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Abstract
We present a new technique for solving non-
convex variational inference optimization prob-
lems. Variational inference is a widely used
method for posterior approximation in which the
inference problem is transformed into an optimiza-
tion problem. For most models, this optimization
is highly non-convex and so hard to solve. In
this paper, we introduce a new approach to solv-
ing the variational inference optimization based
on convex relaxation and semidefinite program-
ming. Our theoretical results guarantee very tight
relaxation bounds that get nearer to the global op-
timal solution than traditional coordinate ascent.
We evaluate the performance of our approach on
regression and sparse coding.

1. Introduction
A major challenge of Bayesian modeling is posterior infer-
ence. For many models this requires calculating normalizing
integrals that neither have a closed form, nor are solvable
numerically in polynomial time. There are two fundamental
approaches to addressing the posterior inference problem.
One uses Markov chain Monte Carlo (MCMC) sampling
techniques that are asymptotically exact. However, these
methods tend to be slow compared with point-estimates and
not scalable to large datasets (Hastings, 1970; Gelfand and
Smith, 1990). Mean-field variational inference is another
approach that approximates the posterior distribution by first
defining a simpler family of distributions and then finding a
member that is closest to the desired posterior (Jordan et al.,
1999) according to the KullbackLeibler (KL) divergence.
This turns the inference problem into an optimization prob-
lem. However, this introduces new challenges due to the
resulting non-convex optimization.

In this paper, we present a method to deal with the non-
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convexities in variational inference (VI) optimization for
conjugate models that achieve near globally optimal so-
lutions. Our method is based on convex relaxation and
semidefinite programming (SDP). In our approach, an SDP
relaxation converts a non-convex polynomial optimization
of vector parameters to a convex optimization with matrix
parameters via a lifting technique. We call this approach
convex relaxation for variational inference (CRVI). The
exactness of the relaxation can then be interpreted as the
existence of a low-rank solution to this SDP. Our main con-
tribution is to solve this variational optimization problem in
an accurate way and provide theoretical guarantees for the
exactness of our solution using graph theoretic tools. To the
best of our knowledge, this is the first time that a relaxation
for variational inference could guarantee and produce op-
timal solutions that are either globally optimal solution or
very close to it. Our experimental results demonstrate the
effectiveness of CRVI compared with coordinate ascent for
sparse regression and sparse coding models.

Convex optimization problems are one of the most important
areas of optimization theory. They are guaranteed to have
global optimal solutions that can be found with a numerical
algorithm. On the other hand, there is no such theory for
solving generic non-convex problems. Recent advances in
the area of convex optimization provide a variety of methods
for approaching and solving non-convex optimization prob-
lems exactly or approximately (Boyd and Vandenberghe,
2004; Yedidia et al., 2005; Wainwright and Jordan, 2008).
For instance, several works have studied the existence of
a low-rank solution to matrix optimizations with linear or
nonlinear constraints (Pataki, 1998; Sturm and Zhang, 2003;
Parrilo, 2003; Fazelnia et al., 2017; Madani et al., 2017).
We build on the method in Madani et al. (2017) to obtain
theoretical bounds for the exactness of CRVI.

There are a number of works that have addressed problems
with probabilistic inference using convex optimization meth-
ods. These works have mostly focused on convex relaxation
for maximum entropy and message passing algorithms (Guo
and Schuurmans, 2008; Nickisch and Seeger, 2009; Seeger
and Nickisch, 2011). In general, they lack control over the
exactness of their approximations in that there is no estimate
of the closeness of the solution of the relaxed problem to
the optimal solution of the original problem.

In this work, we apply convex relaxation techniques to the
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optimization problem introduced by variational inference
with more focus on the cases where the hardness of the prob-
lem is due to quadratic or higher order polynomial terms.
We first break down the objective function into two parts,
one representing the polynomial and non-convex part and
one for the rest of the objective function. In this method,
we lift the domain of optimization from vectors to matrices,
and capture all of non-convexities in the optimization within
the transformed problem. As we show, tight relaxation
bounds can be achieved to guarantee near-global optimal
solution. We also observe that, in models with many param-
eters this matrix may be prohibitively large. In this case, we
still demonstrate how CRVI can be beneficial by relaxing
a locally non-convex problem over a subset of variational
parameters.

In Section 2 we review variational inference and our pro-
posed convex relaxation technique. In Section 3 we illustrate
our method and discuss theoretical contributions. In Section
4, we show experimental results.

2. Background
2.1. Variational Inference

Variational inference approximates the posterior distribution
of variables in a probabilistic model. Let D be a dataset that
is analyzed with a model having variables in the set θ. The
model assumption is D|θ ∼ p(D|θ), θ ∼ p(θ).

The goal is to calculate the posterior distribution p(θ|D)
after observing the data. Due to complexities in most mod-
els, finding the true posterior distribution is a difficult task.
Instead, we can approximate it by q(θ) such that this approx-
imation is close to the true distribution according to some
notion of similarity. For variational inference, this closeness
is measured by the Kulback-Leibler (KL) divergence. To
optimize the KL-divergence, one can observe that

ln p(D) = Eq
[

ln
p(D, θ)
q(θ)

]
︸ ︷︷ ︸

L(q(θ))

+Eq
[

ln
q(θ)

p(θ|D)

]
︸ ︷︷ ︸

KL(q‖p)

, (1)

and since the LHS is constant, one can minimize KL by
maximizing the variational objective function L over the pa-
rameters of a predefined distribution family q(θ). To define
this family in a way that is amenable to optimization, one
often assumes that q(θ) belongs to a family of distributions
that factorizes over the variables in θ. Seeking to find pa-
rameters for this distribution, φ, results in optimizing the
following problem,

max
φ
L(q(θ)) subject to φ ∈ feasible set, (2)

where the feasible set is the intersection of possible regions
for all of the constraints on the parameters. For a very large

set of models, this optimization is non-convex or combinato-
rial, and hard to solve. Numerical algorithms are only able
to achieve a local maximum, and most of the time there is
no evaluation about how close this local optimum is to the
global one.1 In this paper, we consider the cases where this
optimization is non-convex and NP-hard. While the global
optimum for these optimizations might not be achievable,
we aim to find a local optimum that is close to the global
solution. Better local optima assure us that we obtain lower
KL-divergence and a more accurate posterior approxima-
tion. Without loss of generality, we convert the problem to
minimizing −L(q(θ)) over the same feasible set to make
the problem more compatible with the convex optimization
framework and notations.

We propose a new optimization approach to VI that we call
convex relaxation for variational inference (CRVI). This
technique approximates the optimization problem to over-
come the issues related to non-convexities. As we will show,
CRVI can result in near-global optimal solutions that are
not only a better local optima compared to the standard
coordinate ascent approach, but also provides a means for
assessing closeness to the global optimum.

2.2. Convex Relaxation

We next present the general technique that we adopt and
build on in this paper in its abstract representation. We then
apply it to two specific variational inference optimization
problems. Although there are exceptions, polynomial terms
in an objective or constraint tend to add non-convexities
and make the optimization intractable to solve. The tech-
nique that we use deals with these hard polynomial parts by
converting them into near-exact tractable terms.

First we note that any polynomial function or expression
can be represented as a quadratic function, possibly by intro-
ducing new variables (Berlekamp, 1970). This conversion is
straightforward, and every high order term could be broken
down into lower order terms by introducing new parameters
and quadratic equality constraints. As a result, without loss
of generality, we assume that all of the polynomial terms
are quadratic. Let the following be a general polynomial
optimization problem,

min
x∈Rd

f0(x)

subject to fk(x) ≤ 0 for k = 1, . . . ,K,
(3)

where fk = x>Akx + b>k x + ck for k = 0, . . . ,K. Since
there are no limitations on the coefficient choices, the terms
in (3) can represent any polynomial optimization or expres-
sion.

If all of the matrices {A0, A1, ..., AK} are positive semidef-

1We note that by this we do not mean how close q(θ) is to
p(θ|D), but how close we are to optimizing the chosen q(θ).
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inite, the optimization in (3) is convex. Otherwise, it is
non-convex, and there is no numerical or analytical proce-
dure that guarantees achieving a global optimum. We use a
lifting technique that involves changing the variable space
from vectors to matrices (Boyd and Vandenberghe, 2004).
More specifically, define Fk and Xk as follows,

FK =

[
ck

1
2b
>
k

1
2bk Ak

]
, X =

[
1 x>

x xx>

]
(4)

Then the equivalent optimization to (3) is

min
X∈R(d+1)×(d+1)

trace(F0X)

subject to trace(FkX) ≤ 0 for k = 1, ..,K,

X1,1 = 1, X � 0,

rank(X) = 1.

(5)

The entry equal to 1 in matrix X is to ensure that we have
a way to represent the terms that are linear with respect
to x. It should be pointed out that matrix X is designed
such that it replaces [1 x>]> × [1 x>]. This transformation
requires us to be able to decompose back the solution X
of optimization (5) to get the vector x after solving it. To
assure this, X needs to be positive semidefinite and have
rank 1.

All terms in (5) are linear with respect to X and conse-
quently convex, except for the last constraint on the rank of
the matrix. To avoid this non-convex rank constraint, we
can simply drop it. By dropping the rank constraint, we
achieve an optimization that is linear in terms of a matrix
variable that has to be positive semidefinite. As a result, we
obtain a semidefinite program (SDP) relaxation for the opti-
mization in (3) (Vandenberghe and Boyd, 1996). Although
SDP methods may not be fast in general, by carefully de-
signing them and avoiding redundancies, they can run in a
reasonable amount of time. The following shows the relaxed
optimization problem,

min
X∈R(d+1)×(d+1)

trace(F0X)

subject to trace(FkX) ≤ 0 for k = 1, ..,K,

X1,1 = 1, X � 0.

(6)

One of the important steps here is to quantify the exactness
of this relaxation. Naturally we seek approximations that
result in finding global optimal or near-global optimal solu-
tions. The only constraint that we dropped is that the matrix
has to be rank 1. Hence, in this relaxation, the final rank
of X carries information on the exactness of this approxi-
mation. After solving the relaxed semidefinite program, if
the rank of the optimal X is 1, we have found the global
optimal solution for the original problem (3). Otherwise,
we reach an approximate solution to the original problem.
It should be noted that the lower the rank of the optimal

solution of the relaxed problem, the closer the approxima-
tion to the global optimal solution of the original problem.
Thus, the closer the rank of the optimal solution gets to 1,
the closer we are to the global optimal solution. This rank
of the relaxed problem helps us measure the closeness of
the approximate solution to the global optimal solution of
the original problem.

Fortunately, the rank of the solution of the relaxed problem
cannot be arbitrary large, as shown by Madani et al. (2017).
In fact, it is upper bounded by a property of a defined graph
structure for the original problem which is its treewidth.
The treewidth of an undirected graph is a number associated
with the graph that is mainly used for complexity analysis
of graphs. It can be calculated from the minimum size of
largest node over all tree-decomposition of the graph or from
the size of the largest clique in a chordal completion of the
graph. The treewidth mainly parametrizes and describes the
sparsity of a graph, meaning that sparser graphs tend to have
smaller treewidths. The process is to first construct a graph
from the original quadratic optimization problem (3), and
then calculate an upper bound on the rank of the semidefinite
relaxation using the treewidth of the constructed graph.

To build the graph, we need to assign a vertex to every
entry of the vector [1 x>]> and add edges between vertices
whose product appears in the objective function or any of the
constraints of the original problem (3). All of the constants
or non-variable coefficients are neglected in this process. For
instance, if cross-term xixj appears somewhere in (3), we
put an edge between vertices that correspond to entry xi and
xj . Or if term xk appears, we add an edge between vertices
corresponding to xk and 1 since xk = xk × 1. Hence, every
term in the optimization problem can be translated into a
graph edge. Interestingly, one interpretation of adding entry
‘1’ in the matrix definition (4) is to be able to represent linear
terms as an edge here in the construction of the graph. The
fewer the number of cross terms in the optimization, the
fewer edges and the sparser the graph.

Now with the graph constructed, we can find an upper bound
for the rank of the optimal solution of the relaxed problem in
(6). The rank of the optimal solution to the relaxed problem
is less than or equal to one plus the treewidth of its enriched
super-graph. As a result, the lower the treewidth of the
graph of the problem, the better approximation to the global
optimal solution. As we show in the examples, no matter
how large the dimensionality of the matrix X in (6), the
rank of the optimal solution matrix will be smaller than or
equal to the calculated upper bound.

Overall, in this relaxation and transformation, all approx-
imations are pulled into the rank of the optimal solution.
An important advantage of this is that if the structure of the
sparsity graph of a problem is good enough for us to have
a low upper bound, we can achieve a strong relaxation that
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gives a near global optimal solution. To show how we use
this in variational inference, we use a simple example model
next. We then generalize it to other models.

3. Convex Relaxation for Variational Inference
3.1. CRVI for Bayesian Linear Regression

We first show the proposed CRVI method on two Bayesian
linear regression models in which the posterior distribution
is approximated with variational inference. We start with a
simple model. Consider the dataset D = {xi, yi}Ni=1 with
x ∈ Rd and y ∈ R, and the model,

yi ∼ Normal(x>i w,α
−1),

w ∼ Normal(0, λ−1I),

α ∼ Gamma(a0, b0). (7)

The goal is to find p(w,α|D), the posterior distribution of
the model parameters given the input data. Since the true
posterior is hard to find, we apply variational inference to ap-
proximate it. Let q(w,α) denote the approximate posterior
density and define

q(w,α) = q(w)q(α) (8)
= Normal(w|µ,Σ)Gamma(α|a, b),

where the factorization comes from the mean-field approx-
imation. The variational objective L for this optimization
problem is

L(q) =(a0 − 1)(ψ(a)− ln b)− b0
a

b
− λ

2
(µ>µ+ trace(Σ))

+
N

2
(ψ(a)− ln b)−

N∑
i=1

1

2

a

b
((yi − x>i µ)2 + x>i Σxi)

+ a− ln b+ ln Γ(a) + (1− a)ψ(a) +
1

2
ln |Σ|+ const.

(9)
where ‘const.’ is a constant with respect to the variational
parameters of this model, {a, b, µ,Σ}, which this function
should be maximized over. This objective function is non-
concave with respect to its parameters and coordinate ascent
variational updates—in which the parameters are cycled
over and locally optimized holding the others fixed during
each iteration—using arbitrary initialization will likely only
achieve locally optimal solutions. We will next show how
CRVI can significantly improve this result. We consider the
variational inference optimization problem that minimizes
−L subject to a, b > 0, Σ � 0.

Our approach is to use the relaxation technique presented
in the previous section on the polynomial part of this opti-
mization that contains all of the non-convexities associated
with this optimization problem. Consider the following

reformulated optimization problem,

min

N∑
i=1

1

2
((ey2i − 2x>i u+ x>i uµ

>xi) + x>i eΣxi)

+
λ

2
(µ>µ+ trace(Σ)) + b0e

− (a0 − 1)(ψ(a) + ln c)− N

2
(ψ(a) + ln c)

− a− ln c− ln Γ(a)− (1− a)ψ(a)− 1

2
ln |Σ|

subject to a, c, e > 0, Σ � 0, e = ac, u = eµ.
(10)

This optimization is over the variables a, c, e, µ, u,Σ. Note
that we introduced new variables c to replace 1

b , e to repre-
sent ac and u to replace e×µ . This enables us to reformulate
the polynomial part as a quadratic optimization problem.
Hence, optimization problems (9) and (10) are identical. We
refer to the first two lines of (10) as f(a, c, e, µ, u,Σ) which
is in polynomial form and contains all of the non-convexities
in this problem, while we refer to the rest as g(a, c,Σ),
which is non-linear and convex. This is due to convexity of
negative ψ function for positive scalars as well as the con-
vexity of the negative log and negative entropies. Therefore,
by relaxing the first part, we get a convex relaxation for the
optimization problem. In order to perform the relaxation,
we need to rewrite f(a, c, e, µ, u,Σ) as a quadratic function
of a vector variable. Based on the semidefinite relaxation
construction in the previous section, we define the following
vector

ν =
[
1 a c e µ> u> Σ1,1 Σ1,2 · · · Σd,d

]>
It is easy to see that f(a, c, e, µ, u,Σ) is quadratic with
respect to entries of ν. We reformulate the function f to use
ν as an argument in fCR. Thus the transformed optimization
problem is as follows

min
ν,a,c,Σ

fCR(ν) + g(a, c,Σ)

subject to a, c, e ≥ 0, e = ac, u = eµ, Σ � 0

a = ν2, c = ν3,

vector(Σ) = [ν(5+2∗d) . . . ν(4+2d+d2)]

(11)

where vector(·) vectorizes the matrix. Convex relaxation
can now be defined for the optimization (11) by introducing
new matrix variable A := ν×ν> ∈ S(4+2d+d2)×(4+2d+d2)

and following the relaxation steps. A in this formulation
plays the role of X in optimization (6). The following
proposition gives our theoretical bounds for the exactness
of this relaxation.

Proposition 1. The matrix solution obtained by CRVI for
(11) has a rank less than or equal to 3.

Proof. Figure 1 shows the constructed graph for the original
quadratic optimizations (9) on the left side, and its tree
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Figure 1. Constructed graph for the optimization problem (9) on
the left side, and its tree decomposition on the right side. Some
edges are removed for better legibility of the graphs.

decomposition on the right side. Treewidth is the cardinality
of the largest vertex in a graph’s tree decomposition minus
1 where its enriched super-graph is constructed. Since the
cardinality of the largest vertex in its tree decomposition is
3, its treewidth is 2. This guarantees that the rank of the
optimal solution of CRVI is upper bounded by 3. �

Note that in Figure (1) on the left side, vertex 1 is connected
to e, all u entries and all Σ entries. Similarly, e is connected
to all entries of µ and Σ. Big blue circles on the right side
show the bag of nodes created in the tree decomposition
construction.

Although the dimensionality of this optimization can be very
large ((4+2d+d2)×(4+2d+d2)), the rank of its solution
is very low (upper bounded by 3 here). This indicates that
the relaxation result will be in a close neighborhood of the
global optimal solution considering the fact that a rank 1
solution specifies the global optimal solution. Furthermore,
this bound exists regardless of dimensionality or scale of
the input data.

3.2. Model Expansion Using Sparse Priors

We next generalize the Bayesian linear regression model
by including dimension specific precisions to w that can be
learned to prune irrelevant coefficients in a similar spirit as
the Lasso (Tibshirani, 1996). This model is also known as
the relevance vector machine or automatic relevance deter-
mination (Bishop, 2006). It modifies the Bayesian linear
regression model by defining a separate prior on the diago-
nal entries of the covariance matrix of w as follows,

yi ∼ Normal(x>i w,α
−1),

α ∼ Gamma(a0, b0),

w ∼ Normal(0, diag(λ1, . . . , λd)
−1),

λk ∼ Gamma(m0, l0). (12)

Defining a posterior approximating variational distri-
bution q as in the previous case, we now include
q(λk) = Gamma(mk, lk) for k = 1, . . . , d. Calculating

the objective results in the same form as before,

L(a, b,m1, . . . ,md, l1, . . . , ld, µ,Σ) =

−
N∑
i=1

1

2

a

b
((yi − x>i µ)2 + x>i Σxi) +

N

2
(ψ(a)− ln b)

+

d∑
i=1

(ψ(mi)− ln(li))−
1

2
(µ>diag(

m1

l1
, ...,

md

ld
)µ)

− 1

2
trace(diag(

m1

l1
, ...,

md

ld
)Σ)

+

d∑
i=1

(m0 − 1)(ψ(mi)− ln(li))− l0
mi

li

+ (a0 − 1)(ψ(a)− ln b)− b0
a

b
+

1

2
ln |Σ|

+ a− ln b+ ln Γ(a) + (1− a)ψ(a)

+

d∑
i=1

(mi − ln li + ln Γ(mi) + (1−mi)ψ(mi)) + const.

(13)
By reformulating this objective appropriately for convex re-
laxation, the procedure is very similar to the simpler model.
We introduce new variables to replace high order polynomial
terms. These new variables are

si =
1

li
, ri = misi, ζi = riµi for i = 1, . . . , d. (14)

Repeating the relaxation steps described earlier, we achieve
a convex relaxation for the optimization of (13). Similar to
the simpler model, we can achieve the following theoretical
result.

Proposition 2. The matrix solution obtained by CRVI for
(13) has a rank less than or equal to 3.

The graph structure and tree decomposition for this problem
is very similar to the simpler model in (3.1), and the same
theoretical upper bounds are guaranteed. This strong upper
bound exists regardless of the dimensionality of data or size
of the input, even though this Bayesian model has a more
complex prior structure and many more model parameters.
Still, this is only a bound; as we will show in the experi-
ments section the actual rank of the solution to the relaxed
optimization is less than 3, and in fact is very close to 1.
This means that although the theoretical bound assure us
that the rank is less than or equal to 3, in practice on real data
sets we can get almost exactly the global optimal solutions
of the original problem.

3.3. CRVI for Nonparametric Factor Analysis

We illustrate CRVI on a more complex model, Bayesian
nonparametric factor analysis (Paisley and Carin, 2009) of
dataD = {xi ∈ Rd}Ni=1 . This will also allow us to propose
another modification for the application of this framework
due to the much larger number of parameters in the model.
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The model is

xi ∼ Normal(WZiCi, σ
2I), (15)

Ci ∼ Normal(0, λ−1I),

πk ∼ Beta(α γ
K , α(1− γ

K )),

zi,k ∼ Bernoulli(πk),

Zi = diag(zi,1, . . . , zi,K),

where k = 1, ...,K are the latent factor indexes. In the
limit K → ∞ this converges to a nonparametric beta pro-
cess model (Paisley and Jordan, 2016). In addition, due to
the model specifications in (15), a sparse representation in
enforced by beta-Bernoulli prior for Z.

Given a matrix W ∈ Rd×K , for each vector xi we seek a
sparse zero-one coding Zi of this vector as well as weight
coefficientsCi. TheZ’s specify which factors inW are used
to represent the data, while the C’s indicate the weights of
those selected factors. In this model we will seek to find
the posterior distribution of C as well as point estimates
for Z as well as W . Therefore, the algorithm is actually
EM and not variational inference since there is no forced
factorization of q. However, we do this to focus on another
area where CRVI may be useful, as described below.

For each data point i we define q(Ci) =Normal(Ci|µ,Σ).
Here, we only focus on learning the local variables for a
specific data point xi, being Zi, Ci. Therefore, we drop the
subscripts below. The optimization problem corresponding
to this part of the model is

min
Z,µ,Σ

1

2σ2
(x−WZµ)>(x−WZµ)

+
1

2σ2
trace(WZΣZW>)

(16)

+
λ

2
µ>µ+

λ

2
trace(Σ)− 1

2
log(|Σ|) + Z>h

subject to Zk,k ∈ {0, 1}, for k = 1, ...,K, Σ � 0

where h is a constant vector with respect to optimization
variables. Note that this optimization can be done in parallel
for data points due to their independence. All of objective
terms are polynomial with respect to the optimization vari-
ables. In addition, the log term is also convex with respect to
Σ. To make all of the constraints quadratic, we replace the
zero or one constraint for Zk,k with Z2

k,k−Zk,k = 0. There-
fore, we obtain a non-convex optimization with polynomial
terms containing all of the non-convexities.

Motivation and discussion. Following the steps de-
scribed in the previous section, we are able to define the
convex relaxation optimization for this problem. Another
novelty introduced here is that we have not relaxed the entire
problem globally, which is computationally impossible for
a model of this size (the dimensionality of X would be too

massive). Instead, we only relaxed locally on the parameters
for each observation. However, since optimizing over C and
Z is both non-convex and combinatorially hard, we use this
model to illustrate a proposed approach to local relaxation
of the objective. Contrasting this with coordinate ascent,
which would update one variable holding another fixed, we
anticipate that this can find better local optimal values over
subsets of parameters, and therefore hopefully over the en-
tire objective function. After constructing the graph of this
problem, we find that the rank of the optimal solution of the
relaxed problem is upper bounded by 3. Accordingly, we
anticipate to find near-global optimal solutions over these
interacting local parameters.

3.4. CRVI in General Form

Following the ideas introduced by these examples, we
present CRVI as a general framework. Let us consider
the generic variational inference problem in (2). We split
the objective into two functions, one containing polynomial
terms, f , and one for the remaining parts, g. Transform-
ing f to be a quadratic function, possibly by adding new
constraints and variables, we get the optimization

min
ϕ(1),ϕ(2)

f(ϕ(1)) + g(ϕ(2))

subject to ϕ(1), ϕ(2) ∈ feasible set.
(17)

Note that ϕ(1) and ϕ(2) might have overlapping parame-
ters. To complete the relaxation, we introduce a new matrix
variable Φ(1) and obtain CRVI for the general form,

min
Φ(1),ϕ2

f(Φ(1)) + g(ϕ(2))

subject to Φ(1), ϕ(2) ∈ feasible set,

Φ(1)
1,1 = 1, Φ(1) � 0.

(18)

If g is a convex function, (18) is a convex optimization prob-
lem solvable in polynomial time. By constructing the graph
for this relaxation approximation bounds can be achieved.
The lower the rank of the optimal solution Φ

(1)
opt , the more

exact the approximation. As seen in the above examples,
variational inference do have this structure, for which low
rank recovery and near-global optimal solutions are guaran-
teed. In the cases where g is non-convex, CRVI could be
used to partially convexify the optimization problem. We
can reduce the hardness related to f with this relaxation
technique, get approximation bounds, and improve the re-
sults compared to the cases where we have to deal with both
non-convex f and g.
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Table 1. Information about the datasets, running time of the algorithms, and rank of the found solution using CRVI. We see that CRVI is
slower than CAVI (coordinate ascent). However, the rank of the found CRVI solution is near 1 (and less than the theoretical upper bound
of 3), indicating a solution nearer the global optimum. This is confirmed in Figure 2.

DataSet Dim. # of Samples CAVI time (s) CRVI time (s) Rank

Birth Rate & Econ 4 30 0.281 1.115 1.11

Iris 4 150 0.231 1.807 1.20

Yacht 6 308 0.402 2.111 1.10

Pima Indian Diabetes 8 768 0.571 3.040 1.67

Bike Sharing 13 731 0.884 6.749 1.61

Parkinson 21 5875 0.962 7.309 1.98

WDBC 31 569 1.059 10.766 1.73

Online News Popularity 58 39644 9.341 15.223 1.52

Year Prediction Songs 90 515345 18.809 22.050 1.78

4. Experimental Results
4.1. CRVI for Sparse Bayesian Linear Regression

We focus on comparing the optimal value of the variational
objective calculated by our method CRVI in Section (3.2),
and using coordinate ascent variational inference (CAVI)
which is the standard method for variational optimization.
We implemented CRVI code using CVX, which is a pack-
age for specifying and solving convex programs (Grant and
Boyd, 2014; 2008). We experiment on 9 datasets from the
UCI repository with various sizes and dimensions. These
data sets are: Iris, Birth rate and economic growth, Yacht,
Pima Indian diabetes, Bike sharing, Parkinson data, Wiscon-
sin breast cancer (WDBC), Online news popularity, Year
of release prediction for a million songs. We experimented
using 100 different hyper-parameter settings and initial val-
ues for each dataset. Table (1) shows some details about
these datasets, as well as the average running time for our
simulations and the average rank of the optimal solution
found by CRVI.

As can be seen, CRVI is slower than CAVI, which is not un-
expected. Although the actual dimensionality of the semidef-
inite matrix variables for these datasets varies from 28× 28
to 8284× 8284, the average ranks found show that, regard-
less of the size of the data, the rank remains small and close
to 1. This means that the CRVI is able to find nearly-global
optimal solutions, considering that a rank 1 solution gives
the exact global optimum solution. To evaluate the improve-
ment according to the variational objective function, for
each simulation of each dataset we subtracted the local op-
timal value of CAVI from CRVI, and divided it by optimal
value found by CAVI to get the relative improvement to the
maximization problem. We show a summary of these results
in a boxplot for each dataset in Figure 2. As can be seen,
CRVI significantly improved the local optimal solution of

the optimization over coordinate ascent, which can be inter-
preted as finding a more accurate posterior approximation.
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Figure 2. Boxplot of relative improvement in the calculated local
optimal value of CRVI compared to CAVI. Each box represents
the summary of the fractional improvement of CRVI over CAVI
for 100 simulations using different prior hyper-parameters and
initializations. After calculating the respective local optimal varia-
tional objective functions, the value found by CAVI is subtracted
from the value from CRVI and divided by the values from CAVI to
obtain the relative improvement score. As is evident, CRVI gave a
significant improvement over CAVI.
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4.2. CRVI for Nonparametric Factor Analysis

We also compare the accuracy of CRVI for sparse signal
representation for dictionary learning with K-SVD (Aharon
et al., 2006) on synthetic data. K-SVD uses orthogonal
matching pursuits (OMP) to encode each signal in a dic-
tionary (Tropp, 2004), which is also learned during the
optimization process. Our goal is to compare the number
of correctly recovered entries in the binary Z. We generate
N = 300 observations of D = 100 dimensions and set
K = 100 and λ = 0.1. We change the sparsity level of the
generated Z over different simulations.

In Figure 3, the x-axis represents the probability of a ‘1’
in each entry of Z when generating this binary encoding,
while the y-axis shows the percentage of correctly recovered
values in Z over the entire data set. As can be seen, CRVI
is able to better learn the correct values for Z by finding the
correct sparsity. Figure 4 shows the percentage of correctly
recovered 1’s for CRVI and KSVD. As can be seen from
the figure, CRVI has a better performance in recovering the
correct locations of 1’s in the original Z matrix. Also, since
we are focusing on the local optimal solution over Z and
C as discussed in Section 3.3, we use the correct W in this
experiment. Therefore, KSVD actually reduces to OMP in
this experiment.
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Figure 3. The fraction of agreement in the recovered Z’s with
original Z using CRVI and K-SVD (here, OMP). The x-axis shows
the probability of a 1 in every entry of the original sparse matrix.
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Figure 4. The fraction of correctly recovered 1’s in the original
Z using CRVI and K-SVD (here, OMP). The x-axis shows the
probability of a 1 in every entry of original sparse matrix.

5. Discussion
Convex relaxations are a powerful technique for approximat-
ing (convexifying) hard optimization problems associated
with variational inference. However, one of the caveats of
this method is its runtime complexity, arising mostly from
the positive semidefinite constraint. Fortunately, recent ad-
vances in this area have suggested faster ways to impose
these types of constraints by breaking them into several
smaller-sized semidefinite constraints. This significantly im-
proves the running time of these types of relaxations (Kalbat
and Lavaei, 2016). We expect that incorporating these tech-
niques can improve the computational performance of this
algorithm. Another future direction is to find tighter bounds
for the relaxation exactness using the treewidth measure.
Finding the exact treewidth of a graph is an NP-hard prob-
lem in general, and the bounds given in this paper used
the treewidth’s that were within our computational power.
There may be better ways to reach smaller treewidth’s and
make the theoretical bounds tighter. The observed ranks
in Table (1), smaller than the theoretical upper bound of 3,
indicate that there is room for improvement in the theory in
this direction.

6. Conclusion
We presented convex relaxation for variational inference
(CRVI), a method to learn parameters of approximate pos-
terior distributions using mean-field variational inference.
We focused on Bayesian linear regression and sparse coding
models. By lifting the domain of the optimization, we were
able to relax the non-convex parts of the variational objective
function and approximate the variational parameters. Graph
theoretic tools enabled us to quantify the exactness of this
approximation, and estimate the closeness of the obtained
solution to the global optimal solution. We showed that
CRVI can significantly improve the traditional coordinate
ascent (CAVI) optimization technique on various datasets
for sparse Bayesian linear regression and sparse coding for
nonparametric factor analysis.
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