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Abstract— This paper is concerned with the optimal dis-
tributed control (ODC) problem. The objective is to design a
fixed-order distributed controller with a pre-specified structure
for a discrete-time system. It is shown that this NP-hard
problem has a quadratic formulation, which can be relaxed
to a semidefinite program (SDP). If the SDP relaxation has
a rank-1 solution, a globally optimal distributed controller
can be recovered from this solution. By utilizing the notion
of treewidth, it is proved that the nonlinearity of the ODC
problem appears in such a sparse way that its SDP relaxation
has a matrix solution with rank at most 3. A near-optimal
controller together with a bound on its optimality degree may
be obtained by approximating the low-rank SDP solution with
a rank-1 matrix. This convexification technique can be applied
to both time-domain and Lyapunov-domain formulations of the
ODC problem. The efficacy of this method is demonstrated in
numerical examples.

I. INTRODUCTION

The area of decentralized control is created to address
the challenges arising in the control of real-world systems
with many interconnected subsystems. The objective is to
design a structurally constrained controller—a set of partially
interacting local controllers—with the aim of reducing the
computation or communication complexity of the overall
controller. The local controllers of a decentralized controller
may not be allowed to exchange information. The term
distributed control is sometimes used in lieu of decentralized
control in the case where there is some information exchange
between the local controllers. It has been long known that
the design of an optimal decentralized (distributed) con-
troller is a daunting task because it amounts to an NP-
hard optimization problem [1]. Great effort has been devoted
to investigating this highly complex problem for special
types of systems, including spatially distributed systems and
dynamically decoupled systems [2]–[5]. Another special case
that has received considerable attention is the design of an
optimal static distributed controller [6]. Due to the recent
advances in the area of convex optimization, the focus of the
existing research efforts has shifted from deriving a closed-
form solution for the above control synthesis problem to
finding a convex formulation of the problem that can be
efficiently solved numerically [7]–[14].

There is no surprise that the decentralized control problem
is computationally hard to solve. This is a consequence of
the fact that several classes of optimization problems, includ-
ing polynomial optimization and quadratically-constrained
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quadratic program as a special case, are NP-hard in the
worst case. Due to the complexity of such problems, various
convex relaxation methods based on linear matrix inequality
(LMI), semidefinite programming (SDP), and second-order
cone programming (SOCP) have gained popularity [15], [16].
These techniques enlarge the possibly non-convex feasible
set into a convex set characterizable via convex functions,
and then provide the exact or a lower bound on the optimal
objective value. The SDP relaxation usually converts an
optimization with a vector variable to a convex optimization
with a matrix variable, via a lifting technique. The exactness
of the relaxation can then be interpreted as the existence of
a low-rank (e.g., rank-1) solution for the SDP relaxation. We
developed the notion of “nonlinear optimization over graph”
in [17] and [18] to study the exactness of an SDP relaxation.
By adopting this notion, the objective of the present work is
to study the potential of the SDP relaxation for the optimal
distributed control problem.

In this work, we cast the optimal distributed control (ODC)
problem as a quadratically-constrained quadratic program
(QCQP) in a non-unique way, from which an SDP relaxation
can be obtained. The primary goal is to show that this
relaxation has a low-rank solution whose rank depends on
the topology of the controller to be designed. In particular,
we prove that the design of a static distributed controller with
a pre-specified structure amounts to a sparse SDP relaxation
with a solution of rank at most 3. This result also holds
true for dynamic controllers and stochastic systems. In other
words, although the rank of the SDP matrix can be arbitrarily
large in theory, it never becomes greater than 3. This positive
result may be used to understand how much approximation
is needed to make the ODC problem tractable. It is also
discussed how to round the rank-3 SDP matrix to a rank-1
matrix in order to design a near-optimal controller. Note that
this paper significantly improves our recent result in [19],
stating that the ODC problem with diagonal Q, R and K
has an SDP solution with rank at most 4.

Notations: R, Sn, and Sn+ denote the sets of real num-
bers, n × n symmetric matrices, and n × n symmetric
positive semidefinite matrices,, respectively. rank{W} and
trace{W} denote the rank and trace of a matrix W . The
notation W ≽ 0 means that W is symmetric and positive
semidefinite. Given a matrix W , its (l,m) entry is denoted
as Wlm. The superscript (·)opt is used to show the globally
optimal value of an optimization parameter. The symbols
(·)T and ∥ · ∥ denote the transpose and 2-norm operators,
respectively. |x| shows the size of a vector x. The notation



G = (V, E) denotes as a graph G with the vertex set V and
the edge set E .

II. PROBLEM FORMULATION

Consider the discrete-time system{
x[τ + 1] = Ax[τ ] +Bu[τ ]

y[τ ] = Cx[τ ]
τ = 0, 1, ..., p (1)

with the known parameters A ∈ Rn×n, B ∈ Rn×m, C ∈
Rr×n, and x[0] ∈ Rn. The goal is to design a decentralized
(distributed) controller minimizing a quadratic cost function.
With no loss of generality, we focus on the static case
where the objective is to design a static controller of the
form u[τ ] = Ky[τ ] under the constraint that the controller
gain K must belong to a given linear subspace K ⊆ Rm×r

(see Section VI for various extensions). The set K captures
the sparsity structure of the unknown constrained controller
u[τ ] = Ky[τ ] and, more specifically, it contains all m × r
real-valued matrices with forced zeros in certain entries. This
paper is mainly concerned with the following problem.

Optimal Distributed Control (ODC) problem: Design a
static controller u[τ ] = Ky[τ ] to minimize the cost function

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (2)

subject to the system dynamics (1) and the controller require-
ment K ∈ K, given the terminal time p, positive-definite
matrices Q and R, and a constant α.

Note that the third term in the objective function of the
ODC problem is a soft penalty term aimed at avoiding a
high-gain controller.

III. SDP RELAXATION FOR QUADRATIC OPTIMIZATION

The objective of this section is to study the SDP relaxation
of a QCQP problem using a graph-theoretic approach. Before
proceeding with this part, some notions in graph theory will
be reviewed.

A. Graph Theory Preliminaries

Definition 1: For two simple graphs G1 = (V1, E1) and
G2 = (V2, E2), the notation G1 ⊆ G2 means that V1 ⊆ V2

and E1 ⊆ E2. G1 is called a subgraph of G2 and G2 is called
a supergraph of G1.

Definition 2 (Treewidth): Given a graph G = (V, E), a
tree T is called a tree decomposition of G if it satisfies the
following properties:

1) Every node of T corresponds to and is identified by a
subset of V . Alternatively, each node of T is regarded
as a group of vertices of G.

2) Every vertex of G is a member of at least one node
of T .

3) Tk is a connected graph for every k ∈ V , where Tk
denotes the subgraph of T induced by all nodes of T
containing the vertex k of G.

4) The subgraphs Ti and Tj have a node in common for
every (i, j) ∈ E .

The width of a tree decomposition is the cardinality of
its biggest node minus one (recall that each node of T is
indeed a set containing a number of vertices of G). The
treewidth of G is the minimum width over all possible tree
decompositions of G and is denoted by tw(G).

Definition 3: The representative graph of an n × n sym-
metric matrix W , denoted by G(W ), is a simple graph with
n vertices whose edges are specified by the locations of
the nonzero off-diagonal entries of W . In other words, two
arbitrary vertices i and j are connected if Wij is nonzero.
Given a graph G accompanied by a tree decomposition T of
width t, there exists a supergraph of G with certain properties
that is called enriched supergraph of G derived by T . The
reader may refer to [20], [21] for a precise definition.

B. SDP Relaxation

Consider the standard nonconvex QCQP problem

min
x∈Rn

f0(x) (3a)

s.t. fk(x) ≤ 0 for k = 1, . . . , p (3b)

where fk(x) = xTAkx+2bTk x+ck for k = 0, . . . , p. Define

Fk ,
[

ck bTk
bk Ak

]
and w , [x0 xT ]T , (4)

where x0=1. Given k ∈ {0, 1, ..., p}, the function fk(x)
is a homogeneous polynomial of degree 2 with respect to
w. Hence, fk(x) has a linear representation as fk(x) =
trace{FkW}, where

W , wwT (5)

Conversely, an arbitrary matrix W ∈ Sn+1 can be factorized
as (5) with w1 = 1 if and only if it satisfies the three
properties: W11 = 1, W ≽ 0, and rank{W} = 1. Therefore,
the general QCQP (3) can be reformulated as below:

min
W∈Sn+1

trace{F0W} (6a)

s.t. trace{FkW} ≤ 0 for k = 1, . . . , p (6b)
W11 = 1 (6c)
W ≽ 0 (6d)
rank{W} = 1. (6e)

This optimization is called a rank-constrained formulation
of the QCQP (3). In the above representation of QCQP,
the constraint (6e) carries all the nonconvexity. Neglecting
this constraint yields a convex problem, which is called an
SDP relaxation of the QCQP (3). The existence of a rank-1
solution for the SDP relaxation guarantees the equivalence
between the original QCQP and its relaxed problem.

C. Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of the
SDP relaxation, define G = G(F0) ∪ · · · ∪ G(Fp) as the
sparsity graph associated with the rank-constrained prob-
lem (6). The graph G describes the zero-nonzero pattern of
the matrices F0, . . . , Fp, or alternatively captures the sparsity



level of the QCQP problem (3). The graph G = (V, E) has
the following properties:

1) Each vertex of V corresponds to one of the entries
of w or equivalently one of the elements of the set
{x0, x1, ..., xn} (note that x0 = 1). Let the vertex
associated with the variable xi be denoted as vxi for
i = 0, 1, ..., n.

2) Given two distinct indices i, j ∈ {0, 1, . . . , n}, the pair
(vxi , vxj ) is an edge of G if and only if the monomial
xixj has a nonzero coefficient in at least one of the
polynomials f0(x), f1(x), . . . , fp(x).

Let Ḡ be an enriched supergraph of G with n̄ vertices that
is obtained from a tree decomposition of width t (note that
n̄ ≥ n).

Theorem 1: Consider an arbitrary solution Ŵ ∈ Sn+ to
the SDP relaxation of (6) and let Z ∈ Sn̄ be a matrix with
the property that G(Z) = Ḡ. Let W

opt
denote an arbitrary

solution of the optimization

min
W∈Sn̄

trace{ZW} (7a)

s.t. W kk = Ŵkk for k = 0, 1, ..., n, (7b)

W kk = 1 for k = n+ 1, ..., n̄, (7c)

W ij = Ŵij for (i, j) ∈ EG , (7d)

W ≽ 0. (7e)

Define W opt ∈ Sn+1 as a matrix obtained from W
opt

by
deleting the last n̄ − n − 1 rows and n̄ − n − 1 columns.
Let t denote the treewidth of the graph. If there exists a
positive definite matrix W satisfying the constraints of the
above optimization, then W opt has two properties:

a) W opt is an optimal solution to the SDP relaxation of (6).
b) rank{W opt} ≤ t+ 1.

Proof: See [20] for the proof.
Assume that a tree decomposition of G with a small width

is known. Theorem 1 states that an arbitrary (high-rank)
solution to the SDP relaxation problem can be transformed
into a low-rank solution by solving the convex program (7).
Note that the above theorem requires the existence of a
positive-definite feasible point, but this assumption can be
removed after a small modification to (7) (see [20]).

IV. QUADRATIC FORMULATIONS OF ODC PROBLEM

The primary objective of the ODC problem is to design a
structurally constrained gain K. Assume that the matrix K
has l free entries to be designed. Denote these parameters as
h1, h2, ..., hl. To formulate the ODC problem, the space of
permissible controllers can be characterized as

K ,
{

l∑
i=1

hiMi

∣∣∣∣∣ h ∈ Rl

}
, (8)

for some (fixed) 0-1 matrices M1, ...,Ml ∈ Rm×r. Now, the
ODC problem can be stated as follows.

ODC Problem: Minimize
p∑

τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (9a)

subject to

x[τ + 1] = Ax[τ ] +Bu[τ ] for τ = 0, 1, . . . , p (9b)
y[τ ] = Cx[τ ] for τ = 0, 1, . . . , p (9c)
u[τ ] = Ky[τ ] for τ = 0, 1, . . . , p (9d)
K = h1M1 + . . .+ hlMl (9e)

x[0] = given (9f)

over the variables

x[0], x[1], . . . , x[p] ∈ Rn (9g)
y[0], y[1], . . . , y[p] ∈ Rr (9h)
u[0], u[1], . . . , u[p] ∈ Rm (9i)

h ∈ Rl. (9j)

To cast the ODC problem as a quadratic optimization, define

wd ,
[
z hT xT uT

]T
, ws ,

[
z hT xT uT yT

]T
(10)

where

x ,
[
x[0]T · · · x[p]T

]T
(11a)

u ,
[
u[0]T · · · u[p]T

]T
(11b)

y ,
[
y[0]T · · · y[p]T

]T
, (11c)

and z is a scalar auxiliary variable playing the role of
number 1 (equivalently, the quadratic constraint z2 = 1 can
be posed instead of z = 1 without affecting the solution).
The objective and constraints of the ODC problems are all
homogeneous functions of ws with degree 2. For example,
(9c) is equivalent to z× y[τ ]−C × z×x[τ ] = 0, which is a
second-order equality constraint. Hence, the ODC problem
can be cast as a QCQP with a sparsity graph G, where the
vertices of G correspond to the entries of ws. In particular,
the vertex set VG can be partitioned into five vertex subsets,
where subset 1 consists of a single vertex associated with
the variable z and subsets 2-5 correspond to the vectors x,
u, y and h, respectively.

Sparsity graph for diagonal Q, R, and K: Consider the
case where the matrices Q and R are diagonal and the
controller K to be designed needs to be diagonal as well. The
underlying sparsity graph G is drawn in Figure 1, where each
vertex of the graph is labeled by its corresponding variable.
To increase the readability of the graph, some edges of vertex
z are not shown in the picture. Indeed, z is connected to all
vertices corresponding to the elements of x, u and y. This
is due to the linear terms x[τ ], u[τ ] and y[τ ] in (9) that are
equivalent to z × x[τ ], z × u[τ ] and z × y[τ ].

Theorem 2: The sparsity graph of the ODC problem (9)
has treewidth 2 in the case of diagonal Q, R, and K.

Proof: It follows from the graph drawn in Figure 1
that removing vertex z from the sparsity graph G makes the
remaining subgraph acyclic. This implies that the treewidth
of G is at most 2. On the other hand, the treewidth cannot
be 1 in light of the cycles of the graph.

It follows from Theorems 1 and 2 that the SDP relaxation
of the ODC problem has a matrix solution with rank 1, 2 or
3 in the diagonal case.



Fig. 1: Sparsity graph of the ODC problem for diagonal Q, R, and K
(some edges of vertex z are not shown to increase the legibility of the
graph).

Sparsity graph for non-diagonal Q, R, and K: As can
be seen in Figure 1, there is no edge in the subgraph
of G corresponding to the entries of x, as long as Q is
diagonal. However, if Q has nonzero off-diagonal elements,
certain edges (and probably cycles) may be created in the
subgraph of G associated with the aggregate state x. Under
this circumstance, the treewidth of G could be much higher
than 2. The same argument holds for a non-diagonal R or
K.

A. Various Quadratic Formulations of ODC Problem

The ODC problem has been cast as a QCQP in (9)
although it has infinitely many quadratic formulations. Since
every QCQP formulation of the ODC problem will be
ultimately convexified in this work, the following question
arises: what QCQP formulation of the ODC problem has a
better SDP relaxation? Note that two important factors for an
SDP relaxation are: (i) optimal objective value of the ODC
problem serving as a lower bound on the globally optimal
cost of the ODC problem, and (ii) the rank of the minimum-
rank solution of the SDP relaxation. By taking these two
factors into account, four different quadratic formulations of
the ODC problem will be proposed below.

Consider an arbitrary QCQP formulation of the ODC prob-
lem. Assume that it is possible to design a set of redundant
quadratic constraints whose addition to the QCQP problem
would not affect its feasible set. These redundant constraints
may lead to the shrinkage of the feasible set of the SDP
relaxation of the original QCQP problem, leading to a tighter
lower bound on the optimal cost of the ODC problem. More
precisely, reducing the unnecessary (dependent) parameters
of the QCQP problem and yet imposing additional redundant
constraints help with Factor (i) mentioned above. Roughly
speaking, this requires designing a quadratic formulation
whose edge set is as large as possible. To this end, two
modifications can be made on the QCQP problem (9):

1) The constraints (9c) and (9d) can be combined into a
single equation u[τ ] = KCx[τ ] and accordingly the
variables y[0], y[1], . . . , y[p] can be removed from the
optimization.

2) A multiplication of the constraint (9b) to itself for two
different times τ1 and τ2 leads to a redundant quadratic
equation, which can be imposed on the problem.

The above modifications yield two dense ODC problems.

First Dense Formulation of ODC: Minimize
p∑

τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (12a)

subject to

x[τ + 1] = Ax[τ ] +Bu[τ ] (12b)
u[τ ] = KCx[τ ] (12c)
K = h1M1 + . . .+ hlMl (12d)

x[0] = given (12e)

for every τ ∈ {0, 1, . . . , p}, and subject to

x[τ1 + 1]x[τ2 + 1]T = (Ax[τ1] +Bu[τ1])

× (Ax[τ2] +Bu[τ2])
T ,
(12f)

x[τ1 + 1](Ax[τ2] +Bu[τ2])
T = (Ax[τ1] +Bu[τ1])

× x[τ2 + 1]T (12g)

for every τ1, τ2 ∈ {0, 1, . . . , p}, over the optimization vari-
ables (9g), (9i) and (9j).

First Dense Formulation of ODC is a QCQP problem with
a dense sparsity graph. Note that the redundant constraints
(12f) and (12g) impose a high number of constraints on the
entries of the associated SDP matrix W , leading to a possible
shrinkage of the feasible set of the SDP relaxation. The SDP
relaxation of First Dense Formulation of ODC aims to offer a
good lower bound on the optimal cost of the ODC problem,
but the rank of its SDP solution may be high. To reduce the
rank, Theorem 1 suggests designing a quadratic formulation
whose sparsity graph has a lower treewidth.

Second Dense Formulation of ODC: This optimization
is obtained from First Dense Formulation of ODC (12) by
dropping its redundant constraints (12f) and (12g).

As discussed before, non-diagonal Q and R result in a
sparsity graph with a large treewidth. To remedy this issue,
define a new set of variables as follows:

x̄[τ ] , Qdx[τ ], ū[τ ] , Rdu[τ ], (14)

where Qd ∈ Rn×n and Rd ∈ Rm×m are the respective
eigenvector matrices of Q and R, i.e.,

Q = QT
d ΛQQd, R = RT

d ΛRRd, (15)

where ΛQ ∈ Rn×n and ΛR ∈ Rm×m are diagonal matrices.
Define also

Ā , QdAQT
d , B̄ , QdBRT

d , C̄1 , CQT
d . (16)

The ODC problem can be reformulated as below.

First Sparse Formulation of ODC: Minimize
p∑

τ=0

(
x̄[τ ]TΛQx̄[τ ] + ū[τ ]TΛRū[τ ]

)
+ α trace{KKT }

(17a)



subject to

x̄[τ + 1] = Āx̄[τ ] + B̄ū[τ ] (17b)
y[τ ] = C̄1x̄[τ ] (17c)
ū[τ ] = RdKy[τ ] (17d)
K = h1M1 + . . .+ hlMl (17e)

x[0] = given (17f)

for τ = 0, 1, . . . , p, over the optimization variables

x̄[0], x̄[1], . . . , x̄[p] ∈ Rn (17g)
y[0], y[1], . . . , y[p] ∈ Rr (17h)
ū[0], ū[1], . . . , ū[p] ∈ Rm (17i)

h ∈ Rl. (17j)

By comparing the objective functions of First Sparse
Formulation of ODC and First/Second Dense Formulation
of ODC, it can be concluded that the arbitrary matrices Q
and R have been substituted by two diagonal matrices ΛQ

and ΛR. It is straightforward to verify that the treewidth of
the sparsity graph of First Sparse Formulation of ODC is
dependent only on the sparsity level of the to-be-designed
controller K. To remedy this drawback, notice that there
exist constant binary matrices Φ1 ∈ Rm×l and Φ2 ∈ Rl×r

such that

K =
{
Φ1diag{h}Φ2 | h ∈ Rl

}
, (18)

where diag{h} denotes a diagonal matrix whose diagonal
entries are inherited from the vector h [22]. Now, define

ȳ[τ ] , Φ2y[τ ] (19a)

C̄2 , Φ2CQT
d . (19b)

The constraints (9c), (9d) and (9e) are equivalent to ȳ[τ ] =
C̄2x̄[τ ] and ū[τ ] = Φ1diag{h}ȳ[τ ]. Hence, the matrix K can
be diagonalized in the ODC problem as follows.

Second Sparse Formulation of ODC: Minimize
p∑

τ=0

x̄[τ ]TΛQx̄[τ ] + ū[τ ]TΛRū[τ ] + α hTh (20a)

subject to

x̄[τ + 1] = Āx̄[τ ] + B̄ū[τ ] (20b)
ȳ[τ ] = C̄2x̄[τ ] (20c)
ū[τ ] = RdΦ1diag{h}ȳ[τ ] (20d)
x̄[0] = given (20e)

for τ = 0, 1, . . . , p, over the variables (17g), (17i), (17j) and
ȳ[0], ȳ[1], . . . , ȳ[p] .

It should be mentioned that First Sparse Formulation of
ODC (17), Second Sparse Formulation of ODC (20) and the
ODC problem (9) are not only equivalent but also identical
in the case of diagonal Q, R, and K.

Theorem 3: The sparsity graph of Second Sparse Formu-
lation of ODC (20) has treewidth 2.

Proof: The proof is omitted due to its similarity to the
proof of Theorem 2.

So far, four equivalent formulations of the ODC problem
have been introduced. In the next section, the SDP relax-
ations of these formulations will be contrasted with each
other.

V. SDP RELAXATIONS OF ODC PROBLEM

To streamline the presentation, the proposed formulations
of the ODC problem will be renamed as:

• Problem D-1: First Dense Formulation of ODC
• Problem D-2: Second Dense Formulation of ODC
• Problem S-1: First Sparse Formulation of ODC
• Problem S-2: Second Sparse Formulation of ODC

As mentioned earlier, each of these problems is a QCQP
formulation of the ODC problem. Hence, the technique
delineated in Subsection III-B can be deployed to obtain an
SDP relaxation for each of these problems. Let WD1 , WD2 ,
WS1

and WS2
denote the variables of the SDP relaxations of

Problems D-1, D-2, S-1 and S-2, respectively. The exactness
of the SDP relaxation for Problem D-1 is tantamount to the
existence of an optimal rank-1 matrix W opt

D1
. In this case, an

optimal vector wopt
d for the ODC problem can be recovered

by decomposing W opt
D1

as (wopt
d )(wopt

d )T (note that wd has
been defined in (10)). A similar argument holds for Problems
D-2, S-1 and S-2. The following observations can be made
here:

• The computational complexity of a convex optimization
problem, in the worst case, is related to the number of
variables as well as the number of constraints of the
problem. Under this measure of complexity, the SDP
relaxation of Problem D-2 is simpler (easier to solve)
than those of Problems D-1, S-1 and S-2. Similarly, the
SDP relaxation of Problem S-1 is simpler than that of
Problem S-2. It is expected that the SDP relaxation of
Problem D-1 has the highest complexity among all four
SDP relaxations.

• An SDP relaxation provides a lower bound on the
optimal cost of the ODC problem. It is justifiable that
the lower bounds obtained from Problems D-1, D-2,
S-1 and D-2 form a descending sequence. This implies
that Problem D-1 may offer the best lower bound on the
globally optimal cost of the ODC problem. On the other
hand, the treewidths of the sparsity graphs of Problems
D-1, D-2, S-1 and D-2 would form a descending se-
quence as well. Hence, in light of Theorem 1, Problem
S-2 may offer the best low-rank SDP solution.

Corollary 1: The SDP relaxation of Second Sparse For-
mulation of ODC has a matrix solution with rank at most 3.

Proof: This corollary is an immediate consequence of
Theorems 2 and 3.

Although Problem D-1 may offer the tightest lower bound
in theory, Problem S-2 has a guaranteed low-rank SDP
solution. A question arises as to which of the Problems D-1,
D-2, S-1 and S-2 should be convexified? We have analyzed
these problems for several thousand random systems with
random control structures and observed that:



• The SDP relaxation of Problem D-1 often has high-
rank solutions and is also computationally expensive to
solve.

• The SDP relaxations of Problems D-1, D-2, S-1 and S-2
result in very similar lower bounds in almost all cases.
To support this statement, the optimal values of the four
SDP relaxations are plotted for 100 random systems in
the technical report [21].

Based on the above observations, the transition from the
highly-dense Problem D-1 to the highly-sparse Problem S-
2 may change the optimal SDP cost insignificantly but
improves the rank of the SDP solution dramatically (note
that the sizes of the SDP matrices for these two problems
are different).

A. Rounding of SDP Solution to Rank-1 Matrix

Let W opt denote a low-rank SDP solution for one of the
above mentioned SDP relaxations. If the rank of this matrix
is 1, then W opt can be mapped back into a globally optimal
controller for the ODC problem through an eigenvalue de-
composition W opt = wopt(wopt)T . If W opt has a rank greater
than 1, there are multiple approaches to recover a controller:

• A near-optimal controller may be obtained from the first
column of W opt corresponding to the controller part h.

• First, W opt is approximated by a rank-1 matrix by
means of the eigenvector associated with its largest
eigenvalue. Then, a near-optimal controller may be
constructed from the first column of this approximate
rank-1 matrix.

• Recall that the SDP relaxation was obtained by elimi-
nating a rank constraint. In the case where this removal
changes the solution, one strategy is to compensate for
the rank constraint by incorporating an additive penalty
function, denoted as µ(W ), into the objective of the
SDP relaxation. A common penalty function µ(·) is
ε× trace{W}, where ε is a design parameter.

Note that by comparing the cost for the near-optimal con-
troller with the lower bound obtained from the SDP relax-
ation, the optimality degree of the designed controller can
be assessed.

VI. EXTENSIONS

In the case of designing an optimal fixed-order dynamic
controller with a pre-specified structure, denote the unknown
controller as:{

zc[τ + 1] = Aczc[τ ] +Bcy[τ ]
u[τ ] = Cczc[τ ] +Dcy[τ ]

(21)

where zc[τ ] ∈ Rnc represents the state of the con-
troller, nc denotes its known degree, and the quadruple
(Ac, Bc, Cc, Dc) needs to be designed. Since the controller is
required to have a pre-determined distributed structure, the
4-tuple (Ac, Bc, Cc, Dc) must belong to a given polytope
K. This polytope enforces certain entries of Ac, Bc, Cc,
and Dc to be zero. The above ODC problem is a nonlinear
optimization because the dynamics of the controller has some
unknown nonlinear terms such as Aczc[τ ] and Bcy[τ ]. In

order to convexify the above ODC problem, define a vector
w as

w =
[
1 hT xT uT yT zTc

]T
(22)

where zc is a column vector consisting of the entries of
zc[0], ..., zc[p], and h denotes a vector including all free
(nonzero) entries of the matrices Ac, Bc, Cc, and Dc. The
ODC problem can be cast as a quadratic optimization with
respect to the vector w, from which an SDP relaxation can be
derived. Hence, the results derived earlier can all be naturally
generalized to the above dynamic case.

Other extensions are to solve the ODC problem for p = ∞
and/or a stochastic system. The detail for these cases can be
found in [23], [24].

A. Computationally-Cheap SDP Relaxation

Although the proposed SDP relaxations are convex, it may
be difficult to solve them efficiently for a large-scale system.
This is due to the fact that the size of the SDP matrix depends
on the number of scalar variables at all times from 0 to p.
It is possible to significantly simplify the SDP relaxations.
For example, since the treewidth of the SDP relaxation
of Problem S-2 is equal to 2, the complicating constraint
WS2 ≽ 0 can be replaced by positive semidefinite constraints
on certain 3 × 3 submatrices of WS2 (those induced by
the nodes of the minimal tree decomposition of the sparsity
graph of Problem S-2) [20]. After this simplification of the
hard constraint WS2 ≽ 0, a quadratic number of entries
of WS2 turn out to be redundant (not appearing in any
constraint) and can be removed from the optimization.

There is a more efficient approach to derive a
computationally-cheap SDP relaxation. This will be ex-
plained below for the case where Q and R are non-singular
and r,m ≤ n.

With no loss of generality, we assume that C has full row
rank. There exists an invertible matrix Φ such that

CΦ =
[
I 0

]
(23)

where I is the identity matrix and “0” is an r × (n − r)
zero matrix. Define also K2 = {KKT | K ∈ K}. Indeed,
K2 captures the sparsity pattern of the matrix KKT . For ex-
ample, if K consists of block-diagonal (rectangular) matrix,
K2 will also include block-diagonal (square) matrices. Let
µ ∈ R be a positive number such that

Q ≻ µ× Φ−TΦ−1 (24)

where Φ−T denotes the transpose of the inverse of Φ. Define
Q̂ := Q− µ× Φ−TΦ−1.

Computationally-Cheap SDP Relaxation: This optimiza-
tion problem is defined as the minimization of

trace
{
XT Q̂X + µ W22 + UTRU + α W33

}
(25)



Fig. 2: Mass-spring system with two masses

subject to the constraints

x[τ + 1] = Ax[τ ] +Bu[τ ] for τ = 0, 1, . . . , p, (26a)
x[0] = given, (26b)

W :=


In Φ−1X

[
KT

0

]
XTΦ−T W22 UT[
K 0

]
U W33

 ≽ 0, (26c)

K ∈ K, (26d)

W33 ∈ K2, (26e)

with the optimization parameters
• K ∈ Rm×r

• X =
[
x[0] x[1] ... x[p]

]
∈ Rn×(p+1)

• U =
[
u[0] u[1] ... u[p]

]
∈ Rm×(p+1)

• W ∈ Sn+m+p+1.
Note that W22 and W33 are two blocks of W playing the
role of auxiliary variables, and that In denotes the n × n
identity matrix.

Theorem 4: The computationally-cheap SDP relaxation is
a convex relaxation of the ODC problem. Furthermore, the
relaxation is exact if and only if it possesses a solution
(Kopt, Xopt, U opt,Wopt) such that rank{Wopt} = n.
The reader may refer to [21] for the proof of the above
theorem. The matrix W in the computationally-cheap SDP
relaxation always has rank greater than or equal to n, due
to its block submatrix In. Notice that the number of rows
for the SDP matrix of Problem D-1, D-2, S-1 or S-2 is
on the order of np, whereas the number of rows for the
computationally-cheap SDP matrix is on the order of n+ p.
We have empirically observed that this cheap relaxation has
the same solution as the relaxation of Problem D-2 for
diagonal Q, R and C.

VII. NUMERICAL EXAMPLE

In this part, the aim is to evaluate the performance
of the proposed controller design technique on the Mass-
Spring system, as a classical physical system. Consider a
mass-spring system consisting of N masses. This system
is exemplified in Figure 2 for N = 2. The system can be
modeled in the continuous-time domain as

ẋc(t) = Acxc(t) +Bcuc(t) (27)

where the state vector xc(t) can be partitioned as
[o1(t)

T o2(t)
T ] with o1(t) ∈ Rn equal to the vector of

positions and o2(t) ∈ Rn equal to the vector of velocities
of the N masses. In this example, we assume that N = 10
and adopt the values of Ac and Bc from [25]. The goal is to
design a static sampled-data controller with a pre-specified
structure (i.e., the controller is composed of a sampler, a
static discrete-time controller and a zero-order holder). To

this end, we first discretize the system with the sampling
time of 0.4 second and denote the obtained system as

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, ... (28)

It is aimed to design a constrained controller u[τ ] = Kx[τ ]
to minimize the cost function

p∑
τ=0

(
x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
(29)

for x[0] equal to the vector of 1’s and α = 0. Since it
is assumed that all states of the system can be measured
locally (i.e., C = I), Problem D-2 turns out to have a sparse
graph. Hence, we convexify the ODC problem using the
SDP relaxation of Problem D-2. We solve an SDP relaxation
for the six different control structures shown in Figure 3.
The free parameters of each controller are colored in red
in this figure. For example, Structure (c) corresponds to a
fully decentralized controller, where each local controller has
access to the position and velocity of its associated mass.
Structure (d) enables some communications between the
local control of Mass 1 and the remaining local controllers.
For each structure, the SDP relaxation of Problem D-2 is
solved for four different terminal times p = 5, 10, 15 and 30.
The results are tabulated in Table I. Four metrics are reported
for each structure and terminal time:

• Lower bound: This number is equal to the optimal
objective value of the SDP relaxation, which serves
as a lower bound on the minimum value of the cost
function (29).

• Upper bound: This number corresponds to the cost
function (29) at a near-optimal controller Kno recovered
from the first column of the SDP matrix. This number
serves as an upper bound on the minimum value of the
cost function (29).

• Infinite-horizon performance: This is equal to the in-
finite sum

∑∞
τ=0

(
x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
associated

with the system (28) under the designed near-optimal
controller.

• Stability: This indicates the stability or instability of the
closed-loop system.

It can be observed that the designed controllers are always
stabilizing for p = 30. As demonstrated in Table I, the
upper and lower bounds are very close to each other in many
scenarios, in which cases the recovered controllers are almost
globally optimal.

VIII. CONCLUSIONS

This paper studies the optimal distributed control (ODC)
problem for discrete-time systems. The objective is to design
a fixed-order distributed controller with a pre-determined
structure to minimize a quadratic cost functional. This pa-
per proposes a semidefinite program (SDP) as a convex
relaxation for ODC. The notion of treewidth is exploited
to study the rank of the minimum-rank solution of the SDP
relaxation. This method is applied to the static distributed
control case and it is shown that the SDP relaxation has



(a) (b)

(c) (d)

(e) (f)

Fig. 3: Six different structures for the controller K: the free parameters
are colored in red (uncolored entries are set to zero).

K bounds p = 5 p = 10 p = 15 p = 30

(a) upper bound 126.752 140.105 140.681 140.691
lower bound 126.713 140.080 140.660 140.690

inf. horizon perf. ∞ ∞ ∞ 140.691
stability unstable unstable unstable stable

(b) upper bound 126.809 140.183 140.685 140.702
lower bound 126.713 140.080 140.661 140.690

inf. horizon perf. ∞ ∞ 140.770 140.702
stability unstable unstable stable stable

(c) upper bound 127.916 140.762 140.792 140.795
lower bound 126.713 140.080 140.660 140.690

inf. horizon perf. 150.972 140.992 140.796 140.795
stability stable stable stable stable

(d) upper bound 127.430 140.761 140.762 140.761
lower bound 126.713 140.080 140.661 140.690

inf. horizon perf. 159.633 141.020 140.766 140.761
stability stable stable stable stable

(e) upper bound 175.560 235.240 240.189 242.973
lower bound 167.220 215.202 222.793 226.797

inf. horizon perf. 277.690 282.580 271.675 267.333
stability stable stable stable stable

(f) upper bound 175.401 230.210 231.022 230.382
lower bound 164.114 208.484 214.723 216.431

inf. horizon perf. 357.197 287.767 242.976 232.069
stability stable unstable stable stable

TABLE I: The outcome of the SDP relaxation of Problem D-2 for the 6
different control structures given in Figure 3.

a matrix solution with rank at most 3. This result can be
a basis for a better understanding of the complexity of the
ODC problem because it states that almost all eigenvalues of
the SDP solution are zero. It is also discussed that the same
result holds true for the design of a dynamic controller for
both deterministic and stochastic systems.
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