
RESEARCH ARTICLE

SiGMoiD: A super-statistical generative model

for binary data

Xiaochuan ZhaoID
1, Germán PlataID

2, Purushottam D. DixitID
1,3*

1 Department of Physics, University of Florida, Gainesville, Florida, United States of America, 2 Elanco

Animal Health, Greenfield, Indiana, United States of America, 3 Genetics Institute, University of Florida,

Gainesville, Florida, United States of America

* pdixit@ufl.edu

Abstract

In modern computational biology, there is great interest in building probabilistic models to

describe collections of a large number of co-varying binary variables. However, current

approaches to build generative models rely on modelers’ identification of constraints and

are computationally expensive to infer when the number of variables is large (N~100). Here,

we address both these issues with Super-statistical Generative Model for binary Data (SiG-

MoiD). SiGMoiD is a maximum entropy-based framework where we imagine the data as

arising from super-statistical system; individual binary variables in a given sample are cou-

pled to the same ‘bath’ whose intensive variables vary from sample to sample. Importantly,

unlike standard maximum entropy approaches where modeler specifies the constraints, the

SiGMoiD algorithm infers them directly from the data. Due to this optimal choice of con-

straints, SiGMoiD allows us to model collections of a very large number (N>1000) of binary

variables. Finally, SiGMoiD offers a reduced dimensional description of the data, allowing

us to identify clusters of similar data points as well as binary variables. We illustrate the ver-

satility of SiGMoiD using multiple datasets spanning several time- and length-scales.

Author summary

Collectively varying binary variables are ubiquitous in modern biology. Given that the

number of possible configurations of these systems typically far exceeds the number of

available samples, generative models have become an essential tool in quantitative

descriptions of binary data. The state-of-the-art approaches to build generative models

have several conceptual limitations. Specifically, they rely on the modeler choosing sys-

tem-appropriate constraints, which can be challenging in systems with many complex

interactions. Moreover, they are computationally expensive to infer when the number of

variables is large (N~100). To address this issue, we propose a theoretical generalization of

the maximum entropy approach that allows us to model very high dimensional data; at

least an order of magnitude higher than what is currently possible. This framework will be

a significant advancement in the computational analysis of covarying binary variables.
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Introduction

Recent technical advances allow us to collect high resolution and high dimensional data across

several biological systems. In several cases, these data can be accurately represented as collec-

tively varying binary variables. Significant examples can be found in genomics, where sequenc-

ing data is first mapped to gene families and then the presence or absence of thousands of

genes across microbial genomes is investigated [1], in microbial ecology, where sequences of

the 16s ribosomal gene are first mapped onto operational taxonomic units (OTUs) and then

presence or absence of species across microbiomes is investigated to identify direct metabolic

interactions [2], or in neuroscience, where electrical current recordings from hundreds of

thousands neurons are binarized into spike trains which are then related to organismal level

tasks [3].

Unfortunately, estimating the frequency of occurrence of every possible binary configura-

tion from available samples is not possible for any reasonably sized collection; a system with N
co-varying binary variables has 2N possible configurations and the number of collected sam-

ples is typically orders of magnitude lower than the number of configurations. At the same

time, given the complexity of interactions, in most cases, it is infeasible to build bottom-up

mechanistic models to describe these systems. A popular alternative is to derive approximate

top-down probabilistic models and train those models on the data. Over the past two decades,

the maximum entropy (max ent) method [4] has emerged as perhaps the only candidate for

building approximate generative models across a variety of contexts [5–12]. Briefly, amongst

all probability distributions (models) that are consistent with user-specified constraints, max

ent chooses the least biased one; the max ent distribution does not disfavor any outcome unless

warranted by the imposed constraints. However, traditional application of max ent has several

drawbacks. (1) Perhaps the biggest limitation is that the modeler is required to a priori identify

constraints that are appropriate for a given system. Depending on the complexity of interac-

tions, these constraints may not be obvious. A work around is to impose a very large number

of constraints. For example, a max ent model to analyze correlated firing N neurons will typi-

cally involve N constraints on mean firing rates of individual neurons and ~N2 constraints on

covariations in firing rates for all pairs of neurons. (2) These user-identified constraints are

imposed using Lagrange multipliers and the multipliers need to be tuned such that model pre-

dictions numerically match imposed constraints. However, most often these multipliers can-

not be determined analytically and have to be inferred numerically. The most common

approach is to use Markov chain Monte Carlo (MCMC) methods to estimate the gradients of

the log-likelihood of the data with respect to the Lagrange multipliers and then performing

gradient ascent [10,13,14]. These calculations are computationally infeasible even when the

number of dimensions is only moderately large (N~100). (3) The numerical values of the

imposed constraints are often evaluated using experimental samples which implicitly assumes

that samples points are statistically independent of each other. This assumption is not true in

most practical applications, for example, in temporally correlated firing of neurons or phyloge-

netically related protein sequences [10,15]. These limitations taken together have severely lim-

ited the application of max ent when there an increasing interest in describing the collective

behavior of thousands of cells, genes or microbial species, among others.

In order to study covariation in a large number of binary variables in a constraint-agnostic

and numerically efficient manner, we propose a novel dimensionality reduction framework

inspired from statistical physics; Super-statistical Generative Model for binary Data (SiG-

MoiD). SiGMoiD is a generalization of the max ent approach and has several salient features

that distinguish it from the state-of-the-art models of binary variables. (1) In SiGMoiD, the

modeler only specifies the total number of constraints. The constraints are optimally learned
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from the collected samples and a max ent model is fit to those constraints. (2) As a result of

this optimal choice of constraints, SiGMoiD requires a much smaller number of constraints

than traditional max ent. Consequently, the inference in SiGMoiD is significantly faster than

typical max ent models, allowing us to analyze very high dimensional data sets (dimensions

�1000) that remain well out of the reach of current max ent methods. (3) SiGMoiD does not

assume that collected samples are drawn from the same distribution. Instead, motivated by

superstatistics, it imagines each sample as arising from its own max ent probability distribu-

tion. Since each sample is approximated by a small set of Lagrange multipliers, SiGMoiD is

also a non-linear dimensionality reduction method. Below, we first sketch the outline of SiG-

MoiD and then illustrate it utility by applying it to several data sets.

Results

The model

We assume that experimental measurements are in a form where individual samples (data

points), indexed by subscript s, comprise N binary variables {σsi} (i2[1,N], s2[1, S]) that take

values 0 or 1. Let us denote by πsi the probability that σsi = 1 and by πs the vector of probabili-

ties πs = {πs1, πs2,. . .,πsN}. To motivate our model framework (Fig 1), we imagine the following

physical process: for a fixed sample s, each binary variable i in the collection of N variables is

interacting with the same bath that can exchange K types of extensive variables (energies). The

kth type of energy (feature) for each binary variable in the state when it is active (σsi = 1) is Eki
and zero when it is inactive (σsi = 0) (denoted collectively by E). Under these circumstances,

the probability of the ith binary variable is equal to 1 in the sth sample is given by the Gibbs-

Boltzmann distribution [16]:

p ssi ¼ 1ð Þ≝pi βs;Eð Þ ¼ pis ¼
expð�

P
kbskEkiÞ

1þ expð�
P

kbskEkiÞ
ð1Þ

In Eq 1, βs = {βs1, βs2,. . .,βsK} are the intensive variables (latent space representation or

latents) specific to sample s. The probabilities in Eq 1 are the maximum entropy probability

distributions when averages hEkiis (k2[1,K]) of the K types of energies are specified for each

variable (i2[1,N]) for every sample s.
We have set up the model such that the latents βsk depend on the sample index s but not on

the index i of the binary variables. In contrast, the features Eki depend on the binary variables i
but are shared across all samples s. Let us consider that we are given S samples {σsi} (i2[1,N],

s2[1,S]) of the binary variables. From these samples, we infer sample-specific latents βs and

Fig 1. Schematic of the SigMoiD approach. Probabilities πsi for binary variables i in samples s are generated

according to a Gibbs-Boltzmann distribution with energies (features) E and inverse temperatures (latents) β. The

observed data (samples) is assumed to have arisen from Bernoulli trials based on the model probabilities. SiGMoiD

infers the parameters E and β using maximum likelihood inference.

https://doi.org/10.1371/journal.pcbi.1009275.g001
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sample-independent features E. To that end, we take a maximum likelihood approach. We

write the log-likelihood of the data given the parameters:

L ¼
X

i;s

ssi logpsi þ ð1 � ssiÞlogð1 � psiÞ ð2Þ

The log-likelihood can be maximized to determine the parameters using gradient ascent.

The gradients are given by:

@L
@bsk
¼
X

i

ðpsi � ssiÞEki and
@L
@Eki
¼
X

s

ðpsi � ssiÞbsk ð3Þ

SiGMoiD has several salient features. First, similar to other non-linear dimensionality

reduction methods, if K�N, SiGMoiD offers a reduced dimensional description of the data;

the K dimensional vectors βs embed the N dimensional data point σs in a K�N dimensional

space. In addition, since SiGMoiD is a fully probabilistic approach, it can also be used as a gen-

erative model. Random samples can be generated as follows. We first select a random set of

latents βs, evaluate the probabilities πs and sample random variables σ as Bernoulli variables

using those probabilities. SiGMoiD also allows us to evaluate the probability of a new set of

binary variables σ given the other observations. Specifically, the probability is

p σð Þ ¼
1

S

X

s

pðσjβs;EÞ ð4Þ

where

pðσjβs;EÞ ¼
Y

i

p
si
si ð1 � psiÞ

1� si ð5Þ

is the probability of observing the binary variables σ when the latents are fixed at βs.
We note that even though we have proposed to identify the parameters using a maximum

likelihood approach, given a suitable prior pprior(β, E) over the parameters, we can also esti-

mate the Bayesian uncertainty in parameter estimation using the posterior distribution

ppostðβ;EjσÞ ¼ ppriorðβ;EÞ
Y

i;s

p
ssi
si ð1 � psiÞ

1� ssi : ð6Þ

Finally, we comment on the degeneracies in SiGMoiD inference procedure. If we multiply

the S×K matrix of latents βsk by a K×K invertible matrix M:β!βM and simultaneously multi-

ply the K×N matrix of features Eki by M−1:E!M−1E, the SiGMoiD predictions do not change.

Therefore, SiGMoiD- based inference of parameters will significantly depend on the initializa-

tion. These degeneracies can therefore be minimized or completely removed without changing

model performance by imposing additional restrictions on the parameters, for example, by

requiring that the latents or the features are orthogonal to each other, i.e. imposing βTβ = IK or

EET = IK. We leave these explorations for future studies.

Accuracy of SiGMoiD as a probabilistic model: Modeling the collective

firing of neurons

Before illustrating SiGMoiD using high dimensional data sets, we first show a comparison

between SiGMoiD and the standard approach to model binary variables; a max ent model. We

use a previously collected data set measuring the collective firing of 160 retinal neurons for the

duration of a movie that lasted 19 seconds [17,18] (see Supplementary Information). We note
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that inference of a max ent model for the collective firing of all 160 neurons is currently com-

putationally prohibitive. We chose the 15 most active neurons in the data (15 highest firing

propensities) to illustrate our approach. First, we inferred a max ent model from the data that

constrained mean firing rates and pairwise correlations. The max ent model describes the

probability of any configuration σ as:

pðσÞ / exp �
X

i;j

Jijsisj

� �
ð7Þ

In Eq 7, Jij are coupling constants (Lagrange multipliers) that need to be inferred from the

data, typically using gradient ascent of the log likelihood of the data [10,13,14]. Given that

there are only 215~3×104 states for 15 neurons, we could estimate model predictions and there-

fore the coupling constants by an exhaustive brute force summation over all possible states

without resorting to MCMC simulations to estimate the gradients. This minimized the errors

in max ent inference that arise due to inaccuracies in MCMC-based estimates of average firing

rates and neuron-neuron correlations. The resulting max ent model perfectly captured the

average firing rates and the pair correlations (S1 Fig).

In Fig 2, we compare the max ent model with SiGMoiD. The max ent model has
15

2

 !

¼

105 neuron-specific parameters. To match that number, we choose K = 7 in SiGMoiD. In

panel (a), we show a comparison between the raw frequencies of individual configurations

obtained from data (x-axis) to model predicted probabilities (y-axis, red: max ent, blue: SiG-

MoiD). The raw frequencies were obtained by counting the number of instances of individual

configurations across all 104 samples. It is clear that SiGMoiD has smaller error compared to

the max ent model (mean absolute error 8.6×10−6 vs 1.4×10−5). In panel (b), we plot the proba-

bility that n neurons fire at the same time as observed in the data (black), predicted using SiG-

MoiD (blue), and using the max ent model (red). Here too, the SiGMoiD model performs well

when capturing the probability of simultaneous activity. In panels (c) and (d), we plot the

absolute values of the three-body correlations |hδσiδσjδσki| as observed in the data (x-axis) and

as predicted by the model (y-axis, SiGMoiD, panel (c), max ent, panel (d)). Both models cap-

ture the three body correlations with reasonable accuracy; the mean absolute error is 8.2×10−4

vs 1.4×10−3 for the SiGMoiD and the max ent model respectively. This analysis illustrates that

the SiGMoiD is better than the max ent based model at capturing the data and making predic-

tions. Next, we move to systems that are currently well out of the reach of max ent methods.

Inference of interactions from bacterial co-occurrences using SiGMoiD

Gut microbiomes are complex ecosystems whose statistical properties have received significant

attention in the last couple of years [19,20]. Gut bacteria live in species-rich communities

where they compete for nutrients and also exchange metabolites with each other. Describing

these interactions is critical to map the ecological networks of gut microbiomes and identify

targets for controlling microbial communities [21]. However, many of the direct metabolic

interactions between gut microbes are likely to occur at a micron length scale [2]. Therefore, it

is infeasible to infer these interactions from macroscopic, community-wide abundance co-

variation.

To address this issue, Sheth et al. [2] recently probed the spatial organization of the gut

microbiome at the micron length scale, allowing them to capture putative direct interactions

between bacteria. In these experiments, Sheth et al. [2] fractionated mice guts into particles

with a median diameter of 30 μm and quantified the membership of 347 operational
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taxonomic units (OTUs) across 1406 particles. However, given that co-occurrences are transi-

tive (if A interacts and co-occurs with B, and B interacts and co-occurs with C, then A co-

occurs with C even in the absence of interactions), it is not possible to use simple co-occur-

rence calculations to identify putative pairs of directly interacting OTUs [22].

Given that SiGMoiD can directly model occurrence of individual OTUs across particles, it

can be used to identify clusters of OTUs that co-vary across particles as well as clusters of parti-

cles that show specific OTU occurrence profiles. We therefore analyzed the data collected by

Sheth et al. [2] using SiGMoiD (see Supplementary Information). Each particle was character-

ized by a binary vector of dimension representing the OTUs present in that particle. It is evi-

dent that SiGMoiD will fit the data better as the number of components K increases. Unlike

the neuron samples which were correlated in time and across different trials, the microbiome

particles are likely to be closer to statistical independence. Therefore, we can use information

theory-based criteria to select the optimal K that fits the data but avoids overfitting. In S2 Fig,

we show the Akaike information criteria (AIC) vs. K for the OTU data. The model picks out

K = 8 as the optimal value which we use in further analysis. When individual samples are cor-

related, one can use cross-validation; splitting the samples in a training vs. a validation set and

then evaluating the probability of the validation set, to avoid overfitting.

The number of species found in each particle, a gross descriptor of the complexity of the

community [8], varies substantially from particle to particle. As shown in Fig 3, generative

modeling of the particles using SiGMoiD accurately captures this quantifier of ecological

Fig 2. Comparison of SiGMoiD with max ent modeling. (A) the frequencies of individual configurations estimated

from the samples (x-axis) and from the two models (y-axis), (red: max ent, blue: SiGMoiD). Only the frequencies of

the 1442 configurations observed at least once in the samples are shown. (B) the probability that n neurons fire in any

given configuration as estimated from samples (black), the max ent model (red), and SiGMoiD (blue), (C) and (D)

comparison between the absolute values of three variable correlations hδσiδσjδσki estimated from data (x-axis) and

those using the models (y-axis). There are
15

3

 !

¼ 455 such correlations.

https://doi.org/10.1371/journal.pcbi.1009275.g002
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complexity. In Fig 3A we show the probability of co-occurrence of multiple OTUs in any com-

munity as observed in the data (black circles) and as predicted by SiGMoiD (blue line). We

compare these distributions with the null expectation given by the probabilities of occurrence

of n OTUs in any given particle calculated using the occurrence frequencies of individual

OTUs but neglecting the correlations between OTUs (red line). The significant difference

between the two suggests that SiGMoiD can accurately capture the interactions between

OTUs, which in turn allows it to predict the co-occurrence distribution.

In fact, SiGMoiD can be used to identify specific bacteria with similar occurrence profiles

across particles. SiGMoiD characterizes each binary variable (here, OTU presence/absence)

using a K dimensional vector of features. OTUs with similar features will have similar co-

occurrence profiles as well. Therefore, the feature vector can be used to identify clusters of co-

occurring OTUs. SiGMoiD-based clustering of OTUs is a more direct way of identifying clus-

ters by relying on inferred inherent properties of the OTUs rather than their co-occurrence

profiles. Fig 3B shows a hierarchical clustering plot of all OTUs using SiGMoiD-inferred fea-

tures. Among the several identified clusters, we focus on the cluster of 69 OTUs highlighted in

the figure. The gut microbiome of mice is dominated by OTUs belonging to the family Lach-
nospiraceae; ~53% of all the OTUs in the analyzed data belonged to this family. However,

these OTUs are not equally distributed across the particles. The cluster highlighted in the fig-

ure is statistically significantly enriched with the family Lachnospiraceae (46 out of 69, single

Fig 3. SiGMoiD models bacterial co-occurrences and interactions. (A) the probabilities of co-occurrence of multiple

OTUs in a single particle. Black circles represent the data, the blue line and shaded blue region represents the SiGMoiD

predictions and standard deviations around the predictions, and the red line represents a prediction based on mean

occupancies of OTUs. (B) Clustergram showing similarity in features between OTUs. The identified outgroup is

marked red. (C) PCA of 3 clusters identified using particle-specific latents βs. (d) (upper half) Co-occurrence

frequencies of 10 OTUs whose occurrence frequency was most significantly different in cluster 3 compared to the

baseline co-occurrence frequencies of the same OTUs (bottom half).

https://doi.org/10.1371/journal.pcbi.1009275.g003
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tailed hypergeometric distribution p-value 0.009). Notably, the OTUs belonging to this cluster

had predominantly positive correlations across different particles; 2330 out of the 2346 unique

pairs had a positive correlation with 92% of pairs with a p-value less than 10−2 (84% of pairs

with a p-value less than 10−4 and 74% of pairs with a p-value less than 10−6). In comparison,

only 50% of unique pairs from other OTUs had a positive correlation and only 23% of those

correlations had a p-value less than 0.01. These analyses suggest that SiGMoiD-based features

can identify clusters of OTUs that significantly co-occur in a given ecology. There are two

types of metabolic interactions between bacteria that lead to co-occurrence in an ecosystem

[23], especially at the micron length scale [2]. Genetically related bacteria tend to co-occur

because they have similar metabolic networks and can compete for the same resources. In con-

trast, genetically dissimilar bacteria have different metabolic networks and can cross-feed each

other; one species utilizing the metabolic byproducts of another. Therefore, this cluster likely

represents the co-occurrence of multiple species in the Lachnospiraceae family that compete

with each other for the same resources in the mouse gut.

In addition to identifying OTUs that have similar occurrence profiles across communities,

SiGMoiD can also be used to identify communities that have similar OTU occurrence profiles.

SiGMoiD embeds each high dimensional binary sample in a much lower dimensional space of

sample-specific β latents. Using K-means clustering of sample-specific β latents, we identified 3

clusters of particles (S2 Fig). Principal component analysis (PCA)-based visualization of the par-

ticles clearly shows the three identified clusters (Fig 3C). Notably, several specific OTUs were

co-present with much higher occurrence frequencies in the identified small cluster (cluster 3,

comprising 47 particles). In Fig 3D, we compare the pairwise co-occurrence frequency of 10

OTUs whose occurrence frequency was identified to be most significantly different between par-

ticles in cluster 3 compared to the baseline using a hypergeometric test (S1 Table). It is clear that

compared to the baseline co-occurrence frequency (sub-diagonal half of Fig 3D), the pairwise

co-occurrence frequencies of the 10 OTUs are significantly elevated in the communities in clus-

ter 3. These analyses show that SiGMoiD can also identify specific communities that comprise

strongly co-occurring bacteria that differentiate them from other communities. These signifi-

cant clusters can potentially be investigated for direct co-operative or competitive interactions,

as well as their association with distinct regions of the gut. Importantly, clusters of particles with

these tightly correlated species were not detected when we clustered the samples (binary vectors)

directly using the same approach (S3 Fig).

Identifying missing metabolic reactions using SiGMoiD

The metabolic repertoire of microorganisms enables them to convert nutrients into biomass

and energy and underlies phenotypic traits central to their ecosystem roles [24]. E.g. microbial

fermentation in the gut and its impact on human health [25] or methane production in animal

agriculture or wetland ecosystems [26,27].

Genome sequencing and annotation methods have enabled the identification of metabolic

transformations that individual microbes can potentially carry out through the reconstruction

of their metabolic networks. Metagenomics sequencing on the other hand, has allowed the

study of the genomes and metabolic properties of microorganisms in microbiomes of interest

which have not yet been cultured and characterized. Nevertheless, due to the complexity of

these microbial communities, it is often not possible to determine the full genomic content of

most members of a given microbiome. Therefore, beyond a few highly abundant microbes

whose genomes can be inferred to a reasonable degree of completeness from metagenomics

data, the metabolic capabilities of many microbes of interest can only be partially assessed

through metagenome annotation and binning methods. Here we show that SiGMoiD can be
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used to infer missing reactions in the metabolic repertoire of incompletely sequenced

genomes, as are often produced by metagenome assembly and binning pipelines.

To that end, we downloaded genome-scale metabolic reconstructions for ~4000 bacteria

from KBase [28] generated with the ModelSeed pipeline [29] (see Supplementary Informa-

tion). Often, intercompartmental transport reactions and other reactions are added to meta-

bolic reconstructions to ensure mass balance and viability of biomass production without a

clear identification of the genes that may carry out these reactions. To avoid biasing our

approach towards or against these ad hoc additions, we only retained those reactions that were

assigned to one or more genes in the reconstructions. This resulted in a total of ~3300 reac-

tions across all bacterial metabolic reaction sets. We randomly selected 400 bacteria as a test

set to quantify the accuracy of our predictions. We inferred SiGMoiD parameters on the rest

of the bacteria and used the inferred parameters to identify missing reactions in the test dataset

as follows.

First, for each bacteria in the testing set, we removed a fixed fraction of reactions ranging

from 10% to 90% to simulate incomplete genome coverage from metagenomic sequencing.

Next, we used SiGMoiD and the known reactions for each bacteria in the testing set to

predict the missing reactions. We used K = 15 components. We identified groups of reactions

with similar occurrence profiles across the bacterial world by clustering their corresponding

Eki features obtained from the training data using agglomerative hierarchical clustering [30].

The similarity dij between two metabolic reactions i and j was defined as the L2 norm:

d2
ij ¼

P
kðEki � EkjÞ

2
. Hierarchical clustering divides the reactions into multiple clusters

depending on a tunable level of clustering. On one end, all reactions are clubbed into a single

cluster, and on the other end, every reaction is its own cluster. For any given level of clustering,

we employed a simple rule to predict missing reactions from known reactions. If any one of the

reactions in a cluster is known to be present in the metabolic repertoire of a bacterium, all other

reactions in the cluster are also predicted to be in the network. Using this simple prediction

model and by varying the level of clustering, we obtained true and false positive rates for the

predictions for each bacteria. These rates were averaged across all bacteria for a given level of

clustering and plotted as a receiver operating characteristic (ROC) curve. Fig 4A shows that this

simple approach to predict the missing metabolic reactions performs exceedingly well. The area

under the curve when only 10% of the reactions are known is 0.916, which increases to 0.988

when 90% of the reactions are known. Notably, the performance of our approach is extremely

Fig 4. SiGMoiD predicts the presence/absence of metabolic reactions. (A) Receiver operating characteristic (ROC)

curve for SiGMoiD-based prediction of missing metabolic reactions. Different lines represent metabolic models with

different fractions of known reactions. (B) The mean Jaccard index between the set of predicted metabolic reactions

and the actual metabolic reactions in any species (y-axis) vs. the relative size of the predicted network to the actual

network (x-axis).

https://doi.org/10.1371/journal.pcbi.1009275.g004
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accurate across different values of K and different fractions of missing reactions (S4 Fig). Impor-

tantly, the highest overlap between the true metabolic repertoire and the predicted metabolic

repertoire as quantified by the Jaccard index occurs near the true size of the network (Fig 4B).

Notably, unlike other gene inference methods that rely on phylogenetic placement of the

query genome against a reference database [31,32] or approaches that can use phenotypic

knowledge about the organism (nutrients that can sustain its growth, biomass composition,

etc.) [33] our approach predicts reactions solely based on their co-occurrence profile across

the bacterial kingdom. Therefore, our approach can be integrated with other methods to

robustly predict missing reactions in genome scale metabolic reconstructions.

Discussion

A deluge of biophysical data in the last decade has called for the development of top-down

modeling approaches. Here, instead of describing the data from first principles mechanistic

models, one constructs probability distributions that represent it. As a result, generative mod-

els of collective behavior have become essential to modeling several biophysical systems. The

most popular way to generate top-down models is the maximum entropy (max ent) approach

wherein one approximates the data using a probabilistic model that reproduces lower order

statistics estimated from the data. The max ent approach has the significant conceptual advan-

tage that it represents the simplest model consistent with the imposed constraints. However,

there are two significant drawbacks. First, the constraints are hand-picked by the modeler and

the model therefore depends on these constraints. For binary data, constraints of averages and

pair correlations have become popular. Second, the inference of max ent models for large data

sets can be computationally expensive and it may be unrealistic to infer models for>100

binary variables.

To address these issues, we developed SiGMoiD. SiGMoiD takes an agnostic approach

about the constraints. In SiGMoiD, instead of specifying the constraints, the user only specifies

the total number of constraints. SiGMoiD learns these constraints from the data. Moreover,

parameter inference in SiGMoiD is orders of magnitude faster than max ent inference. We

showed using three data sets of varying complexity that SiGMoiD not only performs as well as

max ent models in terms of accuracy but can also be applied to study very large data sets that

are currently out of the reach of max ent inference. Going forward, we believe that this compu-

tationally efficient and conceptually straightforward approach will be immensely valuable in

modeling collective behavior of high dimensional data.

We have previously developed SiGMoiD-like approaches [16,34] to model multinomially

distributed abundance data common in sequencing studies including 16s sequencing based

characterization of the microbiome [34]. Going forward, the most straightforward generaliza-

tion to SiGMoiD is applying it to study amino acid/nucleotide variation in sequencing data.

Concretely, a collection of N protein sequences of length L each can be represented by binary

variables σnia = 0/1 where n2[1, N] is the index of the sample, i2[1, L] is the position of the

amino acid in the protein sequence, and a2[1, 21] is the identity of the amino acid (there are

20 naturally occurring amino acids, plus an additional index for a gap in the multiple sequence

alignment). The probability πnia of observing amino acid a in position i in the nth sequence can

be modeled using a tensor-based decomposition as was recently done in the analysis of vari-

ability in the microbiome [35]:

pnia / exp �
X

k1k2k3

bnk1
Enk2

Ank3
Zk1k2k3

� �
: ð8Þ

We leave developing this generalization to future work.
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Supporting information

S1 Fig. Mean firing rates and correlations as observed in the data (x-axis) and as predicted

by the max ent model (y-axis).

(TIF)

S2 Fig. (A) Akaike information criterion as a function of K, the number of components used

to model the microbiome co-occurrence data. (B) Mean silhouette score as a number of clus-

ters using K-means clustering of the particle-specific βs latents.

(TIF)

S3 Fig. n = 3 clusters of particles were identified using K-means clustering of the micro-

biome co-occurrence, shown here using the first two principal components of the particle-

specific βs latents.

(TIF)

S4 Fig. Performance of the SiGMoiD-based approach to identify missing metabolic reac-

tions with K = 20 components (panels a and b) and K = 40 components (panels c and d).

(TIF)

S1 Table. Genera of OTUs that are most enriched in cluster 3 using a hypergeometric test

and the corresponding p-values.

(DOCX)

S1 File. Information about curating the data used in this analysis.

(DOCX)
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