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MECHANICAL ANALYSES WITH HIGH ACCURACY THREE-DIMENSIONAL
FINITE ELEMENTS

BACKGROUND

{8681} From a coroputational mechanics perspective, Courant (as described, for example, in R,
Courant, “Variational methods for the solution of problems of equilibrium and vibration,”
Bulletin of the American Mathematical Society, 49:1-29, 1943, the content of which s
incorporated by reference herein in its entirety) pioncered the technique of approximating
continuocus solutions of mathematical physics with finite number of scalar vartables to calculate
shear stresses on a multiply connected non-circular prismatic shaft subjected to end torgues.
With that technique, two-dimenstonal cross sections were triangulated and mtroduced piccewise
linear interpolants on those “triangular” elements.  The unknown weights were then calculated
from the Ritz formulation {(as described, for example, in W. Ritz. "Uber eine neue methode zur
Posung gewisser vanationalprobleme der mathematischen physic,” Journal Reine Angew, Math.,

135:1- 61, 1908, the content of which is incorporated by reference herein in s entirety).

{18002} Motivated by the structural mechanics applications, Clough (as described, for cxample, in
Ray W. Clough, “The finite element method in plane stress analysis,” In Proceedings, 2°
Conference on Electronic Computation, A.8.C. E. Structural Division, pages 345 — 378,
Pittsburgh, PA, September 8 and 9, 1960, the content of which 1s incorporated by reference
herein in its entirety) introduced an analogous technique, which is closely related to the
Courant’s methodology mentioned above, namely, the finite clerent technigue. Under this
technique, various important practical problems were solved by assuming piecewise lincar
displacement profiles. Therein, the principle of virtual work played the role of the Ritz
functional. The strain energy density function remained constant within each triangulated zone.
Hence, the cxact integration was possible lcading to computationally trustworthy element
stiffness matrices. A weak version of equilibrium and compatibility, which were enforced only
at the discrete vertices of Courant’s triangles, led fo unconditional convergence in all cases.

However, for fiexures — bears, plates and shell bending problems, duc to the imposition of
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constant stress fields — unaceeptably high stilfness was encountered cven within counsiderably

fine “triangular’” meshes.

DESCRIPTION

{8603} The present disclosure builds on the discussion 1o Columbia University’s U.S, Patent No.
6,101,450 to Gautam Dasgupta, entitled “Stress Analysis Using a Defect-Free Four Node Finite
Elewoent Technigue,” the content of which 1s incorporated by reference herein in its entivety, to
provide solutions for its three-dimensional counterpart. Applications to locking-free solid, plate
and shell clements can be developed that are devoeid of errors from clement shape distortion and
Poisson’s effect. For exaraple, in order to construct locking-free, three-dimensional brick
clements, cubic polynomials, which depend upon Poisson’s ratio(s}), in the physical (x,y, #}
coordinates are derived for twenty four Rayleigh modes. Their lincar combinations yield twenty

four shape functions that are associated with the degrees-of-freedom located oun the vertices.

{(6384] To maintain the high accuracy counsistently, especially the locking-free features,
numerical quadrature has been avoided in evaluating the stiffness-like systern matrices. This
analytical strategy, which is based on the divergence theorem, is computationally more efficient

than any guadrature scheme.

[6605] The locking-free interpolants (for an eight node hexabedral brick element)y in the physical
{x, v, z} co-ordinates are cubic functions, hence the linear elastic stresses are quadratic in {x, v,
z}. Hence, the cnergy density expressions comprise of the torms in the expanded expression of
(1+x+y+z). Bach term, within a brick, can be exactly integrated {e.g., by a computer

application} without resorting to any numerical quadrature.

10086] Restrictions of convex clements do not apply and concavity, as it develops during elasto-
plastic deformation, can be considered. For general vector field problems, ¢.g., those of
continuur mechanics, computer algebra systems can be incorporated seamlessly within, for

example, a UNEX environment. The Modelica Language can achieve the same for all platforms.
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Therein, general numerics can be optivaized for efficiency and accuracy by utilizing, for

example, C++ routines.

{3067] Thus, disclosed herein are methods, procedures, systerns, devices, products, and other
implementations, including a computer-implemented method that includes performing three-
dimensional mechanical analysis for finite clement analysis based on indefinite integral
deterroined algebraically and based on Powsson’s ratio dependent shape functions satistying
equilibrium throughout a finite clement. In some embodiments, the finite element inchudes a

three-dimensional brick element.

{B808] Iu some ernbodiments, for the three-dimensional brick element, a test function —
displacement vector in the physical (x, y, z} coordinates — includes three full cubic polynomials
iny, y and z, with sixty coefficients. The twelve cocthcients pertaining to the constant and
{inear terms lead to six rigid body modes and five uniform deviatoric strains. The dilatation is
zero and non-zero for incompressible and compressible solids, respectively. For quadratic terms,
point-wise equilibrinm and shear free bending requirements remove twelve coefficients out of
eighteen, and thus completely cffaces shear and Poisson locking. To obtain point-wise
equilibrium, the cocthicients for compressibic solids are functions of the Poisson’s ratios). For
the cubic terms, equilibrium requirement eliminates nine out of thirty coefficients. Selection of
bending under a constant shear force eliminates another set of fifteen coefficients. All other
operations are geoerally similar to their two-dimensional counterparts (as wore particularly

described in U.S. patent No. 6,101,450},

[6609] Further details regarding the wethods, procedures, systeras, apparatus, devices, products
and other implementations described herein are provided below in “Locking-free “brick’
interpolants — a “high accuracy’ fintte element” (also ideutified as “[a] Rayleigh roode
acquicscence to Single clement test”) by Gautam Dasgupta, and in “High Accuracy three-
dimensional Finite Elerncnts” by Gautarn Dasgupty, the contents of all of which are incorporated
by reference heretn in their entireties.

{¢018] Performing the various operations described herein may be facilitated by a processor-
based computing system. Particularly, various devices / systems / uoits used in various

23
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embodiments may be implemented, at least in part, using oune or roore processor-based devices.
With reference to FIG. 1, provided below, a schematic diagram of a generic computing system

160 1s shown.

{#61 1] The computing system 100 includes a processor-based device 110 such as a personal
computer, a specialized computing device, and so forth, that typically includes a central
processor unit 112, In addition to the CPU 112, the system includes main memory, cache
memory and bus interface circuits {not shown in FI1G. 1). The processor-based device 110 may
include a mass storage element 114, such as a hard drive or flash drive associated with the
computer system. The computing system 100 may further include a keyboard, or keypad, or
some other user input interface 116, and a monitor 120, ¢.g., a CRT (cathode ray tube) or LCD

(liquid crystal display) monitor, that may be placed where a user can access them.

18012} The processor-based device 110 is configured to perform at least some of the operations /
procedures described herein, The storage device 114 may thus include a computer program
product that when executed on the processor-based device 110 causes the processor-based device
to perform operations/procedures described herein. The processor-based device may further

include peripheral devices to enable input/output functionality. Such peripheral devices may

A
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include, for example, a CD-ROM drive and/or flash drive {e.g., a removable flash drive), or a
network connection {¢.g., implemented using a USB port and/or a wireless transceiver), for
dowuloading related content to the connected system. Such peripheral devices may also be used
for downloading software containing computer instructions to enable general operation of the
respective systern/deviee. Alternatively and/or additionally, in some embodiments, special
purpose logic circuitry, e.g., an FPGA {field programmable gate array}, an ASIC
{application-specific integrated circuit}, a DSP processor, ¢tc., may be used in the
implementation of the system 100, Other modules that may be included with the processor-
based device 110 are speakers, a sound card, a pointing device, ¢.g., a mouse or a trackball, by
which the user can provide input to the computing system 100. The processor-based device 110
may inchide an operating system, ¢.g., Windows XP® Microsoft Corporation operating systerm,

Ubuntu operating systern, ete.

18613} Coroputer programs (also known as programs, software, software applications or code)
include machine instructions for a programmable processor, and may be implemented in a high-
ievel procedural and/or object-oriented programming language, and/or in asserably/machine
ianguage. As used herein, the term “machine-readable medium” refers fo any non-transitory
computer program product, apparatus and/or device {¢.g., magnetic discs, optical disks, memory,
Programmable Logic Devices (PLIDs)) used to provide machine instructions and/or data to a
prograramable processor, including a non-transitory machine-readable medium that receives

machine instructions as 3 machine-readabie signal.

{#614] Some or all of the subject matter deseribed herein may be tmplemented in a computing
system that includes a back-end coraponent {e.g., as g data server), or that includes a muddleware
component (¢.g., an application server), or that inchides a front-end component {¢.g., a client
computer having & graphical user interface or a Web browser through which a user may interact
with an embodiment of the subject matter described herein), or any corabination of such back-
end, middleware, or front-end components. The components of the system may be
interconnected by any form or medium of digital data communication {¢.g., 4 communication
network). Examples of communication networks include a local area network ("LAN), a wide

area network (“WAN”), and the Internet.
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{6615} The computing system may include clients and servers. A client and server are geunerally
remote from each other and typically interact through a commumication network. The
relationship of client and server generally arises by virtue of coraputer programs rapoing on the

respective computers and having a client-server relationship to cach other.

18016} In some embodiments, any suitable computer readable media can be used for storing
instructions for performing the processes / operations / procedures described herein. For
example, in some embodiments computer readable media can be transitory or non-transitory.

For example, nov-transitory computer readable media can include media such as roagoetic media
{such as hard disks, floppy disks, etc.}, optical media (such as compact discs, digital video discs,
Blu-ray discs, ete.), sernconductor media (such as flash memory, electrically programmable read
only memory (EPROM}, electrically erasable programmable read only Memory (EEPROM),
¢te.), any suitable media that is not fleeting or not devoid of any serblance of permancuce
during transrmssion, and/or any suitable tangible media. As another exaraple, transitory
computer readable media can include signals on networks, in wires, conductors, optical fibers,
circuits, any suitable media that is fleeting and devoid of any semblance of perroanence during

transmission, and/or any suitable intangible media.

(#0617} Although particular embodiments have been disclosed herein in detail, this has been done
by way of example for purposes of lustration only, and is not intended to be livaiting with
respect to the scope of the appended claims, which follow. Some other aspects, advantages, and
maodifications are considered to be within the scope of the claims provided below. The claims
presented are representative of at least some of the embodiments and features disclosed herein.

Other unclatmed embodiments and features are also conteraplated.
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Author’s note:

The Appendix is intended for the electronic version unless the reviewers want
that to be a part of the printed pages.

Sufficient familiarity with the 2-D version, wvide reference[l17], will permit
the paper to be shortened by about 30% and most of the footnotes and many
repeatitions can also be eliminated.
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1 Introduction

From the computational mechanics perspective, Courant[8] pioneered the tech-
nique of approximating continuous solutions of mathematical physics with fi-
nite number of scalar variables to calculating shear stresses on a multiply con-
nected non-circular prismatic shaft subjected to end torques. He triangulated
the two-dimensional cross section and introduced piecewise linear interpolants
on those “triangular” elements [41]. He then calculated the unknown weights
from the Ritz formulation [42].

Motivated by the structural mechanics applications, Clough [7] christened
an analogous technique, which is closely related to the Courant’s methodology
mentioned above, finite element. He solved various important practical prob-
lems by assuming piecewise linear displacement profiles. Therein, the principle
of virtual work payed the role of the Ritz functional. The strain energy density
function remained constant within each triangulated zone. Hence, the ezact
integration was possible leading to computationally trustworthy element stiff-
ness matrices. A weak version of equilibrium and compatibility, which were
enforced only at the discrete vertices of Courant’s triangles, led to uncondi-
tional convergence in all cases. However, for flexures — beams, plates and shell
bending problems, due to the imposition of constant stress fields — unaccept-
ably high stiffness was encountered even within considerably fine “triangular”
meshes.

To alleviate the shortcoming, which originated from linear interpolants,
and especifically, to capturing spatial gradients in stress distributions — Taig
[47] introduced four-node plane “quadrilateral” elements. This formulation,
which indeed revolutionized the finite element industry — as commented by
Wilson [60], proved effective in a large variety of problems including three-
dimensional elastic deformations [33,28] and of course in plates and shells
[20,2]. In Taig’s original formulation, the kernel test functions were bi-linear
functions — rather than full quadratic maps — on a square, hence, equilibrium
was satisfied only in a limited number of cases. The strain energy density
functions are quadratics in the computational (not physical) doamins and
their integrations on arbitrary quadrilaterals necessarily invoked numerical
quadratures. To assess the ambiguity so encountered, Irons introduced the
patch test to examine both the theoretical and programming accuracies in
any new formulation by judging its capabilities to reproducing known basic
continuum mechanics solutions [29,31].

Departure from any analytical solution, caused failure in the patch test
[37]. An element manifested locking — a concept originated by observing,
under pure bending, finite element non-zero shear stresses that was termed
shear locking. MacNeal [36] furnished a theorem, after closely examining all
possible responses with four node isoparametric® finite elements. He conclu-

1 wide [30], iso — the same — parameteric representation is advocated to interpolating

the displacement functions u(z,y, 2), v(z,y, 2), w(z,y, z) as well as physical z,y coordinates
from the computational unit square in the n, & frame— Taig himself did not use the term
isoparametric in his seminal publication, vide [47]

10
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sively identified the inherent deficiency — the locking phenomenon — in Taig’s
formulation.

The single element palch test, vide [44,43,51], can assess the locking-free
criteria, because it essentially verifies the quality of the shape functions and
necessary characteristics of element stiffness matrices. Symbolic? and numeric
treatment of test cases have been proved to be effective.

The main obstacle in seeking any alternative to Taig’s computational do-
main approach with functions in the physical (z,y,2) frame, e.g., the poly-
nomials in (z,y, z), Wachspress coordinates [56,26,38] with Padé interpolants
[40], can be traced to be the difficulty originating from integrating strain en-
ergy densities within a finite element® of an arbitrary shape. With the recent
availability of ezact integration — based on the divergence theorem — within
arbitrary polyhedra, a 3D ‘brick’ can be completely diagnosed to be locking-
free via the single element test.

1.1 Exact volume integration

In a generic brick element, in Fig. 1, vertices 1, 2, 3 and 6 were supplied and
nodes 4, 5, 7 and 8 in equation (1) were so generated by employing a random
number generator that all faces come out to be flat.

Fig. 1 A hexahedral finite element

2 vide lecture notes in:

http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch15.d

3 concavity was out of question in the isoparametric formulation
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node: |1 2 3 4 5 6 7 8
X 0 0 1 1.20272 0 0 1.21608 1.59793 )
y 1 0 0 131422 1.36807 0 0 1.90818
z 0 0 0 0 1.30599 1 1.23926  1.74118

Table 1 nodal values for a brick element

The individual polynomial terms — needed to ezactly integrating the en-
ergy density expressions in the element stiffness matrix for any convex or con-
cave ‘brick’ element — appear in equation (2) alongside their ezact values?
pertaining to Fig. 1:

1 z z? 2 2 2.22344 1.53912 1.37624 1.37572 1.46922

y xy zy 2%y 9? 1.71844 1.29807 1.23539 1.30083 1.73422

zy? z2%y? yd oz 1.39974 1.39106 1.97293 1.68464 2.4153

2 zz x’z %2 Y2 — | 1.63007 1.22254 1.15959 1.21846 1.39539 (2)
xyz 22yz yiz xyz ytz 1.13712 1.14255 1.5175 1.31454 1.83679

22 x2? 2227 y2? zy2? 1.54731 1.23191 1.21622 1.42495 1.22679
y?2? 22 x2® oy 2 1.62714 1.64678 1.37935 1.61085 1.87798

1.2 Computer algebra implementation

The capability of analytically integrating the energy density function played
a decisive role in this research that essentially circumvented the isoparametric
mythology. In the physical (z,y,2) frame, the formulation was carried out
within Mathematica. For general anisotropic solids, with twenty one Poisson’s
ratio parameters, use of computer algebra will be advantegeous.

Concept development is indeed formidable with any numerically oriented
language but resulting Mathematica expressions can be translated into FORTRAN
or CT with MathCode [21], rather effortlessly. Multi-domain modeling tools,
e.g., Modelica [22], have emerged to accept physical description of an engi-
neering problem in terms of partial differential field equations and generate
numerically efficient CT1 codes.

Using Mathemalica, the author obtained the algebraic expressions for the
Rayleigh modes — as functions of the Poisson’s ratio, for isotropic solids.
Especially to eliminating constants in the polynomial expressions — on the
physical basis of satisfying equilibrium and all other tensorial prescriptions
poinl-wise — one needs special equation solving capabilities that cannot be
found in matrix calculation procedures[25,39].

4 A paper on exact integration of an arbitrary function within arbitrary polyhedra is
under review [15] —- if the exact integration fails then any predetermined amount of error
can be prescribed — along the line of e —§ argument for convergence; for polynomials always
the ezact integration is attainable

12
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In this paper, all equations, figures and tables have been generated and
exported by Mathematica as EPS, PDF and TEX outputs to a XIEX file for
typesetting.

1.3 The locking-free ‘brick’ : a 3-D extension of four-node
compressible/incompressible and convex/concave finite elements

This ‘brick’ formulation is the third paper in the sequel of implementing the
Rayleigh modal construction that leads to algebraic expressions of element
shape functions. For two-dimensional four node elements, not restricted to
convex geometry, the author published [16,17] for the isochoric and compress-
ible cases.

Here, all equilibrium equations are satisfied point-wise °, thus no varia-
tional crime is committed. Subsequently, the energy density integrals, for the
element stiffness matrix, are calculated analytically, hence, all controversies
pertaining to numerical quadrature approximations have been averted.

This paper stats with a (coupled) triplet of cubic polynomials in the phys-
ical x,y, z frame. There are 60 unknown coefficients®. In order to comply with

the patch test the displacement vector is taxonomized as follows 7
(i) constant and linear terms: 12 coefficients — 6 rigid body modes and 6
constant strain modes — equilibrium is satisfied identically
(ii) quadratic terms: 18 coefficients — equilibrium condition reduces to 15

unknowns — pure bending conditions eliminates shear and 9 terms and
reduces to 6 unknowns: correspond to two orthogonal bending in each
direction

(iii) cubic terms: 30 coefficients — equilibrium condition reduces to 21 un-
knowns — 6 conditions are selected by setting axial stress o, to z xy
and z * 2,; oyy to yxz and y x x, and 0., to 2z x z and z * y. These were
identified from a cantilever beam under an end loading case.

For compressible solids, from the above three categories, twenty four Rayleigh
modes are evaluated. Their linear combinations led to the shape functions.

For incompressible cases, the 60 coefficients of the cubic triplet reduce to
50. There are 11 linear terms, and as before 6 shear free pure bending cases
and 6 ‘cantilever beam’ terms led to Rayleigh modes with a constant element
pressure.

5
6

in the strong not in an error minimization nor variational sense
each full cubic polynomial has 20 terms

7 In equation (12), combinations of constant and linear terms yield the simplex modes,
viz.,. the rigid body and constant strain profiles while the quadratic terms are associated
with (shear free) pure bending modes. In addition, the cubic terms in equation (12) depict
the parabolic shear stress profiles that is observed in a beam with a constant shear force.

13
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1.4 Field equations
1.4.1 Tensors and lists

In order to avoid confusion the term ‘vector’ will be restricted to denoting
a single rank tensor, e.g., displacement zo. In general, a tensor quantity will
be indicated with a bold face symbol, e.g., =, A€, Cy;r;. In the traditional
literature, a column matrix is also called a vector and a row matrix is often
referred to be a row vector. These do not imply any tensorial sense because
they are not abide by the coordinate transformation rules when viewed as a
whole. In this paper, the author adopts the computer algebra terminology,
consequently, terms a single row or column matrix to be (just) a list. However,
a rectangular array will be called a matrix even though technically 2 it is also
a list — list of lists.

1.4.2 The body force vector

In order to conduct the patch test in the presence of zero body force, each
shape function is designed to satisfy the equilibrium equation unconditionally.
This guarantees the element against any locking due to its original geometrical
shape® as well as Poisson’s ratio(s)!?. Furthermore, not to incur shear locking,
only shear-free displacement fields pertaining to bending modes are selected.

Since the shape functions are constructed as linear combinations of Rayleigh
modes, it is crucial to undertake the tensor treatment of elasticity field equa-
tions. To emphasize, the Cartesian coordinates and the associated displace-
ment components are indicated as vectors:

x u(z,y, 2)
x=9v¢; w@yz2)=qvy2) 3)
z w(z,y, z)
The six — three axial and three shear strain v and stress 7 — components
are then:
1 Gwl aw]'
A 4

{7} = [D|{v}; [D]: constitutive matrix, in general with 21 constants (5)
In this static case the body force vector f is:
_ 07y
0%
In some places of this paper, for clarity, the axial stresses and strains are
indicated by o, € respectively, for example:

£;

— summation is implied over repeated indices (6)

Oz = Taz, €oz = Yaz) — no sum over repeated indices (7)

8 Jist of lists is also a list
9 “distortion” [32,46]

10 «“dilatation or Poisson locking” [1]

14
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1.5 Rayleigh modal vis-a-vis the isoparametric formulation

For the deformed element, boundaries should not be constrained to piecewise
linear functions ''. because, this will impert additional stiffness in the system.

The patch test should be conducted in the absence of the body force vector.
This demands that the shape functions necessarily satisfy equilibrium equa-
tions. From equation (6):

f,=0forV (z,y,2) (8)

that is not met by the isoparameiric formulation, hence a locking-free so-
lution field becomes unavoidable. Each Rayleigh displacement vector com-
plies with the equilibrium condition, equation (8), ezactly. The multi-linear 2
isoparametric shape functions, which is oblivious to Poisson’s ratio — the non-
dimensional parameter responsible for coupling directional displacements into
a vector, can never satisfy equilibrium poinfwise in the physical z, y, z-frame.
Furthermore, isoparametric representations decouple displacement vector. The
elasticity displacement solutions are always coupled vector fields.

The incompressibility issue is traeted separately in the ‘high accuracy’
formulation . The isoparametric maps cannont reproduce zero delatation point-
wise. Hence the Poisson locking is inevitable.

Ubiquitously, quadrature is destined to fetch numerical contamination into
the stiffness matrix, hence, the strain energy in the element is not captured
correcly. The nodal forces must always, without exception, be calculated as
virtual work quantities, vide Clough [6], rather than simply lumping the ap-
plied traction only on the segment of application. The latter in patch tests
miscalculates the total strain energy in an element.

1.5.1 Uncondilional possibilily of analytical integration

For the isoparametric transformation, integration of the energy density func-
tions poses a formidable task when a quadrilateral finite element (2; departs
from parallelograms. Even though Taig, vide page-15, equation 35) of [47], re-
searched on analytical integration and derived closed—form integrals of trape-
zoidal elements, numerical quadrature [24] still captures the center stage even
when closed form expressions are available [13] for Fortran and C*" cod-
ing. With lower order interpolants a hypercube in R™ will have the following

11 straight line and plane for two and three dimensions respectively

12 pilinear and trilinear for 2-D and 3-D cases respectively
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element stiffness matrix X expression:
KO — / BTDB dn (9)
£2;

for the element ¢ of domain f2; with 2™ nodes and
m  degrees-of-freedom per node
B : strain-displacement matrix — p" !
D : stress-strain matrix — constant
©™ : polynomial of degree m
m : spatial dimension of 2 C R — (21,29, ..., &)
Each Rayleigh mode is p™ in (21,22, . . ., Zs,) and their linear combinations are
the element shape functions. Ezact integration[17]*> within a ‘brick’ element,
for quartic polynomial terms then suffices for equation (9). Since incompatible
displacement models [59,61,27] are unavoidable for locking-free finite elements,
the Rayleigh modes are equally suitable for any finite element in R™ that has
2™ nodes with m number of degrees-of-freedom per node.

In particular, the present derivation is not dependent on the orientation nor
the location of the (z,y, z) frame. Hence, the question of curved elements only
arises while analytically integrating the energy density functions in stiffness
matrices and nodal loads (as virtual work quantities).

1.6 Rayleigh modes with cubic (z,y, 2) polynomials

Each i** Rayleigh mode 1, (z,y, z) is in the following vector form:

v (z,y, 2)
P, (z,y,2) = 77[;1.(9) (x,y,2) ¢ : satisfies tensor transformation rules  (10)
v (@,y, 2)
In any arbitrary direction o the component of ,(z, y, ) is wga)(x, y, z) and
1, (z,y, z) satisfies equilibrium point-wise (11)
For every Rayleigh mode, equation (10) is calculated from:
va(2,y,2)
pZ (z,y,2) p; ©°(x,y,2): cubic polynomial in z,y,z such that  (12)

po(x,y,2)

the triplet satisfies equilibrium poini-wise

13 the paper: ‘exact integration within polyhedra’ is currently under review, for analogous
two-dimensional problems, vide [14,12].

16
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1.6.1 Incompressible cases

For two-dimensional problems, vide [16] seven pairs of shape functions, each
yielding zero dilatation, were obtained from quadratic polynomials. For each
element there are seven modal participation factors and a uniform pressure
constituted the eight unknowns. Since a nodal displacement is not a degree-of-
freedom™, consequently, no attempt was made to assemble the stiffness matrix
is assembled. Instead, explicit equations of nodal equilibrium and compatibility
were solved simultaneously. It is important to recognize that all nodal forces
are computed as virtual work quantities with respect to the Rayleigh modal
degrees-of-freedom then they are transformed into equivalent nodal loads ac-
cording to the virtual work relations between the Rayleigh modal and element
nodal descriptions. Reference [16] contains all details of four node elements —
convex, concave and triangle with a side node.

The idea is seamlessly extended to three-dimensional brick elements. Twenty
three triplets of shape functions, each yielding zero dilatation, are obtained
from cubic polynomials. For each element, the associated modal participation
factors and a uniform ‘element pressure’ are solved from explicit equations of
nodal equilibrium and compatibility. Algebraic details of [16] are not repeated
here.

1.7 Shape functions from Rayleigh modes: compressible solid v £ %

In conformity with the modal displacement vectors, 1, (x, y, z) in equation (10),
the finite element shape function, which is associated with the nodal degrees-
of-freedom j, ¢; (2, vy, z) has the following vector structure with components:

o\ (2,1, 2)

b;(@,y,2) = ¢§y)(x,y, z) ¢ @ satisfies equilibrium point-wise (13)

$(x,y,2)

this is a linear combinations of Rayleigh mode vectors ,(z,y, 2) of equa-
tion (10) :

[A] : modal contribution to shape function (15)

14 pecause independent values will cause dilatation

17
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The relationship between ¢; and 1); is dictated by the Knocker condition 18,

with ¢, = (T, Ym, 2m) © nodal coordinate for node number m (16)

¢§m) (xma Ym, Zm) = 04,(3m—2)

leads to : ¢§y) (xmayma Zm) — 05,(3m—1) (17)
¢§Z)(xmaymazm) — 05.(3m)
1, ifm=n
where the Kronecker symbol: ., , = (18)
0, if m+#£n

Details for two-dimensional plane stress/strain problems can be found in
[17].
1.7.1 Finite elements from Rayleigh modes

Finite element nodal and the Rayleigh modal variables are:

{r} : list of nodal displacements; {R} : list of nodal forces (19)
{q} : list of modal participation factors; (20)
{Q} : list of modal generalized forces: conjugate of {q} (21)

The matrix [G4], without any ambiguity [G], transformations {q} to {r}:

{r} =1Grgl{a} or {r} =[Gl{q} — {g} = [G]"" {r} (22)

For this brick finite element there are twenty four nodal degrees-of-freedom
and equal number of Rayleigh modes. For this square [G] the inversion is
assumed to exist at the least in the generalized Moore-Penrose sense. Concavity
in the brick geometry is inconsequential.

1.7.2 Relationship between modal and nodal strain-displacement matrices

The physical strains are independent of the choice of modal or nodal perspec-
tive, hence:

{eow gy €20 Yoy Ve vou ) =10} [bg)T = {1} [0)7 = {a}" [G]T [b,]T
= [be] = [bg][GI" or  [b]" = [GT]TMB)] (23)

15 in the vector form for R>

18
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1.7.3 Relationship between modal and nodal element stiffness matrices

From the energy balance principle:

{(RY {r} = {Q} {a} = (B} = [¢"] " {Q} (24)

Now the modal stiffness matrix [Kg4,] for an arbitrary polyhedron {2 can be
obtained from:

Ko = [107 14] ) a2 (25)
2
. exaclly without any numerical scheme (26)

It is important to emphasize that the integrand in equation (25) comprises of
polynomial terms of the form: £t y®2 2®3 as in equation (2), hence, analytical
integration within an arbitrary polyhedra is possible, vide [15].

Finally, the conventional finite element (nodal) stiffness matrix [K,.,| or
simply [K] can be calculated from:

[KCrr] = K] = [GTT7 [Kgq] [G]7 (27)

for more details wvide [17].
The modal strain displacement transformation matrix [b,] is through by:

. T
the row list : {em €yy €22 Yoy Vyz 'yzm} ={q} [bq]T (28)
1.7.4 General elements admitting volume change

Interpolant polynomials are considered according to the degrees of their parts.
First, the constant and the linear terms are selected to reproduce the twelve
16 modes akin to tetrahedrons. This accounts for the siz rigid body displace-
ments and siz constant stress distributions. Secondly, the quadratic terms
reproduce siz pure bending cases where zero shear condition is explicitly en-
force to discard any shear locking whatsoever. It is important to recognize,
for isotropic elastic continua, that for these pure bending modes the Poisson’s
ratio appear in the polynomial coefficients. Finally, the cubic terms a sub-
jective judgement is made in this paper. Parabolic shear stress distributions,
which appear in analytical solutions for a beam with constant shear force,
are reproduced ezxactly. Since for each directional spanning of a beam there
could be two orthogonal bending there are then siz (cantilever beam) modes.
These twenty four Rayleigh modes yield twenty four shape functions via linear
combinations '7 using the definition in equation (17).

16 for incompressible solids, the dilatational mode is eliminated; therein, eleven displace-
ment mode and a constant pressure may constitute the twelve twelve degrees-of-freedom (in
the general sense)

17 Merely from geometrical considerations the Rayleigh modes are related to the nodal
displacements (via the [G] matrix — references [16,17]| describe in detail)

19
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The stiffness matrix X in equation (9) has to be evaluated from equa-
tion (12). The strain displacement matrix B is a quadratic function in x,y, 2.
All that is needed for K are the fourth order polynomial terms presented in
the left hand side of equation (2), its right hand side shows the exact integral
values for a test hexahedral element shown in Fig. 1.

1.8 Poison’s ratio(s): a persistent nondimensional system parameter(s) to
enforce point-wise the zero body force requirement in a patch test

Locking-free finite elements cannot be achieved without explicitly involving the
Poisson’s ratio in the shape functions. This is evidenced by the requirement
of satisfying the equilibrium equation pointwise:

f(z,y,2) =0,VY(z,y,2); wvide equation (6) (29)

For the two dimensional case detailed analysis can be found in [17]. Those
arguments are indeed valid for this three-dimensional formulation, hence not
repeated here. A solid with twenty one Poisson’s ratios poses no problem
whatsoever'®. This paper furnishes all derivations in a tensorial sense, hence
the following treatment of Poison’s ratios in the invariant form is warranted.

1.8.1 Poisson’s ratios for the generalized case

The stress o and strain € tensors are related through the fourth rank compli-
ance tensor C in the following incremental form:

Ae=C. Ao or A¢;; = Cyjp1 o1 (30)

For two orthogonal directions m and n, the corresponding Poisson’s ratio vg,
is given by:

;038531 C 5k
Vo = Vpg — ——————>— 31
g g B8 BkB1C ke (31)

The proposed methodology can be extended'® to encompass the generalized
stress strain relation equations (30) and (31).

1.8.2 Isotlropic constilutive equation: an important special case
For the spacial case of isotropy:

Ti5 = Mo €k + 20 €55, for i £ j vy = 2¢ (32)

18 can be incorporated in equation (5)

19 the symbolic algebraic computer code does no¢ need any modification to accept the
general stress-strain relation in terms of Cj ;1

20
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will be used here. The Lamé constants \,?°, and u are connected via the single
poisson’s ratio v :

)\0 - (33)

For incompressible cases, such as v = % the nodal displacements are not
independent variables. For constant pressure elements, the entire analysis, .e.,
enforcement of nodal equilibrium and compatibility, is to be carried out with
the modal participation factors and a uniform pressure — to be the element
level independent variable — as in two-dimensional [16] problems.

2 Derivation of Rayleigh modes

Modeling with both compressible and incompressible solids are addressed here.
For three-dimensional cases, from equation (9), the lower order cube element
will admit cubic polynomial, as a natural extension to Taig [47]. Hence the
same is selected here.

The ‘high accuracy’ formulation generates Rayleigh modes independent of
convexities in the element.

2.1 Cubic interpolants in the physical (z,y, z) frame

The full cubic polynomial displacement expressions are in the following form:

w(z,y,z) =a(l) + zxa(2) +y*a(3)+ 2 xa(4)
+a?xa(5) ftxxyxal6) +y®*a(7)
txxzxal®) +yxzxa(9) + 22 xa(10)
+a®xa(11) + 22 x y xa(12) + z x y* x a(13) +y* x a(14)
ta?szxa(ld) +rryxzxa(l6) +y° 2z xa(17)
(

+ %27 xa(18) +y x 22 x a(19) + 2° * a(20) (34)

In order to emphasize the polynomial terms, as those appeared in the left
hand side of equation (2), the notation with post-fix coefficients is employed
in equation (34). Multiplication is explicitly indicated by *

The other two displacement components v, w along y, z respectively, are

obtained by cyclic replacement; to obtain v from u replace a by b and then
z by y, y by z and z by . Similarly, w is obtained from v with coefficient

20 in order to avoid conflict of notation with the modal participation factore A in equa-

tion (15), here the isotropic Lamé constant is indicated with a subscript of zero

21
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e(i) :

v(z,y,2) =b(1) +y xb(2) + 2 % b(3) + z * b(4)
+ 4% % b(5) + y % 2 b(6) + 27 % b(7)
+xxyxb(8) + %z xb(9) + z? % b(10)
oy b(11) +y? 2% b(12) + y x 22 % b(13) + 2° * b(14)
sy «b(15) Faxyx2xb(16) + x % 2% x b(17)
(

+ a2y = b(18) + 2% x 2 x b(19) + 2° % b(20) (35)

w(z,y,z) =c(1)+ 2z xc(2) +xxc(3) +y*c(4)
+ 22 % e(5) + % 2 % ¢(6) + x7 % ¢(7)
tyxzxc(8) +xxyxc(9)+y *c(10)
+ 28 % e(11) + % 22 % c(12) + 27 x 2 % c(13) + 2° x ¢(14)
(15) + x sy x 2 % c(16) + 2% %y * ¢(17)
(18) + z * y? % ¢(19) + 3 * ¢(20) (36)

+y>}<22*c

+y2>)<z>)<c

To emphasize the tensorial invariant characteristic of the displacement
function the vector w(z,y, 2) is introduced in equation (3). It is conceptually
convenient to treating each degree of polynomial with the following physical
interpretation:

w(z,y,z) == (z,y,2) + @ (x,y,2) + & (2,9, 2) (37)
— full cubic polynomial vector with 30 unknown coefficients
w (2, y,2) : linear terms for simplex modes (38)

— Courant interpolants in a tetrahedron (pyramid)

P (z,y, 2) : quadratic terms for flexural modes (39)

— admitted in a 6 node pentahedron, triangular prism

w® (2, y, ) : cubic terms for quadratic stress modes (40)

— appears in a brick

All elliptic partial differential equations of mathematical physics are of
even order, 2n, starting with two, n = 1. Hence one way to select Ritz test
function is to deploy polynomials of order n. Hence, the first order polynomials
will satisfy the field equations in the strong sense. Courant [8] employed linear
test functions in his development of potentials and steady vibrations that are
governed by elliptic partial differential equations. This is the principal reason
why Courant’s formulation will always satisfy the patch tests>'.

21 within the context of this paper, rigid body motions and linear stress distributions are

exactly reproduced in single element tests

22



A Rayleigh mode acquiescence to Single element test 17

2.2 Compressible elements: Poisson’s ratio v #£ %

Here twenty four Rayleigh modes are derived in order to generating twenty
four shape functions.

2.2.1 Extension of Courant’s triangulation

The twelve parameters, a[l]...a[4],b[1]...b[4],c[1]...c[4], are assigned unit
value, at a time, with others set to zero. Thus the twelve Rayleigh modes,
which pertain to tetrahedrons, are obtained as the following twelve vectors:

1l z|y|l =] 0] 0] 0] 000 0] O
Ol o0oj O[O 1ly| 2| x| 0] 0 O0fO (41)
ofoyofofofojojofl1]|lz|=x|uy

each column represents the (x,y, z) components of one Rayleigh mode

It can be readily observed that all rigid body modes and linear stress distri-
bution cases are included in equation (41).

2.2.2 Rejection of shear locking modes

The quadratic terms enter into the shape functions for triangular prisms. Arbi-
trary selection of eighteen parameters, a[5]...a[10],b[5]...b[10],¢[5] ... c[10],
will violate equilibrium, f # 0, vide equation (8). Types of the following ex-
pression is obtained by salisfying equation (8):

u = a(5)z® + a(Ty? + a(9yz + a(10)2” + 4b(5)vxy + 4b(Tvay+
4b(10)vzy — 4b(5)zy — 2b(7)zy — 2b(10)zy — b(6)z2 — (8)zY+
de(B)vxz + de(Tvaz + 4c(10)vzz — 4e(B)xz — 2¢(T)zz — 2¢(10)zz (42)

that without exceplion should involve the Poisson’s ratio v, are essential. The
associated v, w expressions, to satisfy pointwise equilibrium, are:

v =4a(5)vay + da(Tvay + 4a(10)vzy — 4a(b)zy — 2a(7)zy — 2a(10)zy

+b(10)2? + b(9zz + b(5)y* + b(6)yz + b(T)2? — c(6)zy (43)
w = (N + c(Nay + c(6)zz + c(10)y? + ¢(8)yz + ¢(5)2? (44)
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To forsake shear locking, one selects only those parts of {u, v, w} that lead to
zero shear strains. The results are:

a(5)y” 2b(5)zy

u(z,y, z) =a(5)z® + —— - a(5)y? — a(10)y* + a(10)2? — ——

2b(5)zy + 2b(7)zy — @ + 2¢(5)xz + 2¢(10)z2 (45)
oz, y,2) = —@ 20(5)ay + 2a(10)zy + LT ps)a?

—b(7)z* + b(5)y* + b(7)z* — 2¢(10)y= (46)
wlz,y,z) = —2a(10)zz — 2b(7)y> (53’”2 o(5)a? —

c(10)z? + ¢(10)y? + c(5)2* (47)

The coupled (quadratic polynomial) vector field w(®) = {u, v, w} has six un-
determined parameters:

a(5), a(10), b(5), b(7), ¢(b) and ¢(10) (48)

Each is assigned unit value, in turn, with others set to zero leading to the six
shear- free flexure modes that are associated with pure bending cases:

u(z,y, z) v(z,y, 2) w(z,y,2)
22 L) w 0
22 —y? 2xy —2xz
zmy(lz//—l) (1 1) 22y 0 (49)
2xy 22 — 2 —2yz
Qm(;’*l) 0 (— — 1) z°+ z
2xz —2yz y? — z?

In the appendix the Rayleigh modal responses are arranged in columns.
However, for clarity the polynomial quadratic modes in equation (49) are pre-
sented as rows.??

22 Fach row in equation (49) represents a displacement vector in equilibrium without body

force. This poses an insignificant inconsistency, vide equation (41) where each column rep-
resents a distinct Rayleigh mode, however no ambiguity is encountered.
To facilitate verification, the author did not replace v —1 by —(1—v) in equation (49) — the
original output from Mathematica had to be changed by adding a custom tailored function.
For the general anisotropic case the output becomes too lengthy due to 21 Poisson’s ratios.
However, any computer algebra system will handle such expressions symbolically without
any user intervention.
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A Rayleigh mode acquiescence to Single element test 19

2.2.3 The three-dimensional element — additional stipulated modes

The cubic terms in the displacement vector w(z, y, 2), vide equation (3), yields
quadratic stress fields. Out of 30 constants, 9 are eliminated to ensure equi-
librium. The candidate displacements are:

23 (a(13)(1 — 2v) + a(18)(1 — 2u) 4 b(18) + c(13))
6(r—1)
+ %y?’(—a(m) —a(19) + b(15) + b(17) + 3b(20))
+ y?2(—a(15) — 3a(20) + c(12) + 3¢(14) + ¢(19)) + a(12)2°y
+a(15)z? 2 + a(13)zy® + a(18)z2* + a(19)yz>
+a(20)2% — 22y2(b(12) — 2¢(15)(v — 1) — (e(17) + 3¢(20))(2v — 1))

u =

Y3 (a(13) + b(13)(1 = 20) — 26(18)w + b(18) + ¢(18))
6(r—1)
— 2zyz(a(15) — 2¢(12)(v — 1) — (3c(14) 4+ ¢(19))(2v — 1))

v =

+ %23(—1)(12) —b(19) + c(15) + ¢(17) + 3¢(20))
+b5(20)2® + b(18)2%y + b(19)2? 2 + b(15)xy?
+ (1722 4+ b(12)y*2 + b(13)y2>

23(a(18) + b(13) — (c(13) + ¢(18))(2v — 1))
6(r—1)
—2zyz(a(12) — 26(15)(v — 1) — (b(17) + 3b(20))(2v — 1))
+e(14)2® + c(1T) 2%y + c(13)2%2 + c(19)xy? + c(12)x2>
+e(20)y® + (18)y* 2 + c(15)y2* (50)

w =

Expressions in equation (50) are not unique, but always 21 constants survive.

Different finite element applications with different purposes can select ten-
sorially invariant statement to determine the 21 coefficients in equation (50).
Now, the displacement profile in a cantilever beam with an end force is se-
lected 22. The following two displacement vectors are solved to reproduce

23 without referring to any coordinate system one can state that the selected axial stress

in any arbitrary direction is proportional to the product of the location in that direction
and in a transverse one, this in turn breaks into two statements that the two orthogonal
other direction will guarantee the tensor requirement
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Opr = xy and x x 2z:

2y _y°
i 1
Ope = x5y — w(x,y,2) = 0 and (51)
—1zyz
22z _ 2
7 1
Opp =T %2 — w(T,y,2) = —2ayz (52)
0

Similarly, four other Rayleigh modes are selected by interchanging z,y, z of
equations (51) and (52), in the cyclic order, leading to the following 6 cubic
displacement profiles:

from 04y from oy, from o,,
. 2 3
from equation (51) : 0 rr_z —%xyz
_1 222 _ 2
STYZ 0 2 1 (53)
. 3
from equation (52) : —Lzyz T 0
7 412 s
0 —3TY* T T

2.2.4 The modal strain-displacement transformation matriz

In the interest of clarity [bg] is partitioned into four 6x6 matrices in the fol-
lowing form:

[bg] = [[6§7], [6571, [65)], [b5V]] and thereby: (54)
010000 000000
000001 000000

(1), [000000] (2 [000100

b 1= 1o01000]" 1= 010000 (55)
000000 100001
000100 000010

are the rigid-body and uniform strain modes that are mandatory, and are
always necessary and sufficient for simplex (in this case tetrahedron) elements.
From the point of view of Iron’s patch tests, which caution of shear-locking,
the quadratic displacement fields that yield linear strains (and stresses for the
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A Rayleigh mode acquiescence to Single element test 21

homogeneous constitutive case with constant elements in the [d] matrix) led
to the following component of the element strain-displacement matrix:

I 0 2y(v—1) % 2z(v—1) 95 7
2z(r—1) o v
= 2z 2y 0 0 —2z

p3) — 0 -2z 0 -2y 2z 0 56
[q ] 0 0 0 0 0 0 (56)
0 0 0 0 0 0
0 0 0 0 0 0

For three-dimensional cases, the cubic terms in the (coupled) displacement
fields permit quadratic stress distributions. Here the structural mechanics re-
sults of stress distribution in a cantilever beam with end load have been cap-
tured:

(6] = (57)
zy Yz yz
H | 2 o PP B
1 2 2 2 yz Tz 1 2 2 2 2}/_2 sz
7@ ;y) "2 132 1y ;f”) "2 122
"2 L 22 T ;,Z) "2 122 7 (2 m—yy)
-5 i@ =) -F 5 1P -] -F
Since the elastic response fields do not uniformly converge as v — % the
incompressible modes cannot be obtained from equations (56) and (57). An

independent derivation for the Rayleigh modes follows.

2.3 Incompressible solids

Starting with the form of equation (34), there are 60 unknown parameters in

the vector-valued shape function w(z,y, 2) = {u(z,y, 2),v(z, y, 2), w(z,y, 2) }:
a[l]...a[20],b]1]...06[20],¢[1]. .. [20] (58)

Incompressibility demands:

ou Ov Ow

%Jra_erE:O’ for all z,y, 2 (59)
that leads to the following possible interrelations between the parameters:
b|8 6
af2] — ~b{2] — cf2).al8] — ~b[6] — 2e[5].af5] —~ —2o —
b[16]
al6] — —2b[5] — ¢[8], a[18] — —b[13] — 3¢[11], a[15] — 5 c[12],
b[18 13
all1] — _% - 0[3 ],a[16] — —2b[12] — 2¢]15],
16
a[12] — —of15] — L oiig) s ) — o) (60)

27



22 G. Dasgupta

These ten substitutions make the incompressible vector-valued shape function
w(z,y, z) to contain 50 constants, in the following three parts:

+ws(z,y, 2) + w3(z,y,2)

“triangulation” modes

w’(z,y,z) =w
v)

x7y7Z
x7y7Z
x7y7Z
x7y7Z

w : “flexural” modes

e e e S

i(
i(
5(
5(

w “quadratic stress” modes

in particular:

a3y +ad)z + a(l) + z(—b(2) — (2))
wil(z,y,2) = b(4)x +b(2)y + b(3)z + b(1) (65)
e(3)x 4+ c(d)y + c(2)z + (1)

therein, the 11 parameters are associated with 6 rigid body modes and 5
deviatoric modes. These eleven modes are evaluated by setting one parameter
to unity and rest to zero, at a time leading to:

Y z 0 —x 0 0 0 —x 0 0
0 0 1 Y z x 0 0 0 0  (66)
0 0 0 0 0 0 0 1 z x Y

The flexural modes contain quadratic terms in z,y, 2z and free from shear
strains:

ou v v OJw Ow Ou
0-—+—=—+4+ —=—+—, forall 67
8y+8x aeray aeraz’ orat ey, (67)

and yields the following possible interrelations between the parameters:

al7] — —(b[8]/2), a[9] — 0,5[9] — 0, a[10] — —(c[6]/2),
b[6] — —2¢[10], ¢[5] — ¢[7] + ¢[10], b[5] — b[7] + b[10],
c[8] — —2b[7],¢c[9] — 0 (68)

the six (independent) terms:
b(7),b(8), b(10), c(6), c(7), c(10) (69)

are responsible for pure bending in two orthogonal planes on each of three
orthogonal directions. Thus the three incompressible flexural modes are:

2 2 2 2

0 _% — % —2zy —% - % —2xz 0
22| wy |22y 0 0 | —2y2 (70)
—2yz 0 0 Tz 22+ 22 |y? 4 22
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A Rayleigh mode acquiescence to Single element test 23

Following the steps to deriving equation (53) the Rayleigh modes due to cubic
displacement profiles are obtained as:

from: o4 from: oy, from: o,,
2y _ oy 0 1, <£ _ ﬁ)
12
e B 2 2 2 2
sr| &5 — 12 0
2 2 2 1 2 2 2 3
X Z
0 2¥\T — 32 2=-5 (71)
2’z _ 2 1, (22 _ 22 0
7 1 2Y\ 2 2 2 2
0 2 3 (22 _y
Lie-g) )\ oy
1 12

3 Closed-form development: compressible isotropic solid

The constitutive matrix [d] relates the stress and strain distributions:

2(r—1) 2v 2v
2v—1 1-2v 1-2v 000 p=1 and 1/:%
—TN—
2v 2(r—1) 2v
1—-2v 2v—1 1—2v 000 311000
131000
2 v 2= ]g g o 113000
[d=p| T2v T2v 201 ;o |d = 000100 (72)
_________ - — 000010
0 0 0 100 000001
0 0 0 (010
0 0 0 (001

now, energy density matrix: [by]” [d][by] can be calculated from equations (54)
through (72).

1

3.1 Numerical Example: p =1,v = 3

A generic brick element with nodal coordinates furnished in equation (1) is
shown in Fig. 1. The modal stiffness matrix is calculated from the closed—form
integration results in equation (2) using equations (54) through (57)2%. The
determinant of [G] is %. The modal and the element stiffness matrices,
vide equation (27) are presented in the Appendix.

24 the eigenvalues are: 46.716, 67.7913, 18.304, 9.52665, 2.88408, 2.29533 2.19528, 2.0452,
1.08073, 0.795941, 0.510553, 0.504974, 0.389806, 0.148966, 0.132988, 0.0728463,0.0619707,
0.0514826 and 0,0,0,0,0,0

29



24 G. Dasgupta

3.1.1 The [G] Mairix

The Rayleigh modes beyond Courant’s triangulation 2 are developed in equa-
tions (49) and (53). The modal to nodal transformation matrix [G] is now used
to convert the closed—form integral of equation (25). The 24 by 24 [G] has been
obtained by using the element nodal coordinates of equation (1) 2¢. For con-
venience of presentation the following form is selected:

G111 Gip G
[G] = | Gg1 Gog Gos (73)
G31 G3o G33

The numerical values of the submatrices in equation (73) are furnished in
equations (84) through (87).

4 Conclusions: what is a ‘high accuracy’ finite element

MacNeal, in [36,35], systematically described the limitations of isoparametric
formulations, especially with plane stress/strain four node quadrilaterals. He
elaborated the locking-phenomena due to shear, Poisson’s effect and shape
distortion. He conclusively proved the defficiency inspite of various innova-
tive numerical integration schemes that led to stiffness matrices. In the three-
dimensional isoparametric formulation:

u(n, §,¢)
v(n,&,C) » = [Nl ®|[Z], Nox [Z),...,Ny=[Z],..., Negx [Z]| {r} (74)
w(n,§,¢)

[Z] : identity matrix; *: multiplication operator (75)

Ni(n,€,¢) : eight scalar tri-linear functions of coordinates alone  (76)

the diagonal structure of the identity matrix [Z] decouples the displacement
components {u(z,y,2),v(x,y,2),w(x,y,z)}. In essence, equation (74) forces
zero displacements in y and z directions when nodal displacements associated
with only the z—degrees-of-freedom are applied. This is contrary to the Pois-
son effect that cannot be resolved by any means, e.g., application of variational
principle, nor by avoiding exact integration to yield the element stiffness ma-
trix. In addition, the isoparametric map constrains all straight edges to remain
straight after pure bending. This is true only for sections normal to the neu-
tral axis and not in an arbitrary eight-node (convex) ‘brick’ element. Here,
following the successes in two-dimensioal problems [19,16,17], where point-
wise locking-free criteria were met, all numerical quadratures and ‘variational
crimes’ are circumvented for the ‘high accuracy’ ‘brick’ element. For problems
of mathematical physics where a (positive definite) scalar, e.g., the Eulerian

25 tetrahedrons in this three-dimensional counterpart

26 the procedure does not depend on the spatial dimensionality, hence, the computer pro-
gram for the two-dimensional case, [17],has been used
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A Rayleigh mode acquiescence to Single element test 25

or the Dirichlet energy, exists the structural mechanics principle of wvirtual
work is synonymous with the Ritz formulation. Clough in [6] elegantly states
to identify the finite element nodal forces as virtual work quantities that are
identical with the duals of the Ritz coordinates from the variational principle.
By no means, utilization of the virtual work principle could be misconstrued
to be ‘variational crimes.” Numerical integration on the computational square
brings in the limitation of negative Jacobian for concave elements. Even for
scalar problems, the extension of the isoparametric idea for polygonal finite
elements with Wachspress coordinates, [55,57,54], which are founded on pro-
jective geometry [9], can be challenging. Wilson, in chapter 6 of [60], provides
an exposé of numerical integration associated with improved isoparametric
formulations but [13,14] completely resolve all such issues.

Point-wise equilibrium cannot be achieved when the Buckingham I7-theorem
[4] is ignored by discarding the Poisson’s 1ratio(s)27 in test functions. Here, vide
equation (56), the coupled representation of {w,v,w} contains the Poisson’s
ratio, and no minimization was necessary.

Finally, MacNeal’s theorem [36] whose three-dimensional extension is ob-
vious, conclusively supports searching for alternatives — not to mention the
incapability of those methods to model concavities that are germane to large,
especially plastic, deformations. The central question of integrating the en-
ergy density functions within arbitrary polyhedra persisted. The author in
[15] demonstrates the use of divergence theorem to calculate such integrals
analytically.

4.1 The single element test and limitations of the present formulation

Extensive paich tests as in [16,17], have not been carried out here. The Single
Element Test [44] deemed to be adequate with special attention to Clough’s
assertion [6] to accounting for the nodal loads on a palch as virtual work
quantities that are consistent with the Ritz formulation [42].

Using shape functions of the lowest possible order only the local con-
vergence can be addressed. Incompatibility on the interface is not addressed
within this single element test technic. According to the Ritz formulation [42],
nodal compatibility and equilibrium should be adequate. With the fixed num-
ber of nodal degree-of-freedom there is no scope to introducing more or higher
order interpolants for the brick finite element. Thus only mesh refinement can
improve accuracy.

27 Even Poisson himself conjectured that Poisson’s ratio was 1/4 for all isotropic materials
(in the uniconstant theory)! Assuming an atomic model, with the atoms as point particles, a
centrosymmetric lattice [58] interacted by central forces that depended only on the distance.
Consequently, the Cauchy relations led the tensorial elastic constants of an anisotropic solid

1
to a Poisson’s ratio of — for all materials. After Born [3] two elastic constants u,v are

universally accepted for isotropy.
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4.2 Embellishing existing finite element programs

The major motivation of this research was to improve the response prediction
for real-world design engineering problems, for example, difficulties outlined
in [45] may be completely eliminated with the proposed ‘high accuracy’ finite
elements. In a generic finite element code, e.g., FEAP [48], subroutines of ‘high
accuracy’ elements can be easily incorporated. Notably, Mathematica can
automatically generate FORTRAN and C*™" modules, moreover, Modelica [22,
52] can seamlessly implement the ‘high accuracy’ formulation alongside any
existing commercial finite element code.

4.3 Sommerfeld problems motivated ‘high accuracy’ finite elements

For unboundrd domains, e.g., soil foundations, the damping radiation due to
outgoing waves must be estimated correctly. To cover the semi-infinite do-
mains, isoparametric finite elements are forsaken in favor of Poisson’s ratio
dependent influence coefficients [5,18]. The cloning algorithm [10] demands
defect-free finite elements [37], in identifying the incoming and outgoing waves
as two complex conjugate roots of the matrix quadratic equation [11].

4.4 Incompressibility and concavity

In plasticity [34] incompressibility and the formation of concavity cannot be
ignored. The ‘high accuracy’ formulation accepts concave, i.e., dented brick el-

ement, and to enforce incompressibility the procedure of [16] is recommended?®
29

the element stiffness matrix matrix does not exist in the conventional sense””.
The twenty three Rayleigh modes 3° are separately calculated since the right-
sided limit of Poisson’s ratio, as v — §+, is not permitted in continuum
mechanics. Taylor [50] conclusively established the existence of the left-hand
limit as v — 57 vide [49]. The author addresses the v = % case separately,
since incompressibility is a deformation constraint rather than a parameterized

1
statement <e. g.,v— 5) . The limiting value of the the compressible Rayleigh

28 in fact the same computer program, which was written in Mathematica, can be used to

forming the equations of nodal equilibrium and compatibility in terms of Rayleigh modal
participation factors and uniform element pressures, and subsequently generating finite el-
ement solutions for any prescribed boundary value problem
29 the nodal displacements of an incompressible element do not constitute degrees-of-
freedom an arbitrary displacement can cause volume change

30 with zero dilatation
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A Rayleigh mode acquiescence to Single element test 27

modes, equations (49) and (53), will not converge to their incompressible coun-
terparts, equations (70) and (71)!.
4.5 Generalization for linear partial differential equations

The three coupled response component {w(z,y,z)} for a linear vector field
elliptic 3? problem®® of mathematical physics is governed by:

L1 L2 L13
£ Lo Lo Lon| i L7 |[ce] {0y} | = {f@y. )} (77)
L31 L32 L33
L;; : linear partial differential operators (78)
C : is the constitutive matrix — a positive definite operator (79)

To capture a stress profile {g(z,y,2)} alongside the rigid body modes w,,
the the locking-free Rayleigh vectors are particular solutions of :

CL[{wi(z,y,2)}] = {9(z,y,2)} ; with (80)

4.6 Generalization for structural elements

Characteristic non-dimensional parameters (e.g., the Poisson’s ratio) intrinsic
in the constitutive operator C in equations (77) and (79) most likely will enter
into the algebraic expressions of {w;(z,y,2)} in equation (80) but never in
{w,(x,y,2)} vide equation (81). Structural mechanics problems of plates and
shells and via the geometric stiffness matrix stability of structural elements
are governed by equation (77). Polynomial test functions provide a systematic
way to build up elements with increasing nodes. Since splines are integrable in
closed—form, they can substitute polynomial series as test functions. Mathe-
matica can carry out operations with Wachspress’ coordinates [56], which are
rational polynomials — Padé approximants, and rational splines [53]. A minor
modification of the Mathematica code in [15] will permit curved surfaces as de-
manded in designing shell elements in bio- and nano-technology applications.
A suitable multi-domain application, e.qg., Modelica, will facilitate accurate
and efficient ‘high accuracy’ finite element formulation.

1
31" due to the lack of uniform convergence criterion for the Poisson’s ratio around —. This is
the reason why an independent computation was undertaken for the incompressible elements
by enforcing zero dilatation in equation (67)

32 Courant captured the essence to be problems of potentials in static equilibrium and
steady vibrations (8]

33 for a scalar response field w(z,y, z), £ is a column matrix
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Appendix

This section is provided to aiding code verification during development and
incorporating this ‘high accuracy’ element into any existing finite element
computer program.

Only the isotropic homogeneous properties with the Poisson’s ratio v and
the shear modulus g = 1 are used. General anisotropic case will not require
any more computer programing to carry out steps of equations (42) through

(71). Specifically, the numerical examples are carried out with v = —.

4

In the interest of saving pages the smaller fonts are selected in some tables.
The pages, especially for Fig. 5 should be viewed as PDF with magnification
suitable for reading. However, an OCR?? tool can generate an ASCII file®,
which should be suitable for inputting in Mathematica or a FORTRAN program
segment, from a printed page.

Efficient codes from Mathemalica can be effortlessly generated by Math-
Code [23] in FORTRAN and C* ", for example.

Rayleigh modes

The application development steps are as follows>®:

1. Isotropic case: problem independent ‘brick’ element data with p = 1:
The physical coordinates are named z,y, z, and the Poisson’s ratio v.
(a) Compressible, v # %, Rayleigh modes:
The three components of the conventional shear-locking free modes are
in equations (41) and (49).
If the shear force loading on a cantilever beam is selected as the case
for which ezact analytical results are to be reproduced in a patch test,
then the modes in equation (53) can be used. For other cases the cubic
polynomial terms, starting with equation (50) must be determined.
2. Anisotropic solid: compressible and incompressible cases:
The 21 Poisson’s ratios in 6 by 6 C;;;, vide equation (30), is to be used.
The computer program for the counterpart of equations (53) and (49),
equation (30), equations (70) and (71) are to be written by the developer.
3. Element geometry and closed—form integration A computer program to
execute the steps described in [15] need to be used. Since the closed—form
indefinite integrals of quartic terms are easy to write even in FORTRAN, this
step can be generated by MathCode [23].

34
35

Optical Character Recognizing
e.g., the author uses: http://www.irislink.com

36 Complete symbolic code: In the interest of further research and development the author
has prepared a paper 37 for “The Mathematica Journal’ that is currently under review
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Modal to nodal transformation matrix: [G]

These matrices must be read as a PDF with needful magnification. These
figures are provided for direct input to an OCR application.

The numerical value of [G] is included in the main part, in equations (84)
through (87).

1
1 [ 1 [ [ [ [ [ [ [ [ [ 3 b -14 0 [ [ o l-=1 o [ [ [ [
12
[ [ [ [ 1 1 [ [ [ [ [ [ [ [ 1 [ [ [ [ [ [ [ [ [
T
[ [ [ [ [ [ [ [ 1 [ [ 1 [ [ [ [ [ 1 [ [ [ [ [
12
1 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ 1 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ [ [ [ [ 1 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
1 1 [ [ [ [ [ [ [ [ [ [ 1 [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ 1 [ [ 1 [ [ [ [ [ [ 38 -14 0 [ [ [ [ S [
12
[ [ [ [ [ [ [ [ 1 [ 1 [ [ [ [ [ 34 -114 0 [ [ o i-=1{ o
12
65 § 46 232§ 19 | 2 8
1) = [ [ [ [ [ [ [ [ o {Z2pB B S, [ = [ [ [ [ [
54 { 35 35 11} 314 31
46 &5 204f 98 | o1 55 3
[ [ [ [ 1i=to{=1o0o [ [ o - =l =t={-=1{ o0 [ [ [ [ = [ [
35 54 314 31 4 15 38 g
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A Rayleigh mode acquiescence to Single element test 33

The calculated determinant of [G] is 97.3838. Here is just the evidence
that the [G]™' matrix exists: In shape function and stiffness matrix calcula-

ofodo 1iototojofojofoiolo}lo}tofofoiotoiotofofod]o
22 ] 4 | 191 201} 46} 26§ 25 | 23 | 16 { 4 1F 5 254 5 11171256 27 1) 1§ 1 1 1
Ll il sl i alnfw o] a| i e 2} 2} s ]:{s) af nl wmjm|sie
00 | 173] 2374] 533 § €92 § 791 § 971 1200] 509{ 55 { 97 § 510 1407} 30 } 41 | 37| 305] 30} 61 } 351 | 190 1 1 I
Tl m{ i w il Bl w m{w{awtimisnolw vl 3 el wisin}u}) ]l Bl
1410 ] 74 {2053 ] 1103] 17037 733f 196 {1006 | 4;2 | 1] eo§ w2} ssof so| se|se s s s} 1) s o1 1 2

71 1n {7 403 398 22} 35 20 § 21 109{ 28 83 | 74 194 314 20 } 25 23 33 6 35 ) 23 17 31

7 19 17 141 6 174 1 28 6 1 1 9 5 1 1 7 111 1 1 7 1 1 1
41 18 | 60 57 34 473 7 29 19 | 68 51 38 32} 40 } 286 § 30 {112 § 39 24 9 25 ) 81 § 493 { &5
556§ 1851 7051 1060 } 876 § 844 89§ 1632f 1604 53 { 48 1 747 1 208 16 2114 2018 97} 46 } 318 | 31 1 1

69
538 484 43475 37y 41 30 { 89 12§ 38 37470 47} 43 9 22 16 { 274 43 23 20 | 12 w3l
120§ 73 { 477 { 383} €80} 553} 62 ) 543 1 556 { 332y 421 3491 165} 34} 52427 {3214 75 26§ 452} 37 1 1 2
19
[

11 17 26 241 2 2 0 {55 il wi wi s 274 20 13 a0 30} 32 34 37.

ofofojolio 1toftojoiofotiolo ofofofoioio}to}ofol]o
6] 31{ 5318 § 128 7 4] 41] 437 5 { 4§ s 5 8| 264 34+ 7 1 31| 8 1 1 i
Tyl n{unlal el el 5] 0 e il inlowln| vl oleiuin)we et n
3201 735 2653 1375 § 2609 } 833 | 209] 781] 851§ 47 § 50 § 324 § 12 | O | 182 { 499 3851] 112} 55 | 897 | 97 1 1 2
mli i ;i s i} | 5] sl isiwinlele | sl uo] wiw s el x| n| s
203 | 136 | 164 | 659} 14550 204} 127 { 217 {1307] 31§ 43} 196% 259} 391 361 196 | 647 | 134 71 923} 70} 1 1 1
By { e {Twl sed 1le | s | i wi w) n) nlwln|{xwl el el e}ln|s|n
2] 4 19({18) 46§26} 4 23§ 16] 4 R 1 7y 25| 641 2 1 2} 1 1 1 1
T el st il sl vl sixinlel s e sl minlnds e 5l
2071 49 { 303905 § 10704 296 } 41| 331§ 353y 35 § 50 } 109 1 250 | 37 | 43 | 341 s533) 4L} 37 § 452} 37 1 1 1
Tl il el wm e i ] el sl mimiw il m x| ) s Bisin sl sl ] w
7 1] 190 13} % 17 1§ ) 6{ 1{ 11915 1 1y 7w 14117 1 1 1 1
“al sl el i v | e e e 5t i i }w | ose] ) usi wimiodasia|w| w
581 | 254 | 367 | 2461 1613} 436} 12 {483 § 1004 234 7§ 165§ 121} 361 331 40 1438 { 76 | 441 513} 9 1 1
o5 Jio i { i el s} 7l i el ol wl )l w) mlalsind nl el ul wiwls
261 27 § 53 | s} 1s2f 13} 39 { 41§ 43 51 41 341 351 7 RERERE 71 1} 9 1 1]
viw{n{al al el 50 6] Bl mls) o) nfw|ole | ul 5} 54 109] nefs
il s6§ 406§ 151 foes a7 f 100f es3f so {1 boealoss } o35 f a5 | 5| w6l e} o7 bws| o7 1 1 1

164 414 471 16 17 25 35 9 70 § 81 13 37 21} 47 R e 201 331 9 41 10 204 544 40
1504§ 703 { 305 {2743 } 4228 } 5340 } 530} 7405] 599 373 { 250 } 1618 } 1081 | 461 | 455 | 2077} 5177) 563} 213 | 3111} 269 6 4 16
23 30 4 4 31 25 1 43 27 58 7 38 31 25 28 | 48 43 51 3940 261 32 1 32} 39 35 25 39

4001 § 1649 § 3720 | 4750} 7110} 5054} 950 | 3697 | 3038 { 375{ 490} 1601} 1610} 417} 143§ 3012 § 2946 | 781 § 1931 2285) 316§ 7 | L | 5
Dl o {wl nl w2 w | vl sl vl s) ul uls{ulul wl 8] Bly|s|n
1171] 841] 2643] 1177 § 2963 § 1658 | 5561 2031] 1846] 231 { 137 } 1340} 737 | 121 | 310 | 1303} 2121} 356} 118 | 533 | 41 } 1] 3§ 1
Tm sl ml vl s i vl | n] win i mixelwlwlewl s ) 5iauls s} el 5] e
2564 | 496 {4091 | 20011 o040t 3533} 634 | as25 | 3697 | 496 207} 172] 913} 543} lo1] 213 | 1961{ 67 | 117} lles| 107} 4 | 7 | 1

43 23 | 45 25 58 31} 35 § 41 § 47 55 31 204 26} 6l 214 4 16§ 37 19 13 194 2 § 57 83
31931 700§ 75401 5541 115410} 1117 | 936{ 1801 3410{ 541 { 226 } 2477 § 2331 ) 203 | 563 § 2453} 4051y 876} 311 } 4689 } 189 7 2 13

#3 2{ 60§ u i 7 37 11 31 43 19§ 30 } 41 16 } 43 204 244 311 36 } 38 20 | 3 5 41
1771 § 719 § 5841 § 2897} 4659 331 §4387 §2113 { 175 227} 1975} 1220} 132} 661§ 1237 § 2007 { 433 I 1171 2687} 949} 2 2 5

- 15176 G S M By S A

34 {38 {7 41 38 23 | 48 30 26 35 37 39 17 894 26 § 22 { 27 23 ) 178} 204 17 32

151

Fig. 6 G-inverse matrix

tions, vide equations (89) and (27) respectively, [G] ! is encountered. The LU
decomposition® (with partial pivoting) has been used in stress calculations.
equation (15): @,(z,y, 2) = \ji ¥, (x,y, 2) here [\] is related to [G]. Here, ¥ is
a 3 by 24 matrix, for each nodal coordinate ¢,, in equation (16), the column
[F(cy,)] is then 24 by 24 and by definition from equation (22):

{r} = [Gl{q} also {r} = [@(cm)]{a}; .. [¥(em)] = [G] but (82)
[G] [\] = [I] : the identity matrix =& =¥ & [\ .. & = [GT] L @&T (83)

Here the dot product is explicitly indicated with ©.

38 in Mathematica the condition number is also returned alongside the I and U and the

the permutation matrix
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Up to a round-off error of 10~2 the submatrices in equation (73) are 3°:
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o |ololofolofo| o o |ofo|ofolo|of1 olo| 1 |o|o|1|o|o
o |ololofolofo| o | o olojolofojojo | | o]o] 1 |ofo|ofo|o (84)
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A Rayleigh mode acquiescence to Single element test 35

Element shape functions

The element shape functions are displacement vectors that are governed by
tensor transformation rules. Here, in this ‘high accuracy’ formulation, shape
functions :

6 (2,y,2)
&, (x,y,2) = qsgy)(x,y, 2) ¢+ are housed in ¢ — {qbl, &b, .. } (88)
¢ (2, y, 2)

and @ is calculated from the corresponding Rayleigh mode collection ¥:
U= {4y, 4, ...}; o' = ([G]T)ile from equation (83) (89)

using matrix-tensor operators in Mathematica. The tabulated expressions in
Figs. 7 through 12 should be viewed as PDF with sufficient magnification®’.

A Mathematica function: Calculation for a given Poisson’s ratio v

To aid symbolic computation the following Mathematica ‘one-liner’ function
is included here. The Rayleigh mode shapes from Figs. 2 through 4 are to
evaluated for the numerical v and stored in a variable mode. The instruction,
along with the Mathematica code, to generate the shape functions follows:

fromModesToShapeFunctions: :usage = "

fromModesToShapeFunctions [modes,{x,y,z},nodes]

generates element shape functions from modes

in x,y,z variables for an eight node 3-d element.

Each Rayleigh response vector is stored as one column in modes."

fromModesToShapeFunctions[modes_, {x_, y_, z_}, nodes_] :=
LinearSolve[
Flatten /@ Thread[modes /. Thread[
{x, vy, z} > #] &
/@ nodes], modes]

testKronecker [mode_, {x_, y_, z_}, nodes_] := Round[Tablel[
Chopl[
Flatten[(mode[[i]] /. Thread[
{x, y, z} -> #] & /@ nodes)]],
{i, Length[nodes // Flatten]}]] ===
IdentityMatrix[Length[nodes // Flatten]]

40 The author uses 200% in the Acrobat Pro reader



36 G. Dasgupta

The vector form of the Kronecker condition of equation (17) can be tested to
yield True with the above Mathematica function. In the large scale computa-
tion a CT" program generated the factors of the the inverse for [G] in Fig. 5,
and used in many places, such as generating the element stiffness matrix, the
strain calculations.
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A Rayleigh mode acquiescence to Single element test 43

Modal and nodal element stiffness matrices

These pages must be read as a PDF with magnification, however, an OCR
should be able to read and generate ASCII file for comparison.

Modal element stiffness matrix: Ky

In the interest of printing the following partitioning is used:

[/C(l’l)] []C(LQ)]_
qq qq
[Kaql = (90)
D] )]
qq qq i
o 0 I 0 ) 4 o 0 o 0
o ¢ 0 9 i 0 o Q 0 9
o o 0 o o 0 t 0 o 0 o
° 0 G i 0 o o ° 0 G i 0
O Q o O Qo o 0 O Q o O Qo
i © 0 ¢ 3 0 0 0 ¢
o o o Q 0 9 ! o o o Q 1
o 0 4 0 0 ¢ 0 4 0
G 0 ° o o o 0 G 0 ° o o
o L N 0 o ! 0 o 0 3 0 o
° 0 G i 0 o o ° 0 G i 0
O Q o O Qo o 1 O Q o O 1

Fig. 13 [/C((Z}Z’l)]: Modal element stiffness matrix



44 G. Dasgupta

o Q < 0 G ¢ 0 o Q < 0 G
A71 305 44 7 i1
o 4] . e -- - -— O 0
30 26 15 H 20
L 1 g L il 8
ol 0 I ] 0 ) —_ — — —_ - C—
23 35 29 25 15 %
1 7 I
g Q o} O Qo o — - -— .
31 24 51 24
] 4] ie] 0 (4] [ 0 ] 4] ie] 0 (4]
443 36 44 44 I 22 7 i
- = o o — o o . = — - 0
40 13 13 13 20 33 12 20
8 7 1 8
o Q o G Q 0 — e — J——
29 24 47 20
1 IRt 8 1 8
o Q < 0 G ¢ —— -— — ——
35 29 23 29
o o o o [ o o o o o o [
26 36 34 7 15
— Co— — 0 D — fo} 0 — —_
13 i3 1N iz 12 Ky
1 7 I 7
g Q o O Qo o — e - - s
31 24 51 24
8 7 L
Q ¢ o D ¢ G —— - —
Pl 24 a7

Fig. 14 [/C((Z}Z’Q)]: Modal element stiffness matrix
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1529 az 41 I 12 © 97 s
1o & Tz o o 2 ) i Ta
307 327 sa1 10 24 a4 20 44
2 70 Tin 0 T2 4 3 T4
411 3076 21 34 4s 202 32 : 86
2 at B 5 Y 37 7 5 24
468 11 68 44 34 44 7
0 70 25 s 27 43 “n 27 B 26
45 a4
1 13 23 28
651 a1 24 241 615 a2 14 8 I 4 58
37 12 12 8 57 27 5 7 39 a3 28
10 1© 45 o 50 15
° 3 BT 20 83 34
12 2 as 44 s o 2 4 ) 5
2 ES “1-; e T 2 2 xn ) st £ 26
a4 202 56 0 1 4 2 55
1 P 37 4t i3 ) 25 9 27 24 2
1 2 34 34 a4 44 < 9 P 5
3 4 2 71 43 4 85 64 a1 20
97 4 44 31 3 17 9 4
31 3 13 s 26 25 2 °
4 86 15 5
3 2 34 32 y

Fig. 15 [/C((Z%jz)]: Modal element stiffness matrix
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) 1627 421 181 5 52
53 24 23 19 26 27
79 43 27 35 23 43
36 22 25 44 A5 85

7 4 2 3 1 2
18 27 13 41 16 39
0 0 0 0 0 0

Fig. 16 Eigenvalues of modal stiffness matrix
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Nodal element stiffness matrix: K.,

Here the matrix is partitioned according to:

(KD [clt2]]

[’CTT] =

L=

(91)

575799 394067 | 151078 331621 326276 | 114818
6 57 89 38 i6 37 15
2875 | 124231
) Y T )

10962 1784 2473 16051
i9 i 21 5 T
48523 21731 51104 75335

25

sz
2

83 661 59159 j2ess | o1zasm 16051 1230 140633
43 Y 48 27 P 50 B 7

Fig. 17 [K!

1,1)
T

]: Nodal element stiffness matrix
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Y] ) 25 s 18 29 49 2 1

122 233
7 30
242 1ig
35 16

109
i2
16 16
n n
77 244
8 27

S61137 0337 8325 58477 10645 157 a1
371 138 34 17 £ 25 6

307 659 15 28

2 4 25 35

407 3725 us3 653 6450 432 19 32

27 59 32 28 17 s 751

85159 158 ss

2 4 34 i1

Fig. 18 [/CS«}«’Q)]: Nodal element stiffness matrix
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Fig. 19 [/CS«%’Q)]: Nodal element stiffness matrix
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2273535 1015 1510 a1 5
61 18 39 32 6
9 % 40 21 25 7
11 13 67 46 62 13
17 7 5 7 2 1
52 24 2 43 27 15
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Fig. 20 Eigenvalues of nodal stiffness matrix
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High Accuracy three-dimensional Finite Elements
Gautam Dasguptal

Abstract
The numerical technique of finite element method motivated this discovery. Therein,
evaluations of (stiffness-like) system matrices in three-dimensional viscoplastic analysis
of thermo-mechanical has been done exactly with the computer program? written by the
author.

Finite element approximations, which pertain to both scalar and vector solution fields,
are addressed. Instead of resorting to numerical quadrature, the divergence theorem,
which yielded high accuracy results, is employed where indefinite integrals are calculated
algebraically. Instead of isoparametric mapping, Poisson’s raio dependent shape functions,
which satisfy equilibrium throughout the element, are derived from Rayleigh modes that
satisfy tensorial invariance. All operations leading to element formulation are carried out
in closed analytic form.

The two-dimensional analog of the present discovery is in the patent [?]. In this
document, only the three-dimensional treatments, which have no prior reference, are
summarized.

keywords: computer algebra, divergence theorem, element level integration, exact inte-
gration, Rayleigh modes

What are new:
1. Rayleigh modes for incompressibility

2. Rayleigh modes for compressibility and procedure to determine full anisotropic case
with 21 constsnts

3. Exact volume integration algorithm

4. Rule application to implement accurate and efficient volume integration to calculate
the element stiffness matrix.

Dept. of Civil Engineering and Engineering Mechanics, School of Engineering and Applied Sciences,
Columbia University, 500 West 120 St., New York, NY 10027. E-mail: dasgupta@columbia.edu
%in Appendix-I
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1 Introduction

The scope of Columbia University’s patent: U.S. Patent No. 6,101,450 — Gautam Das-
gupta — “Stress Analysis Using a Defect-Free Four Node Finite Element Technique” -
has been extended here to device solutions for its three-dimensional counterpart. Appli-
cations to locking-free solid, plate and shell elements can be developed devoid of errors
from element shape distortion and Poisson’s effect.

The finite element shown in Figure 1 is demonstrated as a sample problem thoughout
this discourse.

Figure 1: A hexahedral finite element

——page 4 of 24—
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For example, in order to construct locking-free, vide |9], three-dimensional brick elements,
cubic polynomials, which explicitly depend upon Poisson’s ratio(s), in the physical (z,y, 2)
coordinates were derived for twenty four Rayleigh modes. Their linear combinations yield
twenty four shape functions that are associated with the degrees-of-freedom located on
the vertices.

To maintain the high accuracy consistently, especially the locking-free features, nu-
merical quadrature has been completely avoided in evaluating the stiffness-like system
matrices. This analytical strategy, which is based on the divergence theorem, is compu-
tationally more efficient than any quadrature scheme.

The locking-free interpolants (for a eight node hexahedral brick element) in the physical
(x,y,2) co-ordinates are cubic functions, hence the linear elastic stresses are quadratic
in (z,y,2). Hence, the energy density expressions comprise of the terms in the expanded
expression of (1 +x + y + z)*. Its each term, within the brick shown in Figure 1 can
be exactly integrated by the computer program presented here without resorting to any
numerical quadrature.

Restrictions of convex elements do not apply and concavity, as it develops during
elasto-plastic deformation, can be considered. For general vector field problems, e.g., those
of continuum mechanics, the computer algebra systems can be incorporated seamlessly
within a UNIX environment. The Modelica Language, vide|7], can achieve the same for
all platforms. Therein, general numerics can be optimized for efficiency and accuracy by
utilizing C++ routines [§].

1.1 Scalar field high accuracy finite elements

The Chazelle discretization of any region into minimum number of convex subsets [3]
minimizes tncompatibility errors along the interior boundaries due to tessellation. The
Wachspress rational polynomial interpolants [11, 12| on each subset ensure C° inter-
element compatibility.

In general, in the (x,y, z) frame energy terms like:

pi({E, Y, Z) q]'({E, Y, Z)
(ru(z, y, 2))

; p,q,r: polynomials in (x,y, 2) (1)
are decomposed into partial fractions:

pi(xvyv Z) Qj(x,y, Z) - Aa(l‘,y) Ba(x7 y)
(re(,y,2))? Z ((z “Ca(ry) (G- Culr, y)))2> (2)

«

where A, B, C': are in general complex functions of (z,y) (3)

so that an indefinite integral of a generic energy term :

/(pi(ft,y, 2) 4(,y, Z)> 0z = 3 Ao(e,) log(z — Cale,)) + Ba(x,y) (4)

(Tk(xvyvz))Q Ca(l‘,y) —Zz

can be obtained in the closed- form.

—page 5 of 24—
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For large number of faces, the degrees of polynomials in equation (1) are high, and this
will not permit analytical decomposition in the form of equation (2). Padé approximation
[13, 2] is used to estimate P, Q and R, in:

pi(z,y,2) gi(z,y.2) ~ Pilr,y,2) Q(,y,2) Ry : quadratic in z (5)

(Tk(l‘,y72))2 (Rk(‘rvy?z))Q

1.1.1 Limitation

For vector field problems, the constraints from the Wachspress interpolants on element
boundary surfaces will prevent success in patch tests hence the element cannot be pre-
vented from locking [10]. In order to resolve this, polynomial test function in (z,v, 2)
must be employed.

2 Formulation for polyhedral finite elements

2.1 FE=xact Integragtion

The divergence theorem:

[t sevoyn [fiesenga [faensoat o
& r

r
where the dot product is indicated by ®

converts a volume integral in €2 to its surface I'. Within the context of a polyhedron
defined by 2, the surface I' is a collection of planes g;(x,y, 2):

where the equation for a p;(z,y,2) : d; = a;x + by + ¢;2 (7)

2.1.1 Convex polyhedra

For a convex ? element (2, any interior point can be selected as the origin. Since no plane
o; of equation (7) passes through the origin, d; in equation (7) is always non-zero. Hence
it is possible to select for all faces on I':

select: d; > 0 and (8)
{a,b,c}

obtain: ——————== = n: outer normal vector 9)
Va? +b* 4 c?
notation : a vector is encased within curly braces: 7 = {n,,n,,n.} (10)

3To verify convexity from vertices defined by the matrix nodes, the Mathematica code:
And @@ (MemberQ[nodes, #] & /@
(ComputationalGeometry ‘Methods ‘ConvexHull3D [nodes]) [[1, 1]1]1)

is written as a part of this document
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3 An optimized form of the divergence theorem

For an arbitrary function h(z,y, 2):

define: g.(z,y, 2) /h(x,y,z) dz : an indefinite integral in z (11)
g(@,y,2) © dl =g(x,y,2) © d dl' = g.(,y, 2) dl', (13)
I',, : the projection of I on the  — y plane (14)

3.1 Convex polyhedra

It is important to realize that dI',, is a vector quantity whose magnitude is to be multiplied
by the sign of n, in equation (12). It is identical to the sign of ¢; for plane number i in
equation (9). For a surface plane perpendicular to z— axis:

n,=0:21Lg (15)

In the case of a non-convex polyhedra such a determination is not possible because at
least one surface plane will pass through the interior of Q.

3.2 Exact Integration

Area integrations in equations (6) and (13) are to be carried out using the following
Mathematica program :

arealntegrate[z_, {x_, y_}, nodes_, proc_: Integrate] :=
Module[{ t, segments, lineIntegrate},

lineIntegratelint_, zz_, {xx_, yy_, tt_},
{{x1_, y1_}, {x2_, y2_}}] :=
int[ ((y2 - y1) zz) /. {xx -> x1 + tt (x2 - x1),

segments = Partition[Append[nodes, nodes[[1]]], 2, 11;
Plus @@ Map[lineIntegrate[proc,
Integratelz, x], {x, y, t}, #] &, segments] ]

arealntegrate[{z_, {x_, y_}, nodes_}] :=
arealntegrate[z, {x, y}, nodes]

For a face, if the nodal numbering on the z = 0 plane is counterclockwise then the sign
of n, in equation (12) will be 41 that is consistent with the tensorial approach imple-
mented throughout. The Mathematica code of Appendix-II ensures this precautionary
step for convex polyhedra.
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By combining equation (6) and equations (11) through (13) the volume integral is
expressed as a sum on the polyhedron faces that are not orthogonal to the z—axis (i.e.,

¢; #0):
///h(x,y, z) d) = E // (gz(x,y, 2) R ) dA,; (16)
Q ; A

non-zero A; : projection of face ¢ on x — y plane (17)

g- on the plane p;, can be reduced to a function of =,y : g*(z,y) (18)
then: ///h(x,y, z) d) = E //g*(x,y) dA; (19)
Q . A
[/

each integrals in equation (19) is evaluated using the computer algebra program furnished
in Appendix-II.

4 Numerical Examples

Here, printing of 24 by 24 matrices is avoided.

4.1 Volume integration on a 3D-Brick finite element

For a typical finite element, as shown in Figure 1, in stiffness integration, with quadratic
distribution of the stress profiles, the full quartic functions appear in the energy density
terms. The nodal coordinates of Figure 1 are presented in Table 1:

node: |1 2 3 4 5 6 7 8

x [0 0 1 120272 0 0 1.21608 1.59793 (20)
y |1 0 0 131422 1.36807 0 0  1.90818

z |0 0 0 0 130599 1 123926 1.74118

Table 1: nodal values for a convex brick element

The stiffness integration can be carried out using the present formulation. The calcu-
lated volume integrals using computer programs of Appendix-I of the polynomial terms
are shown in equation (21):

—page 8 of 24—
69



Date Prepared: June 27, 2013 for: CTV sub: FE3D

1 x 22 2l x? 2.22344 1.53912 1.37624 1.37572 1.46922

Y xy 2%y 2y P 1.71844 1.29807 1.23539 1.30083 1.73422
xy? 2% yr ayd yt 1.39974 1.39106 1.97293 1.68464 2.4153

2z  wz 2%z %2 yz —  1.63007 1.22254 1.15959 1.21846 1.39539 (21)
ryz 2yz Yz aytz Ytz 1.13712 1.14255 1.5175 1.31454 1.83679

22 x2? 2%t oy ayR? 1.54731 1.23191 1.21622 1.42495 1.22679
yi2? 23 a2 oy 1.62714 1.64678 1.37935 1.61085 1.87798

These high accuracy results, which are devoid of contamination due to quadrature, are
indispensable on order to constructing the three-dimensional locking-free brick elements
as an extension of locking-free quadrilateral elements developed in [4, 5, 6].

4.2 Locking-free interpolants
4.2.1 Notation

The nodal and Rayleigh modal variables are respectively indicated with roman and Greek
symbols:

{r}: list of nodal displacements; {R} : list of nodal forces (22)
{1} : list of modal participation factors; (23)
{WU} : list of modal generalized forces: conjugate of {1} (24)
vector-valued shape function: w(z,y, z) = {u(z,y, 2),v(z,y, 2), w(z,y,2)} (25)
a vector (in the tensorial sense) is encased in curly braces
4.2.2 Polynomial shape functions
The full cubic polynomial displacement fields {u(z, vy, 2), v(z,y, 2), w(z,y, 2)} are:
w(@,y,2) — all] + 2 +al2] + y+af3] + 2 +al4
+ 2% % al5] + 2 % y * al6] + y* x a[7]
+ %z xal8] +yx2xal9] + 22 xall0]
+ 2% % a[11] + 2% x y x al12] + 2 x y* = a[13] + v* * a[14]
+a? s zxall5] +xxyx 2z xa[l6] +y* x 2 x all7]
% 28 % all8] +y * 2% x al19] + 2° x a[20] (26)

The other two displacement components v,w along x,y respectively, are obtained by
cyclic replacment; to obtain v from u replace a by b and then x by y, y by z and 2z by =.
Similarly, w is obtained from v with coefficient c/[].

4.2.3 Incompressible Rayleigh modes

Starting with the form of equation (26), there are 60 unknown parameters in the vector-
valued shape function w(x,y, z) = {u(z,y, 2),v(z,y, 2),w(zr,y, 2) }:

all]...a|20],b[1]...5[20],c[1]. .. c[20] (27)
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Incompressibility demands:

ou Ov Ow

KL forall 2
8x+8y+8z 0, forall z,y,z (28)

that leads to the following possible interrelations between the parameters:

af2] — —b(2] — c[2],al8] — ~bl6] — 2¢[3).alf] — — o) — )
al6] — —2b[5] — c[8], a[18] — —b[13] — 3c[11], a[15] — —@ — c[12],
b18] 13
all1] — === — ===, a[16] — —26[12] — 2c[13],
a12] — —b[15] — L s = Zap] — o) (29)

These ten substitutions make the incompressible shape functions w®(z,y, 2), which con-
tain 50 constants, in the following three parts:

x,y,2) + @,y 2) + ws(z,y, 2)

Ty, z)

x,y,z) : “flexural” modes
)

T, Y,z

w®(z,y, 2) =wi(
@ ( : “triangulation” modes
@5

@ ( “quadratic stress” modes

in particular:

a[3ly + ald]z + a[l] + x(—b[2] — ¢[2])
wi(x,y,2) = bl4|x + b|2]y + b[3|z + b|1] (34)
cBlz + cldly + ¢|2]z + [1]

therein, the 11 parameters are associated with 6 rigid body modes and 5 deviatoric modes.
These eleven modes are evaluated by setting one parameter to unity and rest to zero, at
a time leading to:

1 Y z 0 —x 0 0 0 —x 0 0
0 0 1 Y 0 0 0
0 0 0 0 0 0 0 1 z x Y

(33)
Throughout, the vector displacement field is listed as a column encased in curly braces:

x — displacement
a column represents: < y — displacement » as in equation (35) (36)
z — displacement

The flexural modes caontain quadratic terms in x,y, z and free from shear strains:

ou v Ov Ow Ow Ou
0=t = ot o = =

g for all
By ' 0x 8z Oy ow oAty 2 (37)
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and yields the following possible interrelations between the parameters:

a[7|— > —(b[8]/2),al9]— > 0,b[9]— > 0, a[10]— > —(c[6]/2),
b[6]— > —2c[10], c[5]— > ¢[7] + ¢|10], b]5]— > b|7] + b[10],
e[8]— > —2b[7], cf9]— > 0 (38)
the six terms:
b[7], b[8], b[10], c[6], c[7], ¢[10] (39)

are responsible for pure bending in two orthogonal planes on each of three othogonal
directions. Thus the six incompressible flextural modes are:

2 2

zy zz _mz | 2w 2| _ay
2 2 2 1 1|2 1 2
2 _22 | _uz yz zy R A (40)
1 1 2 2 2 2 1 1
_yz |y 2|22 | =z zz yz
2 1 T |7 1 2 2 2
The six cubic displacement modes are:
2 3 2 2
y ¥ ziz oz l 2 22 1 (y _ ==
T 5 ) 1 0 29\ 3 2) 22(2 2) 0
1.(22 _ & z_ 28 L_i 1. (22 _ ¥
R (2 2) 0 -5 12 0 27\ 2 2
(2 —2) | iy(2 -2 0 z22 2 v v
v\ 2 2 LA 2 4 12 1 1

2
(41)
4.2.4 Incompressible solution

There are twenty three independent Rayleigh modes, eleven, six and six, respectively, in
equations (35), (40) and (41). The corresponding twenty three modal participation factors
of equation (23) and a uniform element pressure p constitute the twenty unknowns per
brick element. Their unique solution for boundary value problems can be found in [5].

The modal participation factors in {¢'} are the independent variables. The matrix
|G| transformations {¢} to the nodal displacements {r}:

{r} =[Gl {} or {r} =[G {4} = {&} = [GI7 {r} (42)
[G]™! : in the sense of Moore-Penrose [G]" wvide [1] (43)

4.2.5 The Compressible Rayleigh modes

Following the procedure of systematic elimination, whose result is shown in equation (29),
the twenty four Rayleigh modes are solved as follows.
The simplex modes are:

1|lz|y|z]|o]o]ojolololo]oO
olofolo|1|y|z|z|0|0|0]0O (44)
olofololololo]o|1l|z|a]|y
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The six quadratic displacement modes are:
22 4 yg(i—l/) 22 y?
xy (4(V — 1)+ w) 2y (45)
0 —2xz
2(1—v)
Ty (—T+4(1—V)+4(V—1)) 2y
(=vs? | 2 22 g2 (46)
0 —2yz
—2xz (—2(V —1)— w) 2wz
0 —2yz (47)
The six cubic displacement modes are:
“/’ny — ?1/_; —%xyz 0
1322 1/’3
—5TY2 0 T
(48)
% i_s 0 —5TYz
1 zy? x3
—3TY2 e v 0
1 ZQ 3
0 by ) \ 5 -4
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4.2.6 Modal stiffness matrix

The strain-displacement transformation matrix [b] is separated in three parts:

(] = {[b1], [b2], [63]} (49)
010000000000
000001000000
000000000100
PU=lo 01000010000 (50)
000000100001
000100000010
2y 0 2y(v—1) 2y 2z(v—1) 95
2l 9 2y 0 0 —2z
0 —2x 0 —2y 2z 0
b2] = 51
2 0 0 |2z(i—1) 42D g 0 0 (51)
0 0 0 0 0 0
0 0 0 0 |20 (f—1)+2=L] o
) ) 5 0 0 —'7
0 -5 B ey 2 0
_zy 0 0 _zy zz yz
B3 = | 2 S| e | e 22| e | _m (52)
4 4 2 22 4 4 2 5 22
_zz Ty ¥y _zZ _z=z _ Ty 22 _ ¥
e |22 | e |2 02|
4 4 2 2 4 4 2

4.2.7 Nodal stiffness matrix

The energy balance principle connects modal variables {¢} and {®} with their nodal
counterparts:

{R}Y" {r} = {U}7 {¢} = {R} = [GT]7' {U} : the force transformation rule  (53)
and [k,,] = [GT]7" [kgg) [G]™Y; K : stiffness matrix (54)
4.2.8 The shape functions

The |G| matrix in equation (42) associated with the element nodes presented in equa-
tion (20) for the Rayleigh modes in equations (44) through (48), vide [6] for details.
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Appendix-1: Mathematica Package

PSSR

conexPolyhedronVolumeIntegrate: :usags
"conexPolyhedronVolumeIntegrate|[g,{x,y,z},allFaceNodes]
returns the volume integral of g a function in {x,y,z}

within the convex polyhedron defined by allFaceNodes."

polyhedronVolumelIntegrate: :usags =
"polyhedronVolumeIntegrate[g,{x,y,z},allFaceNodes,

signZOutwardNormalList]

returns the volume integral of g a function in {x,y,z}
within the polyhedron defined by allFaceNodes.

The signs of the normal to the z-axis are prescribed in

signZoutwardNormalList."

conexPolyhedronVolumeIntegrate[g_, {x_, y_, z_}, allFaceNodes_] :=
Module[ {signZOutwardNormalList, signCorrectionlList, i, funcList},
signZoutwardNormalList =
Sign[#[[3]] & /@ outwardNormalsConvexPolyhedron[allFaceNodes]];
polyhedronVolumeIntegrate[g, {x, y, 2z}, allFaceNodes, signZOutwardNormalList]]

polyhedronVolumeIntegrate[g_, {x_, y_, z_}, allFaceNodes_,
signZoutwardNormalList_] := Module[{signCorrectionList, i, funcList},
signCorrectionList = (
(Sign[arealIntegrate[l, {x, y}, #] & /@ (extractXY /@allFaceNodes)])
signZOoutwardNormalList) ;
funcList = Integrate[g, z] /. ((Solve[# =0, z] // Flatten) & /@
(LhsEquationOfAPlane[#, {x, y, 2}] & /@ allFaceNodes)) ;
Sum[signCorrectionList[[i]] » areaIntegrate[funcList[[i]], {x, ¥},
Part[extractXY /@allFaceNodes, i]], {i, funcList // Length}]]

- fourNodes = RandomReal [ {RandomReal [] , RandomReal []}, {4, 3}]

- {{0.532308, 0.475947, 0.579055}, {0.389285, 0.386792, 0.431123},

{0.468785, 0.477351, 0.444661}, {0.602696, 0.461231, 0.595927}}

.2i7- allFaceNodes = Partition[Join[fourNodes, {fourNodes[[1]],

fourNodes[[2]]}], 3, 1]

- {{{0.532308, 0.475947, 0.579055}, {0.389285, 0.386792, 0.431123},

{0.468785, 0.477351, 0.444661}}, {{0.389285, 0.386792, 0.431123},
{0.468785, 0.477351, 0.444661}, {0.602696, 0.461231, 0.595927}},
{{0.468785, 0.477351, 0.444661}, {0.602696, 0.461231, 0.595927},
{0.532308, 0.475947, 0.579055}}, {{0.602696, 0.461231, 0.595927},
{0.532308, 0.475947, 0.579055}, {0.389285, 0.386792, 0.431123}}}

i~ error = Abs [conexPolyhedronVolumeIntegrate[l,

{x, y, 2z}, allFaceNodes] - Abs [Det [Append[#, 1] & /@ fourNodes] / 6]]
8.86335x 10718
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extractXY
extractXY[xyz_] := ({#[[1]], #[[2]]}) & /@Partition[Flatten[xyz], 3];
normalToPlane

normalToPlane[h_, {x_, y_, 2_}] :=
Module[{m}, m=D[h, #] & /@ {x, y, 2}; m/ Sqrt[m.m]];

outwardNormal [p_?MatrixQ, interiorPoint_] :=

Module[{x, y, z, draftNormal, directionOfOutwardRay, av},

av[x_] := Plus@@x / Length[x];
draftNormal = normalToPlane[LhsEquationOfAPlane[p, {x, v, 2}], {xX, ¥, 2}];
directionOfOutwardRay = av[p] - interiorPoint;
If [directionOfOutwardRay. draftNormal < 0, -draftNormal, draftNormal]

]

outwardNormalsConvexPolyhedron[nodesOfFaces_] :=
Module[ {interiorPoint, allNodes, av},

av[x_] := Plus@@x / Length[x];

allNodes = Partition[Flatten[nodesOfFaces], 3] // Union;
interiorPoint = av[allNodes];

outwardNormal [#, interiorPoint] & /@ nodesOfFaces

inPlaneQ
inPlaneQ[x_] := Module[{bs},
If [Length[x] === 3, True, (bs = Prepend[#, 1] & /@ x; Max[Abs[Det /@

(Prepend[#, First[bs]] & /@
Partition[Rest[bs], 3, 1]1)]] <107-6) 1]

normalToPlane

normalToPlane[h_, {x_, y_, 2_}] :=Module[{m}, m=D[h, #] & /@ {x, y, 2}; m/ Sqrt[m.m]]
LHSequationOfAPlane

LhsEquationOfAPlane[p , {x_, y_, z_}] :=
If[inPlaneQ[p], Expand[
Det [Append[#, 1] & /@Append[Take[p, 3], {x, ¥, 2}111,
Print["points ", p, "are not co-planar"]]
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Appendix-111: Mathematica Package

R N N 8 ® N
N oS } N 3 . . §
B e T A ] \\o\\\\ \\“A\\ ey o SeeN = N
NN \\ﬂ\&§§§\\\-&\\\\< ¥ e §§§\\\\\\\§\\§M\\“\\\\\\§§ N &&W\\\v
N )
X o
N ;‘\“\"
N o ¥y o§

Clear [solidToVolumeIntegral];
solidToVolumelIntegral[f_, {x_, y_, z_}, {nodes_, faceIndices_}] :=
Module[ {faceNodes},

faceNodes =
Partition[nodes[[#]] & /@ Flatten[faceIndices], Length[faceIndices[[1]]]];

volumeIntegrate[f, {x, y, z}, faceNodes]

g
Sevalart InFaararae
CQAER! INT|ZraT

- Clear [integrator];
integrator[func_, {x_, y_, z_}, { plTerms_, p2Terms_, p3Terms_, p4Terms_},

{valueP4Terms_, valueP3Terms_, valueP2Terms_, valuePlTerms_}] :=
Module[ {elmVol = valuePlTerms[[1]]},

WM

elmvVol * ((((( Expand[func] /. Thread|[

p4Terms - (valueP4Terms / elmVol)])
/. Thread[ p3Terms - (valueP3Terms / elmVol)]) /.
Thread[ p2Terms -» (valueP2Terms / elmVol)])
) /. Thread[ plTerms - (valuePlTerms / elmVol)])
]
E\“\§§‘>~‘"S‘§(‘N\\H§ data

plTerms = {1, x, y, 2z} ; p2Terms = {xz, XY, yz, XzZ,Y5z, zz},
p3Terms = {x3, 2y, xy?, v, x*z,xyz, vy’ z, xz%, yz?, zs}; p4Terms =

(=", £y, 2y, xy°, v', %*z, x®yz, xy’2, ¥’ 2z, x* 2%, xy2?, y*2?, x 2, y2*, 2'};
{valueP4Terms, valueP3Terms, valueP2Terms, valuePlTerms} =

solidToVolumeIntegral [ {p4Terms, p3Terms, p2Terms, plTerms},

{x, ¥, 2}, {nodes, faceIndices}]
—page 16 of 24—
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2 | fourParts-3.nb

- nodes = {{0, 1, 0}, {0, 0, O}, {1, 0, 0}, {1.202715965606913", 1.314215366298273, 0},
{0, 1.368066309144244", 1.305989793327691"},
{0, 0, 1}, {1.216079880285841", 0, 1.23925741120344"},
{1.597930989278036, 1.90818293399255", 1.7411801057262242"}}

wa- faceIndices =
{{1I 4’ 3’ 2}’ {5I 8’ 7’ 6}’ {6I 5’ 1’ 2}’ {7I 3’ 4’ 8}’ {2I 3’ 7’ 6}’ {5I 8’ 4’ 1}}

&
w81

N

wiitpe valueP4Terms = {1.46921840206762737, 1.30082588162139337, 1.391055637976948",
1.6846391896144947, 2.4153018320293618~, 1.2184569407424475",
1.1425465853282244", 1.3145355635675942", 1.836793786704385",
1.2162187222826766°, 1.2267934933996645", 1.6271444555393084",
1.3793529251241945", 1.6108494493895607", 1.8779826716598929"}

iz~ valueP3Terms = {1.375724277679978", 1.2353866617421558", 1.3997396270453801",
1.9729269721181257", 1.1595858030999338", 1.13712469543483", 1.517503755878869",
1.2319095628467431°, 1.4249475541728107", 1.6467759711183976"}

valueP2Terms = {1.3762442046785648", 1.298072609873346°, 1.7342150490206258",
1.2225410787060726", 1.3953906401333516", 1.5473082043008088" }

i~ valuePlTerms = {2.2234367654359333",
1.539118468423933", 1.7184382389677864", 1.6300687226378585"}

P T L RN S

7 selfTest = integrator [Flatten[{ p4Terms, p3Terms, p2Terms, plTerms}],
{x, v, 2}, { plTerms, p2Terms, p3Terms, p4Terms},
{valueP4Terms, valueP3Terms, valueP2Terms, valuePlTerms}] ==
Flatten[{valueP4Terms, valueP3Terms, valueP2Terms, valuePlTerms}]

Oupine True
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5 Appendices

Mathematica program segments furnished here. All calculations presented can be verified
bu executing these modules.

Appendix-I: Ezact Three-dimensional volume integration

Appendix-II: In order to ensure the locking free condition ezact integration of the energy
density function is unavoidable. To aatain fast calculation, the subsitu-
tion of polynomial terms, as in equation (21), recommended. One of the
main parts of this discovery is to ensure proper implementation of the
substitution rule that appears here.

Appendix-III: An important part of the validation is that the rigid body modes are
exactly reporoduced. This can be verified from the minimum eigenvalues
of the element stiffness matrix furnished below:

146.716  67.7913  18.304 9.52665 2.88408 2.29533

2.19528  2.0452  1.08073 0.795941 0.510553 0.504974

0.389806 0.148966 0.132988 0.0728463 0.0619707 0.0514826
0 0 0 0 0 0

(55)

Appendix-IV: This discovery encompasses general anisotropy with twnty one Poisson’s
ratios. The method of calculation is with the proper constitutive relation
but the steps to determine the Rayleigh modes are the same as that of
the isotropic case. For this purpose a complete and detailed program is
enclosed here.
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5.1 Appendix-I: Mathematica Package for Volume integration

conexPolyhedronVolumeIntegrate: :usags =
"conexPolyhedronVolumeIntegrate|[g,{x,y,z},allFaceNodes]

returns the volume integral of g a function in {x,y,z}

within the convex polyhedron defined by allFaceNodes."

polyhedronVolumeIntegrate ERRLE:
polyhedronVolumeIntegrate[g,{x,y,z} allFaceNodes,

signZOutwardNormalList]

returns the volume integral of g a function in {x,y,z}

within the polyhedron defined by allFaceNodes.

The signs of the normal to the z-axis are prescribed in

signZoutwardNormalList."

conexPolyhedronVolumeIntegrate[g_, {x_, y_, z_}, allFaceNodes_] :
Module[ {signZOutwardNormalList, signCorrectionlList, i, funcList},
signZoutwardNormalList =
Sign[#[[3]] & /@ outwardNormalsConvexPolyhedron[allFaceNodes]];
polyhedronVolumeIntegrate[g, {x, y, 2z}, allFaceNodes, signZOutwardNormalList]]

polyhedronVolumeIntegrate[g_, {x_, y_, z_}, allFaceNodes_,
signZoutwardNormalList_] := Module[{signCorrectionList, i, funcList},
signCorrectionList = (
(Sign[arealIntegrate[l, {x, y}, #] & /@ (extractXY /@allFaceNodes)])
signZOoutwardNormalList) ;
funcList = Integrate[g, z] /. ((Solve[# =0, z] // Flatten) & /@
(LhsEquationOfAPlane[#, {x, y, 2}] & /@ allFaceNodes)) ;
Sum[signCorrectionList[[i]] » areaIntegrate[funcList[[i]], {x, ¥},
Part[extractXY /@allFaceNodes, i]], {i, funcList // Length}]]
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fourNodes = RandomReal [ {RandomReal[] , RandomReal[]}, {4, 3}]
{{0.532308, 0.475947, 0.579055}, {0.389285, 0.386792, 0.431123},
{0.468785, 0.477351, 0.444661}, {0.602696, 0.461231, 0.595927}}

allFaceNodes = Partition[Join[fourNodes, {fourNodes[[1]],
fourNodes[[2]]}]1, 3, 1]

{{{0.532308, 0.475947, 0.579055}, {0.389285, 0.386792, 0.431123},
{0.468785, 0.477351, 0.444661}}, {{0.389285, 0.386792, 0.431123},

{0.468785, 0.477351, 0.444661}, {0.602696, 0.461231, 0.595927}},
{{0.468785, 0.477351, 0.444661}, {0.602696, 0.461231, 0.595927},
{0.532308, 0.475947, 0.579055}}, {{0.602696, 0.461231, 0.595927},
{0.532308, 0.475947, 0.579055}, {0.389285, 0.386792, 0.431123}}}

error = Abs[conexPolyhedronVolumeIntegrate[1l,
{x, ¥, 2}, allFaceNodes] - Abs [Det [Append[#, 1] & /@ fourNodes] / 6]]

8.86335x 1018
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5.1.1 Auxiliary functions for volume integration

extractXY
extractXY([xyz_] := ({#[[1]], #[[2]]}) & /@Partition[Flatten[xyz], 3];
normalToPlane

normalToPlane[h_, {x_,y_, 2_}] :=
Module[{m}, m=D[h, #] & /@ {x, y, 2}; m/Sqrt[m.m]];

outwardNormal [p_?MatrixQ, interiorPoint_] :=

Module[{x, y, z, draftNormal, directionOfOutwardRay, av},

av[x_] := Plus@@x / Length[x];
draftNormal = normalToPlane [LhsEquationOfAPlane[p, {x, ¥, 2}], {x, ¥, 2}];
directionOfOutwardRay = av[p] - interiorPoint;
If [directionOfOutwardRay. draftNormal < 0, -draftNormal, draftNormal]

]

outwardNormalsConvexPolyhedron[nodesOfFaces_] :=
Module[ {interiorPoint, allNodes, av},

av[x_] := Plus@@x / Length[x];

allNodes = Partition[Flatten[nodesOfFaces], 3] // Union;
interiorPoint = av[allNodes];

outwardNormal [#, interiorPoint] & /@ nodesOfFaces

inPlaneQ

inPlaneQ[x_] := Module[{bs},
If [Length[x] === 3, True, (bs = Prepend[#, 1] & /@ x; Max[Abs[Det /@
(Prepend[#, First[bs]] & /@
Partition[Rest[bs], 3, 1])]] <107-6) 1]

normalToPlane

normalToPlane[h_, {x_, y_, 2_}] :=Module[{m}, m=D[h, #] & /@ {x, y, 2}; m/Sqrt[m.m]]
LHSequationOfAPlane

LhsEquationOfAPlane[p , {x_, y_, z_}] :=
If[inPlaneQ[p], Expand[
Det[Append[#, 1] & /@Append[Take[p, 3], {x, ¥y, 2}]111,
Print ["points ", p, "are not co-planar"]]
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5.2 Appendix-II: Mathematica Package and Example
5.2.1 Developing the rules

RN &Ry BN B, N o RN B e e e NS ITEN N S B R SN
T MY F IS TR’ B FOifele ) SRR IR Y ¥ W3R
N L

%,

Clear [solidToVolumeIntegral];
solidToVolumelIntegral[f_, {x_, y_, z_}, {nodes_, faceIndices_}] :=
Module[ {faceNodes},

faceNodes =
Partition[nodes[[#]] & /@ Flatten[faceIndices], Length[faceIndices[[1]]]];

volumeIntegrate[f, {x, y, z}, faceNodes]

:~ Clear [integrator];
integrator[func_, {x_, y_, z_}, { plTerms_, p2Terms_, p3Terms_, p4Terms_},
{valueP4Terms_, valueP3Terms_, valueP2Terms_, valuePlTerms_}] :=
Module[ {elmVol = valuePlTerms[[1]]},

elmvVol * ((((( Expand[func] /. Thread|[
p4Terms - (valueP4Terms / elmVol)])
/. Thread[ p3Terms - (valueP3Terms / elmVol)]) /.
Thread[ p2Terms -» (valueP2Terms / elmVol)])
) /. Thread[ plTerms - (valuePlTerms / elmVol)])

plTerms = {1, x, y, 2z} ; p2Terms = {xz, XY, yz, XzZ,Y5z, zz};
p3Terms = {x3, 2y, xy?, v, x*z,xyz, vy’ z, xz%, yz?, z3}; p4Terms =

{x4, 2y, x2v?, xv3, v, 2%z, x%yvz,xv%z, v’ z, x? 2%, xyz2?, y? 2%, x2%, y23, z4};
{valueP4Terms, valueP3Terms, valueP2Terms, valuePlTerms} =

solidToVolumeIntegral 4Terms 3Terms 2Terms 1Terms
g [{p ) r P r P r P }Iipage 29 of 24—
{x, v, 2}, {nodes, faceIndices}] a3
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2 | fourParts-3.nb

5.2.2 Example of developing the rules

si~ nodes = {{0, 1, 0}, {0, O, O}, {1, O, O}, {1.202715965606913", 1.314215366298273", 0},
{0, 1.368066309144244~, 1.305989793327691"},
{0, 0, 1}, {1.216079880285841", 0, 1.23925741120344"},
{1.597930989278036, 1.90818293399255", 1.7411801057262242"}}

o faceIndices =
{{1, 4, 3, 2}, {5,8,7,6}, {6,5,1, 2}, {7, 3, 4, 8}, {2,3,7,6}, {5,8,4, 1}}

3
i

e

§
R
A

&%

sisy
e SRS

bR

11= valueP4Terms = {1.4692184020676273", 1.3008258816213933", 1.391055637976948",
1.6846391896144947, 2.41530183202936187, 1.2184569407424475",
1.1425465853282244", 1.3145355635675942", 1.836793786704385",
1.2162187222826766° , 1.2267934933996645", 1.6271444555393084",
1.3793529251241945", 1.6108494493895607", 1.8779826716598929"}

i~ valueP3Terms = {1.375724277679978", 1.2353866617421558", 1.3997396270453801",
1.9729269721181257", 1.1595858030999338", 1.13712469543483", 1.517503755878869",
1.2319095628467431°, 1.4249475541728107", 1.6467759711183976" }

valueP2Terms = {1.3762442046785648", 1.298072609873346, 1.7342150490206258",
1.2225410787060726", 1.3953906401333516", 1.5473082043008088" }

i~ valuePlTerms = {2.2234367654359333",
1.539118468423933", 1.7184382389677864", 1.6300687226378585"}

renaeid
VO

i1

NSO N
NGRS Y

i,

- selfTest = integrator [Flatten[{ p4Terms, p3Terms, p2Terms, plTerms}],
{x, v, 2}, { plTerms, p2Terms, p3Terms, p4Terms},
{valueP4Terms, valueP3Terms, valueP2Terms, valuePlTerms}] ==
Flatten[{valueP4Terms, valueP3Terms, valueP2Terms, valuePlTerms}]

= True

—page 23 of 24—
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Global“x; Global“y; Global“z; xyz = {x, y, 2}
{x,v7, 2}

YFromUVW [{u_, v_, w_}, {x_, ¥_, 2_}] :=
{D[u, y] +D[v, x], D[v, 2] +D[w, Y], D[w, X] +D[u, 2]}

Clear [nextMode] ;
nextMode: :usags =
"nextMode[thisMode,xyz] generates the mode by rotating left the
coordinate system xyz from the given thisModes."
nextMode[thisMode_?VectorQ, xyz_] := RotateRight]
thisMode /. Thread[xyz -» RotateLeft[xyz]]]

nextMode[theseModes_?MatrixQ, xyz_] := nextMode[#, xyz] & /@ theseModes

nextMode [thisMode,xyz] generates the mode by rotating
left the coordinate system xyz from the given thisModes.

nextMode[theseModes_?MatrixQ] := nextMode[theseModes, xyz]

Clear[dilatation];

dilatation::usays = "dilatation[s_List,{x, y, 2}]
returns ilatation for s in x,y,z."

dilatation(s List,{x, y, z}]

returns ilatation for s in x,y,z.

dilatation[s_List, xyz_] :=
(D[#[[1]1], xyz[[1]]1] +D[#[[2]], xyz[[2]]] +D[#[[3]], xyz[[3]]]) &[s]
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dilatation[s_?MatrixQ, {x_, y_, z_}] := Flatten[dilatation[#, {x, ¥y, Z}] & s]

dilatation[s_List] := dilatation[s, {x, y, 2}]

dilatation[s_] := dilatation[Partition[Flatten[s], 3]] // Flatten

Clear[shearStrainsFromUVW] ;

shearStrainsFromUVW: : usage = "shearStrainsFromUVW([{u,v,w}, {x,y,z}]
returns the shear strain tensor

components forthe coupled displacement field {u,v,w},
in {x, y, 2z} coordinates.”

shearStrainsFromUVW([ {u,v,w}, {x,¥,2}]
returns the shear strain tensor

components forthe coupled displacement field {u,v,w},
in {x, y, 2z} coordinates.

shearStrainsFromUVW[{u_, v_, w_}, {x_,y_, z2_}] :=
{D[u, y] +D[v, X], D[v, 2] +D[w, ¥y], D[w, X] +D[u, 2]} /2

Clear[equilibriumPart] ;
equilibriumPart: :usage = "equilibriumPart [uvw, {x,y,2z},Vv]
return the part of uvw in x,y,z that

satisfies equilibrium equation for Poisson's ratio v."

equilibriumPart [uvw, {xX,y,2},V]
return the part of uvw in x,y,z that
satisfies equilibrium equation for Poisson's ratio v.

equilibriumPart[uvw_, {x_, y_, z_}, v_: v] := Module[{sol},
sol = Select[SolveAlways [Thread |
(D[H[[1]], x] +D[H[[2]], y] +D[#[[3]], 2]) & /@stressesFromUVW [uvw,
{x, ¥, 2}, v] == 0], xyz], Not [MemberQ[ #, v > aaa_]] &] // Flatten;
Simplify[uvw //. sol]
]

equilibriumPart[uvw_] := equilibriumPart[uvw, {x, y, 2}]

shearStrainsFromUVW [uvw_List, {x_, y_, z_}] := Simplify[{D[#[[1]], y] +D[H#[[2]], x],

D[#[[2]], 2] +D[#[[3]], ¥],
D[#[[3]], x] +D[#[[1]], 2]} &[uvw] ]

shearStrainsFromUVW [uvw_] := shearStrainsFromUVW [uvw, {X, ¥, 2}]

shearStrainsFromUVW [uvw_?MatrixQ] := shearStrainsFromUVW[#, {x, ¥y, z}] & /@ uvw

a8
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Clear[strainsFromUVW] ;
strainsFromUVW: :usaygs = "strainsFromUVWUVW [uvw, xyZz]
returns the strain tensor
associated with the coupled displacement field {u,v,w},
in {x, y, 2z} coordinates."
strainsFromUVW [uvw_?VectorQ, xyz_?VectorQ] := Module[{deformationGradient},
deformationGradient = Quter[D, uvw, xyz];
Simplify[ (deformationGradient + Transpose[deformationGradient]) / 2]

]

strainsFromUVWUVW [uvw, Xyz]
returns the strain tensor

associated with the coupled displacement field {u,v,w},
in {x, y, 2z} coordinates.

strainsFromUVW[uvw_] := strainsFromUVW[uvw, xyZz]

strainsFromUVW[uvws_?MatrixQ, xyz_?VectorQ] := strainsFromUVW[#, xyz] & /@uvws

Clear[stressesFromUVW] ;

stressesFromUVW: :usage = "stressesFromUVW [uvw, XxyZ,v,u]

returns the stress tensor for shear modulus p (optional parameter unity) and
Poisson's ratio v associated with the coupled displacement field {u,v,w},

in {x, y, 2z} coordinates."

Y

stressesFromUVW[uvw_, xyz_, v_, u_: 1] :=Mbdule[{).=2;1* ’ strainTensor},

(1-2v)
strainTensor = strainsFromUVW [uvw, xyZz];

Simplify[ ((Sum[strainTensor[[i, i]], {i, 3}]) * A » IdentityMatrix[3]
) +2 u strainTensor]

stressesFromUVW [uvw, XYyzZ,V,u]

returns the stress tensor for shear modulus u (optional parameter unity) and
Poisson's ratio v associated with the coupled displacement field {u,v,w},

in {x, y, 2z} coordinates.

stressesFromUVW[uvw_, xyzZ_] := stressesFromUVW [uvw, xyz, V]
stressesFromUVW [uvw_?VectorQ] := stressesFromUVW[uvw, {x, y, z2}]
stressesFromUVW [uvw_?MatrixQ] := stressesFromUVW /@uvw

stressesFromUVW[uvw_] := stressesFromUVW /@ Partition[Flatten[uvw], 3]
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Clear[equilibriumQ] ;
equilibriumQ: :usagse = "equilibriumQ[ {u,v,w}, {x, y,

z}, v] returns True if the coupled displacement field {u,v,w},
in {x, y, 2z} coordinates satisfy equilibrium for

(optional parameter) Poisson's ratio v."

equilibriumQ[uvw_?VectorQ, {x_, y_, Z_}, v_:v] := And@@Thread|[
(D[#[[1]], x] +D[#[[2]], y] +D[#[[3]], 2]) & /@
stressesFromUVW [uvw, {x, y, 2}, v] == 0]
equilibrium@({u,v,w}, {x, y, 2z}, V]
returns True if the coupled displacement field {u,v,w},
in {x, y, 2z} coordinates satisfy equilibrium for
(optional parameter) Poisson's ratio v.

equilibriumQ[uvw_?VectorQ] := equilibriumQ[uvw, {x, y, z}]

equilibriumQ[uvw_?MatrixQ] := And @@ (equilibriumQ[#, {x, y, 2}] & /@ uvw)

equilibriumQ[uvw_] := equilibriumQ[Partition[Flatten[uvw], 3]]

Clear[termList];
termList::usage = "termList[x]
returns the list of parameters in x."
termList[x_] := Cases]|[
Flatten|
x /. Thread[{Power, Times, Plus} -» List]], a_[b_]] // Union

termList [X]
returns the list of parameters in x.

Clear[termCount];
termCount: :usage = "termCount [x] returns the number of parameters in x."
termCount [x_] := termList[x] // Length

termCount [x] returns the number of parameters in x.

PR . .
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linearTerms = Flatten[{1, xyz}]

{1, %, 9, 2}
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poly2 = (List @@ Expand[ (Plus @@ linearTerms) “2]) /. c_Integer » a_ >«
(1, %, %, y,xy,7,2,%2,y2, 2°}

quadraticTerms = Complement [poly2, linearTerms]

{xz, XY, ¥,X2,V2, zz}

poly3 = (List @@ Expand[ (Plus @@ linearTerms) "3]) /. c_Integer » a_ >«

{1, X, x%,%, vy, 2y, X%y, ¥, xv%, v, 2, xz2,%x%2, vz, xyz, v:z, 2¢, x2?, yz?, 23}
cubicTerms = Complement [poly3, poly2]

{x3, Xy, xy?, v ,%x%z,xy2, y'z, x2%, yz?, 23}

poly = Flatten[{linearTerms, quadraticTerms, cubicTerms}]

2 2 2 3 2 2 3 2 2 2 2 3
(1, %, y,2, %, xy,¥y*, x2,v2, 2%, 2, Xy, xy*, ¥>, ¥ z, xyz, ¥’ z, x2°, y2?, 2°}

u = poly. Array[a, Length[poly]]; TeXForm[u]
Full cubic representation:

v=u/.{a-»b, x5y, Y22, zZ->5X};
w=v/.{b>c, x>y, Y22, Z->Xx};
uvw = {u, v, w};

vxyz = {v, X, ¥, 2};

uvwLinearTerms =uvw /. a_[b_/;b>4]-50

{a[l] +xa[2]+ya[3]+za[4],b[l] +yb[2]+2zb[3] +xb[4],c[l] +z2c[2] +xc[3] +yc[d4]}

all terms are significant

varLinear = uvwLinearTerms // termList

{a[l], a[2], a[3], a[4], b[1], b[2],Db[3], b[4], c[1], c[2], c[3], c[4]}
linearModes = Evaluate[ToExpression[StringJoin["mode", #]] & /@

(ToString /@ Range[Length[varLinear]])] = (uvwLinearTerms //. H#) & /@
(Thread[varLinear -» #] & /@ IdentityMatrix[Length[varLinear]])

TeXForm[linearModes // Transpose]

uvwQuadratic=uvw /. a_[b_/; (b<5]||b>10)] -0

uvwQuadraticEquilibrium = equilibriumPart [uvwQuadratic]
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{x*a[5] +y*a[7] +yza[9] +2*a[10] +
xy(4(-1+v)Db[5]+ (-2+4v)b[7] -2b[10] +4VvDb[10] -c[8]) -
x2z (b[6]+2 (-2 (-1+Vv)c[5]-(-1+2vV) (¢[7] +¢[10]))), yzb[5] +yzb[6] +22b[7] +
xzb[9] +x2b[10] +xy (4 (-1+v) a[5] + (-2+4v) a[7] -2a[l0] +4va[l0] -c[6]),
z2c[5] +x2c[6] +x2¢c[7] +yzc[8] +xyc[9] +y2c[10]}

(uvwQuadraticEquilibrium[[1]] // Expand) // TeXForm
(uvwQuadraticEquilibrium[[2]] // Expand) // TeXForm
(uvwQuadraticEquilibrium[[3]] // Expand) // TeXForm

oQuadratic = stressesFromUVW [uvwQuadraticEquilibrium, xyz, v]

zeroShearQuadraticSol = Select|
SolveAlways [Thread [shearStrainsFromUVW [uvwQuadraticEquilibrium] == 0], xyz],
Not [MemberQ[ #, v » aaa_]] &] // Flatten

zeroShearQuadraticTerms = uvwQuadraticEquilibrium //. zeroShearQuadraticSol

vars = termList[zeroShearQuadraticTerms]
{a[5], a[10], b[5], b[7], ¢[5], c[10]}
quadraticModes = Simplify[
Evaluate[ToExpression[StringJoin["mode", #]] & /@ (ToString /@ Range[13, 18])] =

(zeroShearQuadraticTerms //. &) & /@
(Thread [vars » #] & /@ IdentityMatrix[Length[vars]])

1
equilibriumQ[quadraticModes]

True

shearStrainsFromUVW [quadraticModes] // Simplify
{0, 0,0}, {0, 0,03}, (O, O, O}, {O, O, O}, {O, 0,0}, {O,0,0}}

MatrixForm /@ (strainsFromUVW [quadraticModes] // Simplify)

&
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P N e
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tord.

uvwCubic =uvw /. a_[b_/; (b<11)] -0

uvwCubicEquilibrium = uvwCubic // equilibriumPart

o0
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oCubicEquilibrium = uvwCubicEquilibrium // stressesFromUVW
XX = oCubicEquilibrium[[1, 1]]
var = termList [Coefficient [xx, x*y]] // First

af[lz]

rulel =
Solve[Coefficient[xx, x*y] == 1, termList[Coefficient[xx, x+y]] // First] // Flatten

1
{a[lm 5 2 (1+4vb[15] +4vb[17] +12vb[20})}
4

rule2 = Thread[ (FullSimplify[xx //. rulel] // termList) - 0]

Simplify[xx //. rulel //. rule2]

Xy

rule3 = Thread[ (Simplify[oCubicEquilibrium //. rulel //. rule2] // termList) - 0]
oCubicEquilibrium //. rulel //. rule2 //. rule3

sfl = uvwCubicEquilibrium //. rulel //. rule2 //. rule3

model9 = sfl

mode20

{#[[111, &#[[3]], #[[2]]} &[model9 /. {y > 2z, Z > ¥}]
equilibriumQ[ {model9, mode20}]

True

{mode21, mode22} = {model9, mode20} // nextMode

{mode23, mode24} = {mode2l, mode22} // nextMode

shearForceModes = { {model9, mode20}, {mode2l, mode22}, {mode23, mode24}}
MatrixForm /@ stressesFromUVW[shearForceModes]

shearForceModes // dilatation // Flatten

allModes = ToExpression[StringJoin["mode", ToString[#]]] & /@ Range[24]
pureBendingModes = Take[Drop[allModes, 12], 6]

TeXForm[MatrixForm /@ (Transpose /@ Partition[pureBendingModes, 2])]
shearForceModes // Transpose // MatrixForm // TeXForm

cubicModes = Flatten[shearForceModes, 1]

allModes
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nodes = {{0, 1, 0}, {0, O, O}, {1, 0, 0}, {1.202715965606913", 1.314215366298273~, 0},
{0, 1.368066309144244", 1.305989793327691"},
{0, 0, 1}, {1.216079880285841", 0, 1.23925741120344"},
{1.597930989278036, 1.90818293399255", 1.7411801057262242"}}

N N
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bMatrix = BMatrix3D[allModes, xyz]

2 (1-v)
Hp,1,0,0,0,0,0,0,0,0,0,0,2x,0,y[4(l—v)+4(—l+v)f——————y
Vv
(l-v) (-1+2v) Xy X2z y z yz
2y,—22[—2(—1+v)7 ],22,—,—,*—,0,01*—}1
v 2 2 2 2

(l-v) (-2+4vVv)
{0,0,0,0,0,1,0,0,0,0,0,0,x(4(—1+v)+ ),

%

Xz Yz XY Xz
2X,2y,0]0]7221017_l - 7 —,*—,0},
2 2 2 2
Xy Xy Xz Yyz
{01 Ol Ol Ol OIOI Ol Ol Ol 1! Ol Ol Ol ’ZXI Ol ’ZYIZZI 0!’_1 OIOI’_I A _}l
2 2 2 2
2y (1-v) (l-v) (-2+4vVv)
{0,0,1,0,0,0,0,1,0,0,0,0,7+Y[4(*1+v)+ ],
v v
2 (1-v) 2x (1-v) x?  y? vz
0,X(4(1*V)+4(*1+V)* ]+ 1010101_7_17_1
v v 4 4 2
Xz x?  y? vz Xz
B - ,__},{o,o,o,o,o,o,1,0,0,0,0,1,0,0,0,
2 4 4 2 2
2 2 2 2
Xz Xy Y z Xz Xy y z
0,0,0, - —,-—, >-—,-=—,-=—=,-=—+—1,{0,0,0,1,0,0,0,
2 2 4 4 2 2 4 4
2x (1-v) (1-v) (-1+2v)
0,0,0,1,0,0,0,0,0,7—2x(—2(—1+v)7 ,
v v
vz x* z? Xy vz x? z? Xy
0!’_1_’_17_17_ ’_Jr_l’_}}
2 4 4 2 2 4 4 2

bMatrixl = BMatrix3D[linearModes, xyz]
bMatrix2 = BMatrix3D[quadraticModes, xyz]
bMatrix3 = BMatrix3D[cubicModes, xyz]
TeXForm[bMatrixl]

TeXForm[bMatrix2]

TeXForm[bMatrix3]

d = DMatrix3D[v]
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TeXForm[d]

bTdb = Expand [Transpose [bMatrix]. (d.bMatrix)];

o o I e ~\“\\‘\\ NS ¥ Y N T e S S e 3
N f
bTdb [ [24, 24]]
X2 y2 y4 X2 ZZ y2 ZZ z4 y2 ZZ v y2 ZZ y2 ZZ v
+— - e - +
4 16 4 8 16 1-2v -1+2v -1+2v

elementVolume = 2.2234367654359333"
2.22344

quarticRule = Thread[
{x4, Ly, 2y, xy, v, %z, x%yz, xy*z, viz, x* 2%, xy2?, y? 2%, x2%, y2?, z4} ->
{1.4692184020676273", 1.3008258816213933", 1.391055637976948",
1.684639189614494", 2.4153018320293618~, 1.2184569407424475",
1.1425465853282244", 1.3145355635675942", 1.836793786704385",
1.2162187222826766", 1.2267934933996645", 1.6271444555393084",
1.3793529251241945", 1.6108494493895607", 1.8779826716598929"} / elementVolume]

cubicRule =
Thread[{x3, x?y, xy?, v3, x*z, xyz, vy’ z, xz?, yz?, z3} -> {1.375724277679978",
1.2353866617421558", 1.3997396270453801°, 1.9729269721181257",
1.1595858030999338~, 1.13712469543483~, 1.517503755878869",
1.2319095628467431°, 1.4249475541728107", 1.6467759711183976"} / elementVolume]

quadraticRule = Thread[{xz, xy, v, xz,vz2, zz} ->
{1.3762442046785648", 1.298072609873346°, 1.7342150490206258",
1.2225410787060726~, 1.3953906401333516~, 1.5473082043008088"} / elementVolume]

[x*>0.618972, xy > 0.583814, y* > 0.77997,
xz > 0.549843, yz > 0.627583, z° > 0.695908}

linearRule = Thread[{1, x, ¥, 2} -> {2.2234367654359333~, 1.539118468423933",
1.7184382389677864°, 1.6300687226378585" } / elementVolume]

{1-1.,x->0.692225, y—>0.772875, z>0.73313}

elementStiffnessMatrix =
((((bTdb /. {v > .25}) /. quarticRule) /. cubicRule) /. quadraticRule) /. linearRule

Eigenvalues[elementStiffnessMatrix] // Chop
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-~ Partition]

{146.7163746154547", 67.79126237448892", 18.30397222748412", 9.526653215400222",
2.8840772526921047, 2.2953305015127063", 2.1952773520088753",
2.045200439968091°, 1.0807298108717698", 0.7959409439230846",
0.5105533728254921", 0.504974298301407", 0.3898058307950653",
0.1489659214262449", 0.1329884704859719°, 0.07284627783297316",
0.06197070216079959", 0.05148260334446004°, 0, 0, 0, 0, O, O}, 6] // TeXForm

\left(
\begin{array}{cccccc}

146.716 & 67.7913 & 18.304 &
9.52665 & 2.88408 & 2.29533
N\

2.19528 & 2.0452 & 1.08073 &
0.795941 & 0.510553 &
0.504974 \\

0.389806 & 0.148966 & 0.132988
& 0.0728463 & 0.0619707 &
0.0514826 \\

0 & 0&0&0 &0 &0 \\

\end{array}
\right)

94



CU Ref. No.: IR# CU14062
Attorney Docket No.: 10065-509P01US
PRIVILEGED & CONFIDENTIAL

WHAT IS CLAIMED I5:

1. A computer-impiemented method comprising:
performing three-dimensional mechanical analysis for finute clement analysis based on
indefinite integral determined algebraically, and based on Poisson’s ratio dependent shape

functions satisfying equilibrium throughout a finite element.

2. The method of claim 1, wherein the finite clement includes a three-dimensional brick

element.

3. The method of clairn 1, wheremn performing the three-dimensional mechanical
analysis comprises:

constructing locking-free, three-dimensional brick elements, including deriving cubic
polynomials dependent upon Potsson’s ratio(s) in the physical {x, y, z} coordinates for a plurality

of twenty four Rayleigh modes.
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CU Ref. No.: IR# CU14062
Attorney Docket No.: 10065-509P01US
PRIVILEGED & CONFIDENTIAL

ABSTRACT

disclosed herein are methods, procedures, systems, devices, products, and other
implementations, including a computer-implemented method that includes performing three-
dimensional mechanical analysis for finite clement analysis based on indefinite integral
determined algebraically, and based on Poisson’s ratio dependent shape functions satisfying
equilibrium throughout 2 finite clement. In some embodiments, the fintte eleraent inchudes a

three-dimensional brick element.
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