contracts are also offered.

In many new markets, however, sellers are constrained to sell products in such a way that buyers

obtain a non-negative net utility once they have realized their valuation, that is from an ex-post per-

spective. For example, in online shopping buyers may have the chance to return a purchased item after

delivery, usually at no or low cost (Krähmer and Strausz (2015)). In the online display advertising

market typical business constraints impose that publishers cannot use up-front fees (Balseiro, Mirrokni,

and Paes Leme (2016)) and instead run auctions, for example second-price. Thus, the seller needs

to guarantee participation not only initially – at the interim level – but also after the buyers have

completely learned their valuation – at the ex-post level.

Motivated by these new markets, we study the sequential screening problem as described by Courty

and Li (2000) and in order to match our previous narrative we incorporate ex-post participation con-

straints. Ex-post participation constraints rule out the optimal contracts derived by Courty and Li

(2000) with up-front fees. As pointed out by Krähmer and Strausz (2015) because different up-front

fees cannot be used to price discriminate the different buyers, it may be that a static contract, one that

does not screen the buyers interim, becomes optimal under ex-post participation constraints. Building

on the work by Krähmer and Strausz (2015), our objective is to understand when in fact the optimal

selling mechanism is static (buyers are not screened interim) or sequential (buyers are screened interim)

and obtain a full characterization of such contracts. Our work highlights the significant revenue im-
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provements that can be attained by using a sequential contract relative to a static one, even in the

presence of ex-post participation constraints.

Our model considers a seller who is selling one unit of an object at zero marginal cost to a buyer

who has an outside option of zero. The sequence of events unfolds in two periods. In the first, the buyer

privately learns her interim type, for example the mean of her valuation distribution, and the parties

contract—important parts of our analysis are done for binary interim types of buyers, low and high. The

high type has a distribution of ex-post values that dominates the distribution of the low type in some

stochastic order. The contract specifies allocation and payment functions. In the second period, the

buyer privately learns her valuation, and allocations and transfers are realized. At this point, the buyer

only accepts the contracting terms if her realized net utility is weakly larger than her outside option.

This model aligns with our aforementioned examples. In online shopping, the first period corresponds

to the purchasing time. At this time the buyer possesses private information about her valuation but

can only know her valuation with certainty after inspecting the purchased item. In the second period,

the buyer is delivered the item and has the option to return it, at low or no cost. In the case of display

advertising, some publishers use a sequence of auctions known as “waterfall auctions” that implicitly

impose different priorities over participants.1 Commonly, higher-priority auctions have higher reserve

prices. The first period can be thought of as the time at which the buyer decides in which auction

(priority/reserve) to participate in. The second period is when the auctions are actually run.

1.2 Results

One of our main contributions is to characterize when a static contract—that is, a contract that does

not sequentially screen buyers—is optimal. We provide a necessary and sufficient condition for the

optimality of the aforementioned contract, we refer to it as the average profit-to-rent condition. The

characterization we provide is intuitive. At the static contract the seller offers a single price to both low

and high type buyers. This price is too large for low types and too low for high types relative to what

the seller would set if he were to know the types. To increase his revenue with respect to the static

contract, the seller could try to increase the price for high type buyers, however, this would incentivize

them to imitate the low types. Another option the seller has is to decrease the price for low type

buyers, but this would again incentivize the high types to mimic the low types. In order to increase

revenue and to deter high type buyers from imitating the low types, the seller can reduce the price for

a portion of low types thus serving more of them and, at the same time, randomize their allocation

1See, for example, https://adexchanger.com/the-sell-sider/the-programmatic-waterfall-mystery. A similar dynamic oc-

curs when sellers offer “preferred deals” to advertisers (see, for example, Mirrokni and Nazerzadeh (2015)).
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so that high types do not take the low types’ contract. The profit-to-rent condition establishes that

this deviation is not profitable for the seller; hence, the profit-to-rent condition is necessary for the

optimality of the static contract. Notably, we also show that it is sufficient. Our characterization is a

weighted average monotonicity condition of the virtual valuations around the optimal static threshold

that in some settings encodes information about the similarity of the interim types. For example, in the

case of exponential valuations, the static contract is optimal if and only if the means of the distributions

of the low and high type are appropriately close.

Our second main contribution characterizes the optimal mechanism when the condition mentioned

above does not hold and a static contract is no longer optimal. We prove that the optimal sequential

contract randomizes the low type and gives a deterministic allocation to the high type. Randomization

occurs to prevent the high type buyer from taking the low type’s contract. More specifically, the optimal

contract is characterized by an allocation probability x ∈ (0, 1), and three thresholds θ1, θ2, and θH

with θ1 ≤ θH ≤ θ2. In this contract, the seller allocates the object to a low type buyer with probability

x whenever her valuation is between θ1 and θ2, and asks for a payment of θ1 · x. When the valuation

of this type is above θ2, the object is always allocated to her and the seller demands a payment of

θ2 − (θ2 − θ1) · x. The high type buyer gets the object with certainty and only when her valuation is

above θH , at which point the payment she has to make to the seller is θH . These parameters are set in

such a way that the interim incentive compatibility constraints are satisfied.

A salient feature of this type of contract is that it discriminates the low type in two dimensions.

First, we establish that θ1 is above the optimal threshold a seller would set if she was selling exclusively

to low type buyers. That is, the low type buyer is being allocated the object less often in the presence

of high type buyers. The opposite holds for high type buyers, they are being allocated the object more

often than if they were alone. Second, there is a range of values for which the object is sold to the

low type with some probability strictly below one, which further reduces the chances of a low type to

receive the object compared to a case in which there are no high type buyers. We illustrate these results

with the example of the exponential distribution for which we have explicit solutions. We find that for

exponential valuations the sequential contract can exhibit revenue improvements of up to 16-27% with

respect to the static contract.

Towards the end of the paper, we consider the case of many interim types. We generalize the profit-

to-rent condition to a setting with an arbitrary number of interim types. We also discuss directions on

how to expand our analysis and results to this setting, as well as the challenges that arise.
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1.3 Related Work

Our model builds on the sequential screening literature as pioneered by Courty and Li (2000), with an

interim participation constraint.2 In contrast, in this paper we impose an ex-post participation constraint.

The closest paper to ours that studies sequential screening with ex-post participation constraints is

Krähmer and Strausz (2015). They establish that the static contract is optimal under a monotonicity

condition regarding the cross-hazard rate functions. This condition rules out some common distributions

for values such as the exponential distribution. Furthermore, the condition is only sufficient, and

therefore, does not provide a complete characterization of the space of primitives for which the static

contract is optimal. We close this gap by providing a necessary and sufficient condition under which the

static contract is optimal. Our condition leverages the economic intuition that lies behind a potential

profitable deviation from the optimal static contract. Further and importantly, when the condition fails

we characterize the optimal sequential mechanism and show that randomization of one of the interim

types is required for optimality.3

In terms of approaches, Krähmer and Strausz (2015) relax both the low to high incentive constraint

and monotonicity constraint and then show that, under their condition, the contract that maximizes

the Lagrangian is deterministic and that as a result the static contract is optimal. In contrast, we also

relax the incentive constraint but maintain the monotonicity constraint. For the relaxed problem, we

perform a first-principle analysis, in the style of Samuelson (1984) and Fuchs and Skrzypacz (2015) that

leads us to identify the right structure of the optimal contract. In turn, this permits us to characterize

the optimal sequential contract when our condition breaks. In related recent work, Heumann (2016)

considers a setting in which a seller can design the screening mechanism as well as the information

disclosure mechanism with ex-post participation constraints.

The sequential nature of our model and the presence of ex-post participation constraints is related to

the work of Ashlagi, Daskalakis, and Haghpanah (2016) and Balseiro, Mirrokni, and Paes Leme (2016).

These authors consider a model in which a seller, constrained by ex-post partcipation (also motivated by

the display advertising market), repeatedly sells objects to a buyer whose valuations are independent

across periods. Both papers provide characterizations for a nearly optimal mechanism. They are

2See Akan, Ata, and Dana (2015) for a recent adaptation of the Courty and Li (2000) formulation to study advanced

purchase contracts in revenue management settings.
3See also Manelli and Vincent (2007) and Daskalakis, Deckelbaum, and Tzamos (2015) for examples of multi-good

environments in which stochastic allocations can improve over deterministic ones. In a related note, Krähmer and Strausz

(2016) establish that with multiple, as opposed to a single good, generically, the static contract is not optimal for the

sequential screening problem with ex-post participation constraints.

5



different from ours because we consider a single sale and construct the exactly optimal mechanism in a

sequential screening model.

Our optimal mechanism is related to the BIN-TAC auction derived in the context of online display

advertising by Celis, Lewis, Mobius, and Nazerzadeh (2014). This is a static auction that offers two

options to advertisers: a buy-it-now (BIN) option in which buyers can purchase the impression at a

posted high price, and a take-a-chance (TAC) option in which the highest bidders are randomly allocated

the impression (if no bidder went for the BIN). This auction is tailored to approximate ironing in the

classic static Myerson setting for non-regular distributions that commonly arise in display advertising

settings. This mechanism is similar in spirit to ours as it randomizes low valuation buyers to separate

them from high valuations ones. However, with one bidder the BIN-TAC auction reduces to a posted

price which corresponds to the static contract in our setting. In contrast to their static setting, we

study a two-period model in which the buyer is sequentially screened and randomization occurs even

with one bidder.

2 Model

2.1 Payoffs and Private Information

We consider a seller (he) who is selling one unit of an object at zero cost to a buyer (she) with an

outside option of zero value. Both parties are risk-neutral and have quasilinear utility functions. The

sequence of events unfolds in two periods.

In the first period, the buyer privately learns her type and then the parties contract. The type

provides information about the distribution of the ex-post values of the buyer, her true willingness-to-

pay for the object. The contract specifies allocation and payment functions.

In the second period, the buyer privately learns her valuation, and allocations and transfers are

realized. We refer to the type realized in period 1 as the interim type and the valuation realized in

period 2 as the ex-post type.

There are finitely many types, denoted k ∈ {1, . . . ,K}, and the prior probability of type k is given

by αk with αk > 0 and
∑K

k=1 αk = 1. In the second period, a buyer of type k privately learns her

valuation θ which we assume to have a continuously differentiable c.d.f. Fk(·) and pdf fk(·), with full

support in Θ ⊆ [0,∞]. We assume that Θ is a connected interval of the form [0, θmax]. It will be

convenient to denote the upper c.d.f. by

F k(·) , 1− Fk(·).
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All the distributions are common knowledge. We denote the virtual valuation µk(·) of interim type k

by

µk(θ) , θ − 1− Fk(θ)
fk(θ)

, ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ.

For the rest of the paper we make the standard assumption that:

1− Fk(θ)
fk(θ)

, is non-increasing in θ,∀k ∈ {1, . . . ,K}. (DHR)

This assumption facilitates our discussions. However, for our formal results we will need a weaker

assumption that we introduce later.

The terms of trade are specified in the first period by the seller. For a payment t ∈ R and a

probability of receiving the object x ∈ [0, 1], a buyer with valuation θ receives a utility of θ ·x− t, while

the seller gets paid t.

We assume that the buyer agrees to purchase the object only if she is guaranteed a non-negative

net utility for any possible valuation of the object she might have. That is, we require θ · x − t to be

non-negative for all θ. The seller’s problem is to design a contract that maximizes his expected payment,

satisfying the ex-post participation constraint together with incentive compatibility.

2.2 Mechanism Design Formulation

By means of the revelation principle (see, e.g., Myerson (1979)) we can focus on incentive compatible

direct revelation mechanisms, with allocations xk : Θ → [0, 1] and transfers tk : Θ → R, that depend

on the types (k, θ) reported to the mechanism. Then, for a buyer reporting an interim type k′ and

an ex-post type θ′ the mechanism allocates the object with probability xk′(θ
′) and charges the buyer

tk′(θ
′).

We define the ex-post utility of a buyer who reported k in the first period and θ′ in the second period

while her true valuation is θ as

uk(θ; θ
′) , θ · xk(θ′)− tk(θ′),

with the understanding that uk(θ) equals uk(θ; θ) . Similarly, we define the interim expected utility of

a buyer whose true interim type is k but reported to the mechanism k′ as

Ukk′ ,
∫

Θ
max
θ′∈Θ
{uk′(z; θ′)} · fk(z)dz,

where the maximum is included because double deviations are in principle allowed. Note, however, that

with distributions with common support and under ex-post incentive compatibility, the maximum will

always be achieved at θ′ equal to z, and we can restrict attention to single deviations.
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There are two kinds of incentive compatibility constraints that must be satisfied by our mechanism.

The first one is the ex-post incentive compatibility or (ICxp) constraint which requires that for any

report in the first period, truth-telling is optimal in the second period, that is,

uk(θ) ≥ uk(θ; θ′) ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ. (ICxp)

The second one is the interim incentive compatibility or (ICi) constraint which requires that truth-

telling is optimal in the first period, that is,

Ukk ≥ Ukk′ ∀k, k′ ∈ {1, . . . ,K}. (ICi)

Also, we require the mechanism to satisfy an ex-post individual rationality constraint or (IRxp)

uk(θ) ≥ 0, ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ. (IRxp)

Then, the seller’s problem is

max
K∑
k=1

αk ·
∫

Θ
tk(z) · fk(z)dz (P)

s.t (ICi), (ICxp), (IRxp)

0 ≤ x ≤ 1 ,

where we use boldfaces to denote vectors. Observe that (IRxp) implies interim individual rationality.

In fact, if we were to relax (P) by considering only interim individual rationality we would be in the

setting of Courty and Li (2000) for discrete interim types.

In general, two types of contract can arise as a solution to the seller’s problem (P) : static and

sequential. A static solution to problem (P) corresponds to the case when the allocations and transfers

(xk, tk) do not depend on the interim type k. In this case we have a unique menu (x, t) that is offered to

the buyer and the contract does not screen among interim types. We use (Ps) to denote the constrained

version of (P) to static contracts, which we refer to as the static program. In contrast, a sequential

solution allows for different menus that depend on the interim type k, and each type of buyer self-

selects into one of the menus. The problem (P), referred as the sequential program, allows for such

solutions.

The main focus of this paper is two-fold. First, to study when the optimal solutions to the static and

sequential programs, (Ps) and (P), coincide. Second, when they do not coincide, we aim to characterize

the optimal solution to (P).
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3 A Classic Example of Sequential Screening

We use the motivating example of Courty and Li (2000) to illustrate the power of sequential screening

in the presence of an ex-post participation constraint. We show that a sequential contract outperforms

the static contract.

There are two types of potential buyers, low type and high type. One-third of potential buyers

are low type whose valuation is uniformly distributed in [1, 2], two-thirds are high type buyers with

valuation uniformly distributed in [0, 1]∪ [2, 3]. Courty and Li (2000) think of the low type as a leisure

traveler and of the high type as a business traveler with the same mean but larger variability in her

valuation. The seller has a production cost equal to 1.

The optimal static contract sets the optimal monopoly price, p̂, equal to 2, which yields a profit

of 1/3. The static contract only serves the high types with high realized valuations. Courty and Li

(2000) in their setting with an interim participation constraint show that the seller can significantly

increase its profits with sequential screening by offering a menu of advanced payments/partial refund

contracts. They establish that the optimal contract for their setting offers an advanced payment of 1.5

and no refund to the leisure traveler, and an advanced payment of 1.75 and 1 of refund to the business

traveler. In this contract a buyer can have a negative realized net utility. For example, the leisure

traveler initially pays 1.5 but her actual valuation can be any value within [1, 2] and, therefore, half of

the time she will obtain negative net utility after learning her valuation.

Because of the advanced payments these contracts typically will not satisfy an ex-post participation

constraint, which we study next.

Let us consider the following sequential contract as a simple deviation from the optimal static

contract. The seller offers a menu of two quantities and prices, (xL, pL) and (xH , pH). The second

contract is set equal to the optimal static contract, that is, (xH , pH) = (1, 2). Hence, the selling price

for the high type is 2 and high types that buy receive the full quantity.

Now, we find the optimal quantity and price for the low type buyer. Given the contract for the high

type, the seller’s profit is given by:

1

3
× xL × (pL − 1)× (2− pL) +

2

3
× 1

2
× (2− 1),

where xL ∈ [0, 1] and pL ∈ [1, 2]. We need to ensure that the menus are interim incentive compatible.

The low to high incentive constraint is always satisfied (pH equals 2), and the high to low incentive

constraint is given by:
1

2
×
(5

2
− 2
)
≥ 1

2
× xL ×

(5

2
− pL

)
.
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Profit maximization implies that this constraint must be binding, and therefore, the seller’s profit

becomes:
1

3
× (pL − 1)× (2− pL)

5− 2pL
+

1

3
.

The first order condition yields an optimal price equal to
(
5−
√

3
)
/2 which, in turn, delivers a profit of

2/3 − 1/(2
√

3). The improvement of the sequential contract versus the optimal static contract is then

1−
√

3/2 ≈ 13%.

From this simple exercise we learn an important lesson: even in a simple setting a sequential contract

can have substantial benefits over a static contract. In this paper we study more generally when a

sequential contract outperforms a static contract and what drives this revenue improvement.

4 Optimality of Static Contract

First, we start by characterizing conditions under which it is optimal not to screen the interim types. In

the main theorem of this section we provide a necessary and sufficient condition for the static contract

to be optimal. We begin with a reformulation of the problem based on standard techniques that use

the envelope theorem, and enables us to solve for the allocation and utilities of the lowest ex-post types

instead of both allocations and transfers. Using the reformulation we characterize the optimal static

contract. In Section 4.2, we use the optimal static contract together with a simple deviation analysis to

obtain an intuitive necessary condition for its optimality. In Section 4.3, we show that this condition is

both necessary and sufficient.

4.1 Problem Reformulation and Static Solution

We obtain a more amenable characterization of the constraints by eliminating the transfers from the

them as in the classical Myersonian analysis.

Lemma 1 (Necessary and Sufficient Conditions for Implementation)

The mechanism (x, t) satisfies (ICi),(ICxp) and (IRxp) if and only if

1. xk(·) is a non-decreasing function for all k in {1, . . . ,K} and

uk(θ) = uk(0) +

∫ θ

0
xk(z)dz, ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ. (1)

2. uk(0) ≥ 0 for all k in {1, . . . ,K}.

3. uk(0) +
∫

Θ xk(z)F k(z)dz ≥ uk′(0) +
∫

Θ xk′(z)F k(z)dz for all k, k′ in {1, . . . ,K}.

10



All proofs are provided in the Appendix. The first condition in the lemma is the standard envelope

condition and it comes from the ex-post incentive compatibility constraint. The second condition is

derived from the ex-post individual rationality constraint and the fact that uk(θ) is non-decreasing.

The third condition is the envelope formula inserted into the interim incentive compatibility constraint.

Lemma 1 enables us to obtain a more compact formulation for the seller’s problem. Specifically,

we can use equation (1) and integration by parts to write down the objective of (P) in terms of the

allocation rule x and the indirect utilities {uk(0)}Kk=1 of the lowest ex-post types. To this end, we denote

each uk(0) as a new variable by uk. The new formulation is then:

max
0≤x≤1

−
K∑
k=1

αkuk +

K∑
k=1

αk

∫
Θ
xk(z)µk(z)fk(z)dz (P)

s.t xk(θ) non-decreasing, ∀k ∈ {1, . . . ,K}

uk ≥ 0, ∀k ∈ {1, . . . ,K}

uk +

∫
Θ
xk(z)F k(z)dz ≥ uk′ +

∫
Θ
xk′(z)F k(z)dz, ∀k, k′ ∈ {1, . . . ,K},

Note that in (P) the variables are the allocation rule x and the vector of the indirect utilities of the

lowest ex-post types u. Once we solve for these variables the transfers are determined by equation (1).

As we mentioned before, a solution to (P) that screens the interim types is a sequential contract.

In contrast, a static solution to (P) pools the interim types. Formally, we say that a solution to (P) or

contract is static when xk(·) ≡ x(·) and uk ≡ u for all k in {1, . . . ,K}.

We earlier defined the virtual valuation µk(·) of interim type k. Given (DHR) the virtual valuation

for each type k has exactly one zero which we denote by θ̂k. Without loss of generality we assume for

the remainder of the paper that we can order the interim types:

θ̂1 ≤ · · · ≤ θ̂K .

It turns out that solving (P) over the space of static contracts is a simpler problem. The (ICxa)

constraints disappear from the problem because in this case there is effectively only one interim type.

Also, it is clear that any optimal solution sets uk = 0 for all k in {1, . . . ,K}. So, the static version of

the seller’s problem is given by

max
0≤x≤1

∫
Θ
x(z) ·

( K∑
k=1

αkµk(z)fk(z)
)
dz (Ps)

s.t x(θ) non-decreasing,
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where a simple calculation shows that the term in parenthesis is equal to the virtual value function of

the mixture distribution times the density function of the mixture. Hence, this problem corresponds to

the classic optimal mechanism design problem applied to the mixture distribution over types.

From this formulation we see that the relevant quantity that shapes the allocation x(·) is µ̄(θ) ,∑K
k=1 αkµk(θ)fk(θ). In general, because there is only one buyer, independent of any regularity assump-

tions imposed over µ̄(θ), one can show that an optimal way to choose a non-decreasing allocation x(·)

that maximizes ∫
Θ
x(z)µ̄(z)dz, (2)

is a threshold allocation, that is, a single posted price (see, e.g., Myerson (1981) or Riley and Zeckhauser

(1983)). We summarize this in the following lemma.

Lemma 2 (Threshold Allocation)

A solution to (Ps) is a threshold allocation characterized by θ̂ in [θ̂1, θ̂K ] that maximizes (2).

4.2 A Necessary Condition

In the rest of this Section and the next Section 5 we provide our results for the setting with binary

interim types. We denote the low type by L and the high type by H. In Section 6 we return to the

general setting with finitely many interim types.

The static optimal solution is characterized by a threshold allocation θ̂. In this section, we leverage

this characterization to deduce an intuitive necessary condition for the optimality of the static contract.

As we will show later in Section 4.3 this condition turns out to be not only necessary but also sufficient.

For ease of exposition, we assume that the high type dominates the low type in the hazard rate

order sense:
1− FH(θ)

fH(θ)
≥ 1− FL(θ)

fL(θ)
, ∀θ ∈ Θ. (3)

We note that we do not need this assumption for the formal arguments.

Suppose now that a static contract is optimal, that is, setting a single posted price equal to θ̂ for

both types solves (P). Consider Figure 1, where we have plotted the virtual value function weighted by

the density function for each type.4 If the types were public, the seller would optimally set posted prices

equal to θ̂L and θ̂H for types L and H, respectively. In this way, the seller would serve buyers if and only

if they have positive virtual values. In contrast, when selecting a single posted price θ̂, there is surplus

4We needly represent the virtual valuation weighted by fk(·). This does not change the signs in the figure but gives a

convenient geometric representation.
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0

µk(·)fk(·)

valuation

µH(·)fH(·)
µL(·)fL(·)

θ̂θ̂L θ̂H

Figure 1: Weighted virtual valuations for low type (dotted line) and high type (dashed line) buyer

around θ̂. The shaded areas correspond to the virtual revenue that the seller leaves on the table when

using a static contract with respect to the case in which the interim types are public information.

that the seller is not extracting; the shaded area shows the regions of the virtual valuations for each type

that the static contract is not capturing. For the high type, the static contract serves too many buyers,

some of them with negative virtual values; hence, the seller would be better off by offering a higher

price. For the low type, the static contract serves too few buyers, leaving positive virtual value buyers

unserved; hence, the seller would prefer to choose a lower price. A challenge, though, is that the seller

faces incentive compatibility constraints that restrict this type of possible deviations/improvements:

1. Selling to fewer high types implies increasing the price for high types; but then the high types

have an incentive to accept the low type contract and such a deviation is not feasible.

2. Selling to more low types amounts to reducing the price from θ̂ to some value θ1. However, to

prevent the high types from taking the low type contract the seller must decrease the quantity

offered to the low types (or equivalently, randomize their allocation).

This second improvement is feasible by choosing a quantity (probability) 0 < xL < 1 to all low types

inside an interval [θ1, θ2] with θ1 ≤ θ̂ ≤ θ2, see Figure 2.

Formally these allocations correspond to the following menu:

xL(θ) =


0 if θ < θ1,

xL if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ;

xH(θ) =

0 if θ < θ̂,

1 if θ̂ ≤ θ;
(4)
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Figure 2: Weighted virtual valuations for low type (dotted line) and high type (dashed line) buyer

around θ̂. The shaded areas correspond to the virtual revenue that the seller leaves on the table when

using a static contract with respect to the case in which the interim types are public information. We

show deviation from the static contract for the low type (solid line). If A − B ≥ 0 the deviation is

profitable.

with uL = uH = 0. We refer to this deviation as an interior variation or improvement.

The interior improvement is feasible only if it satisfies both incentive compatibility constraints.

Inserting the menu (4) into the incentive constraints in (P) we obtain for the low type:

xL

∫ θ2

θ1

(1− FL(θ))dθ +

∫ θmax

θ2

(1− FL(θ))dθ ≥
∫ θmax

θ̂
(1− FL(θ))dθ,

and for the high type:

∫ θmax

θ̂
(1− FH(θ))dθ ≥ xL

∫ θ2

θ1

(1− FH(θ))dθ +

∫ θmax

θ2

(1− FH(θ))dθ,

and/or in a more compact form as a bracketing inequality:∫ θ2
θ̂

(1− FL(θ))dθ∫ θ2
θ1

(1− FL(θ))dθ
≤ xL ≤

∫ θ2
θ̂

(1− FH(θ))dθ∫ θ2
θ1

(1− FH(θ))dθ
, (5)

which contains both incentive compatibility constraints. The monotone hazard rate condition (3) guar-

antees that xL as in given by (5) always exists. The interior variation is thus feasible and we can select

xL so as to maximize the seller’s revenue.

Indeed, evaluating the interior variation in the seller’s objective yields:

xL ·
∫ θ2

θ1

µL(θ)fL(θ)dθ +

∫ θmax

θ2

µL(θ)fL(θ)dθ,
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and since µL(θ) ≥ 0 in [θ1, θ2] (c.f Figure 2) the right hand side inequality in (5) must be tight.

With the interior variation, the seller serves more low-value buyers in [θ1, θ̂] at the level of xL. This

comes at the expense of offering a lower quantity, a loss of 1 − xL to buyers with values in [θ̂, θ2]. In

Figure 2 the area A corresponds to the additional revenue the seller can make due to the variation

because he is serving more low type buyers, and region B is the efficiency loss due to the incentive

constraints.

If the static contract is optimal then this variation cannot be profitable. In terms of Figure 2 this

means the areas must satisfy A ≤ B. Hence, if the static contract is optimal then

A = xL ·
∫ θ̂

θ1

µL(θ)fL(θ)dθ ≤ (1− xL) ·
∫ θ2

θ̂
µL(θ)fL(θ)dθ = B.

In turn, since the optimal choice of xL always equals the right hand side of (5), we can insert xL in

terms of the ratio, and after some re-arranging we get∫ θ̂
θ1
µL(θ)fL(θ)dθ∫ θ̂

θ1
(1− FH(θ))dθ

≤
∫ θ2
θ̂
µL(θ)fL(θ)dθ∫ θ2

θ̂
(1− FH(θ))dθ

. (6)

To better understand this inequality consider a monopolist who faces a consumer with valuation dis-

tributed according to Fk(·). Observe that at some price θb the expected profit Πk(θb) the monopolist

makes and the expected consumer’s informational rents Ik(θb) are given by

Πk(θb) , θb · (1− Fk(θb)) =

∫ θmax

θb

µk(θ)fk(θ)dθ and Ik(θb) ,
∫ θmax

θb

(1− Fk(θ)) dθ.

If the monopolist considers lowering the price from θb to θa then the change in profit is Πk(θa)−Πk(θb).

The lower price positively impacts the information rents which increase by Ik(θa) − Ik(θb). The ratio

(Πk(θa)−Πk(θb))/(Ik(θa)−Ik(θb)) then is a measure of the average impact in profits per unit of consumer

rents the seller experiences due to the price variation. In condition (6) we have a cross version of this

ratio. In the numerator we take k = L and in the denominator k = H. In light of this observation

condition (6) suggests the following definition.

Definition 1 (Average Profit-to-Rent Ratio)

The average profit-to-rent ratio is defined by:

Rjk(θa, θb) ,
Πj(θa)−Πj(θb)

Ik(θa)− Ik(θb)
, ∀j, k ∈ {L,H}, 0 ≤ θa ≤ θb ≤ θmax.

The average profit-to-rent ratios measure changes in the seller’s profit normalized by the information

rents he gives away to the consumer due to a price deviation. The ratio Rjk compares the impact on
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profit for type j with the increase in the information rent for type k. This cross ratio arises as the

incentive compatibility constraint for type k implies that a modification in the contract for type j

affects type k as well. This was clear from our discussion regarding the internal variation above. There,

a price θ1 (smaller than θ̂ ) for the type L creates a profit improvement for the seller measured by the

numerator of R. Since the seller has to make sure that type H does not take the type L contract (by

reducing quantity), this price decrease generates a loss to the seller quantified by the denominator of R.

Back to (6) we notice that the numerator in either ratio refers to the revenue that the seller is

making from the low type over some interval, and the denominator refers to the information rent of the

high type over the same interval. Now, since the choice of θ1, θ2 was arbitrary, we obtain the following

necessary condition by taking minimum and maximum at both sides of the inequality in (6). If the

static contract is optimal then

max
θ1≤θ̂

RLH(θ1, θ̂) ≤ min
θ̂≤θ2

RLH(θ̂, θ2), (7)

The above condition establishes that if the static contract is optimal then any extra revenue the

seller can garner from low type buyers is offset by the efficiency loss due to the incentive compatibility

constraints: A−B ≤ 0 for any possible choice of θ1 and θ2.

4.3 A Necessary and Sufficient Condition

We now establish that condition (7) is in fact a necessary and sufficient condition for the optimal static

solution to coincide with the optimal solution to (P). Before we provide the main theorem, we introduce

some notation for the quantities of interest that will help us to further refine our intuition. While we

maintain the binary type framework here; we note that all definitions naturally extend to finitely many

types as we will see in Section 6.

The local version of the average profit-to-rent ratio, when θa < θ̂ < θb are close to θ̂, gives raise to

the profit-to-rent ratio.

Definition 2 (Profit-to-Rent Ratio)

The profit-to-rent ratio between type j and k is defined by:

rjk(θ) ,
µj(θ)fj(θ)

1− Fk(θ)
, ∀j, k ∈ {L,H},∀θ ∈ Θ.

The ratio rjk(θb) is obtained by limθa↑θb R
jk(θa, θb). Observe that condition (DHR) is stronger than

and implies that rkk(θ) is non-decreasing for each k ∈ {L,H}. The latter is the condition we use for

our formal results.
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Now, we are ready to state and discuss the main result of this section.

Theorem 1 (Optimality of Static Contract)

Suppose rkk(θ) is non-decreasing for each k ∈ {L,H}. The static contract is optimal if and only if

max
θ≤θ̂

RLH(θ, θ̂) ≤ min
θ̂≤θ

RLH(θ̂, θ). (APR)

This results completes the necessity condition given in Section 4.2 by showing that it is also sufficient.

We showed in Section 4.2 that condition (APR) established that the specific deviation that increases

the sales to the lower type with a lower quantity is not profitable relative to the static contract.

Theorem 1 now establishes that in fact this is not only a necessary but in fact a sufficient condition.

The sufficiency condition is noteworthy as it arises from “simple” deviations, namely, those that assign

the low type an interior allocation in a small interval around the static optimal price. In particular,

we do not need to be concerned either with more elaborate deviations which offers the low type several

options in his menu, nor do we need to trace simultaneous changes to the offers to the high type. The

present theorem confirms that this type of interior improvement for the low type is sufficient to study

changes in the seller’s revenue. In fact, we will establish in Section 5 that the family of allocations

suggested by the interior variation completely describes the optimal sequential mechanism as well.

To prove the sufficiency in Theorem 1 we rely a on dualization-type of argument. For the necessity,

we assume that condition (APR) is not satisfied and show that in that case there is a profitable deviation

as given by the following proposition.

Proposition 1 (Revenue Improvement)

Suppose rLL(θ) is non-decreasing. Assume condition (APR) does not hold. Then there exists θ1, θ2 such

that θ1 < θ̂ < θ2 and RLH(θ1, θ̂) > RLH(θ̂, θ2), for which the allocation in (4) with

xL =

∫ θ2
θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

,

yields a strict improvement in (P) over the static contract.

In the proof of Proposition 1 we can see that as soon as condition (APR) breaks two things happen.

First, a non-static contract becomes feasible as it does not violate the incentive compatibility constraints.

Note that the proposition is similar to the discussion in Section 4.2; however, it is more general because

it does not assume hazard rate order to guarantee feasibility. The mere fact that (APR) breaks implies

the feasibility of the new allocation. Second, the same contract obtains a larger expected revenue than

the static one. So, from this we see that (APR) is preventing both the feasibility and optimality of a

sequential contract.
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4.4 The Exponential Example

Before we move to the study of the optimal sequential contract it might be helpful to build some more

intuition for the results. We shall consider the case of exponentially distributed values. The main result

of this section establishes that the static contract is optimal if and only if the mean of the interim types

are sufficiently close.

We consider the exponential density functions

fk(θ) = λke
−λkθ, k = {L,H} θ ≥ 0.

We assume λL > λH , so L and H stand for low and high type respectively. Note that H has a higher

mean (1/λH) than L (1/λL) and that H dominates L in the sense of the hazard rate stochastic order

and in first order stochastic dominance. In addition, for the interim probabilities we have αL +αH = 1

with αL, αH > 0.

We begin by studying the optimal solution to the static formulation. The optimal static contract

is given by a threshold allocation. Thus, in the exponential case the seller’s expected revenue for any

given threshold θ is

Πstatic(θ) ,
∫ 1

θ
(αLµL(z)fL(z) + αHµH(z)fH(z))dz = αLθe

−λLθ + αHθe
−λHθ.

In order to find the optimal threshold we just need to maximize the expression above. The first order

condition yields

αL(θ − 1

λL
)λLe

−λLθ + αH(θ − 1

λH
)λHe

−λHθ = 0, (8)

that is, the optimal threshold is a zero of the mixture virtual valuation. Notice that equation (8) cannot

be explicitly solved; however, we can (as we do in the forthcoming results) provide comparative statics.

Interestingly, in Proposition 3 below, we show that we can obtain explicit expressions for the thresholds

characterizing the optimal sequential contract. The following lemma provides some initial properties of

the optimal static contract.

Lemma 3

The optimal solution to (Ps) is a threshold allocation characterized by θ̂ in [ 1
λL
, 1
λH

], solving (8). Also,

θ̂ is a non-increasing function of αL with θ̂(0) = 1
λH

and θ̂(1) = 1
λL
.

Next, we state a necessary and sufficient condition for the static contract to be optimal.
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Proposition 2 (Necessity and Sufficiency for the Exponential Model)

The static contract is optimal if and only if

λL − λH ≤
1

θ̂
(9)

The result follows from Theorem 1, but it requires some effort to determine the max and min in (APR)

in closed form. We note that in the right hand side, θ̂, is a solution to equation (8) and, therefore, it also

depends on the parameters λL and λH . Subsequent corollaries provide sharper characterizations that

only depend on model primitives. We highlight that (9) corresponds to a particular case of condition

(APR).

Proposition 2 provides an intuitive characterization for when the seller is better-off screening the

interim types than not. In terms of equation (9), when λL and λH are sufficiently close, then equation

(9) should hold, in which case the static contract is optimal. Conversely, when λL and λH are sufficiently

apart from each other, the static contract may not be optimal.

Intuitively, when the interim types are similar any contract that screens the types would be close in

terms of expected revenue to the static contract because for each type it could get at most what it would

get by setting thresholds 1/λL and 1/λH respectively, but θ̂ ∈ [ 1
λL
, 1
λH

]. However, when screening, the

seller has to pay an extra cost to prevent the types from mimicking each other and, since the contracts’

revenue will be similar, it is likely that this cost offsets the earnings from screening. On the other hand,

when interim types are sufficiently apart in their mean valuation then the seller can tailor the contract

to each type and in this way extract more from them than in the static contract.

Corollary 1 Assume λL ∈ (λH , 2λH ], then for any αL ∈ [0, 1] the static contract is optimal.

This result establishes that when the distributions of the low and high type buyers are sufficiently

close to each other then no matter in which proportion the types are, the static contract is always

optimal.

Corollary 2 Assume λL > 2λH , then there exists ᾱ ∈ (0, 1) such that for all αL ∈ (0, ᾱ) the sequential

contract is strictly optimal and for all αL ∈ [ᾱ, 1] the static contract is optimal.

Corollary 2 asserts that when the mean of the low and high type buyers are sufficiently different

then both contracts can be optimal. If the proportion of low type is low enough (but not zero) then the

seller is better-off screening the types. On the other hand, if there is a very large proportion of low type

buyers then the static contract is optimal. This follows because as αL increases, one can show that θ̂

decreases, and at some point condition (9) holds. This discussion suggests our final corollary.
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Corollary 3 For λH and αH fixed, there exists λ̄L larger than 2λH such that for all λL ∈ [λ̄L,∞) the

sequential contract is strictly optimal.

4.5 Discussion

We introduced earlier the condition (DHR) which establishes that the hazard rates

hjk(θ) =
1− Fk(θ)
fj(θ)

are non-increasing when j equals k. A related condition is about the cross-hazard rate functions,

hjk(θ) are non-increasing in θ, ∀j, k ∈ {L,H}. (R)

To the best of our knowledge condition (R) was first introduced in the context of sequential screening

by Krähmer and Strausz (2015). In that paper the authors show that under condition (R) the optimal

solution to (P) and to (Ps) coincide, that is, the static contract is optimal. In fact, they show this result

for multiple interim types. We discuss our generalization of condition (APR) to multiple types in Section

6. However, condition (R) is rather restrictive and is not satisfied by some common distributions. For

example, the condition is not satisfied by any pair of exponential distributions, because in this case the

cross-hazard rate is given by:

hjk(θ) =
e−(λk−λj)θ

λj
, j, k = L,H.

If, without loss of generality, we consider λL > λH then hLH(θ) is an increasing function and, therefore,

it violates conditions (R). However, notice (DHR) is satisfied because the simple hazard rate functions

are constant and equal to 1/λk.

We can also compare Theorem 1 with Lemma 12 in Krähmer and Strausz (2014). In that Lemma

they assume hHH(θ) > hLL(θ), which implies θ̂L < θ̂H , and establish that a necessary condition for the

static contract to be optimal is to have the profit- to-rent ratio rLH(θ) being increasing at θ̂. Our result

also contains this lemma, because if rLH(·) was decreasing at θ̂ we can always find θ1 < θ̂ and θ2 > θ̂

such that

RLH(θ1, θ̂) > RLH(θ̂, θ2),

so (APR) does not hold and, therefore, the static contract would not be optimal. Figure 3 illustrates

how our condition (APR) closes the gap between the ones by Krähmer and Strausz.
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is no longer optimal.

Kramer and Strausz
Necessity

Kramer and Strausz
Sufficiency

This paper
Sufficiency and Necessity

rLH(·) non-decreasing at θ̂

(APR)

(DHR)

(R)
Outside this set the static contract

Figure 3: Optimality of the static contract for (DHR) distributions, with K = 2 and a single buyer.

We can compare condition (R) and (APR). Note that condition (R) implies the monotonicity of the

profit-to-rent ratios, and therefore condition (APR) holds as

RLH(θ, θ̂) =

∫ θ̂
θ FH(z)rLH(z)dz∫ θ̂

θ FH(z)dz
≤ rLH(θ̂), ∀θ ≤ θ̂,

and

RLH(θ̂, θ) =

∫ θ
θ̂ FH(z)rLH(z)dz∫ θ

θ̂ FH(z)dz
≥ rLH(θ̂), ∀θ ≥ θ̂.

Hence, the result by Krähmer and Strausz (2015) that if condition (R) holds then the static contract

is optimal follows as a corollary of Theorem 1. We highlight that while condition (R) implies the

profit- to-rent ratios are increasing, our condition (APR) only implies a type of monotonicity over an

appropriate weighted average of the profit-to-rent ratios. This is sensible as we are dealing with interim

expected seller’s revenues and interim incentive compatibility constraints.

In terms of methodology, our approach differs from that of Krähmer and Strausz (2015). Their

approach consists of relaxing the low to high interim IC constraint and then – by using their condition

(R) – they relax the monotonicity constraint and prove that the solution must be a threshold schedule

for each type. From there, they show that the threshold for both types must be equal and, therefore,

the static contract is optimal.

In our approach we do not use a relaxation of the general formulation nor do we impose conditions

on the primitives besides that rkk(θ) are non-decreasing. For the sufficiency we construct a Lagrangian

relaxation with multipliers for the incentive compatibility constraints, but we do not relax the mono-

tonicity constraints. The multipliers relate to the profit-to-rent ratios at the static threshold θ̂; they

measure the change in the objective per unit of change in the constraints. Then by leveraging a result

from Riley and Zeckhauser (1983) that the optimal contract must involve a threshold allocation we
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prove that under (APR) the solution to the relaxation is the static contract.

5 Sequential Contract

We now proceed to provide the complete characterization of the optimal sequential contract when the

necessary and sufficient condition associated with the static contract fails. As hinted in Section 4.2 and

by Proposition 1 the optimal sequential contract gives a deterministic allocation to the high type and,

for mid-range values, it randomizes the low type buyer (or equivalently reduces the quantity allocated).

5.1 The Structure of the Sequential Contract

Our analysis consists in studying the following relaxation to (P)

max
0≤x≤1

−
∑

k∈{L,H}

αkuk +
∑

k∈{L,H}

αk

∫
Θ
xk(z)µk(z)fk(z)dz (PR)

s.t xk(θ) non-decreasing, ∀k ∈ {L,H}

uk ≥ 0, ∀k ∈ {L,H}

uH +

∫
Θ
xH(z)FH(z)dz ≥ uL +

∫
Θ
xL(z)FH(z)dz.

The difference between (PR) and the original problem (P) is the omission of the incentive constraint

for the low type to report thruthfully. Importantly, we do not relax the monotonicity constraint. We

obtain a characterization of the optimal solution to (PR) as stated by the following theorem.

Theorem 2 (Relaxed Solution)

Suppose rkk(θ) is non-decreasing for each k ∈ {L,H}. Consider problem (PR), the optimal solution has

allocations

x?L(θ) =


0 if θ < θ1,

xL if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ;

x?H(θ) =

0 if θ < θH ,

1 if θH ≤ θ.

The threshold values θ1, θH , θ2 satisfy θ̂L ≤ θ1 ≤ θH ≤ θ2, θH ≤ θ̂H and

xL =

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

.

Note that if θ1 = θH we recover the static contract. Importantly, the optimal contract of (PR) has the

same structure as the profitable deviation to the static contract presented in Proposition 1. The only
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difference is that in the former the threshold for the high type may not necessarily equal to θ̂ as in the

latter. With this generalization one can show that the proposed profitable deviation is indeed optimal

for (PR). The associated transfers are given by:

t?L(θ) =


0 if θ < θ1,

θ1 · xL if θ1 ≤ θ ≤ θ2,

θ2 − (θ2 − θ1) · xL if θ2 < θ;

t?H(θ) =

0 if θ < θH ,

θH if θH ≤ θ.

Our optimality proof adapts arguments by Fuchs and Skrzypacz (2015) to our setting. We use an

improvement argument to show that the optimal contract of (PR) only requires a simple threshold

allocation without randomization for the high type. Finally, we use another improvement argument to

show that the low type allocation only requires a single interval of randomization.

More specifically, consider a low type allocation that randomizes between an interval [θa, θb]. Recall

the argument in Section 4.3 where we found a revenue improvement while keeping feasibility, in par-

ticular, while maintaining the high to low IC constraint. Using a similar reasoning, we can show that

feasibly improving upon the random allocation requires the following condition to hold for some θ̃:

RLH(θa, θ̃) =

∫ θ̃
θa
FH(z)rLH(z)dz∫ θ̃
θa
FH(z)dz

≤
∫ θb
θ̃
FH(z)rLH(z)dz∫ θb
θ̃
FH(z)dz

= RLH(θ̃, θb). (10)

In general this condition is not satisfied, because the profit-to-rent ratio rLH(·) does not need to be a

non-decreasing function. Therefore, we cannot find a feasible improvement over the random allocation

contract, and hence, we cannot restrict attention to deterministic contracts for the low type. In contrast,

a similar argument for the high type yields the expression RHH(θa, θ̃) ≤ RHH(θ̃, θb), which always holds

when rHH(·) is non-decreasing. Hence, we can restrict attention to a deterministic threshold contract

for the high type.

In addition, the low type allocation only requires a single interval of randomization. To see this,

suppose for example that x?L(θ) equals xa in (θa, θ̃) and xb in (θ̃, θb) with 0 < xa < xb < 1 , and

also assume (10) does not hold. Then, it is possible to show that we can increase xa and decrease xb

(maintaining feasibility) and obtain an improvement to the objective function. We can do this until xa

and xb collapse into a single value.

The discussion above highlights again the importance of the average profit-to-rent ratios in our

analysis, as they quantify revenue improvements while maintaining incentive compatibility. Now, the

next result characterizes the optimal sequential contract and it also provides conditions that allow to

compute the optimal thresholds.
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Theorem 3 (Optimal Sequential Contract)

Suppose rkk(θ) is non-decreasing for each k ∈ {L,H}. The optimal sequential contract coincides with

the optimal solution of (PR) as given by Theorem 2.

In Theorem 2 we provided the characterization of the optimal solution to (PR). In the proof of

Theorem 3 we argue that the optimal solution to (PR) is feasible for (P) and thus optimal. In turn, we

obtain a full characterization of the optimal sequential contract up to three parameters.

In terms of solving for the optimal sequential contract, Theorems 2 and 3 imply that we can ignore

the IC constraints and do a search over three parameters to maximize seller’s revenues over the proposed

contract structure, θ1, θ2 and θH . In the proof of Theorem of 3 we show that the optimality conditions

for the thresholds θ1 ≤ θH ≤ θ2 are:

1. RLH(θ1, θ2) ≤ minθ2≤θ R
LH(θ2, θ);

2. maxθ≤θ2 R
LH(θ, θ2) ≤ RLH(θ1, θ2);

3. αL ·RLH(θ1, θ2) + αHr
HH(θH) = 0.

Conditions (1) and (2) put together are similar to (APR) where θ2 plays the role of θ̂. Similarly to

the case of the static contract, one can show that any allocation that randomizes beyond θ2 is never

profitable. In turn, randomization should only occur for valuations below θ2. Condition (2) by itself also

implies that among all the intervals that can be randomized, the interval (θ1, θ2) is the most profitable.

To see this let us compare the seller’s revenue when it randomizes the low type buyer over some interval

(θ, θ2) and (θ1, θ2) (and it gives a deterministic allocation to the high type). Using Theorem 2 the

allocation xL that satisfies incentive compatibility in each case is:

xL(θ) =

∫ θ2
θH
FH(z)dz∫ θ2

θ FH(z)dz
and xL(θ1) =

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

.

Hence, doing a revenue comparison, we conclude that randomizing the low type buyer over (θ1, θ2) is

better than over (θ, θ2) if and only if∫ θ2
θH
FH(z)dz∫ θ2

θ FH(z)dz
·
∫ θ2

θ
µL(z)fL(z)dz ≤

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

µL(z)fL(z)dz,

equivalently, RLH(θ, θ2) ≤ RLH(θ1, θ2) for arbitrary θ ≤ θ2 which is exactly condition (2). Finally,

condition (3) is simple a first order optimality condition on θH .
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It is interesting to note that in the optimal solution the low type buyers are allocated the object

over a larger interval (θ1 ≤ θH) but they are randomized. This is done as a way to prevent the buyers

from mimicking each other. Specifically, we must have θ1 ≤ θH ; otherwise, the low type buyers would

have an incentive to pretend being the high type since that would get them allocated the object more

often and at a lower price. Similarly, θH ≤ θ2 otherwise high type buyers would choose the low type

contract for a better allocation and a lower price.

It is worth noting that the sequential contract makes the low type worse-off and the high type

better-off with respect to the contract the seller would offer if he could perfectly screen each type. For

the low type, that contract would set a threshold equal to θ̂L and would always allocate the object when

her value is above the threshold. However, the sequential contract allocates the object to the low type

whenever her valuation is above θ1 ≥ θ̂L with positive probability. So the low type is worse-off in two

dimensions, it is allocated the object less often and with less probability. On the other hand, the high

type buyer gets allocated the object more often and with certainty since θH ≤ θ̂H .

5.2 The Exponential Example Continued

In Section 4.4 we studied the properties and structure of the optimal static contract for exponential

valuations. In particular, we applied our necessary and sufficient condition to this family of distributions

and obtained an intuitive characterization.

Proposition 3

Assume condition (9) does not hold, then the optimal allocation is

x?L(θ) =

0 if θ < θ1,

x if θ1 ≤ θ;
and x?H(θ) =

0 if θ < θH ,

1 if θH ≤ θ;

The thresholds are given by:

θ1 =
1

λL − λH
and θH =

1

λH
− αL
αH

e−1

λL − λH
,

with θ1 ≤ θH . The probability of receiving the object for the low type is:

x = exp
(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
. (11)

This result follows from Theorem 3 and the characterization of the three free parameters that follow.

We note that in the exponential case we only have two intervals for the low type’s allocation as we can

show that θ2 =∞.
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We now illustrate our findings with numerical results where we vary the difference in the mean

between the low and the high type. Specifically, we fix αL to be 0.7 and λH to be 0.5, that is, the

high type has mean 2. Since we are assuming λL > λH , we consider λL = λH + δ with δ > 0. Figure

4 shows how the different thresholds vary as δ increases or, equivalently, as the mean of the low type

decreases to zero. As we can see, there is a value of δ (δ =0.93) to the left of which the static contract

is optimal and to its right the sequential contract is optimal. This aligns with Proposition 2 because as

δ increases, (λL − λH) increases, and therefore, we expect it to be larger than 1/θ̂ (see Corollary 2 and

Corollary 3). At a more intuitive level as δ increases both distribution become more and more different

from each other with one of them having a larger average value than the other. Thus, there is gain in

screening the types.

Static optimal Dynamic optimal

θ̂ = 1
λL−λH

δ0.93

2
θ

0.2

θH

θL

θ̂

Figure 4: Optimal thresholds for static and sequential contracts when setting λL = λH+δ, with αL = 0.7

and λH = 0.5.

In terms of thresholds, for the static contract we observe that θ̂ is decreasing at the beginning and

then it increases getting closer to 1/λH = 2. This happens because as we increase δ we are making 1/λL

smaller; however, at some point this value is too small and, therefore, the probability of allocating the

object to a low type, P (value low type > θ̂) = e−λLθ̂, is going to be so low that the seller will be better

off by choosing a threshold tailored for the high type, that is, close to 1/λH = 2. For the sequential

thresholds, the one for the low type is decreasing while the one for the high type is increasing. This

makes sense because in the sequential case the seller can adjust the threshold for each type; hence, as δ

increases the distributions become more and more different and, therefore, is optimal to set thresholds

closer and closer to the threshold a seller would set if he knew the types in advance, that is, 1/λL and

1/λH . Also, note that from equation (11) we see that x is a decreasing function of δ because as the mean
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of the low type goes to zero we are less and less constrained to offer a high probability of allocation;

however, in the limit x(δ) ≈ e−1, hence even though the low type buyers will have values concentrated

at zero we still need to reduce their quantity so that high types do not take their low price contract.

We can also compare the different mechanism in terms of revenue. Note that with the contracts

from Proposition 3, the optimal revenue for the sequential contract Πseq can be shown to be equal to:

Πseq = αL · x · θ1 · e−λLθ1 + αH · θH · e−λHθH .

Then, we can plot the different revenues as we vary δ. Figure 5 (left panel and thick line in right panel)

depicts the results. For values of δ above 0.93 the sequential contract dominates the static. Further

the sequential contract can achieve a significant improvement over the static contract, getting as high

as 16.5%. Note that when δ grows large the improvement of the sequential over the static decreases

because both contracts set the thresholds to maximize what they can extract from the high type buyer.

Actually, with some abuse of notation, we have that

lim
δ→∞

Πseq(δ) = lim
δ→∞

Πstatic(δ) = αH
e−1

λH
,

which equals the optimal revenue a seller could make if he was only selling to the high type buyer. The

right panel in Figure 5 shows the revenue improvement for different instances as we vary αL. Consistent

with Corollary 3, given αH and λH , there exists λL large enough such that the sequential contract is

strictly better than the static one. The figure also shows that the larger αL the larger has to be the

difference between the types for the sequential and static contracts to differ. When αL is large θ̂ is

tailored for low types and so (9) holds for more values of λL. However, screening occurs when the mean

of the low type is sufficiently small (δ large) in which case, due to the low values and high fraction of the

low type, the revenue improvement can achieve better percentage performance (e.g., 27% for αL = 0.9).

5.3 Menu Implementation

Next, we discuss how the optimal sequential contract can be implemented in practice. By means of the

taxation principle we can verify that the following menu of contracts is an indirect implementation of

our optimal mechanism:

• contract H: there is a single posted price of pH = θH ;

• contract L: the buyer can choose between two items:

(a) buy at a price of pL = θ1 · xL and be allocated with probability xL.
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Revenue

θ̂ = 1
λL−λH

0.22

0.58

0.93 2.5 δ

Sequential (Πseq)

Static (Πstatic)
%

0

16.5

27

3.17

7.29

δ5

αL = 0.3
αL = 0.5

αL = 0.7

αL = 0.9100× (Πseq−Πstatic)

Πstatic

Figure 5: Left: Optimal expected revenue for static and sequential. Right: Percentage improvement of

the sequential over the static contract. In both figures we set set λL = λH + δ with λH = 0.5. In the

left figure we set αL = 0.7 while in the right figure αL takes values in {0.3, 0.5, 0.7, 0.9}.

(b) buy at a price of pL = θ2 − (θ2 − θ1) · xL and be allocated with probability 1.

The prices in the above menu of contracts are set using the values in Theorems 2 and 3. This

implementation offers a posted price to the high type buyer, and gives to the low type buyer two

options. In option (a) the low type buyer can pay a low price but it can potentially not acquire the

item or equivalently, get a reduced quantity; in (b), the low type buyer pays a high price and always

gets the object.

An appealing feature of the implementation is that if we think of allocations as quantities, then we

can order the per unit prices. In contract L, the per unit prices are θ1 and θ1 · xL + θ2 · (1− xL) for (a)

and (b), respectively. Hence, the per unit price in (a) is less than or equal to the one in (b). That is,

the low type in (a) receives less of the good but at a discounted price compare to the low type in (b).

For contract H, the per unit price is θH and, since θ1 is less than or equal to θH , the low type in (a)

receives less of the good at a discounted price compared to the high type buyer. Comparing the per

unit prices of the low type in (b) and the high type is less straightforward. Even-though θH is between

θ1 and θ2 we are not able to compare it to θ1 · xL + θ2 · (1− xL). However, intuitively, even if the high

type puts a large mass in values larger than θ2 we expect the per unit price of the high type to be below

the one of the low type in (b) because, otherwise, the high type buyer would have an incentive to take

contract L. Equivalently, the high type or the low type in (b) have to pay a premium for the additional

quantity. We can also refer back to the exponential case of Section 4. From Proposition 3, the premium

the high type has to pay is given by θH − θ1 = log(1/xL)/λH and, therefore, the larger the quantity
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the lower is the premium. Finally, note that this implementation accommodates the case in which the

static contract is optimal. In that case, we have xL = 1 and θ1 = θH = θ2 thus both contracts are the

same.

6 Multiple Types

Until now, we have studied the optimality of the static contract and the optimal sequential mechanism for

two types of interim buyers. In this section, we consider an arbitrary number of interim types {1, . . . ,K}

and investigate some properties of the solution to (P). In particular, we provide a generalized version

of condition (APR). Then, we provide numerical evidence and highlight the challenges associated with

the characterization of the optimal sequential mechanism when K > 2.

6.1 A Necessary and Sufficient Condition

Our generalized necessary and sufficient condition relies on a characterization of the changes in the

objective around the static solution when considering allocation deviations. With this purpose, consider

the following set:

A ,
{

(λij)i,j∈{1,··· ,K}2 ≥ 0 :
∑
j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
∑
j 6=k

λkj ,

αk ≥
∑
j 6=k

λkj −
∑
j 6=k

λjk, ∀k ∈ {1, . . . ,K}
}
.

The set A contains the multipliers associated with the IC constraints that encode the change in the

objective as we deviate from the static allocation. Roughly speaking, when the static contract is optimal,

allocation perturbations in the contract of each type should equal the dualized costs associated to such

perturbations in the IC constraints. In other words, the derivative of the Lagrangian with respect

to allocations around the static solution equals zero. This is captured by the set of equalities in the

definition of A. In addition, the set of inequalities ensures that the optimal ex-post utilities of the lowest

valuation buyers are zero. Note that multipliers being in the set A are necessary for optimality. The

next result provides a necessary and sufficient condition.

Theorem 4 (Necessary and Sufficient Conditions for Finitely Many Types)

The set A is non-empty. Furthermore, if there exists a feasible solution to (P) which strictly satisfies

all the IC constraints then the static contract is optimal if and only if there exist (λij)i,j∈{1,··· ,K}2 ∈ A
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such that

max
θ≤θ̂

{
αk ·Rkk(θ, θ̂)−

∑
j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
≤ min

θ̂≤θ

{
αk ·Rkk(θ̂, θ)−

∑
j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
, (APRM )

for all k ∈ {1, . . . ,K}.

The strict feasibility to (P) corresponds to a standard Slater condition. Condition (APRM ) is obtained

by studying the Lagrangian when the static contract is optimal and disentangling the key conditions it

must satisfy. To obtain a better understanding of this condition it is helpful to see how it generalizes

the necessary and sufficient condition provided in Theorem 1 for two types. The general condition of

Theorem 4 in the binary case becomes

max
θ≤θ̂

{
α1 ·R11(θ, θ̂)− λ21 ·

∫ θ̂
θ F 2(z)dz∫ θ̂
θ F 1(z)dz

}
≤ min

θ̂≤θ

{
α1 ·R11(θ̂, θ)− λ21 ·

∫ θ
θ̂ F 2(z)dz∫ θ
θ̂ F 1(z)dz

}
, (12)

for the low type, and

max
θ≤θ̂

{
α2 ·R22(θ, θ̂)− λ12 ·

∫ θ̂
θ F 1(z)dz∫ θ̂
θ F 2(z)dz

}
≤ min

θ̂≤θ

{
α2 ·R22(θ̂, θ)− λ12 ·

∫ θ
θ̂ F 1(z)dz∫ θ
θ̂ F 2(z)dz

}
, (13)

for the high type, where λ12 and λ21 belong to A. We next argue that condition (APR) holds if and

only if there exist λ12, λ21 ∈ A such that conditions (12) and (13) hold. Suppose (APR) holds. Since

we expect the low to high IC constraint not to be binding we take λ12 equal to zero. Because λ must

belong to A this necessarily implies that λ21 is equal to α1r
12(θ̂). For this choice of multipliers inequality

(13) follows directly from rkk being increasing. At the same time, the choice of multipliers together

with (APR) imply that both the max and the min in (12) are equal to zero. To see this consider the

maximum in (12) and take θ = θ̂, since λ21 equal to α1r
12(θ̂) the expression inside the brackets is zero.

Hence, the maximum in (12) is bounded below by zero. It is also bounded above by zero,

α1 ·R11(θ, θ̂)− λ21 ·
∫ θ̂
θ F 2(z)dz∫ θ̂
θ F 1(z)dz

≤ 0⇔ R12(θ, θ̂) ≤ r12(θ̂), ∀θ ≤ θ̂.

When (APR) holds the right hand side inequality above always holds. A similar argument applies to the

min. Therefore, the condition provided in Theorem 1 implies APRM for the binary case. The converse

implication follows from a contradiction argument which for the sake of brevity we omit.

The two type case is amenable to this simplification because one can readily solve for the multipliers:

λ12 equal to zero is a natural choice (the low to high IC constraints can be relaxed c.f Section 5), and

λ21 equal to α1r
12(θ̂) then follows from the definition of A. Unfortunately, when K > 2 the space of
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deviations is richer and so is the possible selection of multipliers; in turn this precludes such a clear

characterization as in the two type case.

We stress that by judiciously choosing the multipliers it is straightforward to verify that as in the

two type case, condition (R) of Krähmer and Strausz (2015) implies our condition (APRM ) also in the

case of multiple types, and thus the optimality of the static contract.

By contrast, a complete characterization of the sequential contract seems substantially more complex

with finitely many types. Next, in the context of exponentially distributed ex-post types, we briefly

describe partial results and highlight the challenges associated with multiple types that already appear

in the numerical analysis.

6.2 The Exponential Example Continued

Despite the challenges that we discuss below, we are able to provide the following characterization

Proposition 4 For exponential valuations the optimal allocations have at most one randomized inter-

val.

Proposition 4 establishes that for exponentially distributed valuation the optimal contract is simple

in the sense that each interim type’s allocation is randomized at most in one interval. The proof consists

on noticing that the monotonicity constraints form a cone, and then using duality and complementary

slackness. It is worth mentioning that the proof method applies more generally but the structure of

the contract in general depends on the values of the dual variables values corresponding to the IC

constraints. In the exponential case, the argument can be simplified to show that the simple structure

in the result arises independent of these variables’ values.

The characterization in Proposition 4 only establishes the structure of the optimal allocations but

it does not provide information on the number of contracts that the optimal solutions will ultimately

feature. For example, if K = 4 Proposition 4 does not say whether the optimal solution will pool the

interim types creating eaither one, two, three or four different contracts. In general, the full range of

contracts from static to fully sequential (K different contracts ) is possible.

To further explore the structure of optimal contracts we provide numerical results. In Figure 6

we show the optimal allocations when K = 4 and all interim types have exponentially distributed

valuations. A first observation is that for different proportions αk of interim types the optimal contract

can feature different levels of separation. Panel (a) in the figure corresponds to an optimal static contract

(no separation), and panel (d) in the figure corresponds to an optimal sequential contract that features
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Figure 6: Optimal allocations for K = 4, types have exponential distribution with means (2.2, 5.0, 12, 50)

respectively (for numerical simplicity, we use truncated versions of these distributions in the interval

[0,60]). In each panel the vertical axis corresponds to buyers’ valuations and the horizontal axis cor-

responds to the interim type. Each bar represents the allocation for each type, lighter grey indicates

lower probability of allocation while darker grey indicates higher probability of allocation. White rep-

resents no allocation and black full allocation. From panel (a) to (d) the fractions, αk, for each type

are: (0.7, 0.2, 0.05, 0.05), (0.4, 0.1, 0.4, 0.1), (0.3, 0.2, 0.4, 0.1) and (0.25, 0.25, 0.1, 0.4), respectively.

a different contract for each interim type (full separation). As a second observation note that out of the

four instances depicted in Figure 6 only one, (d), has four contracts in the optimal solution. Finding the

minimal number of contracts that give a good approximation to the optimal multiple type sequential

contract is a question outside the scope of this paper but that may be of interest to study in the future.

Observe that across the instances in Figure 6 each optimal contract has at most one interval of

valuation for which randomization occurs (c.f Proposition 4). This simple structure of the optimal

contract appears however not to be robust to other specifications of the value distributions. When we

consider the case of normally distributed valuations (using truncated normal random variables), the

optimal contract might exhibit several different intervals of randomization for a given type. In general,

richer contract features may arise when we combine exponential, normal, uniform or other distributions.

As a consequence, generally speaking, it is challenging to analytically characterize the optimal solution.

The challenge here is that classic relaxation approaches used in the mechanism design literature do

not apply in our setting. For example, relaxing all the upward incentive constraints and leaving only

the local downward incentive constraints does not work because in general global downward incentive
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constraints bind. Moreover, binding constraints are highly sensitive to model primitives. Improving our

understanding of this setting may be an interesting avenue for future research.

7 Conclusion

We considered the scope of sequential screening in the presence of ex-post participation constraints.

The ex-post participation constraints limit the ability of the seller to extract surplus. As the buyer has

to be willing to participate in the contractual arrangement following every realization of his valuation,

the surplus has to be extracted ex-post rather than at the interim level.

Despite these restrictions sequential screening generally allows the seller to increase his revenue

beyond the statically optimal revenue. The gains from sequential screening become more pronounced

to the extent that the interim types differ in their willingness to pay. A natural implementation of the

optimal mechanism simply offers the buyer the choice among different menus in the first stage. The

choice of menu in the first period merely restricts the possible choices in the second period. In particular,

it is not necessary to ask the buyer for any transfer before the final transaction occurs. Moreover, the

buyer only has to make a transfer if she receives the object.

In contrast to the static solution where the optimal policy is always to sell the largest possible

quantity, the sequential screening policy offers intermediate quantities. This departure from the bang-

bang policy in a linear utility setting arises due to the presence of the ex-post participation constraint

in conjunction with the incentive compatibility constraints.

There are several natural directions to extend the present work. Our stronger results were for the case

of binary interim types while allowing for a continuum of valuations for each type. We also presented

an extension of Theorem 1 to multiple types as well as a characterization and numerical results for

exponential valuations. We would like to further explore the characterization of the optimal sequential

contract to multiple types and general valuation distributions. An interesting question here concerns

the number of randomization intervals per type and whether the number of intermediate allocations

increases with the number of interim types. Also, is there a fixed number of intermediate allocations

that yield a good approximation to the optimal solution for an arbitrary number of interim types?

Similarly, is there a fixed number of contracts that yield a good approximation to the optimal solution

for an arbitrary number of interim types?

We might also be interested in analyzing how the number of competing buyers may affect the nature

of the optimal mechanism. This has important practical consequences particularly in industries that use

market mechanisms like auctions, such as display advertising alluded at the beginning of the paper. We
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note that this extension is not direct, because with multiple buyers we loose the threshold structure of

the optimal static allocation when the mixture distribution is not regular and ironing may be required.

However, we conjecture that in this case an approximately optimal market design would consist of

running a series of “waterfall auctions” with different priorities across participants.
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A Proofs for section 4

Proof of Lemma 1. The proof of this result is standard and thus omitted.

Proof of Lemma 2. The fact that the optimal solution is a threshold allocation is explained in the

main text. Thus, we only need to provide a proof for θ̂ being in the interval [θ̂1, θ̂K ]. Note that for

all θ below θ̂1, µk(θ) is negative for all k ∈ {1, . . . ,K}. Therefore, µ̄(θ) is negative for all θ below θ̂1.

Similarly, for all θ above θ̂K , µ̄(θ) is positive. Since the allocation is of the threshold type, it is optimal

to set x(θ) equal to 0 for θ below θ̂1 and to set x(θ) equal to 1 for θ above θ̂K . This necessarily implies

that θ̂ is in [θ̂1, θ̂K ].

Proof of Theorem 1. We first show the sufficiency of our condition and then its necessity. We

denote by Ω the space of non-decreasing allocations, that is,

Ω , {x : [0, 1]→ [0, 1] : x(·) is non-decreasing}.

Sufficiency. We assume condition (APR) holds, we want to verify the static contract is optimal. In

order to do so we dualize the IC constraints. The Lagrangian is

L(u,x,λ,w) = uL(wL − λHL − αL) + uH(λHL − αH + wH)

+

∫ θmax

0
xL(z) ·

[
αLµL(z)fL(z)− λHLFH(z)

]
dz

+

∫ θmax

0
xH(z) ·

[
αHµH(z)fH(z) + λHLFH(z)

]
dz,

where wL, wH correspond to the multipliers for the ex-post IR constraints, and λ ∈ {λHL, λLH} to the

multipliers for IC constraints. In the Lagrangian above we have chosen the multipliers as follows

wL = αL − αHrHH(θ̂), wH = αH + αHr
HH(θ̂), λHL = αLr

LH(θ̂), λLH = 0, (A-1)

these multipliers are non-negative because rHH(θ̂) ≤ 0, rLH(θ̂) ≥ 0 and

wH = αH + αHr
HH(θ̂) ≥ 0⇔ rHH(θ̂) ≥ −1⇔ [θ̂ − FH

fH
(θ̂)] ≥ −FH

fH
(θ̂)⇔ θ̂ ≥ 0.

Hence, maximizing the Lagrangian over non-decreasing allocation xL and xH yields an upper bound

for the relaxed problem. Note that this choice of multipliers eliminates the uL and uH terms in the

Lagrangian. We next show that under (APR) the solution to the Lagrangian relaxation is the static

solution. We first claim that

max
xL∈Ω

∫ θmax

0
xL(z) ·

[
αLµL(z)fL(z)− λHLFH(z)

]
dz =

∫ θmax

θ̂

[
αLµL(z)fL(z)− λHLFH(z)

]
dz. (A-2)
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To prove this first note that the optimal solution xL on the left hand side of (A-2) must be of the

threshold type, that is, xL(θ) = 1{θ≥θ?}, because xL(·) is non-decreasing (see, e.g., Myerson (1981) or

Riley and Zeckhauser (1983)). Hence (A-2) is equivalent to∫ θmax

θ?

[
αLµL(z)fL(z)− λHLFH(z)

]
dz ≤

∫ θmax

θ̂

[
αLµL(z)fL(z)− λHLFH(z)

]
dz, ∀θ? ∈ [0, 1].

Replacing the value of λHL, this equation can be cast over values θ?1 ≤ θ̂ and θ?2 ≥ θ̂ as∫ θ̂
θ?1
αLµL(z)fL(z)dz∫ θ̂
θ?1
FH(z)dz

≤ αLrLH(θ̂) ≤

∫ θ?2
θ̂
αLµL(z)fL(z)dz∫ θ?2
θ̂
FH(z)dz

, ∀θ?1 ≤ θ̂ ≤ θ?2 (A-3)

Condition (APR) ensures the equation above always hold. Indeed, condition (APR) implies that for

any θ?1 ≤ θ̂ and ε > 0 ∫ θ̂
θ?1
αLµL(z)fL(z)dz∫ θ̂
θ?1
FH(z)dz

≤
∫ θ̂+ε
θ̂

αLµL(z)fL(z)dz∫ θ̂+ε
θ̂

FH(z)dz
.

Taking ε ↓ 0 yields the left hand side inequality in (A-3). The right hand side inequality in (A-3) can

be verified using an analogous argument. This shows (A-2), that is, the static contract maximizes the

part of the Lagrangian that corresponds to interim type L. We now prove the same for type H. Note

first that the optimality of the static contract implies

λ = αLr
LH(θ̂) = −αHrHH(θ̂).

Then

max
xH∈Ω

∫ θmax

0
xH(z) ·

[
αHµH(z)fH(z) + λHLFH(z)

]
dz

= max
xH∈Ω

∫ θmax

0
xH(z) · αH ·

[
µH(z)fH(z)− rHH(θs)FH(z)

]
dz

(a)
= max

xH∈Ω

∫ θmax

0
xH(z) · αH ·

[
rHH(z)− rHH(θs)

]
FH(z)dz

(b)
=

∫ θmax

θ̂
αH ·

[
rHH(z)− rHH(θs)

]
FH(z)dz

where in (a) we have used the definition of rHH(·) and in (b) our assumption that rHH(·) is increasing.

Thus, we have proved that for this choice of Lagrange multipliers the static contract maximizes the

Lagrangian. Since the value of the Lagrangian coincides with the primal objective at the static solution,

and this solution is always primal feasible. We conclude that the static contract is optimal.

Necessity. We differ this proof to the proof of Proposition 1. In it we show that whenever condition

(APR) is not satisfied, there is a contract different from the static one with a strictly larger revenue.
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Proof of Proposition 1. Assume (APR) does not hold, then by Lemma A-1 (which we state and

prove after the current proof) there exist θ1 < θ̂ < θ2 such that∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FH(z)dz

>

∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ2
θ̂
FH(z)dz

, (A-4)

Consider a solution in which we set uL = uH = 0, and

xL(θ) =


0 if θ < θ1

x if θ1 ≤ θ ≤ θ2

1 if θ2 < θ,

xH(θ) =

0 if θ < θ̂

1 if θ̂ ≤ θ,

where x =
∫ θ2
θ̂
FH(z)dz/

∫ θ2
θ1
FH(z)dz. We next show that this solution is feasible and that yields an

strict revenue improvement over the static contract.

Feasibility. The ex-post participation constraints are clearly satisfied. Also, since θ1 < θ̂ < θ2 we

have xL ∈ (0, 1), and both xL(·) and xH(·) are non-decreasing allocations. We verify the IC constraints

uL +

∫ θmax

0
xL(θ)FL(θ)dθ ≥ uH +

∫ θmax

0
xH(θ)FL(θ)dθ,

uH +

∫ θmax

0
xH(θ)FH(θ)dθ ≥ uL +

∫ θmax

0
xL(θ)FH(θ)dθ.

By replacing the allocations and ex-post utilities we obtain that the IC constraints are equivalent to∫ θ2
θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

≥
∫ θ2
θ̂
FL(z)dz∫ θ2

θ1
FL(z)dz

. (A-5)

To see why this is true, rewrite equation (A-4) as∫ θ2
θ̂
FH(z)dz∫ θ̂

θ1
FH(z)dz

>

∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ̂

θ1
FH(z)rLH(z)dz

, (A-6)

note that we are using here that by Lemma A-1 the denominator on the right hand side is strictly
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positive. Also, note that ∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ2
θ̂
FL(z)dz

=

∫ θ2
θ̂
FL(z)rLL(z)dz∫ θ2
θ̂
FL(z)dz

≥ rLL(θ̂)

∫ θ2
θ̂
FL(z)dz∫ θ2

θ̂
FL(z)dz

= rLL(θ̂)

∫ θ̂
θ1
FL(z)dz∫ θ̂

θ1
FL(z)dz

≥
∫ θ̂
θ1
FL(z)rLL(z)dz∫ θ̂
θ1
FL(z)dz

=

∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FL(z)dz

,

where the inequalities come from the fact that rLL(·) is an increasing function and rLL(θ̂) ≥ 0. This

gives ∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ̂

θ1
FH(z)rLH(z)dz

≥
∫ θ2
θ̂
FL(z)dz∫ θ̂

θ1
FL(z)dz

,

note that we are using here that by Lemma A-1 the denominator on the left hand side is strictly positive.

This inequality together with (A-6) yields (A-5) and, therefore, the proposed solution is feasible.

Revenue improvement. We need to prove that∫ θmax

θ̂
[αLfL(z)µL(z) + αHfH(z)µH(z)]dz < χ ·

∫ θ2

θ1

αLfL(z)µL(z)dz +

∫ θmax

θ2

αLfL(z)µL(z)dz

+

∫ θmax

θ̂
αHfH(z)µH(z)dz,

this is equivalent to ∫ θ2

θ̂
αLfL(z)µL(z)dz <

∫ θ2
θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

αLfL(z)µL(z)dz

which is the same as ∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ2
θ̂
FH(z)dz

<

∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FH(z)dz

which is exactly the property satisfied by θ1, θ2 in (A-4).

Lemma A-1 Suppose

max
0≤θ≤θ̂

RLH(θ, θ̂) > min
θ̂≤θ≤θmax

RLH(θ̂, θ).
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Then, there exist θa, θb ∈ [0, θmax] with θa < θ̂ < θb such that RLH(θa, θ̂) > RLH(θ̂, θb). Moreover,

0 <
∫ θ̂
θa
FH(z)rLH(z)dz =

∫ θ̂
θa
FL(z)rLL(z)dz, and 0 <

∫ θb
θ̂
FH(z)rLH(z)dz =

∫ θb
θ̂
FL(z)rLL(z)dz.

Proof of Lemma A-1. Note that both rLH(·, θ̂) and rLH(θ̂, ·) are continuous functions. Thus

the maximum and the minimum in the statement are achieved by some θ̃a ∈ [0, θ̂] and θ̃b ∈ [θ̂, θ],

respectively. Therefore, by assumption, we have that

RLH(θ̃a, θ̂) > RLH(θ̂, θ̃b).

Using the continuity of both function we can find θa < θ̂ and θb > θ̂ such that the inequality above is

satisfied.

To finalize, we argue why 0 <
∫ θ̂
θa
F 2(z)rLH(z)dz. Note that since θb > θ̂ ≥ θ̂a (see Lemma 2) we

have RLH(θ̂, θb) > 0. Therefore, RLH(θa, θ̂) > 0 which imply the desired inequalities.

Proof of Lemma 3. From Lemma 2 we have that θ̂L ≤ θ̂ ≤ θ̂H . For exponential distributions,

θ̂L = 1/λL and θ̂H = 1/λH . Therefore, θ̂ ∈ [1/λL, 1/λL]. Moreover, θ̂ must satisfy (8), if not we could

increase it or decrease and obtain an strict revenue improvement.

We provide a proof for the rest of the properties for general distributions satisfying (DHR). Note

first that θ̂ can be seen as a function of αL and αH but since αH equals 1−αL, we can effectively consider

θ̂ just a function of αL. Then, when αL equals 0 is as we only had type H buyers and, therefore, the

optimal threshold is θ̂H . While when αL equals 1 is as we only had type L buyers so the optimal

threshold is θ̂L. Hence, θ̂(0) equals θ̂H and θ̂(1) equals θ̂L.

Now we prove that θ̂(αL) is non-increasing. Consider αaL < αbL and suppose that θ̂(αaL) < θ̂(αbL).

Define

`(θ, αL) ,
∫ θmax

θ
αLfL(z)µL(z) + (1− αL)fH(z)µH(z)dz,

note that this is a linear function of αL and, for fixed αL, it is maximized at θ̂(αL). Hence,

`(θ̂(αaL), αbL) ≤ `(θ̂(αbL), αbL)

= `(θ̂(αbL), αbL − αaL) + `(θ̂(αbL), αaL)

≤ `(θ̂(αbL), αbL − αaL) + `(θ̂(αaL), αaL)

therefore∫ θ̂(αbL)

θ̂(αaL)
αbLfL(z)µL(z)+(1−αbL)fH(z)µH(z)dz ≤

∫ θ̂(αbL)

θ̂(αaL)
αaLfL(z)µL(z)+(1−αaL)fH(z)µH(z)dz. (A-7)

Recall that θ̂ is in [θ̂L, θ̂H ] and, therefore, θ̂L ≤ θ̂(αaL) < θ̂(αbL) ≤ θ̂H . This in turn implies that

µL(z) > 0 and µH(z) < 0, ∀z ∈ (θ̂(αaL), θ̂(αbL)),
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so for z in (θ̂(αaL), θ̂(αbL)) we have

αaLfL(z)µL(z) + (1− αaL)fH(z)µH(z) < αbLfL(z)µL(z) + (1− αbL)fH(z)µH(z),

which contradicts (A-7).

Proof of Proposition 2. We make use of Theorem 1. Condition (APR) for the exponential distri-

bution is

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
≤ min

θ̂≤θ

{θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

}
. (A-8)

Before we begin the proof we need some definitions and observations. Define the following functions

g(θ) ,
θ̂e−λLθ̂ − θe−λLθ

e−λH θ̂ − e−λHθ
and g(θ) ,

θe−λLθ − θ̂e−λLθ̂

e−λHθ − e−λH θ̂
.

Note the following

lim
θ→θ̂+

g(θ) = lim
θ→θ̂−

g(θ) =
(λLθ̂ − 1)

λH
· e−θ̂(λL−λH), (A-9)

and

lim
θ→∞

g(θ) = θ̂ · e−θ̂(λL−λH). (A-10)

Finally note that

(λLθ̂ − 1)

λH
· e−θ̂(λL−λH) ≤ θ̂ · e−θ̂(λL−λH) ⇐⇒ θ̂ ≤ 1

λL − λH
. (A-11)

Now, suppose condition (APR) holds and

θ̂ >
1

λL − λH
(A-12)

From equations (A-9),(A-10) and (A-11) we see that

g(θ̂) = g(θ̂) > lim
θ→∞

g(θ),

which implies

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
> min

θ̂≤θ

{θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

}
(A-13)

contradicting the fact that condition (APR) holds.

For the other direction, assume equation (9) holds. We first prove that for θ ≤ θ̂ we have g(θ) ≤ g(θ̂),

indeed

g(θ) ≤ g(θ̂)⇐⇒ θ̂e−λLθ̂ − θe−λLθ

e−λH θ̂ − e−λHθ
≤ (λLθ̂ − 1)

λH
· e−θ̂(λL−λH)

⇐⇒ λH · (θ̂e−λLθ̂ − θe−λLθ) ≥ (e−λH θ̂ − e−λHθ) · (λLθ̂ − 1) · e−θ̂(λL−λH)

⇐⇒ λH θ̂ · (1−
θ

θ̂
e−λL(θ−θ̂))− (1− e−λH(θ−θ̂)) · (λLθ̂ − 1) ≥ 0,
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so we just need to see that this last inequality holds for θ ≤ θ̂. For doing so define

H(θ) , λH θ̂ · (1−
θ

θ̂
e−λL(θ−θ̂))− (1− e−λH(θ−θ̂)) · (λLθ̂ − 1),

and note that H(θ̂) = 0 and

H(0) = λH θ̂ + (eλH θ̂ − 1) · (λLθ̂ − 1) ≥ λH θ̂ + λH θ̂(λLθ̂ − 1) = λH θ̂ · λLθ̂ > 0,

where the inequality comes from convexity of the exponential function and the fact that θ̂ ≥ 1/λL.

Furthermore the derivative of H is given by

dH

dθ
= λH(λLθ − 1)e−λL(θ−θ̂) − λH(λLθ̂ − 1)e−λH(θ−θ̂),

and it can be easily verified that for θ ≤ θ̂ we have dH/dθ ≤ 0. This together to the facts that H(0) > 0

and H(θ̂) = 0 imply that g(θ) ≤ g(θ̂) for all θ ≤ θ̂. Which in turn implies

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
=

(λLθ̂ − 1)

λH
· e−θ̂(λL−λH).

Now we prove that for θ ≥ θ̂ we have g(θ) ≥ g(θ̂). Note that if we prove this we are done because this

and what we have just proven imply condition (APR). As before we do

g(θ) ≥ g(θ̂)⇐⇒ θe−λLθ − θ̂e−λLθ̂

e−λHθ − e−λH θ̂
≥ (λLθ̂ − 1)

λH
· e−θ̂(λL−λH)

⇐⇒ λH(θ̂e−λLθ̂ − θe−λLθ) ≥ (λLθ̂ − 1) · (e−λH θ̂ − e−λHθ) · e−θ̂(λL−λH)

⇐⇒ λH(θ̂ − θe−λL(θ−θ̂))− (λLθ̂ − 1) · (1− e−λH(θ−θ̂)) ≥ 0,

note that the LHS of this last inequality is again the function H(·) but this time defined for θ ≥ θ̂. We

have H(θ̂) = 0. It is easy to prove that for θ̂ ≤ θ ≤ θ̃ the function H(θ) is increasing, and then for θ > θ̃

is decreasing, where θ̃ > θ̂ and dH(θ̃)/dθ = 0. Also,

lim
θ→∞

H(θ) = λH θ̂ − (λLθ̂ − 1) ≥ 0,

hence for θ ≥ θ̂ we have H(θ) ≥ 0 and, therefore, g(θ) ≥ g(θ̂) for all θ ≥ θ̂, as desired.

Proof of Corollary 1. Recall that for any λL > λH from Lemma 3 we have

1

λL
≤ θ̂(αL) ≤ 1

λH
,

and

λL ≤ 2λH ⇐⇒
1

λH
≤ 1

λL − λH
,
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therefore, for any αL ∈ [0, 1] equation (9) is satisfied. Then by Proposition 2 we conclude that the static

contract is optimal for any αL ∈ [0, 1].

Proof of Corollary 2. First we show θ̂(·) is continuous from the right at zero. Let {αnL} ∈ [0, 1] be

any sequence such that

lim
n→∞

αnL = 0,

and suppose θ̂(αnL) does not converge to θ̂(0) = 1/λH . That is,

∃ε > 0,∀n0, ∃n ≥ n0, | 1

λH
− θ̂(αnL)| > ε,

since θ̂(αnL) ≤ 1
λH

we have

| 1

λH
− θ̂(αnL)| > ε⇐⇒ 1

λH
− θ̂(αnL) > ε.

This in turn means that we can create a subsequence {α`nL } ⊂ {αnL} such that

∀n, 1

λH
− ε > θ̂(α`nL ). (A-14)

But since θ̂(α`nL ) is a maximizer of Πstatic(·) we must have

α`nL θ̂(α
`n
L )e−λLθ̂(α

`n
L ) + (1− α`nL )θ̂(α`nL )e−λH θ̂(α

`n
L ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH ,

because λL > λH we can bound the LHS above to obtain

θ̂(α`nL )e−λH θ̂(α
`n
L ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH . (A-15)

Note that the function θe−λHθ has a unique maximum at θ = 1/λH and since θ̂(α`nL ) satisfies equation

(A-14), we can always find δ(ε) > 0 such that( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> θ̂(α`nL )e−λH θ̂(α
`n
L ), ∀n,

plugging this in equation (A-15) yields( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> α`nL
1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH , ∀n,

so taking the limit over n gives a contradiction. In conclusion we have proved that θ̂(·) is continuous

from the right at zero. Now, to finalize the proof recall that we are assuming λL > 2λH or equivalently

1
λH

> 1
λL−λH . However, since θ̂(0) = 1/λH and θ̂(·) is continuous from the right we can always find

ᾱL ∈ (0, 1] such that
1

λH
≥ θ̂(ᾱL) ≥ 1

λL − λH
,
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so thanks to Proposition 2, the sequential contract is optimal when we set αL > ᾱL. Note that the

same arguments is valid for 1/λL. That is, we can show that θ̂(αL) is continuos from the left at 1 and

then using the fact that
1

λL − λH
>

1

λL
,

we can find ᾱH ∈ [ᾱL, 1) such that

1

λL − λH
> θ̂(ᾱH) ≥ 1

λL
,

hence in [ᾱH , 1] the static contract is optimal. All of this implies that since θ̂(·) is a non-increasing

function we can always find ᾱ ∈ (0, 1) with the desired property.

Proof of Corollary 3. Fix λH and αL. Suppose the result is not true, that is,

∀λ̄L ≥ 2λH ,∃λL ≥ λ̄L, θ̂(λL) ≤ 1

λL − λH
.

From this we can construct a sequence λnL ≥ 2λH such that

lim
n→∞

λnL =∞ and θ̂(λnL) ≤ 1

λnL − λH
, ∀n ∈ N,

therefore θ̂(λnL) converges to 0, and we have

Πstatic(θ̂(λnL)) = θ̂(λnL)e−λH θ̂(λ
n
L)
(
αLe

−(λnL−λH)θ̂(λnL) + αH

)
≤ θ̂(λnL)e−λH θ̂(λ

n
L) n→∞→ 0.

However, since θ̂(λnL) maximizes Πstatic(·) it must be the case that Πstatic(1/λH) ≤ Πstatic(θ̂(λnL)), that

is,

αL
1

λH
e
−λnL

1
λH + αH

1

λH
e
−λH 1

λH ≤ Πstatic(θ̂(λnL)).

Taking limit over n at both sides of the previous equation yields

αH
1

λH
e
−λH 1

λH ≤ 0,

a contradiction.
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B Proofs for section 5

Proof of Theorem 2. For ease of exposition we restate the problem’s formulation,

(PR) max
0≤x≤1

−
∑

k∈{L,H}

αkuk +
∑
∈{L,H}

αk

∫ θmax

0
xk(z)µk(z)fk(θ)dθ

s.t xk(θ) non-decreasing, ∀k ∈ {L,H}

uk ≥ 0,∀k ∈ {L,H}

uH +

∫ θmax

0
xH(z)FH(z)dz ≥ uL +

∫ θmax

0
xL(z)FH(z)dz.

We separate this proof into two parts. In part 1 we show that the optimal solution has the structure

in the statement of the theorem. Note that it is enough to provide a proof for the structure of the

allocation, the transfers can be readily derived from Lemma 1. In part 2 we derive the properties about

the thresholds, xL and uH and uL.

Part 1. For any optimal solution to (PR) two possible situations may arise:

1. The allocation has at least one interval in which is continuously strictly increasing.

2. The allocation does not have an interval in which is continuously strictly increasing, but is a

piecewise constant non-decreasing function.

For each interim type, we prove that if we are in case (1), we can modify the allocation in that

interval to be constant and obtain at least a weak improvement in the objective. This implies that

for any optimal allocation, we can construct another optimal allocation that is a piecewise constant

non-decreasing function. Therefore, we can always assume we are in case (2). In this case, we show that

for interim type L there is only one intermediate step, and for interim type H there is no intermediate

step.

We split the proof in interim type L and H. Let x?L(θ) and x?H(θ) denote the optimal allocations.

We begin with interim type L.

• interim type L case (1): Suppose there is an interval (θ1, θ2) in which x?L(θ) is continuously strictly

increasing. Before we start with the main argument, note that if θ̂L > θ1 then we can set x?L(θ) to be

equal to x?L(θ1) for all θ in (θ1, θ̂L). This strictly increases the objective function while maintaining

feasibility. So we can assume θ̂L ≤ θ1, which in turn implies that µL(·) is non-negative in the interval

(θ1, θ2).
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Now we give the main argument. Note that by Theorem 1 in Luenberger (1969, p. 217), x?L(θ) must

maximize the Lagrangian:5

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θmax

0
xL(z) ·

[
αLµL(z)fL(z)− λFH(z)

]
dz

+

∫ θmax

0
xH(z) ·

[
αHµH(z)fH(z) + λFH(z)

]
dz,

with λ,wL, wH ≥ 0. Define LL(·) by

LL(θ) , αLµL(θ)fL(θ)− λFH(θ),

then it must be the case that LL(θ) = 0 for all θ ∈ (θ1, θ2). Suppose this is not true, then we could

have θ̂ ∈ (θ1, θ2) such that LL(θ̂) > 0, since LL(·) is a continuous function this must also be true for

all θ ∈ (θ̂ − ε, θ̂ + ε) for ε > 0 small enough. But then we can obtain a strict improvement by setting

x1(θ) = x?L(θ̂ + ε) for all θ ∈ (θ̂ − ε, θ̂ + ε). A similar argument holds when LL(θ̂) < 0. Therefore, we

have just proved that LL(θ) = 0 for all θ ∈ (θ1, θ2). In other words,

αL
µL(θ)fL(θ)

FH(θ)
= λ ≥ 0, ∀θ ∈ (θ1, θ2), (B-1)

Also, by the second mean value theorem for integrals there exists θ̂ ∈ (θ1, θ2) such that

x?L(θ̂) =

∫ θ2
θ1
x?L(z)F 2(z)dz∫ θ2
θ1
FH(z)dz

. (B-2)

Going back to (PR), we have that the part of objective associated to x?L in (θ1, θ2) is∫ θ2

θ1

αLx
?
L(z)µL(z)fL(z)dz = λ ·

∫ θ2

θ1

x?L(z)FH(z)dz, (B-3)

where in the equality we have used (B-1). Now, consider modifying x?L to be x̃?L equal to x?L(θ̂) in

(θ1, θ2). Then from (B-1), (B-2) and (B-3) we get∫ θ2

θ1

x?L(z)αLµL(z)fL(z)dz = λ · x?L(θ̂) ·
∫ θ2

θ1

FH(z)dz

= x?L(θ̂) ·
∫ θ2

θ1

αLµL(z)fL(z)dz

=

∫ θ2

θ1

x̃?L(z)αLµL(z)fL(z)dz,

5To use this theorem we need to verify that there is a feasible solution that strictly satisfies all inequalities. We can

take uL = uH > 0, xL(θ) = 1{θ≥θL} and xH(θ) = 1{θ≥θH} with θH < θL.
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therefore, the modified x̃?L has the same objective value than the old one. Also, note that we have

preserved feasibility because

uL +

∫ θmax

0
x̃?L(z)FH(z)dz = uL +

∫ θ2

θ1

x̃?L(z)FH(z)dz +

∫
(θ1,θ2)c

x̃?L(z)FH(z)dz

= uL + x?L(θ̂) ·
∫ θ2

θ1

FH(z)dz +

∫
(θ1,θ2)c

x?L(z)FH(z)dz

(a)
= uL +

∫ θ2

θ1

x?L(z)FH(z)dz +

∫
(θ1,θ2)c

x?L(z)FH(z)dz

= uL +

∫ θmax

0
x?L(z)FH(z)dz,

where in (a) we used equation (B-2).

• interim type L case (2): Suppose for x?L(·) there exists θ1 < θ2 < θ3 and 0 < x1 < x2 < 1 such

that x?L(θ) = x1 in (θ1, θ2) and x?L(θ) = x2 in (θ2, θ3). Since type’s L allocation is piecewise constant

we must have x?L(θ−1 ) < x1 and x2 < x?L(θ+
3 ).

Then, the part of objective associated to interim type L in these intervals is

αL · x1 ·
∫ θ2

θ1

µL(z)fL(z)dz + αL · x2 ·
∫ θ3

θ2

µL(z)fL(z)dz. (B-4)

If µL(θ̂) ≤ 0 for some θ̂ ∈ (θ1, θ3) then because of (DHR), µL(θ) ≤ 0 for all θ ≤ θ̂ and, therefore, we

can always find a better solution by setting x?L(θ) = 0 for all θ ≤ θ̂ (note that this does not affect

feasibility in (PR)). So assume µL(θ) > 0 for all θ ∈ (θ1, θ3), then it must be the case that

uH +

∫ θmax

0
xH(z)FH(z)dz = uL +

∫ θmax

0
xL(z)FH(z)dz, (B-5)

otherwise we could increase x1 and obtain an strict improvement in the objective. There are two

cases:

a)

∫ θ2
θ1

µL(z)fL(z)dz∫ θ2
θ1

F 2(z)dz
≥

∫ θ3
θ2

µL(z)fL(z)dz∫ θ3
θ2

F 2(z)dz
: In this case consider decreasing x2 by ε2 > 0 and increasing x1

by ε1 > 0, in such a way that equation (B-5) remains with equality, that is,

ε1 ·
∫ θ2

θ1

FH(z)dz − ε2 ·
∫ θ3

θ2

FH(z)dz = 0. (B-6)

The change in equation (B-4) is

αL ·
ε2 ·
∫ θ3
θ2
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

µL(z)fL(z)dz − αL · ε2 ·
∫ θ3

θ2

µL(z)fL(z)dz, (B-7)
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which under our current assumption is non-negative. So we can weakly improve our objective,

indeed we can do it so until x1 + ε1 and x2 − ε2 are equal,

x1 + ε1 = x2 − ε2 ⇔ x1 + ε2 ·
∫ θ3
θ2
FH(z)dz∫ θ2

θ1
FH(z)dz

= x2 − ε2 ⇔ ε2 =
(x2 − x1)

1 +

∫ θ3
θ2

FH(z)dz∫ θ2
θ1

FH(z)dz

,

since x2 > x1 we have ε2 > 0 and, therefore, we have shown that it is possible to increase x1

and to decrease x2 in such a way the objective is weakly improved and the solution is constant

in (θ1, θ3).

b)

∫ θ2
θ1

µL(z)fL(z)dz∫ θ2
θ1

FH(z)dz
<

∫ θ3
θ2

µL(z)fL(z)dθ∫ θ3
θ2

FH(z)dz
: In this case consider increasing x2 by ε2 > 0 and decreasing x1

by ε1 > 0 in such a way that equation (B-5) remains with equality. By doing this the change in

the objective is strictly positive, and we do it until either x1 = x?L(θ−1 ) or x2 = x?L(θ+
3 ).

This proves the result for interim type L and case (2).

In conclusion, putting together what we have proved for type L in cases (1) and (2), we can al-

ways consider x?L to be a step function with at most one intermediate step as in the statement of the

proposition.

Now we proceed with interim type 2.

• interim type H case (1): Suppose there is an arbitrary interval (θ1, θ2) in which x?H(θ) is continu-

ously strictly increasing. Before we start with the main argument, note that if θ̂H < θ2 then we can

set x?H(θ) to be equal to x?H(θ2) for all θ in (θ̂H , θ2). This strictly increases the objective function and

maintains feasibility. So we can assume θ̂H ≥ θ2, which in turn implies that µH(·) is non-positive in

the interval (θ1, θ2).

Now we give the main argument. Note that by Theorem 1 in Luenberger (1969, p. 217), x?H(θ) must

maximize the Lagrangian

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θmax

0
xL(z) ·

[
αLµL(z)fL(z)− λFH(z)

]
dz

+

∫ θmax

0
xH(z) ·

[
αHµH(z)fH(z) + λFH(z)

]
dz,

with λ,wL, wH ≥ 0. Define LH(·) by

LH(θ) , αHµH(θ)fH(θ) + λFH(θ),
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then it must be the case that LH(θ) = 0 for all θ ∈ (θ1, θ2). Suppose this is not true, then we could

have θ̂ ∈ (θ1, θ2) such that LH(θ̂) > 0, since LH(·) is a continuous function this must also be true for

all θ ∈ (θ̂− ε, θ̂+ ε) for ε > 0 small enough. But then we can obtain an strict improvement by setting

x2(θ) = x?H(θ̂+ ε) for all θ ∈ (θ̂− ε, θ̂+ ε). A similar argument holds when LH(θ̂) < 0. Therefore, we

have just proved that LH(θ) = 0 for all θ ∈ (θ1, θ2). In other words,

αH
µH(θ)fH(θ)

FH(θ)
= −λ, ∀θ ∈ (θ1, θ2). (B-8)

Also note that by the second mean value theorem for integrals, there exists θ̂ ∈ (θ1, θ2) such that

x?H(θ̂) =

∫ θ2
θ1
x?H(z)FHdz∫ θ2
θ1
FH(z)dz

. (B-9)

Going back to (PR), we have that the part of objective associated to x?H in (θ1, θ2) is∫ θ2

θ1

αHx
?
H(z)µH(z)fH(z)dz = −λ ·

∫ θ2

θ1

x?H(z)FH(z)dz, (B-10)

where in the equality we have used (B-8). Now, consider modifying x?H to be x̃?H equal to x?H(θ̂) in

(θ1, θ2). Then from (B-8), (B-9) and (B-10) we get∫ θ2

θ1

x?H(z)αHµH(z)fH(z)dz = −λ · x?H(θ̂) ·
∫ θ2

θ1

FH(z)dz

= x?H(θ̂) ·
∫ θ2

θ1

αHµH(z)fH(z)dz

=

∫ θ2

θ1

x̃?H(z)αHµH(z)fH(z)dz,

therefore, the modified x̃?H has the same objective value than the old one. Also, note that we have

preserved feasibility because

uH +

∫ θmax

0
x̃?H(z)FH(z)dz = uH +

∫ θ2

θ1

x̃?H(z)FH(z)dz +

∫
(θ1,θ2)c

x̃?H(z)FH(z)dz

= uH + x?H(θ̂) ·
∫ θ2

θ1

FH(z)dz +

∫
(θ1,θ2)c

x?H(z)FH(z)dz

(a)
= uH +

∫ θ2

θ1

x?H(z)FH(z)dz +

∫
(θ1,θ2)c

x?H(z)FH(z)dz

= uH +

∫ θmax

0
x?H(z)FH(z)dz,

where in (a) we used equation (B-9).
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• interim type H case (2): Suppose x?H(·) is an optimal solution to (PR) for which there exists

θ1 < θ2 and 0 < x < 1 such that x?H(θ) = x in (θ1, θ2). Similar to the proof of type L assume

x?H(θ−1 ) < x < x?H(θ+
2 ).

Then the part of the objective for the interim type 2 in this interval is

αH · x ·
∫ θ2

θ1

µH(z)fH(z)dz. (B-11)

If µH(θ̂) ≥ 0 for some θ̂ ∈ (θ1, θ2) then because of (DHR), µH(θ) ≥ 0 for all θ ≥ θ̂ and, therefore, we

can always find a better solution by setting x?H(θ) = 1 for all θ ≥ θ̂ (note that this does not affect

feasibility in (PR)). So assume µH(θ) < 0 for all θ ∈ (θ1, θ2), then it must be the case that

uH +

∫ θmax

0
xH(z)FH(z)dz = uL +

∫ θmax

0
xL(z)FH(z)dz, (B-12)

otherwise we could decrease x and obtain an strict improvement in the objective. Now, consider

splitting the interval in half, that is, take θ̂ = (θ1 + θ2)/2 and note that because of (DHR) we always

have ∫ θ̂
θ1
µH(z)fH(z)dz∫ θ̂
θ1
FH(z)dz

≤
∫ θ2
θ̂
µH(z)fH(z)dz∫ θ2
θ̂
FH(z)dz

. (B-13)

We can modify x?H(θ) in (θ1, θ2) as follows and obtain an, at least weakly, objective improvement.

For θ ∈ (θ1, θ̂) set x?H(θ) = x− ε1 and for θ ∈ (θ̂, θ2) set x?H(θ) = x+ ε2 with ε1, ε2 > 0, and such that

equation (B-12) remains with equality. That is,

−ε1 ·
∫ θ̂

θ1

FH(z)dz + ε2 ·
∫ θ2

θ̂
FH(z)dz = 0.

With this modification the change in the objective is

−αH ·
ε2 ·
∫ θ2
θ̂
FH(z)dz∫ θ̂

θ1
FH(z)dz

·
∫ θ̂

θ1

µH(z)fH(z)dz + αH · ε2 ·
∫ θ2

θ̂
µH(z)fH(z)dz,

which by equation (B-13) is non-negative. Then we can keep increasing ε2 until either x−ε1 = x?H(θ−1 )

or x + ε2 = x?H(θ+
2 ). This proofs we can, at least weakly, improve the objective. It also proves that

we can modify the solution in such a way that for one of the two halves of the intervals the step

reaches the boundary bound given by either x?H(θ−1 ) or x?H(θ+
2 ). For the half that did not reach the

boundary, we can do the same procedure described above and then repeat this procedure until we

completely get rid of the intermediate step between (x?H(θ−1 ), x?H(θ+
2 )). Note that this process can be

potentially infinite, in which case a more rigorous argument is required.
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Suppose the process described above goes for infinitely many steps. In this case, an allocation sequence

{xnH(θ)}n∈N defined in [θ1, θ2] is generated. To prove that the argument works, we need to show that

there exists θ∞ ∈ [θ1, θ2] such that

lim
n→∞

∫ θ2

θ1

xnH(z)µH(z)fH(z)dz = x?H(θ1)

∫ θ∞

θ1

µH(z)fH(z)dz + x?H(θ2)

∫ θ2

θ∞

µH(z)fH(z)dz. (B-14)

To prove this, let {θn, θn, θ̂n}n∈N be the sequence generated in the infinite process where:

– θn and θn correspond to the lower and upper bound of the interval. For example, at the beginning

θ1 = θ1 and θ1 = θ2. At the next iteration we will have either θ2 = θ1 and θ2 = θ̂ or θ2 = θ̂ and

θ2 = θ2. Note that for all n ∈ N: θn, θn ∈ [θ1, θ2].

– θ̂n is defined to be the half of the interval. So θ̂1 = θ̂, and θ̂2 = (θ2 + θ2)/2.

From these definitions we have that θn and θn are bounded monotonic sequences (the first non-

decreasing and the second non-increasing), thus both converge to a limit. Also,

θ̂n =
θn + θn

2
,

then all three quantities, θn, θn and θ̂n, converge to the same limit which we denote by θ∞ ∈ [θ1, θ2]

(if the limit was not the same we could continue iterating the process).From this we can conclude

that the following limit holds almost surely

lim
n→∞

xnH(θ) =

x
?
H(θ−1 ) if θ < θ∞

x?H(θ+
2 ) if θ ≥ θ∞,

∀θ ∈ [θ1, θ2].

Finally, we can use the almost surely version of the dominated convergence theorem to obtain (B-14).

This completes the proof for interim type 2 and case (2).

In conclusion, putting together what we have proved for type H in cases (1) and (2), we can always

consider x?H to be a threshold allocation as in the statement of the proposition.

Part 2. From what we have just proved we can write down (PR) as follows

max −
∑

k∈{L,H}

αkuk + α1χ

∫ θ2

θ1

µ1(z)f1(z)dz + α1

∫ θmax

θ2

µ1(z)f1(z)dz + α2

∫ θmax

θH

µH(z)fH(z)dz

s.t χ ∈ [0, 1], θ1 ≤ θ2

uk ≥ 0, k ∈ {L,H}

uH +

∫ θmax

θH

FH(z)dz ≥ uL + χ

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.
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• uL = 0: From the formulation above it is clear that is always optimal to set uL = 0.

• θ̂L ≤ θ1: Suppose the opposite, that is, θ̂L > θ1. This implies that between θ1 and θ̂1, µL(·) is

negative. Then, we can increase θ1 while keeping feasibility and, at the same time, increasing the

objective function. Note this argument is also valid when θ1 = θ2. Also, note that we can obtain a

strict improvement only when x > 0; however, when x = 0 we can only obtain a weak improvement.

In either case, we can always consider θ̂L ≤ θ1.

• θH ≤ θ̂H : Suppose the opposite, θH > θ̂H . Since µH(θ) > 0 for all θ ≥ θ̂H , we can can decrease θH

and obtain an objective improvement while maintaining feasibility.

• uH = 0: Suppose uH > 0, then we must have

uH +

∫ θmax

θH

FH(z)dz = x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz, (B-15)

otherwise, we could decrease uH and, by doing so, improve the objective. Since uH > 0, equation

(B-15) yields

0 < uH = x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz −
∫ θmax

θH

FH(z)dz, (B-16)

then it must be true that θ1 < θH ; otherwise, from equation (B-16) we would have (θ1 ≤ θ2)∫ θ1

θH

FH(z)dz +

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz < x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz,

which implies ∫ θ1

θH

FH(z)dz < 0,

a contradiction. Thus, θ1 < θH .

Now consider, a new contract for type H which consists on decreasing the cut-off θH by ε > 0

sufficiently small, but at the same time maintaining the equality in equation (B-15). Specifically, let

θH(ε) = θH − ε > 0 (which we can do because as we just saw θH > θ1 ≥ 0) and let uH(ε) be

uH(ε) = x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz −
∫ θmax

θH(ε)
FH(z)dz,

note that by taking ε small we still have uH(ε) > 0. We claim that this new contract, characterized by

θ1, θ2, x, θH(ε) and uH(ε), yields a larger objective that the old contract, characterized by θ1, θ2, x, θH

and uH . The old contract objective’s is

−αHuH + αLx

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θmax

θ2

µL(z)fL(z)dz + αH

∫ θmax

θH

µH(z)fH(z)dz,
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and using equation (B-15) it becomes

x

∫ θ2

θ1

(αLµL(z)fL(z)− αHFH(z))dz +

∫ θmax

θ2

(αLµL(z)fL(z)− αHFH(z))dz + αH

∫ θmax

θH

zfH(z)dz.

We obtain a similar expression for the new contract’s objective. Specifically, the first two terms in

the expression above are the same and the third term differs in θH . Hence, the new contract yields

an improvement over the old one if and only if∫ θmax

θH

zfH(z)dz <

∫ θmax

θH(ε)
zfH(z)dz.

Since θH(ε) < θH this last inequality is true. Thus, if uH > 0 we can always construct a new contract

yielding a larger objective value and, therefore, at any optimal contract we must have uH = 0.

• θH ≤ θ2: Since at any optimal solution uH = 0, the IC constraint is∫ θmax

θH

FH(z)dz ≥ x
∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

Hence, if θH > θ2 from the expression above we would have∫ θmax

θH

FH(z)dz ≥ x
∫ θ2

θ1

FH(z)dz +

∫ θH

θ2

FH(z)dz +

∫ θmax

θH

FH(z)dz,

which implies θH = θ2, a contradiction.

• θ1 ≤ θH : First we show that θ1 ≤ θ̂H . Suppose the opposite, that is, θ1 > θ̂H . Then, since θ̂H ≥ θH

we must have θ1 > θH and, therefore,∫ θmax

θH

FH(z)dz =

∫ θ1

θH

FH(z)dz +

∫ θmax

θ1

FH(z)dz

>

∫ θmax

θ1

FH(z)dz

=

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz

≥ χ
∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

That is, the IC constraint is not binding. Therefore, since θ1 > θ̂H ≥ θ̂L we can slightly decrease θ1

and, in this way, obtain an objective improvement whenever x > 0. When x = 0, because θ2 ≥ θ1,

we can decrease θ2 and obtain an objective improvement as well. Hence, at any optimal solution we

must have θ1 ≤ θ̂H .
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In order to complete the proof, suppose θ1 > θH then, as before, we have∫ θmax

θH

FH(z)dz > x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

Using that θ1 ≤ θ̂H implies θH < θ̂H , we can slightly increase θH (maintaining feasibility) and thus

obtain an objective improvement. In conclusion, at any optimal solution we must have θ1 ≤ θH .

• x =
∫ θ2
θH
FH(z)dz/

∫ θ2
θ1
FH(z)dz: since θ̂L ≤ θ, the part of the objective that involves x is always

non-negative and, therefore, it is optimal to make x as large as possible. The IC constraints gives an

upper bound for x which is precisely
∫ θ2
θH
FH(z)dz/

∫ θ2
θ1
FH(z)dz, thus the result.

Proof of Theorem 3. We divide the proof into two part. In part 1 we show that the solution to the

relaxed problem and the original problem coincide. In part 2 we prove that the three conditions that

we state after the theorem are sufficient to characterize the optimality of the static contract.

Part 1. It is enough to show that the solution of (PR) is feasible in (P). From Theorem 2 we know

that we can formulate (PR) as

(PdR) max αLχ

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θmax

θ2

µL(z)fL(z)dz + αH

∫ θmax

θH

µH(z)fH(z)dz

s.t χ =

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

θ̂L ≤ θ1 ≤ θH ≤ θ2, θH ≤ θ̂H∫ θmax

θH

FH(z)dz ≥ χ
∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

Let θ1, θH , θ2 and x be the optimal solution to (PR). If this solution corresponds to the optimal static

contract or yields the same objective than it, we are done because this contract is always feasible in

(P). If this solution is different from the optimal static contract and yields a strictly larger objective

than it, it must be the case that∫ θmax

θH

µ̄(z)dz < αLx

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θmax

θ2

µL(z)fL(z)dz + αH

∫ θmax

θH

µH(z)fH(z)dz. (B-17)

This is true because the contract (u1, u2, x1, x2) = (0, 0,1{θ≥θH},1{θ≥θH}) is a feasible static contract

and, therefore, its associated revenue is bounded by that of the optimal static contract. From the

formulation of (PR) we know that θ̂L ≤ θ1 ≤ θH ≤ θ2, this and equation (B-17) deliver

0 ≤
∫ θ2

θH

µL(z)fL(z)dz < x

∫ θ2

θ1

µL(z)fL(z)dz.
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Hence, θ1 < θ2, θH < θ2 (otherwise x = 0) and∫ θ2
θH
µL(z)fL(z)dz∫ θ2

θ1
µL(z)fL(z)dz

< x. (B-18)

Also, since x ≤ 1 we must have θ1 < θH . Note that since θ̂L ≤ θ1 < θ2 the denominator above is strictly

positive.

Now we argue that the contract optimizing (PR) characterized by θ1, θH , θ2 and x is feasible for (P).

Since the high to low IC constraint is satisfied, we only need to verify the low to high IC constraint.

That is, we need to verify the following inequality

x

∫ θ2

θ1

FL(z)dz +

∫ θmax

θ2

FL(z)dz ≥
∫ θmax

θH

FL(z)dz, (B-19)

or, equivalently, x ≥
∫ θ2
θH
FL(z)dz/

∫ θ2
θ1
FL(z)dz. In order to see why (B-19) holds, observe that from

Lemma B-1 (which we state and prove after the present proof) we have∫ θ2
θ1
µL(z)fL(z)dz∫ θ2
θ1
FL(z)dz

≤
∫ θ2
θH
µL(z)fL(z)dz∫ θ2
θH
FL(z)dz

⇔
∫ θH
θ1

µL(z)fL(z)dz∫ θH
θ1

FL(z)dz
≤
∫ θ2
θH
µL(z)fL(z)dz∫ θ2
θH
FL(z)dz

. (B-20)

The right hand side in (B-20) always holds thanks to (DHR), indeed,∫ θH
θ1

µL(z)fL(z)dz∫ θH
θ1

FL(z)dz
=

∫ θH
θ1

FLr
LL(z)dz∫ θH

θ1
FL(z)dz

≤ rLL(θH) ≤
∫ θ2
θH
FLr

LL(z)dz∫ θ2
θH
FL(z)dz

=

∫ θ2
θH
µL(z)fL(z)dz∫ θ2
θH
FL(z)dz

.

Thus the left hand side in (B-20) holds. Equivalently,∫ θ2
θH
FL(z)dz∫ θ2

θ1
FL(z)dz

≤
∫ θ2
θH
µL(z)fL(z)dz∫ θ2

θ1
µL(z)fL(z)dz

Using this, together with equation (B-18), delivers equation (B-19). This concludes the proof for Part

1.

Part 2. In this part we prove the following optimality conditions for the thresholds θ1 ≤ θH ≤ θ2:

1. RLH(θ1, θ2) ≤ minθ2≤θ R
LH(θ2, θ);

2. maxθ≤θ2 R
LH(θ, θ2) ≤ RLH(θ1, θ2);

3. αL ·RLH(θ1, θ2) + αHr
HH(θH) = 0.
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It is enough to prove that under the conditions the optimal contract characterized by (θ1, θH , θ2)

is optimal for (PR). To prove this we use a Lagrangian relaxation (we do not relax the monotonicity

constraints) and show that this relaxation is optimized by the contract characterized by (θ1, θH , θ2).

First, we establish some properties that can be derived from conditions (1) to (3). Condition (3)

implies that θ2 ≥ θ̂L; otherwise, θ1, θ2 < θ̂L which would imply that RLH(θ1, θ2) < 0. In turn, condition

(3) would give RHH(θH) > 0 which would imply that θ̂H < θH . Since θH ≤ θ2 we would have

θ̂H < θH ≤ θ2 < θ̂L, that is, θ̂H < θ̂L which is not possible. Moreover, condition (2) together with the

fact that θ2 ≥ θ̂L imply that θ1 ≥ θ̂L. This yields RLH(θ1, θ2) ≥ 0, and thus we can use condition (3)

again to deduce that θH ≤ θ̂H . In summary, θ̂L ≤ θ1 and θH ≤ θ̂H .

Now we provide the main argument. If θ1 = θ2, then we also have θ1 = θ2 = θH . Condition

(3) implies that the contract characterize by (θ1, θH , θ2) is the static contract. Conditions (1) and (2)

together yield (APR) and, therefore, from Theorem 1 we deduce that the static contract is optimal.

Next suppose that θ1 < θ2, and define

Ω , {x : [0, 1]→ [0, 1] : x(·) is non-decreasing}.

We use x? to denote the solution characterize by (θ1, θH , θ2). The Lagrangian for (PR) is

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θmax

0
xL(z) ·

[
αLµL(z)fL(z)− λFH(z)(z)

]
dz

+

∫ θmax

0
xH(z) ·

[
αHµH(z)fH(z) + λFH(z)

]
dz,

consider the following multipliers

λ = αL ·RLH(θ1, θ2), wL = λ+ αL, wH = −λ+ αH ,

note that λ and wL are non-negative, and for wH we have

wH ≥ 0⇔ αH + αHr
HH(θH) ≥ 0⇔ rHH(θH) ≥ −1⇔ [θH − hHH(θH)] ≥ −hHH(θH)⇔ θH ≥ 0,

where in the first if and only if we used condition (3) in our hypothesis. Thus when we optimize the

Lagrangian we obtain:

max
(u,x)∈Ω

L(x,u,λ,w) = max
0≤θ≤θmax

∫ θmax

θ

[
α1µ1(z)f1(z)− λF 2(z)

]
dz

+ max
0≤θ≤θmax

∫ θmax

θ

[
αHµH(z)fH(z) + λFH(z)

]
dz , (B-21)
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where we can reduce attention to threshold strategies because xL(·), xH(·) are non-decreasing (see, e.g.,

Myerson (1981) or Riley and Zeckhauser (1983)). If we are able to show that L(x,u,λ,w) evaluated at

our candidate solution is an upper bound for the RHS above we are done. Let’s begin with the second

term, take any 0 ≤ θ ≤ θmax then∫ θmax

θ

[
αHµH(z)fH(z) + λFH(z)

]
dz =

∫ θmax

θ

[
αHµH(z)fH(z)− αHrHH(θH)FH(z)

]
dz

=

∫ θmax

θ
αHFH(z)

[
rHH(z)− rHH(θH)

]
dz

≤
∫ θmax

θH

αHFH(z)
[
rHH(z)− rHH(θH)

]
dz

=

∫ θmax

0
x?H(z)

[
αHµH(z)fH(z) + λFH(z)

]
dz,

where in the first equality we used condition (3) and the inequality comes from the fact that rHH(·) is

non-decreasing. Now we look into the first term in equation (B-21), consider first θ ≥ θ2∫ θmax

θ

[
αLµL(z)fL(z)− λFH(z)

]
dz =

∫ θmax

θ2L

[
αLµL(z)fL(z)− λFH(z)

]
dz

−
∫ θ

θ2L

[
αLµL(z)fL(z)− λFH(z)

]
dz

≤
∫ θmax

θ2L

[
αLµL(z)fL(z)− λFH(z)

]
dz,

where we have used the following

−
∫ θ

θ2

[
αLµL(z)fL(z)− λF 2(z)

]
dz ≤ 0⇔ αL ·

∫ θ2
θ1
FH(z)rLH(z)dz∫ θ2
θ1
FH(z)dz

= λ ≤ αL ·
∫ θ
θ2
F 2(z)rLH(z)dz∫ θ
θ2
FH(z)dz

,

which thanks to condition (1) in our hypothesis is true. A similar argument holds for θ ≤ θ2, but using

condition (2). Since L(x?, 0,λ,w) equals

x

∫ θ2

θ1

[
α1µ1(z)f1(z)−λFH(z)

]
dz+

∫ θmax

θ2

[
α1µ1(z)f1(z)−λFH(z)

]
dz+

∫ θmax

θH

[
αHµH(z)fH(z)+λFH(z)

]
dz,

which by the definition of λ simplifies to∫ θmax

θ2

[
α1µ1(z)f1(z)− λFH(z)

]
dz +

∫ θmax

θH

[
αHµH(z)fH(z) + λFH(z)

]
dz,

we conclude that max(u,x)∈Ω L(u,x,λ,w) ≤ L(0,x?,λ,w), as required.
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Lemma B-1 Let θi ∈ [0, 1] for i = 1, 2, 3 be such that θ1 < θ2 < θ3. Also, consider functions f, g :

[θ1, θ3]→ I, with
∫ θ2
θ1
g(z)dz,

∫ θ3
θ2
g(z)dz > 0. Then,∫ θ3

θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

if and only if

∫ θ2
θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

.

Proof of Lemma B-1.∫ θ3
θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ3

θ1

f(θ)dz
)
≤
(∫ θ3

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ2

θ1

f(z)dz
)
≤
(∫ θ2

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
∫ θ2
θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

Proof of Proposition 3. We use the sufficient condition in Theorem 3. First note that since the

support of the exponential distribution is unbounded from above, we can take θ2 =∞ which eliminates

condition (1). Conditions (2) and (3) can be cast as

θ1e
−θ1(λL−λH) ≥ θe−θ(λL−λH) ∀θ ≥ 0 and αL · λHθ1e

−θ1(λL−λH) = −αH · (λHθH − 1), (B-22)

By optimizing the first term in (B-22) we obtain

θ1 =
1

λL − λH
,

and then solving for θH yields

θH =
1

λH
− αL
αH

e−1

λL − λH
.

What we need to check (and it is not obvious at a first glance) is that θ1 ≤ θH . First, we show

αL(θ1 −
1

λL
)λLe

−λLθ1 + αH(θ1 −
1

λH
)λHe

−λHθ1 < 0. (B-23)

To prove this inequality notice that since θ̂ is the optimal static cutoff we have

αLθ̂e
−λLθ̂ + αH θ̂e

−λH θ̂ ≥ αLθ1e
−λLθ1 + αHθ1e

−λHθ1 , (B-24)
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then

αL(θ1
L −

1

λL
)λLe

−λLθ1L + αH(θ1
L −

1

λH
)λHe

−λHθ1L = αLθ
1
L(λL − λH)e−λLθ

1
L + αLθ

1
LλHe

−λLθ1L

+ αHθ
1
LλHe

−λHθ1L − αLe−λLθ
1
L − αHe−λHθ

1
L

= αLe
−λLθ1L + λH(αLθ

1
Le
−λLθ1L + αHθ

1
Le
−λHθ1L)

− αLe−λLθ
1
L − αHe−λHθ

1
L

(a)

≤ λH(αLθ̂e
−λLθ̂ + αH θ̂e

−λH θ̂)− αHe−λHθ
1
L

(b)
< λH(αLθ̂e

−λLθ̂ + αH θ̂e
−λH θ̂)− αHe−λH θ̂

= λHαLθ̂e
−λLθ̂ + λHαHe

−λH θ̂(θ̂ − 1

λH
)

(c)
= λHαLθ̂e

−λLθ̂ − λLαLe−λLθ̂(θ̂ −
1

λL
)

= αLe
−λLθ̂

(
− θ̂(λL − λH) + 1

)
(d)
< 0,

where (a) comes from equation (B-24), (b) is true because the function −e−λHθ increasing and θ1 < θ̂,

(c) comes from equation (8). And (d) comes from θ1 < θ̂. With this we have proven (B-23) and thus

λLαH · (θH −
1

λH
)

(a)
= −λLαL · θ1

Le
−θ1L(λL−λH)

= −λLαL ·
(
θ1
L −

1

λL

)
e−θ

1
L(λL−λH) − λLαL ·

1

λL
e−θ

1
L(λL−λH)

(b)
> αH(θ1

L −
1

λH
)λH − αL · e−θ

1
L(λL−λH)

(c)
= αH(θ1

L −
1

λH
)λH +

αH
θ1
L

· (θH −
1

λH
),

where in (a) and (c) we used the definition of θH , and in (b) we used equation (B-23). From this we

have that

(θH −
1

λH
) ·
(
λLαH −

αH
θ1

)
> αH(θ1 −

1

λH
)λH ,

but replacing θ1 with 1/(λL − λH) in this last expression we get θH > θ1.

Finally, x is given by

x =

∫ θ3
θH
FH(z)dz∫ θ3

θ1
FH(z)dz

=
e−λHθH

e−λHθ1
= exp

(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
.
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C Proofs for section 6

Proof of Theorem 4. In Lemma C-2 (which we state and prove after this proof) we show that A is

non-empty. Next we prove the necessary and sufficient condition.

We prove both directions separately. First we show that if there exists λ ∈ A satisfying the properties

then the static contract is optimal. Then we show that if the static contract is optimal then we can

always solve for λ satisfying the properties.

Define

Ω , {x : [0, 1] −→ [0, 1] : x(·) is non-decreasing}, and ΩK , Ω× · · · × Ω︸ ︷︷ ︸
K times

.

For the first part we use a Lagrangian relaxation approach. That is, we dualize the IC constraints for

a specific set of multipliers. This gives an upper bound to the seller’s problem. Then we show that for

our choice of multipliers the relaxation is maximized at the static allocation. The Lagrangian is

L(x, u,λ,w) =

K∑
k=1

uk

(
− αk + wk +

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk

)

+
K∑
k=1

∫ θmax

0
xk(z)

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,

where λ correspond to the multipliers associated with the ICs, and w to the multipliers associated with

the ex-post IR constraints. Let us define λ to be equal to the (λij)i,j∈{1,··· ,K}2 we are assuming to exist,

that is λ ∈ A, and let

wk = αk +
∑
j:j 6=k

λjk −
∑
j:j 6=k

λkj ,∀k ∈ {1, . . . ,K}. (C-25)

Note that by our choice of λ (λ ∈ A), wk is non-negative for all k. With this choice of w the first

summation in the Lagrangian becomes zero. Now, we need to show that for this choice of multipliers

the Lagrangian is maximized at the static contract. In order to show this observe that

max
x∈ΩK ,u≥0

L(x, u,λ,w) =
K∑
k=1

max
xk∈Ω

∫ θmax

0
xk(z)

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,

(C-26)

thus we just need to verify that the RHS of (C-26) is bounded above by

K∑
k=1

∫ θmax

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz. (C-27)
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Note that the RHS of (C-26), for each k, is maximized at some threshold contract θk ∈ [0, 1]. So to

prove that (C-27) is an upper bound of (C-26) is enough to show that for all k and for any θk ∈ [0, 1]∫ θmax

θk

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz ≤

∫ θmax

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj

−
∑
j:j 6=k

λjkF j(z)
)
dz. (C-28)

Consider θk ≥ θ̂ in (C-28), then (C-28) becomes

0 ≤
∫ θk

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,

this is equivalent to

−
( ∑
j:j 6=k

λkj

)
·
∫ θk

θ̂
F k(z)dz ≤

∫ θk

θ̂

(
αkµk(z)fk(z)−

∑
j:j 6=k

λjkF j(z)
)
dz, ∀θk ≥ θ̂,

which can be rewritten as

−
( ∑
j:j 6=k

λkj

)
≤ min

θ̂≤θ

{
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
. (C-29)

Similarly, if θk ≤ θ̂ then (C-28) is equivalent to

0 ≥
∫ θ̂

θk

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz, ∀θk ≤ θ̂,

which is equivalent to

max
θ≤θ̂

{
αk

∫ θ̂
θ µk(z)fk(z)dz∫ θ̂

θ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
≤ −

( ∑
j:j 6=k

λkj

)
. (C-30)

In summary, proving that (C-28) holds is equivalent to showing that both (C-29) and (C-30) hold. To

see why this is true, note that

lim
θ→θ̂+

αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

=
αk · µk(θ̂) · fk(θ̂)−

∑
j:j 6=k λjk · F j(θ̂)

F k(θ̂)
= −

( ∑
j:j 6=k

λkj

)
,

(C-31)

where the last equality comes from the choice of the multipliers. Since the limit is taken for values

above θ̂, this implies that

min
θ̂≤θ

{
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
≤ lim

θ→θ̂+
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

= −
( ∑
j:j 6=k

λkj

)
.
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A similar argument(taken the limit for values below θ̂ this time) can be used to show that

−
( ∑
j:j 6=k

λkj

)
≤ max

θ≤θ̂

{
αk

∫ θ̂
θ µk(z)fk(z)dz∫ θ̂

θ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
.

Since we are assuming that the minimum is an upper bound to the maximum above, we can conclude

that both (C-29) and (C-30) hold (with equality). This concludes the proof for the first direction.

For the second direction we need to show that if the static contract is optimal then we can find

λ satisfying condition (APRM ). Theorem 1 in Luenberger (1969, p. 217) gives then the existence of

Lagrange multipliers such that the static contract maximizes the Lagrangian(here we use the interior

point condition in the assumptions). In other words, ∃λ,w ≥ 0 such that

L(xs,0,λ,w) ≥ L(x,u,λ,w), ∀u,x ∈ RK+ × ΩK . (C-32)

Note that (C-32) holds for any u,x ∈ RK+ × ΩK . Thus we can first consider x equal to xs in (C-32),

this yields

0 ≥
K∑
k=1

uk

(
− αk + wk +

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk

)
, ∀u ∈ RK+ .

Which implies that

−αk + wk +
∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk = 0, ∀k,

and since wk ≥ 0 we can conclude that

αk ≥
∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk, ∀k,

as required. Now, fix k and consider a solution x ∈ ΩK such that xj ≡ xs for all j 6= k and xk is 1{θ≥θk}

for some θk ∈ [0, 1]. Then equation (C-32) delivers equation (C-28). And we already saw that (C-28) is

equivalent to both equations (C-29) and (C-30). Putting these two equations together yields

max
θ≤θ̂

{
αk

∫ θ̂
θ µk(z)fk(z)dz∫ θ̂

θ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
≤ −

( ∑
j:j 6=k

λkj

)

≤ min
θ̂≤θ

{
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
,

that is, condition (APRM ) holds for any k. We only need to check that λ ∈ A. Observe that both the

maximum and the minimum are bounded from below and above (respectively) by

αk · µk(θ̂) · fk(θ̂)−
∑

j:j 6=k λjk · F j(θ̂)
F k(θ̂)

. (C-33)
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To see this we can take the limit as before. For the maximum we take the limit of θ approaching to θ̂

from below. This limit converges to the expression in (C-33) and is bounded above by the maximum.

The same argument applies to the minimum but this time taking the limit from above θ̂. In turn implies

that
αk · µk(θ̂) · fk(θ̂)−

∑
j:j 6=k λjk · F j(θ̂)

F k(θ̂)
= −

( ∑
j:j 6=k

λkj

)
,

and we can conclude that λ ∈ A.

Lemma C-2 The set A is non-empty.

Proof of Lemma C-2. We want to show that A 6= ∅, which amount to proving that the linear system

K∑
j=1,j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
K∑

j=1,j 6=k
λkj , ∀k ∈ {1, . . . ,K},

αk = wk +

K∑
j=1,j 6=k

λkj −
K∑

j=1,j 6=k
λjk, ∀k ∈ {1, . . . ,K},

with (λ,w) ≥ 0 has a solution. We begin by writing down the system with matrices and then we apply

Farkas’ lemma.

First, the vector λ is given by

(λ12, λ13, · · · , λ1K︸ ︷︷ ︸
Type1

, λ21, λ23, · · · , λ2K︸ ︷︷ ︸
Type2

, · · · , λK1, λK2, · · · , λKK−1︸ ︷︷ ︸
TypeK

),

note that the terms λkk for any k ∈ {1, . . . ,K} do not form part of the vector. Now, consider matrix A

with K(K − 1) +K columns and 2K rows given by

A =

F1 F2 · · · FK 0K×K

B1 B2 · · · BK IK×K

 ,
where 0K×K is the zero matrix of dimension K × K and IK×K is the identity matrix of dimension

K ×K. Also, Fk is a matrix of dimension K × (K − 1) defined by

Fk
ij =



−F k(θ̂) if i = k

F k(θ̂) if i < k, j = i

F k(θ̂) if i > k, j = i− 1

0 if o.w

,
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and Bk is a matrix of dimension K × (K − 1) defined by

Bk
ij =



1 if i = k

−1 if i < k, j = i

−1 if i > k, j = i− 1

0 if o.w

.

Finally, let b be a vector defined by

b = (αLµ1(θ̂)f1(θ̂), α2µ2(θ̂)f2(θ̂), · · · , αKµK(θ̂)fK(θ̂), αL, · · · , αK).

Then, the linear system can be rewritten as

A ·

λ
w

 = b, λ,w ≥ 0.

Now we use Farkas’ lemma, if this system does not have a solution then it must be the case that the

following system has a solution

Aᵀ ·

yF
yB

 ≥ 0, bᵀ ·

yF
yB

 < 0. (C-34)

Explicitly, we have (yF , yB) solve

F k(θ̂) · (yFj − yFk )− (yBj − yBk ) ≥ 0, ∀k, ∀j 6= k

yBk ≥ 0, ∀k
K∑
k=1

αkµk(θ̂)fk(θ̂) · yFk +
K∑
k=1

αk · yBk < 0.
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Let yFm be equal to mink{yFk } (m is the index that achieves the minimum) then

K∑
k=1

αkµk(θ̂)fk(θ̂) · yFk +
K∑
k=1

αk · yBk
(a)
=

K∑
k=1

αkµk(θ̂)fk(θ̂) · (yFk − yFm) +
K∑
k=1

αk · yBk

=

K∑
k=1

αk

(
θ̂ − F k(θ̂)

fk(θ̂)

)
fk(θ̂) · (yFk − yFm) +

K∑
k=1

αk · yBk

=
K∑
k=1

αk

(
θ̂fk(θ̂)− F k(θ̂)

)
· (yFk − yFm) +

K∑
k=1

αk · yBk

(b)

≥ −
K∑
k=1

αkF k(θ̂) · (yFk − yFm) +
K∑
k=1

αk · yBk

=

K∑
k=1

αkF k(θ̂) · (yFm − yFk ) +

K∑
k=1

αk · yBk

(c)

≥
K∑
k=1

αk · (yBm − yBk ) +
K∑
k=1

αk · yBk

=

K∑
k=1

αk · yBm

(d)
= yBm ≥ 0,

a contradiction. Where in (a) we use the fact that
∑K

k=1 αkµk(θ̂)fk(θ̂) = 0, in (b) we use the definition

of yFm, in (c) we use the first set of equations in (C-34) and in (d) we use the fact that
∑K

k=1 αk = 1 and

yBm ≥ 0.

Proof of Proposition 4. We make use of Lemma C-3 which we state and prove after the present

proof. In that lemma we need to define the function

Lk(z|λ) , αkµk(z) +
F̄k(z)

fk(z)
·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`k
F̄`(z)

fk(z)
,

for any λ ≥ 0. For exponential distributions Lk(z|λ) becomes:

Lk(z|λ) = αk · z +
1

λk
·
( ∑
`:` 6=k

λk` − αk
)

︸ ︷︷ ︸
linear

−
∑
`:`>k

λ`k
e−z(λl−λk)

λk︸ ︷︷ ︸
increasing and convex

−
∑
`:`<k

λ`k
e−z(λl−λk)

λk︸ ︷︷ ︸
decreasing and convex

.

Hence, Lk(·|λ) is concave, which means that it crosses zero at most two times. Using Lemma C-3 we

conclude that in the exponential case allocations have at most one step in which randomization occurs.
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Lemma C-3 For any dual-feasible variable λ associated to the IC constraints define

Lk(z|λ) , αkµk(z) +
F̄k(z)

fk(z)
·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`k
F̄`(z)

fk(z)
. (F)

If Lk(z|λ) crosses zero at most p times then the optimal allocation xk has at most bp/2c intervals where

randomization occurs.

Proof of Lemma C-3. We divide the proof into two parts. In the first part we construct a new dual

problem and state the complementary slackness conditions. This part of the proof follows the general

theory of linear programming in infinite dimensional space developed by Anderson and Nash (1987). In

the second part we exploit the complementary slackness conditions to show that the optimal allocation

xk has at most bp/2c intervals where randomization occurs.

Part 1. Define the cone of non-negative non-decreasing functions

K , {x : [0, θmax]→ R|x is non-negative and non-decreasing function}. (Primal Cone)

The general formulation of the seller’s problem is

(P) max −
K∑
k=1

αkuk +
K∑
k=1

αk

∫ θmax

0
xk(z)µk(z)fk(z)dz

s.t xk(·) ∈ K, ∀k ∈ {1, . . . ,K}

xk(θ) ≤ 1, ∀θ ∈ [0, θmax] ,∀k ∈ {1, . . . ,K}

uk ≥ 0, ∀k ∈ {1, . . . ,K}

uk +

∫ θmax

0
xk(z)F̄k(z)dz ≥ uk′ +

∫ θmax

0
xk′(z)F̄k(z)dz, ∀k, k′ ∈ {1, . . . ,K}.

Note that the dual cone of K is

K∗ = {β :

∫ θmax

θ
β(z)dz ≥ 0, ∀θ ∈ [0, θmax]}. (Dual Cone)

The Lagrangian is

L(x, u,λ, β,w) =
K∑
k=1

uk ·
(
− αk + wk +

∑
`:` 6=k

λk` −
∑
`:` 6=k

λ`k

)

+

K∑
k=1

∫ θmax

0
xk(z)

(
αkµk(z)fk(z) + F̄k(z) ·

∑
`:`6=k

λk` −
∑
`:`6=k

λ`kF̄`(z) + βk(z)− ηk(z)
)
dz

+
K∑
k=1

∫ θmax

0
ηk(z)dz,
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where βk are the dual variables associated with the monotonicity constraints, ηk are dual variables

associated with the constraints xk(θ) ≤ 1. While λ,w correspond to the dual variables associated with

the IC an non-negativity constraints respectively. This yields the following Dual program (D):

(D) min

K∑
k=1

∫ θmax

0
ηk(z)dz

s.t− αk + wk +
∑
`: 6̀=k

λk` −
∑
`: 6̀=k

λ`k = 0, ∀k

αkµk(z)fk(z) + F̄k(z) ·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`kF̄`(z) = ηk(z)− βk(z), ∀k, ∀z ∈ [0, θmax]

λ,w, ηk(·) ≥ 0, βk ∈ K∗, ∀k.

And we must have complementary slackness:

• For the monotonicity constraints (the cone constraints) this means that if xk(·) changes at some

θ then
∫ θmax
θ βk(z)dz = 0. Also x(0) ·

∫ θmax
0 β(z)dz = 0. All of this for all k.

• For the upper bound constraints: (1− xk(θ)) · ηk(θ) = 0 for all θ ∈ [0, θmax] and for all k.

Part 2. Consider an optimal primal-dual pair. Let xk be the primal solution for interim type k,

and βk, ηk and λ,w the corresponding dual solutions. Observe that from dual feasibility we must have

fk(z) · Lk(z|λ) = ηk(z)− βk(z), ∀z ∈ [0, θmax]. (C-35)

Let us denote by ẑ1 < · · · < ẑp the points where Lk(·|λ) crosses zero, and we let ẑ0 = 0 and ẑp+1 = θmax.

Note that Lk(θmax|λ) = α · θmax > 0, and by the feasibility of λ we have Lk(0|λ) = −wk/fk(0) ≤ 0.

Let z?1 , inf{z ∈ [0, θmax] : xk(z) = 1} (if xk(z) never equals 1 we take z?1 = θmax). We can assume

that z?1 > 0, otherwise xk(z) would be equal to 1 everywhere in [0, θmax] and the result would follow.

In turn, there has to be a change on xk around z?1 and, therefore, complementary slackness implies

that
∫ θmax
z?1

βk(z)dz = 0. Moreover, since xk(z) < 1 for all z < z?1 complementary slackness implies that

ηk(z) = 0 for all z < z?1 . Therefore, Eq. (C-35) becomes

fk(z) · Lk(z|λ) = −βk(z), ∀z ∈ [0, z?1). (C-36)

Let q be the largest index in {0, 1, . . . , p} such that ẑq ≤ z?1 . Note that z?1 ∈ [ẑq, ẑq+1]. We show the

following claim:

Claim 1. Lk(·|λ) is positive in (ẑq, ẑq+1) and z?1 = ẑq.
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Proof of Claim 1. First suppose that Lk(·|λ) is positive in (ẑq, ẑq+1) we show that z?1 = ẑq. If

not then for any z ∈ (ẑq, z
?
1) we have Lk(z|λ) > 0 which thanks to Eq. (C-36) yields βk(z) < 0 for any

z ∈ (ẑq, z
?
1) and, therefore,∫ θmax

z
βk(z)dz =

∫ z?1

z
βk(z)dz +

∫ θmax

z?1

βk(z)dz︸ ︷︷ ︸
=0

=

∫ z?1

z
βk(z)dz < 0, (C-37)

but this contradicts the fact that βk ∈ K∗. That is, z?1 ≤ ẑq but since ẑq ≤ z?1 we conclude that

ẑq = z?1 . To complete the argument suppose Lk(·|λ) is negative in (ẑq, ẑq+1) then, in particular, Lk(·|λ)

is negative in (z?1 , ẑq+1) and from Eq. (C-35) we deduce that βk(z
′) > 0 for all z′ ∈ (z?1 , ẑq+1). Hence,

for any z′ ∈ (z?1 , ẑq+1)

0 =

∫ θmax

z?1

βk(z)dz =

∫ z′

z?1

βk(z)dz︸ ︷︷ ︸
>0

+

∫ θmax

z′
βk(z)dz︸ ︷︷ ︸
≥0

> 0, (C-38)

a contradiction. In the second bracket we use the fact that βk ∈ K∗. This concludes the proof of Claim

1.

This shows that xk(·) equals 1 in (ẑq, θmax] and that it changes value at ẑq. Now, from Claim 1

we now that Lk(·|λ) is negative in (ẑq−1, ẑq) and, therefore, from Eq. (C-36) we deduce that βk(·) is

positive in (ẑq−1, ẑq). This together with
∫ θmax
z?1

βk(z)dz = 0 imply that xk(·) is constant in (ẑq−1, ẑq)

(by means of complementary slackness any change would yield a contradiction). Let’s denote the value

of xk(·) in (ẑq−1, ẑq) by χq. Note that of χq = 0 we are done. Similarly to what we did before we define

z?2 , inf{z ∈ [0, ẑq−1] : xk(z) = χq}. Note that z?2 < ẑq−1. If z?2 = 0 then we xk(·) equals χq for all

values below zq and, therefore, there is nothing more to prove. So assume z?2 > 0. If z?2 = ẑq−1 then

xk(·) changes value at ẑq−1 and, therefore, by complementary slackness
∫ θmax
ẑq−1

βk(z)dz = 0. However,

Lk(·|λ) is positive in (ẑq−2, ẑq−1) which by Eq. (C-36) implies that βk is negative in (ẑq−2, ẑq−1) but

this would contradict the dual feasibility of βk. Hence, we can assume that z?2 < ẑq−1.

Let q2 be the largest index in {0, 1, . . . , q − 1} such that ẑq2 ≤ z?2 . Note that z?2 ∈ [ẑq2 , ẑq2+1]. As

before we can show that Lk(·|λ) is positive in (ẑq2 , ẑq2+1) and z?2 = ẑq2 . Note that this implies that the

value χq of xk(·) extends for at least two intervals, namely, (ẑq−2, ẑq−1) and (ẑq−1, ẑq).

The previous argument can be applied iteratively over all intervals defined by ẑ1 < · · · < ẑp. Since

in each step of the argument we cover two interval we deduce that there can be at most bp/2c different

value of χq′ where q′ is defined in every step as we did before. Moreover, if Lk(0|λ) < 0 then in the

interval (0, ẑ1) the dual variable βk(·) is positive. Because
∫ θmax
ẑ1

βk(z)dz = 0 (this follows from the
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steps of the argument) and x(0) ·
∫ θmax

0 β(z)dz = 0 we must have x(0) = 0 and so in the last interval xk

equals 0.

70


