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Abstract— The objective of this tutorial paper is to study a
general polynomial optimization problem using a semidefinite
programming (SDP) relaxation. The first goal is to show how the
underlying structure and sparsity of an optimization problem
affect its computational complexity. Graph-theoretic algorithms
are presented to address this problem based on the notions of
low-rank optimization and matrix completion. By building on
this result, it is then shown that every polynomial optimization
problem admits a sparse representation whose SDP relaxation
has a rank 1 or 2 solution. The implications of these results
are discussed in details and their applications in decentralized
control and power systems are also studied.

I. INTRODUCTION

Optimization theory deals with the minimization of an
objective function subject to a set of constraints. This area
plays a vital role in the design, control, operation, and
analysis of real-world systems. The development of efficient
optimization techniques and numerical algorithms has been
an active area of research for many decades. The goal is to
design a robust and scalable method that is able to find a
global solution in polynomial time. This question has been
fully answered for the class of convex optimization problems
that includes all linear and some nonlinear problems [1]–[3].
Convex optimization has found a wide range of applications
across engineering and economics [4]. In the past several
years, a great effort has been devoted to casting real-
world problems as convex optimization. Nevertheless, several
classes of optimization problems, including polynomial op-
timization and quadratically constrained quadratic program
(QCQP) as a special case, are nonlinear, non-convex, and
NP-hard in the worst case [5], [6]. In particular, there is
no known effective optimization technique for integer and
combinatorial optimization as a small subclass of QCQP
[7], [8]. Given a non-convex optimization, there are several
techniques to find a solution that is locally optimal. However,
seeking a global or near-global solution in polynomial time
is a daunting challenge. There is a large body of literature
on nonlinear optimization witnessing the complexity of this
problem.

To reduce the computational complexity of a non-convex
optimization, several convex relaxation methods based on
linear matrix inequality (LMI), semidefinite programming
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(SDP), and second-order cone programming (SOCP) have
gained popularity [1], [9]. These techniques enlarge the
possibly non-convex feasible set into a convex set charac-
terizable via convex functions, and then provide the exact or
a lower bound on the optimal objective value associated with
a global solution. The SDP relaxation technique provides a
lower bound on the minimum cost of the original problem,
which can be used for various purposes such as the branch
and bound algorithm [2]. To understand the quality of the
SDP relaxation, its optimal objective value is shown to be at
most 14% different from the optimal cost for the MAXCUT
problem [10]. The maximum possible gap between the
solution of a graph optimization and its SDP relaxation is
defined as the Grothendieck constant of the graph [11], [12].
This constant has been derived for some special cases in
[13]. The paper [14] shows how a complex SDP relaxation
may solve the max-3-cut problem. This approach has been
generalized in several papers [15]–[22]. If the SDP relaxation
provides the same optimal objective value as the original
problem, the relaxation is said to be exact. The exactness
of the SDP relaxation has been verified for a variety of
problems [23]–[26]. For instance, the work [27]–[30] has
explored the SDP relaxation for the optimal power flow
(OPF) problem, which is the most fundamental optimization
problem for electrical power networks. That work shows that
the relaxation is exact for a large class of OPF problems due
to the physics of a power gird. The exactness of an SDP
relaxation could be heavily formulation dependent. Indeed,
a practical circuit optimization with four equivalent QCQPs
is designed in [31], where only one of the formulations has
an exact SDP relaxation.

In the case where the SDP relaxation is not exact, the
existence of a low-rank SDP solution may still be helpful.
To support this claim, a penalized SDP relaxation is proposed
for the OPF problem in [31], [32] and successfully used to
derive near-global solutions for 7000 instances of OPF (a
near-global solution is a near-optimal solution that is close
to a global solution with a known upper bound on its distance
to global optimality). In a general context, the existence of
a low-rank solution to matrix optimization problems with
linear and LMI constraints has been extensively studied in
the literature [33], [34]. The papers [35]–[37] provide an
upper bound on the lowest rank among all solutions of
a feasible LMI problem. Based on the same approach, a
constructive method has been proposed in [38] to obtain a
low-rank solution in polynomial time. Although the proven
bound in [37] is tight in the worst case, many examples



are known to possess solutions with a lower rank due to
their underlying sparsity patterns [39], [40]. A rank-1 matrix
decomposition technique is developed in [41] to find a rank-
1 solution whenever the number of constraints is small. This
technique is extended in [42] to the complex SDP problem.
The paper [43] presents a polynomial-time algorithm for
finding an approximate low-rank solution.

This tutorial paper aims to study the SDP relaxation of
a polynomial optimization through graph-theoretic notions.
To this end, three problems will be addressed here. In
Section II, the objective is to investigate how the structure of
an optimization reduces the computational complexity. For
this purpose, the structure of the optimization is mapped into
a weighted graph and it is shown that the SDP relaxation is
exact if the graph possesses certain properties. In Section III,
it is shown that the SDP relaxation of a sparse optimization
has a solution whose rank can be characterized in terms
of the sparsity level of the problem. In Section IV, it is
explained that every polynomial optimization admits a sparse
representation whose SDP relaxation has a rank 1 or 2 matrix
solution. In other words, it is shown that the NP hardness
of polynomial optimization can be traced back to attaining a
rank-2 solution rather than a rank-1 solution. The techniques
presented in this paper are illustrated on two notorious
problems of “optimal distributed control” and “nonlinear
power optimization” in Sections V and VI, respectively.

A. Notations
The notations used throughout this tutorial paper will be

described below. R, C, Z+, Sn, and Hn denote the sets of real
numbers, complex numbers, nonnegative integer numbers,
n × n symmetric matrices, and n × n Hermitian matrices,
respectively. Sn+ and Hn+ denote the restrictions of Sn and
Hn to positive semidefinite matrices. Re{W}, Im{W},
rank{W}, and trace{W} denote the real part, imaginary
part, rank, and trace of a given scalar/matrix W, respectively.
The notation W � 0 means that W is Hermitian and positive
semidefinite. Given a matrix W, its (l,m) entry is denoted
as Wlm. The superscript (·)opt is used to show the globally
optimal value of an optimization parameter. The symbol (·)∗
represents the conjugate transpose operator. ](x) represents
the phase of a complex number x. The imaginary unit is
denoted as “i”, while “i” is used for indexing. Given a set
T , |T | denotes its cardinality. Given a graph G, |G| shows
the number of its vertices. Given a number (vector) x, |x|
denotes its absolute value (2-norm). Given an undirected
graph G, the notation i ∈ G means that i is a vertex of
G. Moreover, the notation (i, j) ∈ G means that (i, j) is an
edge of G and besides i < j.

II. HIGHLY-STRUCTURED OPTIMIZATION

In this section, the objective is to investigate how the
underlying sparsity or structure of an optimization problem
affects its computational complexity. Our approach is to map
the structure of the optimization into a weighted graph and
relate the exactness of a conic relaxation for the optimization
to certain properties of the graph.

1 2

3

4

1'
2'

3'

4'

(a)

1
2

3
4

1'
2'

3'

4'

(b)

Fig. 1: In Figure (a), there exists a line separating x’s
(elements of T ) from o’s (elements of −T ) so the set T
is sign definite. In Figure (b), this is not the case.

A. Definitions

Before proceeding with this part, some definitions will be
provided below.

Definition 1: A finite set T ⊂ R is said to be sign definite
with respect to R if its elements are either all negative or all
nonnegative. T is called negative if its elements are negative
and is called positive if its elements are nonnegative.

Definition 2: A finite set T ⊂ C is said to be sign definite
with respect to C if when the sets T and −T are mapped
into two collections of points in R2, then there exists a line
separating the two sets (note that any or all elements of the
sets T and −T are allowed to lie on the separating line).

To illustrate Definition 2, consider a complex set T with
four elements, whose corresponding points are labeled as 1,
2, 3 and 4 in Figure 1(a). The points corresponding to −T
are labeled as 1’, 2’, 3’ and 4’ in the same picture. Since
there exists a line separating x’s (elements of T ) from o’s
(elements of −T ), the set T is sign definite. In contrast, if
the elements of T are distributed according to Figure 1(b),
the set will no longer be sign definite. Note that Definition 2
is inspired by the fact that a real set T is sign definite with
respect to R if T and −T are separable via a point (on the
horizontal axis).

Definition 3: Given a graph G, a cycle space is the set of
all possible cycles in the graph. An arbitrary basis for this
cycle space is called a “cycle basis”.

Definition 4: In this work, a graph G is called weakly
cyclic if every edge of the graph belongs to at most one
cycle in G (i.e., the cycles of G are all edge-disjoint).

Definition 5: Consider a graph G, a subgraph Gs of this
graph and a matrix W ∈ H|G|. Define W{Gs} as a sub-
matrix of W located in the intersection of those rows and
columns of W whose indices belong to the vertex set of Gs.
For instance, W{(i, j)} is obtained by intersecting rows i, j
with columns i, j of W, for every (i, j) ∈ G.

B. Problem Statement

Consider an undirected graph G with n vertices (nodes),
where each edge (i, j) ∈ G has been assigned a nonzero edge
weight set {c(1)ij , c

(2)
ij , ..., c

(k)
ij } with k real/complex numbers

(note that the superscripts in the weights are not exponents).
This graph is called a generalized weighted graph as every
edge is associated with a set of weights as opposed to a single
weight. Consider an unknown vector x =

[
x1 · · · xn

]



belonging to Dn, where D is either R or C. For every i ∈ G,
xi is a variable associated with node i of the graph G. Define:

y =
{
|xi|2

∣∣ ∀i ∈ G},
z =

{
Re
{
c
(t)
ij xix

∗
j

} ∣∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}}
Note that (i, j) ∈ G means that (i, j) is an edge of the graph
and that i < j. The sets y and z can be regarded as two
vectors, where
• y collects the quadratic terms |xi|2’s (one term for each

vertex).
• z collects the cross terms Re{c(t)ij xix∗j}’s (k terms for

each edge).
Although the above formulation deals with Re

{
c
(t)
ij xix

∗
j

}
whenever (i, j) ∈ G, it can handle terms of the form
Re{αxjx∗i } and Im{αxix∗j} for a complex weight α. This
can be carried out using the transformations:

Re{αxjx∗i } = Re{(α∗)xix∗j},
Im{αxix∗j} = Re{(−αi)xix∗j}

This part is concerned with the following optimization prob-
lem:

min
x∈Dn

f0(y, z)

subject to fj(y, z) ≤ 0, j = 1, 2, ...,m
(1)

for given functions f0, ..., fm. The computational complexity
of the above optimization problem depends in part on the
structure of the functions fj’s. Regardless of these functions,
the optimization problem (1) is intrinsically hard to solve
(NP-hard in the worst case) because y and z are both
nonlinear functions of x. The objective is to convexify the
second-order nonlinearity embedded in y and z. To this end,
notice that there exist two linear functions l1 : Cn×n →
Rn and l2 : Cn×n → Rkτ such that y = l1 (xx∗) and
z = l2 (xx∗), where τ denotes the number of edges in G.
Motivated by the above observation, if xx∗ is replaced by
a new matrix variable W, then y and z both become linear
in W. This implies that the non-convexity induced by the
quadratic terms Re{c(t)ij xixj}’s and |xi|’s all disappear if the
optimization problem (1) is reformulated in terms of W.
However, the optimal solution W may not be decomposable
as xx∗ unless some additional constraints are imposed on
W. It is straightforward to verify that the optimization
problem (1) is equivalent to

min
W

f0(l1(W), l2(W)) (2a)

s.t. fj(l1(W), l2(W)) ≤ 0, j = 1, ...,m (2b)
W � 0, (2c)
rank{W} = 1 (2d)

where there is an implicit constraint that W ∈ Sn if D =
R and W ∈ Hn if D = C. To reduce the computational
complexity of the above problem, two actions can be taken:
(i) removing the nonconvex constraint (2d), and (ii) relaxing
the convex, but computationally-expensive, constraint (2c) to
a set of simpler constraints on certain low-order submatrices

of W. Based on this methodology, three relaxations will be
proposed for the optimization problem (1) next.

SDP relaxation: This optimization problem is defined as

min
W

f0(l1(W), l2(W)) (3a)

s.t. fj(l1(W), l2(W)) ≤ 0, j = 1, ...,m (3b)
W � 0 (3c)

Reduced SDP relaxation: Choose a set of cycles O1, ....,Op
in the graph G such that they form a cycle basis. Let Ω denote
the set of all subgraphs O1, ....,Op as well as all edges of
G that do not belong to any cycle in the graph (i.e., bridge
edges). The reduced SDP relaxation is defined as

min
W

f0(l1(W), l2(W)) (4a)

s.t. fj(l1(W), l2(W)) ≤ 0, j = 1, ...,m (4b)
W{Gs} � 0, ∀Gs ∈ Ω (4c)

SOCP relaxation: This optimization problem is defined as

min
W

f0(l1(W), l2(W)) (5a)

s.t. fj(l1(W), l2(W)) ≤ 0, j = 1, ...,m (5b)
W{(i, j)} � 0, ∀(i, j) ∈ G (5c)

The reason why the above optimization problem is called an
SOCP problem is that the condition W{(i, j)} � 0 can be
replaced by the linear and norm constraints

Wii,Wjj ≥ 0,

Wii + Wjj ≥
∣∣∣∣ [ Wii Wjj

√
2Wij

] ∣∣∣∣
The above SDP, reduced SDP and SOCP relaxations

target the non-convexity caused by the nonlinear relationship
between x and (y, z). Note that these optimization problems
are convex relaxations only when the functions f0, ..., fm are
convex. If any of these functions is nonconvex, additional
relaxations might be needed to convexify the SDP, reduced
SDP or SOCP optimization problem. Define f opt, f opt

SDP, f
opt
r-SDP

and f opt
SOCP as the optimal solutions of the optimization

problems (2), (3), (4) and (5), respectively. By comparing
the feasible sets of these optimization problems, it can be
concluded that

f opt
SOCP ≤ f

opt
r-SDP ≤ f

opt
SDP ≤ f

opt (6)

Given a particular optimization problem of the form (1), if
any of the above inequalities for f opt turns into an equality,
the associated relaxation will be able to find the solution
of the original optimization problem. In this case, it is said
that the relaxation is “tight” or “exact”. The objective of
this part is to relate the exactness of the proposed relax-
ations to the topology of the graph G and its weight sets
{c(1)ij , c

(2)
ij , ..., c

(k)
ij }’s.

It is noteworthy that the aforementioned problem formu-
lation can be easily generalized in two directions:



• Allowance of weight sets with different cardinalities:
The above problem formulation assumes that every edge
weight set has k elements. However, if the weight sets
have different sizes, the trivial weight 0 can be added to
each set multiple times in such a way that all expanded
sets reach the same cardinality.

• Inclusion of linear terms in x: The optimization prob-
lem (1) is formulated in xx∗ with no linear term in
x. This issue can be fixed by defining an expanded
vector x̃ as

[
1 x∗

]∗
. Then, the matrix x̃x̃∗ needs

to be replaced by a new matrix variable W̃ under the
constraint W̃11 = 1.

C. Exactness of Conic Relaxations

Throughout this part, we assume that fj(y, z) is mono-
tonic in every entry of z for j = 0, 1, ...,m (but possibly
nonconvex in y and z). With no loss of generality, suppose
that fj(y, z) is an increasing function with respect to all
entries of z.

The objective of this part is to study the interrelationship
between f opt

SOCP, f opt
r-SDP, f opt

SDP and f opt. In particular, it is aimed
to understand what properties the generalized weighted graph
G should have to guarantee the exactness of some of the
proposed relaxations. Some special cases of this problem
have been studied in [44]–[46]. In what follows, various
conditions will be provided to guarantee the exactness of
the proposed SDP, reduced SDP and SOCP relaxation. The
reader may refer to [39] for more details.

The following statements hold in both real and complex
cases D = R and D = C:

i) The SDP relaxation is exact (i.e., f opt
SDP = f opt) if and

only if it has a rank-1 solution Wopt.
ii) The reduced SDP relaxation is exact (i.e., f opt

r-SDP = f opt)
if and only if it has a solution Wopt such that

Rank{Wopt{Gs}} = 1, ∀Gs ∈ Ω (7)

iii) The SOCP relaxation is exact (i.e., f opt
SOCP = f opt) if and

only if it has a solution Wopt such that

Rank{Wopt{(i, j)}} = 1, ∀(i, j) ∈ G

and that∑
]Wopt

ij = 0, ∀r ∈ {1, 2, ..., p} (8)

where the sum is taken over all directed edges (i, j) of
the oriented cycle ~Or (note that ~Or denotes a directed
cycle corresponding to Or). Moreover, the same result
holds even if the condition (8) is replaced by (7).

The above conditions reveal the role of the underlying
graph of the optimization. By further simplifying these
conditions, it can be shown that the SOCP, reduced SDP and
SDP relaxations are all tight in the real-valued case D = R,
provided each weight set {c(1)ij , c

(2)
ij , ..., c

(k)
ij } is sign definite

with respect to R and∏
(i,j)∈Or

σij = (−1)|Or|, ∀r ∈ {1, ..., p}

where σij ∈ {−1, 0, 1} shows the sign of the weight set
associated with the edge (i, j) ∈ G. This condition is
naturally satisfied in three special cases:
• G is acyclic with arbitrary sign definite edge sets.
• G is bipartite with positive weight sets.
• G is arbitrary with negative weight sets.

If the SDP relaxation is not exact, it still has a low rank
(rank-2) solution in two cases:
• G is acyclic (but with potentially indefinite weight sets).
• G is a weakly-cyclic bipartite graph with sign definite

edge sets.
To study the complex-valued case D = C, assume that each
edge set {c(1)ij , c

(2)
ij , ..., c

(k)
ij } is sign definite with respect to

C. This assumption is trivially met if k ≤ 2 or the weight set
contains only real (or imaginary) numbers. It can be shown
that:
• The SOCP, reduced SDP and SDP relaxations are all

tight if G is acyclic.
• The SOCP, reduced SDP and SDP relaxations are tight

if each weight set contains only real or imaginary
numbers and∏

(i,j)∈ ~Or

σij = (−1)|Or|, ∀r ∈ {1, ..., p}

where σij ∈ {0,±1,±i} shows the sign of each weight
set.

• The reduced SDP and SDP relaxations (but not neces-
sarily the SOCP relaxation) are exact if G is bipartite
and weakly cyclic with positive or negative real weight
sets.

• The reduced SDP and SDP relaxations (but not neces-
sarily the SOCP relaxation) are exact if G is a weakly
cyclic graph with imaginary weight sets and the signs
σij = ±i.

Furthermore, if the graph G can be decomposed as a union of
edge-disjoint subgraphs in an acyclic way in such a way that
each subgraph has one of the above four structural properties,
then the SDP relaxation is exact.

The above conditions will be examined on multiple exam-
ples below.

D. Illustrative Examples

Example 1: The minimization of an unconstrained bivariate
quartic polynomial can be carried out via an SDP relaxation
obtained from the first-order sum-of-squares technique [47].
In this example, we demonstrate how a computationally
cheaper SOCP relaxation (in comparison to the foregoing
SDP relaxation) can be used to solve the minimization of a
structured bivariate quartic polynomial subject to an arbitrary
number of structured bivariate quartic polynomials. To this
end, we first consider the unconstrained case, where the goal
is to minimize the polynomial

f0(x1, x2) = x41 + ax22 + bx21x2 + cx1x2 (9)

with the real-valued variables x1 and x2, for arbitrary coef-
ficients a, b, c ∈ R. In order to find the global minimum of
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Fig. 2: Figures (a) and (b) show the weighted graph G for
Examples 1 and 2, respectively.

this optimization problem, the standard convex optimization
technique cannot readily be used due to the non-convexity
of f(x1, x2) in general. To address this issue, the above
unconstrained minimization problem will be converted to a
constrained quadratic optimization problem. More precisely,
the problem of minimizing f0(x1, x2) can be reformulated
in terms of x1, x2 and two auxiliary variables x3, x4 as:

min
x∈R4

x23 + ax22 + bx3x2 + cx1x2 (10a)

s.t. x21 − x3x4 = 0, x24 − 1 = 0 (10b)

where x =
[
x1 x2 x3 x4

]∗
. The above optimization

problem can be cast as follows:

min
x∈R4,W∈S4

W33 + aW22 + bW23 + cW12 (11a)

s.t. W11 −W34 ≤ 0, W44 − 1 = 0 (11b)

and subject to the additional constraint W = xx∗. Note that
W11 −W34 ≤ 0 should have been W11 −W34 = 0, but this
modification does not change the solution. To eliminate the
non-convexity induced by the constraint W = xx∗, one can
use an SOCP relaxation obtained by replacing the constraint
W = xx∗ with the convex constraints W{(1, 2)} � 0,
W{(2, 3)} � 0 and W{(3, 4)} � 0. To understand the
exactness of this relaxation, the weighted graph G capturing
the structure of the optimization problem (10) should be
constructed. This graph is depicted in Figure 2(a). Since G
is acyclic, the SOCP relaxation is exact for all values of
a, b, c. Note that this does not imply that every solution W
of the SOCP relaxation has rank 1. However, there is a simple
systematic procedure for recovering a rank-1 solution from
an arbitrary optimal solution of this relaxation.

Now, consider the constrained optimization case where a
set of constraints

fj(x1, x2) = x41+ajx
2
2+bjx

2
1x2+cjx1x2 ≤ dj j = 1, ...,m

is added to the optimization problem (9) for given coeffi-
cients aj , bj , cj , dj . In this case, the graph G depicted in
Figure 2(a) needs to be modified by replacing its edge
sets {b} and {c} with {b, b1, ..., bm} and {c, c1, ..., cm},

respectively. The SOCP and SDP relaxations corresponding
to the new optimization problem are exact as long as the sets
{c, c1, ..., cm} and {b, b1, ..., bm} are both sign definite.

Example 2: Consider the optimization problem

min
x∈C7

x∗Mx s.t. |xi| = 1, i = 1, 2, ..., 7 (12)

where M is a given Hermitian matrix. Assume that the
weighted graph G depicted in Figure 2(b) captures the struc-
ture of this optimization problem, meaning that (i) Mij = 0
for every pair (i, j) ∈ {1, 2, ...7} such that (i, j) 6∈ G,
(j, i) 6∈ G and i 6= j, (ii) Mij is equal to the edge weight cij
for every (i, j) ∈ G. The SDP relaxation of this optimization
problem is as follows:

min
W∈H7

trace{MW}

s.t. W11 = · · · = W77 = 1,

W � 0

Define O1 and O2 as the cycles induced by the vertex
sets {1, 2, 3} and {1, 4, 5}, respectively. Now, the reduced
SDP and SOCP relaxations can be obtained by replacing
the constraint W � 0 in the above optimization problem
with certain small-sized constraints based on O1 and O2, as
mentioned before. The following statements hold:
• The SDP, reduced SDP and SOCP relaxations are all

exact in the case where c12, c13, c14, c15, c23, c45 are real
numbers satisfying the inequalities c12c13c23 ≤ 0 and
c14c15c45 ≤ 0.

• The SDP, reduced SDP and SOCP relaxations are all
exact in the case where each of the sets {c12, c13, c23}
and {c14, c15, c45} has at least one zero element.

• The SDP and reduced SDP are exact in the case where
c12, c13, c14, c15, c23, c45 are imaginary numbers. Note
that the SOCP relaxation may not be tight. To illustrate
this fact, assume that the weights of the graph G are all
equal to +i and that the diagonal entries of the matrix
M are zero. In this case, the SDP relaxation is known to
be tight, but the optimal objective values of the SOCP
and SDP relaxations are equal to two different numbers
-16 and -14.3923. Hence, the SOCP relaxation cannot
be exact.

The above results demonstrate how the combined effect of
the graph topology and the edge weights makes various
relaxations exact for the quadratic optimization problem (12).

Example 3: Consider the optimization problem

min
x∈Cn

x∗Mx s.t. |xj | = 1, j = 1, 2, ...,m

(13)
where M is a symmetric real-valued matrix. It has been
proven in [19] that this problem is NP-hard even in the case
when M is restricted to be positive semidefinite. Consider the
graph G associated with the matrix M . The SDP and reduced
SDP relaxations are exact for this optimization problem and
therefore this problem is polynomial-time solvable with an
arbitrary accuracy, provided that G is bipartite and weakly
cyclic. To understand how well the SDP relaxation works,



we pick G as a cycle with 4 vertices. Consider a randomly
generated matrix M :

M =


0 −0.0961 0 −0.1245

−0.0961 0 −0.1370 0
0 −0.1370 0 0.7650

−0.1245 0 0.7650 0


After solving the SDP relaxation numerically, an optimal
solution Wopt is obtained as

Wopt =


1.0000 0.1767 −0.5516 0.6505
0.1767 1.0000 0.7235 −0.6327
−0.5516 0.7235 1.0000 −0.9923
0.6505 −0.6327 −0.9923 1.0000


This matrix has rank-2 and thus it seems as if the SDP
relaxation is not exact. However, the fact is that this relax-
ation has a hidden rank-1 solution. To recover that solution,
one can write Wopt as the sum of two rank-1 matrices, i.e.,
Wopt = (u1)(u1)∗ + (u2)(u2)∗ for two real vectors u1 and
u1. It is straightforward to inspect that the complex-valued
rank-1 matrix (u1 + u2i)(u1 + u2i)∗ is another solution of
the SDP relaxation. Thus, Wopt = u1 + u2i is an optimal
solution of the optimization problem (13).

Example 4: Consider the optimization problem

min
x∈Cn

x∗M0x

s.t. x∗Mjx ≤ 0, j = 1, 2, ...,m

where M0, ....,Mm are symmetric real matrices, while x
is an unknown complex vector. Similar to what was done
in Example 1, a generalized weighted graph G can be
constructed for this optimization problem. Regardless of
the edge weights, as long as the graph G is acyclic, the
SDP, reduced SDP and SOCP relaxations are all tight. As
a result, this class of optimization problems is polynomial-
time solvable with an arbitrary accuracy.

Example 5: As a generalization of linear programs, consider
the non-convex optimization problem

min
x∈Rn

k∑
i=1

a0ie
x∗M0ix +

l∑
i=k+1

x∗M0ix + b∗0x

s.t.
k∑
i=1

ajie
x∗Mjix +

l∑
i=k+1

x∗Mjix + b∗jx ≤ 0

for j = 1, 2, ...,m, where aij’s are scalars, bj’s are n × 1
vectors, and Mij’s are n×n symmetric matrices. This prob-
lem involves linear terms, quadratic terms, and exponential
terms with quadratic exponents. Using the technique stated
in Section II-B, the above optimization problem can be
reformulated in terms of the rank-1 matrix x̃x̃∗ where x̃ =[

1 x∗
]∗

, from which an SDP relaxation can subsequently
be obtained by replacing the matrix x̃x̃∗ with a new matrix
variable W̃ under the constraint W̃11 = 1. By mapping
the structure of the optimization into a generalized weighted
graph and noticing that ex is an increasing function in x,
it can be concluded that the SDP relaxation is exact if the
following conditions are all satisfied:

• aji is nonnegative for every j ∈ {0, ...,m} and i ∈
{1, ..., k}.

• bj is a non-positive vector for every j ∈ {0, ...,m}.
• Mji has only non-positive off-diagonal entries for every
j ∈ {0, ...,m} and i ∈ {1, ..., l}.

III. SPARSE QUADRATIC OPTIMIZATION

In the previous section, we explained that an optimization
with two favorable structures may be solved through a conic
relaxation: (i) sparsity and (ii) sign-definite coefficients.
Although Condition (ii) is satisfied for certain problems
(e.g., power optimization problems due to the passivity of a
power grid), but it may be restrictive in general. In contrast,
“sparsity” is a universal feature in real-world problems. The
objective of this part is to understand how sparsity affects
the computational complexity of a problem. More details on
the results to be presented next can be found in [48].

A. Low-Rank Positive Semidefinite Matrix Completion

The low-rank positive semidefinite matrix completion
problem aims to design the unknown entries of a partially
filled matrix so that the resulting matrix becomes positive
semidefinite with a minimum rank. This fundamental prob-
lem serves as a basis for studying the SDP relaxation for
polynomial optimization problems. To introduce the prob-
lem, consider a simple graph G = (V, E) with n vertices
together with a known matrix Ŵ ∈ Sn+ (V and E denote the
vertex set and edge set of the graph). The goal is to solve
the following optimization problem:

min
W∈Sn+

rank{W} (14a)

s.t. Wij = Ŵij ∀(i, j) ∈ E (14b)

Wkk = Ŵkk ∀k ∈ V (14c)

Note that the matrix W inherits the values of its diagonal
and off-diagonal entries corresponding to the edges of G from
the given matrix Ŵ. Assume that the above optimization is
feasible. This problem is difficult to tackle due to its non-
convex objective function. To reduce the complexity of the
problem, we will propose two convex relaxations based on
the graph notions of OS and treewidth.

Definition 6: Given a graph G = (V, E), let O = {ok}sk=1

be a sequence of vertices of G with s elements. Denote as Gk
the subgraph induced by {o1, . . . , ok} for k = 1, ..., s. Let G′k
be the connected component of Gk containing ok. O is called
an OS-vertex sequence of G if, for every k ∈ {1, ..., s}, there
exists a vertex wk ∈ V with the following three properties:

1) wk is a neighbor of ok, i.e., (ok, wk) ∈ E
2) wk does not belong to the set {o1, o2, ..., ok}
3) wk is not connected to any vertex in G′k other than ok

Denote the maximum cardinality among all OS-vertex se-
quences of G as OS(G) [49] .

Figure 3 shows the construction of a maximal OS-vertex
sequence of the Petersen graph. Dashed lines and bold lines
highlight nonadjacency and adjacency, respectively, to show
how wk at each step satisfies the conditions of Definition 6.



 

 

 

  

 

  

  

  

 
 

 

  

 

 

 

Fig. 3: A maximal OS-vertex sequence for the Petersen graph

 

  

 

 
 

  

 

 

 

 

Fig. 4: A maximal OS-vertex sequence for a tree

Figure 4 illustrates the procedure of finding a maximal OS-
vertex sequence for a tree. The connected component of each
ok in the subgraph induced by {o1, . . . , ok} is also shown.
Notice that although w2 is connected to o1, it is a valid
choice because o1 and o2 do not share the same connected
component in G2. To develop a convex relaxation for the
matrix completion problem (14), let Gc = (Vc, Ec) denote
an arbitrary graph such that Vc = V and Ec ∩ E = φ.

Convex Relaxation I: This problem is defined as

min
W∈Sn+

∑
(i,j)∈Ec

tij Wij (15a)

s.t. Wij = Ŵij ∀(i, j) ∈ E (15b)

Wkk = Ŵkk ∀k ∈ V (15c)

where tij’s are arbitrary nonzero scalars.
Assume that the above problem has a strictly feasible

(positive definite) point W (see [48] for a discussion on
the removal of this mild assumption). Then, every solution
of Convex Relaxation I, denoted as Wopt, satisfies the
inequality

rank{Wopt} ≤ n−min
Gs

{
OS(Gs ∪ Gc)

∣∣∣∣ Gs ⊆ G} (16)

where

• The notation Gs ⊆ G means that Gs is a graph with n
vertices whose edge set is a subset of the edge set of
G.

• Gs ∪ Gc denotes the edge-wise union of the graphs Gs
and Gc.

Note that the inequality (16) holds for all possible nonzero
values of the coefficients tij’s. Hence, the convex optimiza-
tion (15) provides a suboptimal solution for the non-convex
problem (14) together with an upper bound on its optimal
objective value. Roughly speaking, a suitable choice of Gc
makes the upper bound n−minGs⊆G OS(Gs∪Gc) very small
for a large class of spare graphs G’s. To elaborate on this
statement, we render the notion of tree decomposition.

Definition 7: Given a graph G = (V, E), a tree T is
called a tree decomposition of G if it satisfies the following
properties:

1) Every node of T corresponds to and is identified by a
subset of V . Alternatively, each node of T is regarded
as a group of vertices of G.

2) Every vertex of G is a member of at least one node of
T .

3) Tk is a connected graph for k = 1, 2, ..., n, where Tk
denotes the subgraph of T induced by all nodes of T
containing the vertex k of G.



 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

   

 

 

 

   

Fig. 5: A minimal tree decomposition for a ladder

4) The subtrees Ti and Tj have a node in common for
every (i, j) ∈ E .

The width of a tree decomposition is the cardinality of
its biggest node minus one (recall that each node of T is
indeed a set containing a number of vertices of G). The
treewidth of G is the minimum width over all possible tree
decompositions of G and is denoted by tw(G).

Note that the treewidth of a tree is equal to 1. Figure 5
shows a graph G with 6 vertices named a, b, c, d, e, f , to-
gether with its minimal tree decomposition T . Every node
of T is a set containing three members of V . The width
of this decomposition is therefore equal to 2. A large class
of real-world graphs are believed to have small treewidth
numbers. As an example, we will verify the treewidth of G
for two different applications later in this paper.

Given a tree decomposition T of the graph G with width
t, with no loss of generality assume that all nodes of T
have the same cardinality (see [48] for the general case). We
design a graph Gc according to the following procedure:
• Step 1: Initialize T c as T and Gc as a graph with n

vertices and no edges.
• Step 2: Identify a node of T c with degree 1 (i.e., a leaf).

Let V1 and V2 denote this node and its unique neighbor
in T c (note that V1, V2 ∈ V because each node of T c
is indeed a collection of vertices of G)

• Step 3: Let {p1, ..., pg} and {q1, ..., qg} represent the
sets V1 − V2 and V2 − V1, respectively. Add the edges
(p1, q1),...,(pg, qg) to Gc and then remove node V1 from
T c.

• Step 4: Jump to Step 2 if T c is still nonempty.
It can be shown that

n−min
Gs

{
OS(Gs ∪ Gc)

∣∣∣∣ Gs ⊆ G} ≤ t+ 1 (17)

for this choice of Gc. Hence, the convex Optimization (15) is
able to provide a suboptimal solution for Optimization (14)
with the property that rank{Wopt} ≤ t+1. In particular, if an
optimal tree decomposition is deployed for the construction
of Gc, then rank{Wopt} ≤ tw(G) + 1 for all nonzero
values of the coefficients tij’s. Note that the existence of
a solution for Optimization (14) of rank at most tw(G) + 1
has already been proved in [50] for real-valued problems,
but the technique stated above works for both real and
complex problems. In addition, the above technique designs
infinitely many optimization problems, each of which returns
such a solution. The importance of this result will become
clear later in the paper. The problem of finding a tree

decomposition of minimum width is NP-complete in general
[51]. Nevertheless, for a fixed integer t, the problem of
checking the existence of a tree decomposition of width t
and finding such a decomposition (if any) can be solved
in linear time [52], [53]. It is interesting to note that the
treewidth for the optimal decentralized control problem (to
be stated later in the paper) is equal to 2 due to its extreme
sparsity.

Assume that G is a large-scale graph with no clear sparsity
pattern. In this case, it may be very difficult to find a good
tree decomposition or directly design a subgraph Gc mini-
mizing the upper bound n −minGs⊆G OS(Gs ∪ Gc). Under
this circumstance, we introduce another convex relaxation
for Optimization (14).

Convex Relaxation II: This optimization problem is defined
as

min
W∈Hn

+

∑
(i,j)∈E∪Ec

tij Im{Wij} (18a)

s.t. Re{Wij} = Ŵij ∀(i, j) ∈ E (18b)

Wkk = Ŵkk ∀k ∈ V (18c)

with nonzero coefficients tij’s, where the variable of the
optimization is a complex-valued matrix. Assume that the
above problem has a strictly feasible (positive definite) point
W. Let Wopt denote an arbitrary solution of this optimiza-
tion. The matrix Re{Wopt} turns out to be a suboptimal
solution of the matrix completion problem (14) satisfying
the inequality

rank{Re{Wopt}} ≤ 2
(
n− OS (G ∪ Gc)

)
(19)

At the cost of adding the factor 2, the bound provided in (19)
is simpler than the one given in (16) due to obviating the need
to take the minimum of OS(·) over a set of subgraphs Gs’s.
The above bound is quite useful because it is a small number
for a large class of sparse graphs, even in the case where Gc
is considered as a trivial graph with no edges. This bound
reduces to 4 for the optimal distributed control problem to
be studied later in the paper.

The bounds provided in (16) and (19) can both be im-
proved (for non-chordal graphs) by supplanting OS(·) with
msr(·), where “msr” stands for the minimum semidefinite
rank of a graph [54]–[56]. Indeed, msr(G) is equal to the
smallest rank of all positive semidefinite matrices with the
same support as the adjacency matrix of G.

B. Sparse Quadratic Optimization
Consider the standard non-convex quadratically-

constrained quadratic program (QCQP):

min
x∈Rn−1

x∗A0x + 2b∗0x + c0 (20a)

s.t. x∗Akx + 2b∗kx + ck ≤ 0 for k = 1, . . . ,m
(20b)

where Ak ∈ R(n−1)×(n−1), bk ∈ Rn−1 and ck ∈ R, for
k = 0, . . . ,m. Define

Mk ,

[
ck b∗k
bk Ak

]
(21)



Each function fk has the linear representation fk(x) =
trace{MkW} where

W , [1 x∗]∗[1 x∗] (22)

Conversely, an arbitrary matrix W ∈ Sn can be factorized
as (22) if it satisfies three properties: W11 = 1, W � 0,
and rank{W} = 1. Therefore, optimization (20) can be
reformulated as follows:

min
W∈Sn

trace{M0W}

s.t. trace{MkW} ≤ 0 for k = 1, . . . ,m

W11 = 1

W � 0

rank{W} = 1

(23)

In the above reformulation of QCQP, the constraint
rank{W} = 1 carries all the non-convexity. Neglecting this
constraint yields an SDP relaxation [57], [58]. The existence
of a rank-1 solution for this SDP relaxation guarantees
the equivalence between the original QCQP and its relaxed
problem. Let Ŵ denote an arbitrary solution of the SDP
relaxation of optimization (20). It is straightforward to verify
that Ŵ may become full rank and yet there would exist a
low-rank solution. Indeed, it can naturally occur that the SDP
relaxation will have infinitely many solutions and therefore
a solution with the lowest rank should be sought.

Low-Rank Solution: In an effort to find a low-rank SDP
solution, let G = (V, E) be a graph with n vertices such
that (i, j) ∈ G if and only if the (i, j) entry of at least
one of the matrices M0,M1, ...,Mm is nonzero, for every
1 ≤ i < j ≤ n. The graph G captures the sparsity of the
optimization (20). Observe that those off-diagonal entries of
Ŵ that correspond to non-existent edges of G play no direct
role in the SDP relaxation. As a result, it can be inferred that
every solution Wopt to the matrix completion problem (14)
or its convex relaxations (15) and (18) is also a solution to
the SDP relaxation of the QCQP problem (20). Depending
on the choice of Gc in (15) and (18), different low-rank
solutions of the SDP relaxation can be generated for a sparse
graph G. In particular, there are infinitely many optimization
problems with linear objectives, each of which generates
a solution Wopt of the SDP relaxation with rank at most
tw{G}+ 1, provided the optimal tree decomposition of G is
known. Without taking advantage of a tree decomposition,
we can generate a solution with rank at most 2

(
n−OS(G)

)
in polynomial time (note that this solution can be found
efficiently, even though computing the theoretical upper
bound on its rank would be an NP-hard problem).

Penalized SDP Relaxation: The strategy delineated above
consists of two steps: (i) finding an arbitrary (potentially
high-rank) solution Ŵ of the SDP relaxation for QCQP,
and (ii) turning the solution into a lower rank solution
Wopt by solving a second convex optimization based on
the matrix completion approach. As will become clear, it
is advantageous to integrate these two steps. This will be

carried out in the sequel. Consider the convex optimization

min
W∈Sn+

trace{M0W}+ ε1trace{W}+ ε2
∑

(i,j)∈Ec
tij Wij

s.t. trace{MkW} ≤ 0 for k = 1, . . . ,m

W11 = 1
(24)

for a given graph Gc, a scalar ε1, and nonzero numbers ε2
and tij’s. Notice that the objective of this optimization has
two penalty terms: (i) a trace term motivated by the nuclear
norm technique for rank compensation, and (ii) a weighted
sum of some off-diagonal entries of W motivated by the
matrix completion approach described earlier. Assume that
Slater’s condition holds for Optimization (24) and its dual.
As before, every solution Wopt of the above penalized SDP
problem satisfies the inequality

rank{Wopt} ≤ n− min
Gs⊆G

OS(Gs ∪ Gc) (25)

where the right side of the inequality can be replaced by
t + 1 if Gc is constructed from a tree decomposition of
G with width t such that all nodes are of the identical
size. Note that the penalized SDP may become arbitrarily
close to the SDP problem by making ε1 sufficiently small
or equal to zero. This means that an ε-approximation of a
low-rank solution of the SDP relaxation of QCQP can be
obtained through the penalized SDP problem. In other words,
the proposed penalization eliminates high-rank solutions of
the SDP relaxation. A similar penalization technique can be
derived based on Optimization (18), leading to the upper
bound 2

(
n − OS (G ∪ Gc)

)
on the rank of all solutions of

the corresponding penalized SDP.
Consider a QCQP problem whose underlying sparsity

graph G has a relatively small treewidth. The above penalized
convex relaxation generates only low-rank solutions for an
infinite choice of coefficients ε1, ε2 and tij’s. Our simula-
tions on thousands of energy optimization and decentralized
control problems suggest that it is possible to generate a
near-global rank-1 solution by meticulously devising tij’s
and tuning the regularization parameters ε1 and ε2 [31], [40],
[59], [60].

IV. GENERAL POLYNOMIAL OPTIMIZATION

The preceding subsection provided some results on study-
ing a sparse QCQP based on the graph notions of OS and
treewidth. A question arises as to whether the proposed
approach can be applied to a dense QCQP or a general
polynomial optimization. To address this problem, consider
the optimization

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, ...,m
(26)

where f0, ..., fm are arbitrary polynomial functions. Assume
that the above problem is feasible. This class of optimization
includes discrete optimization problems (xi = ±1 can be cast
as x2i = 1), and can approximate almost every continuous
optimization problem using a Taylor series expansion. The



above optimization problem can be converted to a QCQP
via introducing slack parameters and imposing additional
constraints [2]. For instance, the polynomial x21 +x22x3 with
three variables can be expressed as x21 + x4x3 subject to
the additional constraint x22 = x4 with a new variable x4.
This polynomial can also be cast as x21 + x2x4 subject to
x4 = x2x3. More precisely, every polynomial optimization
can be formulated as a QCQP by increasing the dimension
of the problem by a logarithmic factor. This will lead to a
QCQP problem of the form (20), but perhaps with no sparsity
structure. In what follows, we will explain how the resulting
dense QCQP can be sparsified. The details may be found
in [61].

Let G = (V, E) represent the sparsity graph (i.e., general-
ized weighted graph) of the QCQP, which may be as sparse
as a tree or as dense as a complete graph. Consider a vertex
i of the graph G with degree at least 2 and reformulate the
QCQP problem according to the following procedure.

Vertex Duplication Procedure: Perform the following ac-
tions:
• Replace the variable xi of QCQP with two new vari-

ables xi1 and xi2 .
• Divide the neighboring nodes of vertex i in the graph
G into two arbitrary sets, denoted as V1(i) and V2(i).

• For every j such that (i, j) ∈ E , replace all occurrences
of the term xixj in the objective and constraints of the
optimization with xi1xj if j ∈ V1(i) and with xi2xj if
j ∈ V2(i).

• Add the additional consistency constraint xi1 = xi2 to
the optimization.

Note that the idea of duplicating a parameter has been
extensively utilized in distributed computation. The above
procedure modifies the graph G as follows:
• Vertex i is replaced by two new vertices i1 and i2.
• Vertices i1 and i2 are connected to the neighboring

subsets V1(i) and V2(i), respectively.
• Vertices i1 and i2 are both connected to vertex 1 to

account for the consistency constraint (note that xi1 =
xi2 is indeed equal to x1xi1 = x1xi2 as x1 plays the
role of number 1).

As can be seen, the above procedure aims to sparsify the
graph and reduce its treewidth. In particular, if the above
procedure is repeated a sufficient number of times (on the
order of the number of edges of G), then all edges (i, j) of
G with i, j ≥ 2 will become isolated and hence the resulting
graph will have treewidth t = 2 (because the removal of
vertex 1 in the new graph eliminates all cycles of the resulting
graph). This implies that every polynomial optimization can
be converted to an equivalent sparse QCQP whose SDP
relaxation has a solution Wopt with rank at most t+ 1 = 3
(see Subsection III-B). A question arises as to whether there
exists a relaxation for which rank{Wopt} ≤ 2. To address
this question, consider the following procedure for an edge
(i, j) ∈ G.

Edge Elimination Procedure: Perform the following ac-

tions:
• Add two auxiliary variables z1 and z2.
• Impose the additional constraints:

z1 =
xi + xj

2
, z2 =

xi − xj
2

(27)

• Replace every instance of the product xixj in the QCQP
problem with z21 − z22 .

The above procedure eliminates the edge (i, j) and its
repetition makes the resulting graph have treewidth t = 1.
Hence, the SDP relaxation corresponding to the obtained
sparse QCQP has a matrix solution with rank 1 or 2. This
result has two implications:

i) The NP-hardness of various subclasses of polynomial
optimization, e.g., combinatorial optimization, is only
related to the existence of a not rank-1 but low-rank
SDP solution, where the upper bound on the rank is
constant and does not depend on the size of the original
optimization.

ii) By approximating the low-rank solution of the SDP
relaxation with a rank-1 matrix, an approximate solution
of the original problem may be obtained whose close-
ness to the global solution can also be upper bounded.

These results offer a new insight into the computational
complexity of polynomial optimization (Property (i)) and
enable to seek a near-global solution (Property (ii)).

There are two important parameters associated with an
SDP relaxation: (i) optimal cost serving as a lower bound
on the optimal value of the QCQP, and (ii) minimum rank
of the SDP solution. It can be shown that the proposed
sparsification technique leads to a non-unique hierarchy of
SDP relaxations, which does not improve the lower bound
but reduces the rank. In general, since there are many ways
to sparsify the graph (by determining which vertex of G to
choose and how to partition its edges), it is imperative to
perform the sparsification in such a way that the optimal
value of SDP relaxation is not decreased noticeably and yet
the rank is improved significantly.

Assume that we have designed an SDP relaxation possess-
ing a low-rank matrix solution Wopt. Now, three strategies
could be taken to find a near-global (sub-optimal) solution
of the original QCQP:
• Since Wopt has only a few undesirable (nonzero)

eigenvalues, it may be converted to an approximate
solution via a local search algorithm. Based on the
eigenvalue decomposition, it is straightforward to design
an iterative algorithm with the property that the rank
of the solution does not increase at any iteration of
the algorithm. This leads to a sequence of low-rank
matrices, which tends to converge to a rank-1 solution.
The obtained solution may ultimately need to be ap-
proximated by a rank-1 matrix if it is not ultimately
rank-1.

• The unwanted nonzero eigenvalues of Wopt may be
eliminated by means of a penalization technique such
as the one mentioned earlier.



• Another technique is to directly approximate Wopt with
a rank-1 matrix by solving a convex optimization.

V. CASE STUDY: OPTIMAL DISTRIBUTED CONTROL

Consider the problem of designing an optimal distributed
controller for a multi-channel deterministic or stochastic
system, where the optimality is measured with respect to
a linear-quadratic, H2, or H∞ performance index. It has
been long known that this problem is computationally hard
and, in particular NP-hard in the worst case [62]–[64].
Great effort has been devoted to investigating this highly
complex problem for special types of systems, including
spatially distributed systems [65]–[69], dynamically decou-
pled systems [70], [71], weakly coupled systems [72], and
strongly connected systems [73]. Another special case that
has received considerable attention is the design of an opti-
mal static distributed controller [74], [75]. Early approaches
for the optimal decentralized control problem were based
on parameterization techniques [76], [77], which were then
evolved into matrix optimization methods [78], [79].

Due to the recent advances in the area of convex optimiza-
tion, the focus of the existing research efforts has shifted
from deriving a closed-form solution for the above control
synthesis problem to finding a convex formulation of the
problem that can be efficiently solved numerically [80]–
[82]. This has been carried out in the seminal work [83] by
deriving a sufficient condition named quadratic invariance,
which has been generalized in [84] by deploying the concept
of partially order sets. These conditions have been further
investigated in several other papers [85]–[87]. A different
approach is taken in the recent papers [88], [89], where it
has been shown that the distributed control problem can be
cast as a convex optimization for positive systems.

A. Time-Domain Formulation

Consider the linear discrete-time system{
x[τ + 1] = Ax[τ ] +Bu[τ ]

y[τ ] = Cx[τ ]
, ∀τ ∈ Z+ (28)

where x[τ ] ∈ Rn, u[τ ] ∈ Rm and y[τ ] ∈ Rr denote
the state, input and output of the system, respectively. The
system matrices A,B,C and the initial state x[0] are all
known. The goal is to design a fixed-order dynamic controller
with a pre-specified structure to minimize the cost function∑p
τ=0(x[τ ]∗Q x[τ ] + u[τ ]∗Ru[τ ]) for an arbitrary terminal

time p and positive definite matrices Q and R. To solve this
optimal distributed control (ODC) problem, we denote the
unknown controller as{

z[τ + 1] = Acz[τ ] +Bcy[τ ]
u[τ ] = Ccz[τ ] +Dcy[τ ]

, ∀τ ∈ Z+ (29)

where z[τ ] ∈ Rnc represents the state of the controller, nc de-
notes its known degree, and the quadruple (Ac, Bc, Cc, Dc)
needs to be designed. Since the controller is required
to have a pre-determined distributed structure, the 4-tuple
(Ac, Bc, Cc, Dc) must belong to some given polytope K.
This polytope enforces certain entries of Ac, Bc, Cc, and
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Fig. 6: The graph showing the sparse nonlinearity of ODC
for the time-domain formulation (node 1 is not shown in the
graph due to its connection to almost all nodes of the graph).

Dc to be zero. ODC is a nonlinear optimization because
the dynamics of the controller has some non-convex terms
such as Acz[τ ] and Bcy[τ ]. In order to solve the above ODC
problem, define:

v :=
[

1 h∗ x[0]∗ · · · x[p]∗ y[0]∗ · · · y[p]∗

u[0]∗ · · · u[p]∗ z[0]∗ · · · z[p]∗
]∗

where h denotes a vector consisting of all free (nonzero)
entries of the matrices Ac, Bc, Cc, and Dc. The ODC
problem can be cast as a quadratic optimization with respect
to the vector v and as a linear optimization in the matrix vv∗.
Hence, an SDP relaxation of this problem can be derived by
replacing vv∗ with a new matrix variable W.

B. Lyapunov-Domain Formulation

The previous formulation of the ODC problem was re-
stricted to deterministic systems. Consider now the stochastic
system{

x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ]
y[τ ] = Cx[τ ] + Fv[τ ]

, τ ∈ Z+

(30)
where d[τ ] and v[t] are random variables representing the
system’s disturbance and measurement noise, which are
assumed to be zero-mean white-noise random processes. The
objective is to design a distributed controller with a pre-
specified structure for the above system to minimize the cost
function

lim
τ→+∞

E (x[τ ]∗Qx[τ ] + u[τ ]∗Ru[τ ]) (31)

where E{·} shows the expectation operator. Since we can no
longer formulate ODC as a QCQP with respect to the time-
domain signals (due to unknown disturbances), we resort to
a bilinear matrix formulation in terms of Lyapunov matrices.



To explain the idea, consider the special case of designing a
static controller. Define two covariance matrices as below:

Σd = E{Ed[0]d[0]∗E∗}, Σv = E{Fv[0]v[0]∗F ∗} (32)

The problem of designing an optimal static structured con-
troller u[t] = Ky[t] for the system (30) to minimize (31) can
be formulated as the minimization of

trace{PΣd +MΣv +K∗RKΣv} (33)

subject to the constraints
G G (AG+BL)∗ L∗

G Q−1 0 0
AG+BL 0 G 0

L 0 0 R−1

 � 0, (34a)

[
P I
I G

]
� 0, (34b)[

M (BK)∗

BK G

]
� 0, (34c)

L = KCG (34d)

where K is a matrix variable with forced zeros in certain
entries, P is an unknown Lyapunov matrix, and G ∈ Sn,
L ∈ Rn×r and M ∈ Sr are auxiliary matrices. The above
problem is non-convex due to the nonlinear term L = KCG.
To convexify the problem, define v as a vector consisting of
number 1, h, and all entries of the matrix G. Then, every
entry of KCG can be expressed as a quadratic function of v.
Hence, the above optimization has a natural SDP relaxation
with a variable W playing the role of vv∗.

C. Existence of Low-Rank Solution

Two quadratic formulations of the ODC problem have
been proposed for deterministic and stochastic systems. The
graphs capturing the sparsity of these problems are both
extremely sparse with small treewidth numbers. For example,
in the special case of designing a fully decentralized static
controller (diagonal K), the graph for the time-domain
formulation reduces to a bunch of stars after removing its
node 1. This fact is illustrated in Figure 6. As a result,
the treewidth of this graph is equal to 2, which implies
that the SDP relaxation of the ODC problem has a low-
rank solution with rank at most 3 under this circumstance.
The same conclusion holds for the Lyapunov-domain for-
mulation. Extensive simulations have been conducted in [40],
[59], [60], where it has been verified on random and physical
systems that the rank-3 solution can be well approximated
by a rank-1 matrix. For instance, several hundred random
systems were generated in those papers for which near-
optimal decentralized controllers with a global optimality
degree of at least 99% were designed. The same observation
was made for the distributed control of power grids. The
reader may refer to [59], [60] to see how the numerical
complexity of the proposed SDP relaxations may also be
reduced significantly, leading to solving computationally-
cheap SDP relaxations.

VI. CASE STUDY: POWER OPTIMIZATION PROBLEMS

In the past five decades, many optimization techniques
have been studied for the non-convex optimal power flow
(OPF) problem, including: linear programming, Newton
Raphson, quadratic programming, nonlinear programming,
Lagrange relaxation, interior point methods, artificial in-
telligence, artificial neural network, fuzzy logic, genetic
algorithm, evolutionary programming, and particle swarm
optimization [90]–[102]. Most of these methods are built on
the Karush-Kuhn-Tucker (KKT) necessary conditions, which
can only find a local solution (as opposed to a globally
optimal solution). Some recent efforts have been focused
on convex optimization [103]–[105]. The practical difficulty
of treating the non-linearity of OPF has resulted in most
optimization formulations resorting to approximations such
as linearization. The problem of discovering new approaches
for avoiding linearization has received a special attention by
Federal Energy Regulatory Commission in the past few years
[106]–[109].

A. Problem Formulation

Consider an n-bus power network described by a graph
G = (V, E), where each vertex belonging to V = {1, . . . , n}
represents a node (bus) of the network and each edge
belonging to E represents a transmission line. Let yij denote
the admittance of the line (i, j) ∈ E . Define V ∈ Cn as
the voltage phasor vector where its component Vk represents
the complex voltage at node k ∈ V . Assume that each
node of the network is connected to a known load as well
as a generator with an unknown production level. OPF
is a resource allocation problem, which aims to optimize
the production levels of the generators. To formulate the
problem, let Pk and Qk denote the net active and reactive
powers injected at node k ∈ G (net power is equal to
generation minus load). OPF can be expressed as:

min
V,P,Q∈Cn

∑
k∈V

fk(Pk) (35a)

s.t. V min
k ≤ |Vk| ≤ V max

k , k ∈ V (35b)

Pmin
k ≤ Pk ≤ Pmax

k , k ∈ V (35c)

Qmin
k ≤ Qk ≤ Qmax

k , k ∈ V (35d)
Re{Vi(V ∗i − V ∗j )y∗ij} ≤ Pmax

ij , (i, j) ∈ E (35e)

Pk +Qk
√
−1 =

∑
i∈N (k)

Vk(V ∗k − V ∗i )y∗ki, k ∈ V (35f)

where V min
k , V max

k , Pmin
k , Pmax

k , Qmin
k , Qmax

k and Pmax
ij are

network limits, N (k) denotes the set of neighbors of vertex
k, and fk(Sk) is a convex function accounting for the power
generation cost at node k.

B. Existence of Low-Rank Solution

Problem (35) is quadratic in the vector V. Therefore, an
SDP relaxation of OPF can be derived by reformulating the
problem in terms of VV∗ and then replacing VV∗with a
new variable W. It is known that (see [27]–[30], [32], [110]–
[115]):
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Fig. 7: The IEEE 14-bus test case and its minimal tree
decomposition

• The SDP relaxation is exact for IEEE benchmark sys-
tems with 14, 30, 57, 118 and 300 buses, several Polish
systems, and many randomly generated power networks.
This technique is the first method proposed since the
introduction of the OPF problem in 1962 that is able
to find a provably global solution for certain OPF
problems.

• Under some practical assumptions, the SDP relaxation
is exact for distribution networks (acyclic graphs). How-
ever, it may not be exact for transmission networks
(cyclic graphs) unless there is a sufficient number of
transformers in the network.

• There are OPF problems defined over transmission
networks for which the SDP exact is not exact but a
penalized SDP relaxation works.

• The sign definite condition stated before holds for power
networks and this is one of the main reasons behind the
success of the SDP relaxation for OPF.

Since the SDP relaxation is not always exact for OPF over
transmission networks, it is highly desirable to seek a near-
global solution. We have calculated the treewidth of G for
several power systems and reported our findings in [115].
It can be seen that the treewidth of a Polish network with
3375 nodes is at most 28. Figure 7 shows a minimal tree
decomposition associated with the IEEE 14 case. As long as
the treewidth is small, the SDP relaxation of OPF will have
a low-rank solution for transmission networks, which may
be leveraged to design a near-global solution. This idea has
been tested on 7000 instances of OPF in [32], [115].

VII. CONCLUSIONS

This tutorial paper aims to study an arbitrary non-convex
polynomial optimization problem through semidefinite pro-
gramming (SDP) relaxations combined with graph-theoretic
algorithms. Three problems are investigated in detail. First,
a method is proposed to study how the underlying struc-
ture of an optimization problem reduces the computational
complexity of the problem. For this purpose, the structure
of the optimization is mapped into a weighted graph and
it is shown that the SDP relaxation is exact if the graph
possesses certain properties. Second, it is shown that the SDP
relaxation of a sparse optimization problem has a solution
whose rank can be characterized in terms of the sparsity level
of the problem. Third, it is explained that every polynomial
optimization problem admits a sparse representation whose

SDP relaxation has a rank 1 or 2 matrix solution. Two
engineering applications of these results are also discussed.
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