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Abstract—This paper is concerned with the optimal dis-
tributed control (ODC) problem for discrete-time deterministic
and stochastic systems. The objective is to design a fixed-
order distributed controller with a pre-specified structure that
is globally optimal with respect to a quadratic cost functional. It
is shown that this NP-hard problem has a quadratic formulation,
which can be relaxed to a semidefinite program (SDP). If the SDP
relaxation has a rank-1 solution, a globally optimal distributed
controller can be recovered from this solution. By utilizing the
notion of treewidth, it is proved that the nonlinearity of the ODC
problem appears in such a sparse way that an SDP relaxation of
this problem has a matrix solution with rank at most 3. Since the
proposed SDP relaxation is computationally expensive for a large-
scale system, a computationally-cheap SDP relaxation is also
developed with the property that its objective function indirectly
penalizes the rank of the SDP solution. Various techniques
are proposed to approximate a low-rank SDP solution with a
rank-1 matrix, leading to recovering a near-global controller
together with a bound on its optimality degree. The above results
are developed for both finite-horizon and infinite horizon ODC
problems. While the finite-horizon ODC is investigated using
a time-domain formulation, the infinite-horizon ODC problem
for both deterministic and stochastic systems is studied via
a Lyapunov formulation. The SDP relaxations developed in
this work are exact for the design of a centralized controller,
hence serving as an alternative for solving Riccati equations.
The efficacy of the proposed SDP relaxations is elucidated in
numerical examples.

I. INTRODUCTION

The area of decentralized control is created to address
the challenges arising in the control of real-world systems
with many interconnected subsystems. The objective is to
design a structurally constrained controller—a set of partially
interacting local controllers—with the aim of reducing the
computation or communication complexity of the overall con-
troller. The local controllers of a decentralized controller may
not be allowed to exchange information. The term distributed
control is often used in lieu of decentralized control in the
case where there is some information exchange between the
local controllers (possibly distributed over a geographical
area). It has been long known that the design of a globally
optimal decentralized (distributed) controller is a daunting task
because it amounts to an NP-hard optimization problem in
general [1]], [2]. Great effort has been devoted to investigating
this highly complex problem for special types of systems,
including spatially distributed systems [3]-[7]], dynamically
decoupled systems [[8], [9], weakly coupled systems [|10f], and
strongly connected systems [11]. Another special case that
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has received considerable attention is the design of an op-
timal static distributed controller [12], [[13]]. Early approaches
for the optimal decentralized control problem were based
on parameterization techniques [14], [[15], which were then
evolved into matrix optimization methods [16]], [[17]. In fact,
with a structural assumption on the exchange of information
between subsystems, the performance offered by linear static
controllers may be far less than the optimal performance
achievable using a nonlinear time-varying controller [/1].

Due to the recent advances in the area of convex opti-
mization, the focus of the existing research efforts has shifted
from deriving a closed-form solution for the above control
synthesis problem to finding a convex formulation of the
problem that can be efficiently solved numerically [18]—[22].
This has been carried out in the seminal work [23] by deriving
a sufficient condition named quadratic invariance, which has
been specialized in [24] by deploying the concept of partially
order sets. These conditions have been further investigated in
several other papers [25]-[27]. A different approach is taken
in the recent papers [28|] and [29]], where it has been shown
that the distributed control problem can be cast as a convex
optimization for positive systems.

There is no surprise that the decentralized control problem
is computationally hard to solve. This is a consequence of
the fact that several classes of optimization problems, in-
cluding polynomial optimization and quadratically-constrained
quadratic program as a special case, are NP-hard in the
worst case. Due to the complexity of such problems, various
convex relaxation methods based on linear matrix inequality
(LMI), semidefinite programming (SDP), and second-order
cone programming (SOCP) have gained popularity [30], [31].
These techniques enlarge the possibly non-convex feasible
set into a convex set characterizable via convex functions,
and then provide the exact or a lower bound on the optimal
objective value. The effectiveness of these techniques has
been reported in several papers. For instance, [32] shows how
SDP relaxation can be used to find better approximations
for maximum cut (MAX CUT) and maximum 2-satisfiability
(MAX 2SAT) problems. Another approach is proposed in
[33] to solve the max-3-cut problem via a complex SDP. The
approaches in [32]] and [33]] have been generalized in several
papers, including [|34]], [35].

Semidefinite programming relaxation usually converts an
optimization with a vector variable to a convex optimization
with a matrix variable, via a lifting technique. The exactness
of the relaxation can then be interpreted as the existence of a
low-rank (e.g., rank-1) solution for SDP relaxation. Several
papers have studied the existence of a low-rank solution
to matrix optimizations with linear or nonlinear (e.g., LMI)
constraints. For instance, the papers [36], [37] provide upper



bounds on the lowest rank among all solutions of a feasible
LMI problem. A rank-1 matrix decomposition technique is
developed in [38] to find a rank-1 solution whenever the
number of constraints is small. We have shown in [39] and
[40] that SDP relaxation is able to solve a large class of non-
convex energy-related optimization problems performed over
power networks. We related the success of the relaxation to
the hidden structure of those optimizations induced by the
physics of a power grid. Inspired by this positive result, we
developed the notion of “nonlinear optimization over graph”
in [41[]-[43]]. Our technique maps the structure of an abstract
nonlinear optimization into a graph from which the exactness
of SDP relaxation may be concluded. By adopting the graph
technique developed in [41]], the objective of the present work
is to study the potential of SDP relaxation for the optimal
distributed control problem.

In this paper, we cast the optimal distributed control (ODC)
problem as a non-convex optimization problem with only
quadratic scalar and matrix constraints, from which an SDP
relaxation can be obtained. The goal is to show that this
relaxation has a low-rank solution whose rank depends on
the topology of the controller to be designed. In particular,
we prove that the design of a static distributed controller with
a pre-specified structure amounts to a sparse SDP relaxation
with a solution of rank at most 3. This positive result is a
consequence of the fact that the sparsity graph associated with
the underlying optimization problem has a small treewidth.
The notion of “treewidth” used in this paper could potentially
help to understand how much approximation is needed to make
the ODC problem tractable. This is due to a recent result
stating that a rank-constrained optimization problem has an
almost equivalent convex formulation whose size depends on
the treewidth of a certain graph [44]. In this work, we also
discuss how to round the rank-3 SDP matrix to a rank-1 matrix
in order to design a near-global controller.

The results of this work hold true for both a time-domain
formulation corresponding to a finite-horizon control prob-
lem and a Lyapunov-domain formulation associated with an
infinite-horizon deterministic/stochastic control problem. We
first investigate the ODC problem for the deterministic systems
and then the ODC problem for stochastic systems. Our ap-
proach rests on formulating each of these problems as a rank-
constrained optimization from which an SDP relaxation can
be derived. With no loss of generality, this paper focuses on
the design of a static controller. Since the proposed relaxations
with guaranteed low-rank solutions are computationally expen-
sive, we also design computationally-cheap SDP relaxations
for numerical purposes. Afterwards, we develop some heuristic
methods to recover a near-optimal controller from a low-
rank SDP solution. Note that the computationally-cheap SDP
relaxations associated with the infinite-horizon ODC are exact
in both deterministic and stochastic cases for the classical
(centralized) LQR and H, problems. Although the focus of
the paper is static controllers, its results can be naturally
generalized to the dynamic case as well.

We conduct case studies on a mass-spring system and 100
random systems to elucidate the efficacy of the proposed
relaxations. In particular, the design of many near-optimal

structured controllers with global optimality degrees above
99% will be demonstrated. An additional study is conducted
on electrical power systems in our supplementary paper [45].

This work is organized as follows. The problem is in-
troduced in Section and then the SDP relaxation of a
quadratically-constrained quadratic program (QCQP) is stud-
ied via a graph-theoretic approach. Three different SDP re-
laxations of the finite-horizon deterministic ODC problem
are presented for the static controller design in Section
The infinite-horizon deterministic ODC problem is studied
in Section The results are generalized to an infinite-
horizon stochastic ODC problem in Section [V| followed by a
brief discussion on dynamic controllers in Section [V} Various
experiments and simulations are provided in Section
Concluding remarks are drawn in Section

A. Notations

R, S, and S7 denote the sets of real numbers, n X n
symmetric matrices and n X n positive semidefinite matrices,
respectively. The m by n rectangular identity matrix whose
(i,7) entry is equal to the Kronecker delta J;; is denoted
by Inxn or alternatively I, when m = n. rank{W} and
trace{W} denote the rank and trace of a matrix W. The
notation W > 0 means that W is symmetric and positive
semidefinite. Given a matrix W, its (I, m) entry is denoted as
Wim. Given a block matrix W, its (I,m) block is shown as
W .. Given a matrix M, its Moore Penrose pseudoinverse
is denoted as M. The superscript (-)°® is used to show
a globally optimal value of an optimization parameter. The
symbols ()T and || - || denote the transpose and 2-norm
operators, respectively. The symbols (-, -) and ||- || 7 denote the
Frobinous inner product and norm of matrices, respectively.
The notation |.| shows the size of a vector, the cardinality of
a set or the number of vertices a graph, depending on the
context. The expected value of a random variable z is shown
as £{z}. The submatirx of M formed by rows form the set
S; and columns from the set Sp is denoted by M{S;,S>}.
The notation G = (V,€) implies that G is a graph with the
vertex set V' and the edge set &.

II. PRELIMINARIES

In this paper, the Optimal Distributed Control (ODC) prob-

lem is studied based on the following steps:

« First, the problem is cast as a non-convex optimization
problem with only quadratic scalar and/or matrix con-
straints.

¢ Second, the resulting non-convex problem is formulated
as a rank-constrained optimization.

o Third, a convex relaxation of the problem is derived by
dropping the non-convex rank constraint.

o Last, the rank of the minimum-rank solution of the SDP
relaxation is analyzed.

Since there is no unique SDP relaxation for the ODC problem,
a major part of this work is devoted to designing a sparse
quadratic formulation of the ODC problem with a guaranteed
low-rank SDP solution. To achieve this goal, a graph is
associated to each SDP, which is then sparsified to contrive
a problem with a low-rank solution. Note that this paper
significantly improves our recent result in [46].



A. Problem Formulation

The following variations of the Optimal Distributed Control
(ODC) problem are studied in this work.

1) Finite-horizon deterministic ODC problem: Consider the
discrete-time system

x|t + 1] = Az[r] + Bu|t], T=0,1,...,p—1 (la)
ylr] = Cxlr], T=01,....p (1b)

with the known matrices A € R"*", B € R"*™_ (C ¢ R™*",
and z[0] = zo € R", where p is the terminal time. The

goal is to design a distributed static controller u[r] = Ky|7]
minimizing a quadratic cost function under the constraint that
the controller gain K must belong to a given linear subspace
K C R™*", The set K captures the sparsity structure of
the unknown constrained controller and, more specifically, it
contains all m x r real-valued matrices with forced zeros in
certain entries. The cost function
p

> (el Qalr) + ulr)"Rulr)) +all K} @

=0
is considered in this work, where « is a nonnegative scalar,
and @ and R are positive-semidefinite matrices. This problem
will be studied in Section

Remark 1. The third term in the objective function of the ODC
problem is a soft penalty term aimed at avoiding a high-gain
controller. Instead of this soft penalty, we could impose a hard
constraint ||K||p < f, for a given number 5. The method to
be developed later can be adopted for the modified case.

2) Infinite-horizon deterministic  ODC problem: The
infinite-horizon ODC problem corresponds to the case p =
400 subject to the additional constraint that the controller
must be stabilizing. This problem will be studied through a
Lyapunov domain formulation in Section

3) Infinite-horizon stochastic ODC problem: Consider the
discrete-time stochastic system

x|t + 1] = Az[r] + Bulr] + Ed|7],
ylr] = Czlr] + Fo[r],

T=0,1,...
T7=0,1,...

(3a)
(3b)

with the known matrices A, B, C, E, and F, where d[7]
and v[7] denote the input disturbance and measurement noise,
which are assumed to be zero-mean white-noise random
processes. The ODC problem for the above system will be
investigated in Section

The extension of the above results to the design of dynamic
controllers will be briefly discussed in Section [V1}

B. Graph Theory Preliminaries

Definition 1. For two simple graphs G = (V,&1) and Gy =
(V, &) with the same set of vertices, their union is defined as

GLUGy = (V, 6 UE).

Definition 2. The representative graph of an n X n symmetric
matrix W, denoted by G(W), is a simple graph with n vertices
whose edges are specified by the locations of the nonzero off-
diagonal entries of W. In other words, two disparate vertices
t and j are connected if W; is nonzero.

V3 Vi

Fig. 1: A minimal tree decomposition for a ladder graph.

Consider a graph G identified by a set of “vertices” and
a set of edges. This graph may have cycles in which case it
cannot be a tree. Using the notion to be explained below, we
can map G into a tree 7 identified by a set of “nodes” and a
set of edges where each node of 7 contains a group of vertices
of G.

Definition 3 (Treewidth). Given a graph G = (V, &), a tree T
is called a tree decomposition of G if it satisfies the following
properties:

1) Every node of T corresponds to and is identified by a
subset of V.

2) Every vertex of G is a member of at least one node of T.

3) For every edge (i,7) of G, there should be a node in T
containing vertices i and j simultaneously.

4) Given an arbitrary vertex k of G, the subgraph induced
by all nodes of T containing vertex k must be connected
(more precisely, a tree).

Each node of T is a bag (collection) of vertices of G and hence
it is referred to as bag. The width of T is the cardinality of
its biggest bag minus one. The treewidth of G is the minimum
width over all possible tree decompositions of G and is denoted
by tw(G).

Every graph has a trivial tree decomposition with one single
bag consisting of all its vertices. Figure[I|shows a graph G with
6 vertices named a, b, ¢, d, e, f, together with its minimal tree
decomposition 7. Every node of T is a set containing three
members of V. The width of this decomposition is therefore
equal to 2. Observe that the edges of the tree decomposition
are chosen in such a way that every subgraph induced by all
bags containing each member of V is a tree (as required by
Property 4 stated before).

Note that if G is a tree itself, it has a minimal tree
decomposition 7 such that: each bag corresponds to two
connected vertices of G and every two adjacent bags in T
share a vertex in common. Therefore, the treewidth of a tree
is equal to 1. The reader is referred to [47] for a comprehensive
literature review on treewidth.

C. SDP Relaxation

The objective of this subsection is to study SDP relaxation
of a quadratically-constrained quadratic program (QCQP) us-
ing a graph-theoretic approach. Consider the standard noncon-
vex QCQP problem

miniﬁﬁze fo(z) (4a)
:L‘e n
subject to fr(z) <0, k=1,...,q, (4b)



where f(z) = 2T Agz + 20 x + ¢, for k =0, ..., q. Define
s e b
Fp = { b Ay } : )

Each fj; has the linear representation f(z) = (Fy, W) for the
following choice of W:

W2z 27)T[xe 7] (6)

where xg is considered as 1. On the other hand, an arbitrary
matrix W € S, ;1 can be factorized as (@) if and only if it sat-
isfies three properties: W11 = 1, W = 0, and rank{W} = 1.
In this representation of QCQP, the rank constraint carries all
the nonconvexity. Neglecting this constraint yields the convex
problem

minimize (Fo, W) (7a)

W ESni1

subject to (F, W) <0 k=1,...,q, (7b)
Wi =1, (7¢)
W =0, (7d)

known as a semidefinite programming (SDP) relaxation of the
QCQP (@). The existence of a rank-1 solution for an SDP
relaxation guarantees the equivalence of the original QCQP
and its relaxed problem.

D. Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of SDP
relaxation, define G = G(Fp) U --- U G(Fy,) as the sparsity
graph associated with the problem (7). The graph G describes
the zero-nonzero pattern of the matrices Iy, ..., Fy, or alter-
natively captures the sparsity level of the QCQP problem (@).
Let T = (V7,&7) be a tree decomposition of G. Denote its
width as ¢ and its bags as By, By, ..., Bj7. It is known that
given such a decomposition, every solution W'f € S, ,; of
the SDP problem (7) can be transformed into a solution 1¥/°P*
whose rank is upper bounded by ¢ + 1 [37]. To perform this
transformation, a suitable polynomial-time recursive algorithm
will be proposed below.

Rank reduction algorithm:

1) Set 7/ :=T and W := Wref,

2) If T has a single node, then consider W°P' as W and
terminate; otherwise continue to the next step.

3) Choose a pair of bags B;, B; of 7' such that 5; is a leaf
of 77 and B; is its unique neighbor.

4) Using the notation W{:,-} introduced in Section
define

O 2 W{B;NB;,B;NB;} (8a)
Vi £ W{B; \ B;, Bi N B;} (8b)
V; 2 W{B,\ Bi,B; N B;} (8c)
H; & W{B;\ B, B; \ Bj} € R"*™ (8d)
H, 2 W{B;\ BB, \ Bi} e R"" ™ (8e)
S; & H; — V;0MV;" = QN QT (8f)
S; & Hy —V;OtV] = Q;A,QF (82)

where Q;A;QT and QjAjQJT denote the eigenvalue
decompositions of S; and S; with the diagonals of A;
and A; arranged in descending order. Then, update a part
of W as follows:

W{B] \BIL, B; \ BJ} = V]OJFVLT
+Qj\//Tj I”jxni\//TiQ;‘T

and update W{B; \ B;, B, \ B;} accordingly to preserve
the Hermitian property of W.

5) Update 7' by merging B; into B;, i.e., replace B; with
B; U B, and then remove B; from 7.

6) Go back to step 2.

Theorem 1. The output of the rank reduction algorithm,
denoted as W°P*, is a solution of the SDP problem whose
rank is smaller than or equal to t + 1.

Proof. Consider one run of Step 4 of the rank reduction algo-
rithm. Our first objective is to show that W{B, UB;,B; UB;}
is a positive semidefinite matrix whose rank is upper bounded
by the maximum ranks of W{B;, B;} and W{B;, B;}. To this
end, one can write:

o v’ vf
W{B,UB;,B;UB;}=| V; H, ZT )
Vi Z H

where Z £ W{B; \ B;, B; \ B;}. Now, define

H, 77 Vi
Sé[z Hj}—|:vj]0+[viT VJT]
Qi 0 } { T ]
- Nlo 10
[ o Q 0 QT (10)
where
N A; VA Inisen; /N
M |: \/‘/TJ In,-xm\//Ti A; an

It is straightforward to verify that
rank{S} = rank{ N} = max {rank{S;}, rank{S;}}
On the other hand, the Schur complement formula yields:

rank {W{B;, B;}} = rank{O"} + rank{S;}
rank {W{B;, B;}} = rank{O"} + rank{S,}
rank {W{B; U B;, B; U B;}} = rank{O"} + rank{S}

(see [48]). Combining the above equations leads to the conclu-
sion that the rank of W{B; U B;, B; U B;} is upper bounded
by the maximum ranks of W{B;,B;} and W{B;,5;}. On
the other hand, since N is positive semidefinite, it follows
from (I0) that W{B; UB;,B; UB,} = 0. A simple induction
concludes that the output WO of the matrix completion
algorithm is a positive semidefinite matrix whose rank is upper
bounded by ¢ + 1. The proof is completed by noting that
WPt and W share the same values on their diagonals and
those off-diagonal locations corresponding to the edges of the
sparsity graph G. O



III. FINITE-HORIZON DETERMINISTIC ODC PROBLEM

The primary objective of the ODC problem is to design a
structurally constrained gain K. Assume that the matrix K
has [ free entries to be designed. Denote these parameters as
hi,ha, ..., h;. To formulate the ODC problem, the space of
permissible controllers can be characterized as

l
Ké{ZhiNi heRl},

i=1
for some (fixed) 0-1 matrices Ny,..., N; € R™*" Now, the
ODC problem can be stated as follows.

(12)

Finite-Horizon ODC Problem: Minimize

P
Z (x[T]TQm[T] + u[T]TRu[TD + o[ K||% (13a)
=0

subject to

z[0] = xo (13b)
x|t + 1] = Az[r] + Bu|7] 7=0,1,...,p—1 (13¢)
ylr] = Cx[7] T=0,1,...,p (13d)
ul[r] = Kyl7] T=0,1,...,p (13e)
K=hNi+...+ N (13f)

over the variables {z[r] € R"}_,, {y[r] e R"}’_,, {u[r] €
R™}P_, K € R™*" and h € RL.

A. Sparsification of ODC Problem

The finite-horizon ODC is naturally a QCQP problem.
Consider an arbitrary SDP relaxation of the ODC problem
and let G be the sparsity graph of this relaxation. Due to
existence of nonzero off-diagonal elements in ) and R, certain
edges (and probably cycles) may exist in the subgraphs of G
associated with the state and input vectors z[7] and u[7]. Under
this circumstance, the treewidth of G could be as high as n. To
understand the effect of a non-diagonal controller K, consider
the case m = r = 2 and assume that the controller K under
design has three free elements as follows:

K1 Ky

(i.e., h1 = K11, hg = K12 and hy = K»,). Figure [2] shows a
part of the graph G. It can be observed that this subgraph
is acyclic for K15 = 0 but has a cycle as soon as Ko
becomes a free parameter. As a result, the treewidth of G is
contingent upon the zero pattern of K. In order to guarantee
existence of a low rank solution, we diagonalize @), R and K
through a reformulation of the ODC problem. Note that this
transformation is redundant if @), R and K are all diagonal.

Let Qg € R™ ™ and Ry € R™*™ be the respective
eigenvector matrices of ) and R, i.e.,

Q=QiAgQ4,, R=RJARRy

where Ag € R"*™ and Ap € R™*™ are diagonal matrices.
Notice that there exist two constant binary matrices ¢; €
R™*! and &, € R*" such that

K = { ®,diag{h}®> | h € R'},

K= [ (14)

15)

(16)

(a) (b)

Fig. 2: Effect of a nonzero off-diagonal entry of the controller K on the
sparsity graph of the finite-horizon ODC: (a) a subgraph of G for the case
where K711 and Koo are the only free parameters of the controller K, (b)
a subgraph of G for the case where K2 is also a free parameter of the
controller.

where diag{h} denotes a diagonal matrix whose diagonal
entries are inherited from the vector i [49]. Now, a sparse
formulation of the ODC problem can be obtained in terms of
the matrices

B 2 QuBRY,

To £ Qawo,

A2 QuAQY,
é = ¢2CQ§7

and the new set of variables Z[7] £ Qqz[], y[7] & Pay|7]
and a[r] £ Ryu[r] for every 7 =0,1,...,p.

Reformulated Finite-Horizon ODC Problem: Minimize

p

Z (z[r]" Agz[r] + a[r]" Aralr]) + o k|3 (17a)

=0

subject to
z[0] = Zo x 2° (17b)
Z[r + 1] = Az[r] + Bu[r] 7=0,1,...,p—1 (17¢)
y[r] = Cz[7] T=0,1,...,p (17d)
a[r] = Rq®diag{h}y[r] 7=0,1,...,p (17¢)
22 =1 (176)

over the variables {z[r] € R"}’_,, {y[r] € RY}’_,, {u[r] €
R™}_ . heR and 2z € R.

To cast the reformulated finite-horizon ODC as a quadratic
optimization, define

ws [ h7 & A )" e R (18)
where 7 2 [z[0]” - z[p)7]", @ £ [a[0]T - a[p)T]",
g = [ylo)” - g[p]T}T and ny, = 1+1+ (p+1)(n+1+m).
The scalar auxiliary variable z plays the role of number 1 (it
suffices to impose the additional quadratic constraint (I7f) as
opposed to z = 1 without affecting the solution).

B. SDP Relaxations of ODC Problem

In this subsection, two SDP relaxations are proposed for
the reformulated finite-horizon ODC problem given in (I7).
For the first relaxation, there is a guarantee on the rank of
the solution. In contrast, the second relaxation offers a tighter
lower bound on the optimal cost of the ODC problem, but its
solution might be high rank and therefore its rounding to a
rank-1 solution could be more challenging.



1) Sparse SDP relaxation: Let ey,...,e,, denote the
standard basis for R™». The ODC problem consists of n; =

(p+1)(n+1!) linear constraints given in (T7b), (I7c) and (I7d),

which can be formulated as

DTw=0 (19)

for some matrix D € R™*™_ Moreover, the objective

function and the constraints in (T7e) and (I71) are all

quadratic and can be expressed in terms of some matrices
M ¢ Snw’ {Mz[T} S Snw}i:L...,m;T:O,l,...,p and E = 616,{.
This leads to the following formulation of (I7).

Sparse Formulation of ODC Problem: Minimize

(M, wwT) (20a)
subject to
DTw=0 (20b)
(M;[r),ww™)y =0 i=1,...,m, 7=0,1,...,p (20c)
(E,wwT) =1 (20d)
with the variable w € R™».
For every j =1,...,n, define
D; =D, el +e;D!; (21)

where D. ; denotes the j-th column of D. An SDP relaxation
of will be obtained below.

Sparse Relaxation of Finite-Horizon ODC: Minimize

(M, W) (22a)

subject to
(Dj,W)=0 j=1,....m (22b)
(Mi[r|,W)=0 i=1,...,m, 7=0,1,....p (22¢)
(E,2Wy =1 (22d)
W=0 (22e)

with the variable W € §,, .
The problem (22) is a convex relaxation of the QCQP
problem (20). The sparsity graph of this problem is equal to

G =G(D1)U...UG(Dy,,)UG(M[0])U...UG(M,[0])
U...UG(M[p) U...UG(M,[p])

where the vertices of G correspond to the entries of w. In
particular, the vertex set of G can be partitioned into five vertex
subsets, where subset 1 consists of a single vertex associated
with the variable z and subsets 2-5 correspond to the vectors
Z, u, y and h, respectively. The underlying sparsity graph
G for the sparse formulation of the ODC problem is drawn
in Figure [3] where each vertex of the graph is labeled by
its corresponding variable. To maintain the readability of the
graph, some edges of vertex z are not shown in the picture.
Indeed, z is connected to all vertices corresponding to the
elements of Z, @ and ¢ due to the linear terms in (20D).

Theorem 2. The sparsity graph of the sparse relaxation of
the finite-horizon ODC problem has treewidth 2.

Controller

Fig. 3: Sparsity graph of the problem @2) (some edges of vertex z are not
shown to improve the legibility of the graph).

Proof. 1t follows from the graph drawn in Figure [3] that
removing vertex z from the sparsity graph G makes the
remaining subgraph acyclic. This implies that the treewidth
of G is at most 2. On the other hand, the treewidth cannot be
1 in light of the cycles of the graph. O

Consider the variable W of the SDP relaxation (22). The
exactness of this relaxation is tantamount to the existence of
an optimal rank-1 solution W' for (22). In this case, an
optimal vector w°" for the ODC problem can be recovered
by decomposing WP as (w°P)(w°P)T (note that w has been
defined in (TI8)). The following observation can be made.

Corollary 1. The sparse relaxation of the finite-horizon ODC
problem has a matrix solution with rank at most 3.

Proof. This corollary is an immediate consequence of Theo-
rems [1] and 21 O

Remark 2. Since the treewidth of the sparse relaxation of
the finite-horizon ODC problem [22) is equal to 2, it is
possible to significantly reduce its computational complexity.
More precisely, the complicating constraint W > 0 can be
replaced by positive semidefinite constraints on certain 3 X 3
submatrices of W, as given below:

W{B;,B} =0, k=1,...,|T]| (23)

where T is an optimal tree decomposition of the sparsity graph
G, and By, . .., Bj| denote its bags. After this simplification of
the hard constraint W > 0, a quadratic number of entries of
W turn out to be redundant (not appearing in any constraint)
and can be removed from the optimization [|37)], [50].

2) Dense SDP relaxation: Define D+ € R"™w*(w—m)
as an arbitrary full row rank matrix satisfying the relation
DT D+ = 0. It follows from that every feasible vector w
satisfies the equation w = D1, for a vector @ € R(™w—m1),
Define

M = (DYH)TMD* (24a)
M;[7] = (D*)" M,[r]D* (24b)
E = (DY) e D+ (24c)



The problem can be cast in terms of @ as shown below.

Dense Formulation of ODC Problem: Minimize

(M, o) (25a)

subject to
(My[r], 00Ty =0 i=1,...,m; 7=0,1,...,p (25b)
(E,owT) =1 (25¢)

over € R(w=m1),
The SDP relaxation of the above formulation is provided
next.

Dense Relaxation of Finite-Horizon ODC: Minimize

(M, W) (26a)

subject to
(M[r],W)=0 i=1,....,m; 7=0,1,....p  (26b)
(E,W) =1 (26¢)
W =0 (26d)

over W S S(nw —ny)-

Remark 3. Let F; and Fy denote the feasible sets for the
sparse and dense SDP relaxation problems in 22) and (26},
respectively. It can be easily seen that

{D*W(D}HT | W e F4} C F, (27)

Therefore, the lower bound provided by the dense SDP relax-
ation problem [26) is equal to or tighter than that of the sparse
SDP relaxation (22). However, the rank of the SDP solution
of the dense relaxation may be high, which complicates its
rounding to a rank-1 matrix. Hence, the sparse relaxation may
be useful for recovering a near-global controller, while the
dense relaxation may be used to bound the global optimality
degree of the recovered controller.

C. Rounding of SDP Solution to Rank-1 Matrix

Let WP either denote a low-rank solution for the sparse
relaxation @2) or be equal to DLW (D)T for a low-
rank solution WP' (if any) of the dense relaxation 26). 1f
the rank of W' is 1, then W°P' can be mapped back into
a globally optimal controller for the ODC problem through
an eigenvalue decomposition W' = P (w)T. Assume
that W°P' does not have rank 1. There are multiple heuristic
methods to recover a near-global controller, some of which
are delineated below.

Direct Recovery Method: If W°P' had rank 1, then the
(2,1),(3,1),...,(Jh| + 1,1) entries of W' would have
corresponded to the vector h°P' containing the free entries of
K°P', Inspired by this observation, if WW°P' has rank greater
than 1, then a near-global controller may still be recovered
from the first column of WP, We refer to this approach as
Direct Recovery Method.

Penalized SDP Relaxation: Recall that an SDP relaxation
can be obtained by eliminating a rank constraint. In the case

where this removal changes the solution, one strategy is to
compensate for the rank constraint by incorporating an additive
penalty function, denoted as W (W), into the objective of SDP
relaxation. A common penalty function U(-) is & x trace{W},
where ¢ is a design parameter. This problem is referred to as
Penalized SDP Relaxation throughout this paper.

Indirect Recovery Method: Define x as the aggregate state
vector obtained by stacking x[0], ..., z[p]. The objective func-
tion of every proposed SDP relaxation depends strongly on
x and only weakly on k if « is small. In particular, if
a = 0, then the SDP objective function is not in terms of
K. This implies that the relaxation may have two feasible
matrix solutions both leading to the same optimal cost such
that their first columns overlap on the part corresponding to x
and not the part corresponding to h. Hence, unlike the direct
method that recovers h from the first column of WP, it may
be advantageous to first recover z and then solve a second
convex optimization to generate a structured controller that
is able to generate state values as closely to the recovered
aggregate state vector as possible. More precisely, given an
SDP solution W, define & € R™P+1) a5 a vector containing
the entries (|h| +2,1), (|h|+3,1),..., (14 |h|+n(p+1),1)
of W', Define the indirect recovery method as the convex
optimization problem

p
minimize Y _ [|&[r + 1] — (A+ BKC)z[r]|*  (28a)
7=0

subject to K = hiM; + ...+ M, (28b)

with the variables K € R™*" and h € R. Let K denote a
solution of the above problem. In the case where W' has
rank 1 or the state part of the matrix W' corresponds to
the true solution of the ODC problem, & is the same as x°P"
and K is an optimal controller. Otherwise, K is a feasible
controller that aims to make the closed-loop system follow
the near-optimal state trajectory vector Z. As tested in [45],
the above controller recovery method exhibits a remarkable
performance on power systems.

D. Computationally-Cheap SDP Relaxation

Two SDP relaxations have been proposed earlier. Although
these problems are convex, it may be difficult to solve them
efficiently for a large-scale system. This is due to the fact
that the size of each SDP matrix depends on the number of
scalar variables at all times from O to p. There is an efficient
approach to derive a computationally-cheap SDP relaxation.
This will be explained below for the case where () and R are
non-singular and r,m < n.

Notation 1. For every matrix M € R *"2 define the sparsity
pattern of M as follows

S(M) £ {S € R™M*m2 | V(Z,j) Mij =0= Sij = 0} 29)

With no loss of generality, we assume that C' has full row
rank. There exists an invertible matrix ® € R™*"™ such that
Co = [ I, 0 } Define also

K% 2 {9,50] | S € S(2,03)}. (30)



Indeed, KC? captures the sparsity pattern of the matrix KK 7.
For example, if K consists of block-diagonal (rectangular)
matrix, X2 will also include block-diagonal (square) matrices.
Let 12 € R be a positive number such that Q = p x ®~7®~1,
where ®~7 denotes the transpose of the inverse of ®. Define

Q=Q-—puxdTo 1 31
Using the slack matrix variables

X £ [z[0] z[1] ... z[p]], (32a)

U = [u0] u[l] ... ulp]], (32b)

an efficient relaxation of the ODC problem can be obtained.

Computationally-Cheap Relaxation of Finite-Horizon
ODC: Minimize

trace{XTQX + p Way + UTRU} + o trace{ W33} (33a)

subject to
x|t + 1] = Az[r] + Bulr], 7=0,1,...,p—1, (33b)
x[0] = xo, (33c¢)
L, ®7'X K 07
W= | XTe™" Wy 1 UT |, (33d)
(K 0 ' U ' Ws
Kek, (33e)
W3 € K7, (33f)
W =0, (33g)

over K € R™*", X € R+ 7 ¢ RM*(P+D) and W €
Sp+m+p+1 (note that Way and W3 are two blocks of the
variable W).

Note that the above relaxation can be naturally cast as
an SDP problem by replacing each quadratic term in its
objective with a new variable and then using the Schur
complement. We refer to the SDP formulation of this problem
as computationally-cheap SDP relaxation.

Theorem 3. The problem (33) is a convex relaxation of the
ODC problem. Furthermore, the relaxation is exact if and only
if it possesses a solution (K°P', X' U°' W) such that
rank{ W'} = n.

Proof. 1t is evident that the problem is a convex program.
To prove the remaining parts of the theorem, it suffices to
show that the ODC problem is equivalent to subject to
the additional constraint rank{ W} = n. To this end, consider
a feasible solution (K, X,U, W) such that rank{W} = n.
Since I, has rank n, taking the Schur complement of the
blocks (1,1), (1,2), (2,1) and (2,2) of W yields that

0=Wy — XTo (1) 'o7 X (34)

Likewise,

0=Ws3 — KK” (35)

On the other hand,
p
Z (z[7]" Qz[r] + u[7]" Ru[r]) = trace{ X" QX + UT RU}

=0

(36)

It follows from (34), and (B6) that the ODC problem and
its computationally cheap relaxation lead to the same objective
at the respective points (K, X,U) and (K,X,U,W). In
addition, it can be concluded from the Schur complement of
the blocks (1,1), (1,2), (3,1) and (3,2) of W that

U=[K 0/ 'X=KCX (37)

or equivalently
u[r] = KCx[1] (38)

This implies that (K, X, U) is a feasible solution of the ODC
problem. Hence, the optimal objective value of the ODC
problem is a lower bound on that of the computationally-cheap
relaxation under the additional constraint rank{ W} = n.

Now, consider a feasible solution (K, X,U) of the ODC
problem. Define Wy, = XTdTod—1X and Ky = KKT.
Observe that W can be written as the rank-n matrix WTWTT s
where

for 7=0,1,...,p

W,=[1, o'x [K 0T ]" (39)

Thus, (K,X,U,W) is a feasible solution of the
computationally-cheap SDP relaxation. This implies that
the optimal objective value of the ODC problem is an upper
bound on that of the computationally-cheap SDP relaxation
under the additional constraint rank{W} = n. The proof
is completed by combining this property with its opposite
statement proved earlier. O

The sparse and dense SDP relaxations were both obtained
by defining a matrix W as the product of two vectors. How-
ever, the computationally-cheap relaxation of the finite-horizon
ODC Problem is obtained by defining W as the product of
two matrices. This significantly reduces the computational
complexity. To shed light on this fact, notice that the numbers
of rows for the matrix variables of sparse and dense SDP
relaxations are on the order of np, whereas the number of
rows for the computationally-cheap SDP solution is on the
order of n + p.

Remark 4. The computationally-cheap relaxation of the finite-
horizon ODC Problem automatically acts as a penalized SDP
relaxation. To explain this remarkable feature of the proposed
relaxation, notice that the terms trace{ Was } and trace{ W33}
in the objective function of the relaxation inherently penalize
the trace of W. This automatic penalization helps significantly
with the reduction of the rank of W at optimality. As a result,
it is expected that the quality of the relaxation will be better
for higher values of o and .

Remark 5. Consider the extreme case where r = n, C = I,
a =0, p = oo, and the unknown controller K is unstruc-
tured. This amounts to the famous LQR problem and the
optimal controller can be found using the Riccati equation.
It is straightforward to verify that the computationally-cheap
relaxation of the ODC problem is always exact in this case
even though it is infinite-dimensional. The proof is based on
the following facts:
o When K is unstructured, the constraint (33€) and (331)
can be omitted. Therefore, there is no structural con-
straint on W33 and W31 (i.e., the (3,1) block entry).



o Then, the constraint (33d) reduces to Woy =
XT®=T®1X due to the term trace{Was} in the ob-
Jjective function. Consequently, the objective function can
be rearranged as >~ (z[7]7 Qz[r] 4+ u[r]T Rul[r]).

o The only remaining constraints are the state evolution
equation and xz[0] = xo. It is known that the remaining
feed-forward problem has a solution (X°P',U°") such
that U°P" = K°P'X°P' for some matrix K.

E. Stability Enforcement

The finite-horizon ODC problem studied before had no
stability conditions. It is verified in some simulations in [45]
that the closed-loop stability may be automatically guaranteed
for physical systems, provided p is large enough. In this
subsection, we aim to directly enforce stability by imposing
additional constraints on the proposed SDP relaxations.

Theorem 4. There exists a controller u[t] = Ky[r] with the
structure K € K to stabilize the system if and only if there
exist a (Lyapunov) matrix P € S,,, a matrix K € R™*", and
auxiliary variables L € R™*" and G € Sg,, 1, such that

pATP+_ éngT AP +PBG32 > 0, (40a)

K e K, (40b)

G -0, (40c)

Gas € K2, (40d)
rank{G} = n, (40e)

where ‘ ‘
I, o~tp  [K 07
G2 | PeTT 1 Gop 1 Goy (41
(K 0]" Gz ' Gasg

Proof. Tt is well-known that the system is stable under a
controller u[7] = Ky[r] if and only if there exists a positive-
definite matrix P € S,, to satisfy the Lyapunov inequality:

(A+ BKC)'P(A+ BKC)—-P+1,=<0 (42
or equivalently
P-1, AP + BKCP
PAT 4 PKTCT BT P 0@

Due to the analogy between W and G, the argument made in
the proof of Theorem [3] can be adopted to complete the proof
of this theorem (note that Gso plays the role of KCP). O

Theorem [] translates the stability of the closed-loop system
into a rank-n condition. Consider one of the aforementioned
SDP relaxations of the ODC problem. To enforce stability,
it results from Theorem [ that two actions can be taken:
(i) addition of the convex constraints (@0a)-@0d) to SDP
relaxations, (ii) compensation for the rank-n condition through
an appropriate convex penalization of G in the objective
function of SDP relaxations. Note that the penalization is vital
because otherwise Goo and Ggz would grow unboundedly to
satisfy the condition G > 0.

IV. INFINITE-HORIZON DETERMINISTIC ODC PROBLEM

In this section, we study the infinite-horizon ODC problem,
corresponding to p = +00 and subject to a stability condition.

A. Lyapunov Formulation

The finite-horizon ODC was investigated through a time-
domain formulation. However, to deal with the infinite di-
mension of the infinite-horizon ODC and its hard stability
constraint, a Lyapunov approach will be taken here. Consider
the following optimization problem.

Lyapunov Formulation of ODC: Minimize

x5 Pro + o K||% (44a)
subject to
e G (AG+BL)T LT
G Q! 0 0
AG+BL 0 G o | =0 (40
L 0 0 R1
P I,
5L ¢ = (44c)
K ek, (44d)
L =KCG, (44e)

over K e Rm™*" L e R™*" Pe§, and G € S,,.
It will be shown in the next theorem that the above formu-
lation is tantamount to the infinite-horizon ODC problem.

Theorem 5. The infinite-horizon deterministic ODC problem
is equivalent to finding a controller K € K, a symmetric
Lyapunov matrix P € S,, an auxiliary symmetric matrix
G € S, and an auxiliary matrix L € R™*™ to solve the
optimization problem (44).

Proof. Given an arbitrary control gain K, we have:

> (271" Qalr] + ulr]" Rulr]) = x[0]" Px[0]  (45)
7=0
where
P=(A+BKC)TP(A+ BKC)+Q+ (KC)TR(KC)
(46a)
P>0 (46b)

On the other hand, it is well-known that replacing the equality
sign “=" in (46a) with the inequality sign “>"" does not affect
the solution of the optimization problem [31]]. After pre- and
post-multiplying the Lyapunov inequality obtained from (46a))
with P~! and using the Schur complement formula, the

constraints and can be combined as

p~t  pt §T pYKC)T
Pt Q' o0 0
S 0 P! 0 =0 @D
(KC)P~* 0 0 R

where S = (A + BKC)P~!. By replacing P~! with a new
variable G in the above matrix and defining L as KCG, the
constraints (@4b) and will be obtained. On the other
hand, implies that G = 0 and P = G~! . Therefore, the
minimization of xJ Pz subject to the constraint ensures
that P = G! is satisfied for at least one optimal solution of
the optimization problem. O



Theorem 6. Consider the special case where r =n, C = I,
o = 0 and K contains the set of all unstructured controllers.
Then, the infinite-horizon deterministic ODC problem has the
same solution as the convex optimization problem obtained
from the nonlinear optimization @) by removing its non-
convex constraint ({@4e)).

Proof. Tt is easy to verify that a solution (K°P', PoP' G°PY
L°PY) of the convex problem stated in the theorem can be
mapped to the solution (LPY(GOPY)~—L POPL GOPL [°Pt) of the
non-convex problem @]) and vice versa (recall that C = I,,
by assumption). This completes the proof. O

B. SDP Relaxation

Theorem [f] states that a classical optimal control problem
can be precisely solved via a convex relaxation of the nonlinear
optimization (@4) by eliminating its constraint (@4e]). However,
this simple convex relaxation does not work satisfactorily for
a general control structure K = & diag{h}Ps. To design a
better relaxation, define

w=[1 B" vec{®,CG}"]" (48)
where vec{®2CG} is an nl x 1 column vector obtained
by stacking the columns of ®2CG. It is possible to write
every entry of the bilinear matrix term KCG as a linear
function of the entries of the parametric matrix ww?. Hence,
by introducing a new matrix variable W playing the role of
ww?, the nonlinear constraint can be rewritten as a linear
constraint in term of W.

Notation 2. Define the sampling operator samp : R>*™ —
RX™ as follows:

samp{X } = [Xi,(n—l)jH]

Now, one can relax the non-convex mapping constraint
W = ww’ to W > 0 and another constraint stating that
the first column of W is equal to w. This yields the following
convex relaxation of problem (@4).

(49)

=1l j=1,..,n "

SDP Relaxation of Infinite-Horizon Deterministic ODC:
Minimize

al Pxo + o trace{ W3} (50a)
subject to
[ G G (AG+BL)T LT
G Q1 0 0

AG+BL 0 G o | =0 ©0B)

i L 0 0 R

P I,

I, G = 0, (50c)

L = &7 x samp{W3s}, (50d)

b vee{®CGYT | AT

W= | vee{®:CG} 1 Wy 1 Wy |, (S0e)
h ‘ Wisa ' W3

W > 0, (50f)

over h €e R, L e Rv*n, P e S,, G €S, and W €
S141(n41)-

If the relaxed problem (50) has the same solution as the
infinite-horizon ODC in ([@4), the relaxation is exact.

Theorem 7. The following statements hold regarding the
relaxation of the infinite-horizon deterministic ODC in (30):
i) The relaxation is exact if it has a solution (h°P', PP,
GoPt LP' W) such that rank{ W'} = 1.
il) The relaxation always has a solution (h°P', P°P' G,
LoP' WP') such that rank{ W'} < 3.

Proof. Consider a sparsity graph G of (50), constructed as
follows. The graph G has 1+ [(n + 1) vertices corresponding
to the rows of W. Two arbitrary disparate vertices ¢, j € {1,2,
...,1+1l(n+1)} are adjacent in G if W,; appears in at least
one of the constraints of the problem (30) excluding the global
constraint W > 0. For example, vertex 1 is connected to all
remaining vertices of G. The graph G with its vertex 1 removed
is depicted in Figure [d] This graph is acyclic and therefore the
treewidth of G is at most 2. Hence, it follows from Theorem 1
that (50) has a matrix solution with rank at most 3. O

Theorem [/] states that the SDP relaxation of the infinite-
horizon ODC problem has a low-rank solution. However, it
does not imply that every solution of the relaxation is low-
rank. Theorem 1 provides a procedure for converting a high-
rank solution of the SDP relaxation into a low-rank one.

C. Computationally-Cheap Relaxation

The aforementioned SDP relaxation has a high dimension
for a large-scale system, which makes it less interesting for
computational purposes. Moreover, the quality of its optimal
objective value can be improved using some indirect penalty
technique. The objective of this subsection is to offer a
computationally-cheap SDP relaxation for the ODC problem,
whose solution outperforms that of the previous SDP relax-
ation. For this purpose, consider again a scalar p such that
Q= px ® T and define Q according to (3T).

Computationally-Cheap Relaxation of Infinite-horizon De-
terministic ODC: Minimize

ngmo + « trace{W33} (51a)
subject to
_G — MWQQ G (AG + BL)T LT
G Q1 0 0
—
AG + BL 0 G 0 = 0, (51b)
L 0 0 R~
P I,
I G = 0, (51c)
I, 976K O
W= | GoTT 1 Wy 1 LT, (51d)
(K 0' L | W
K€Kk, (5le)
W3 € K2, (511)
W =0, (51g)

over K e R™"*" L e R™*" P eSS, GeS, and W €
S2n+m~
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Fig. 4: The sparsity graph for the infinite-horizon deterministic ODC in the
case where KC consists of diagonal matrices (the central vertex corresponding
to the constant 1 is removed for simplicity).

The following remarks can be made regarding (51):

o The constraint (31b) corresponds to the Lyapunov in-
equality associated with (@6a), where Waoq in its first
block aims to play the role of P~1®-T@-1p~1

o The constraint ensures that the relation P = G~!
occurs at optimality (at least for one of the solution of
the problem).

« The constraint (51d) is a surrogate for the only compli-
cating constraint of the ODC problem, i.e., L = KCG.
¢ Since no non-convex rank constraint is imposed on the
problem to maintain the convexity of the relaxation, the
rank constraint is compensated in various ways. More
precisely, the entries of W are constrained in the objec-
tive function (51a) through the term « trace{W3ss}, in
the first block of the constraint (31b) through the term
G — wWay, and also via the constraint and (3T1).
These terms aim to automatically penalize the rank of W

indirectly.

o The proposed relaxation takes advantage of the sparsity of
not only K, but also K KT (through the constraint (5T1)).

Theorem 8. The problem (B1) is a convex relaxation of
the infinite-horizon ODC problem. Furthermore, the re-
laxation is exact if and only if it possesses a solution
(Kept Lot port GOP' W) such that rank{ W'} = n.

Proof. The objective function and constraints of the problem
are all linear functions of the tuple (K, L,P, G, W).
Hence, this relaxation is indeed convex. To study the rela-
tionship between this optimization problem and the infinite-
horizon ODC, consider a feasible point (K, L, P,G) of the
ODC formulation (#4). It can be deduced from the relation
L = KCG that (K, L, P,G,W) is a feasible solution of the
problem if the free blocks of W are considered as

Wy = Go TG, Ws3 = KKT (52)

(note that and are equivalent for this choice of
‘W). This implies that the problem is a convex relaxation
of the infinite-horizon ODC problem.

Consider now a solution (K°P', LoPt POPt GOPt WOPY)
of the computationally-cheap SDP relaxation such that
rank{W°P'} = n. Since the rank of the first block of W
(i.e., I,) is already n, a Schur complement argument on the
blocks (1,1), (1,3), (2,1) and (2,3) of W° yields that

0=LP — [K™ 0](I,) e~ 'G™ (53)

or equivalently L°P' = K°P'C'G°', which is tantamount to
the constraint @4e). This implies that (K °P, LoP', POPY GOP')

is a solution of the infinite-horizon ODC problem and
hence the relaxation is exact. So far, we have shown that the
existence of a rank-n solution WP guarantees the exactness
of the relaxation. The converse of this statement can also be
proved similarly. O

The variable W in the first SDP relaxation (30) had 1+1(n+
1) rows. In contrast, this number reduces to 2n + m for the
matrix W in the computationally-cheap relaxation (31)). This
significantly reduces the computation time of the relaxation.

Corollary 2. Consider the special case where r =n, C' = I,,,
a = 0 and KC contains the set of all unstructured controllers.
Then, the computationally-cheap relaxation problem (31)) is
exact for the infinite-horizon ODC problem.

Proof. The proof follows from that of Theorem [6] O

D. Controller Recovery

In this subsection, two controller recovery methods will be
described. With no loss of generality, our focus will be on the
computationally-cheap relaxation problem (31).

Direct Recovery Method for Infinite-Horizon ODC: A near-
optimal controller K for the infinite-horizon ODC problem is
chosen to be equal to the optimal matrix K°P' obtained from
the computationally-cheap relaxation problem (51)).

Indirect Recovery Method for Infinite-Horizon ODC:
Let (K°Pt, LoP', PoPL GOPL 'WOPY) denote a solution of the
computationally-cheap relaxation problem (51). Given a pre-
specified nonnegative number &, a near-optimal controller
K for the infinite-horizon ODC problem is recovered by
minimizing

e x v +al K| (54a)
subject to
(Gt —Q+~I, (A+BKC)T (KO)T
(A+ BKC(C) G 0 = 0
(KC) 0 R!
(54b)
K=hN +...4+ N (54¢)

over K € R™7" h € R! and v € R. Note that this
is a convex program. The direct recovery method assumes
that the controller K°P* obtained from the computationally-
cheap relaxation problem is near-optimal, whereas the
indirect method assumes that the controller K°P' might be
unacceptably imprecise while the inverse of the Lyapunov
matrix is near-optimal. The indirect method is built on SDP
relaxation by fixing G at its optimal value and then perturbing
Q as @ — I, to facilitate the recovery of a stabilizing
controller. The underlying idea is that the SDP relaxation
depends strongly on GG and weakly on P (note that G appears
9 times in the formulation, while P appears only twice to
indirectly account for the inverse of (7). In other words, there
might be two feasible solutions with similar costs for the SDP
relaxation whose G parts are identical while their P parts are
very different. Hence, the indirect method focuses on G.



V. INFINITE-HORIZON STOCHASTIC ODC PROBLEM

This section is mainly concerned with the stochastic optimal
distributed control (SODC) problem, which aims to design a
stabilizing static controller u[r] = Ky[r] to minimize the cost
function

lim & (x[T]TQz[T] + u[T]TRu[T]) + || K||%

T—+00

(55)

subject to the system dynamics and the controller require-
ment K € K, for a nonnegative scalar « and positive-definite
matrices ) and R. Define two covariance matrices as

Y = E{Ed0)d[0]TET} %, = E{Fu[0lv]0]"FT} (56)
Consider the following optimization problem.
Lyapunov Formulation of SODC: Minimize
(P,Sa) + (M + K"RK,%,) + o||[K|[7:  (57a)
subject to
[ G G (AG+BL)T LT
G Q! 0 0
AG+BL 0 G o | =0 G
| L 0 0 R
(P I,
1, G} = 0, (57¢)
[ M (BK)T
BK a } = 0, (57d)
Kek (57e)
L=KCG (57

over the controller X € R™*", Lyapunov matrix P € S,, and
auxiliary matrices G € S,,, L € R™*" and M € S,.

Theorem 9. The infinite-horizon SODC problem adopts the
non-convex formulation (57).

Proof. 1t is straightforward to verify that
z[r] = (A+ BKC)"z[0]

T—1
+) (A+BEKC) """ (Ed[t] + BKFu[t])  (58)
t=0
for 7 = 1,2,...,00. On the other hand, since the controller

under design must be stabilizing, (A + BKC)" approaches
zero as T goes to +oo. In light of the above equation, it can
be verified that

& {TETOO (27" Qz[r] + u[T]TRu[T])}
=& {TEIJIrlOOx[T]T (@ +CTKTRKC) x[T]}

+& { Jim U[T]TFTKTRKFU[T]}
= (P,%;) + (BK)TP(BK) + KTRK,%,) (59)

where

P= i (A+ BKC))'(Q + C"KTRKC)(A+ BKC)!
t=0

Similar to the proof of Theorem [5] the above infinite series
can be replaced by the expanded Lyapunov inequality @7):
After replacing P~! and KCP~! in with new variables
G and L, it can be concluded that:
o The condition (#7) is identical to the set of con-
straints and (371).
« The cost function (39) can be expressed as

(P,%) + (BK)TG™Y(BK) + KTRK,%,) + a| K||%

e Since P appears only once in the constraints of the
optimization problem (i.e., the condition (37¢)) and
the objective function of this optimization includes the
term (P, %), an optimal value of P is equal to G~}
(Notice that X4 = 0).

e Similarly, the optimal value of M is equal to
(BK)TG~1(BK).
The proof follows from the above observations. O

The traditional H, optimal control problem (i.e., in the
centralized case) can be solved using Riccati equations. It will
be shown in the next proposition that dropping the nonconvex
constraint (57f) results in a convex optimization that correctly
solves the centralized H» optimal control problem.

Proposition 1. Consider the special case where r = n,
C =1, a=0 %, =0 and K contains the set of all
unstructured controllers. Then, the SODC problem has the
same solution as the convex optimization problem obtained
from the nonlinear optimization (57a)-(37) by removing its
non-convex constraint (571).

Proof. 1t is similar to the proof of Theorem [6] O

Consider the vector w defined in (@8). Similar to the infinite-
horizon ODC case, the bilinear matrix term KCG can be
represented as a linear function of the entries of the parametric
matrix W defined as ww”. Now, a convex relaxation can be
attained by relaxing the constraint W = ww” to W > 0 and
adding another constraint stating that the first column of W
is equal to w.

Relaxation of Infinite-Horizon SODC: Minimize

(P,YXq) + (M + KT"RK,%,) + o trace{W33}  (60a)
subject to
e G (AG+BL)T LT
G Q! 0 0

AG+BL 0 & o | =0 (60D
L 0 0 R™1
P I,
I G} = 0, (60c)
K = &, diag{h}®,, (60d)
M (BK)T
BK G } = 0, (60e)
L = &;samp{ W3, }, (601)

b vee{®CGYT | R
W= vec{®:CG} 1 Wap 1 Wy |, (60g)
h ! W32 ! st



W -0, (60h)

over the controller K € R™*", Lyapunov matrix P € S,, and
auxiliary matrices G € S,,, L € R™*", M € S,, h € R! and
W € Si4itns1)-

Theorem 10. The following statements hold regarding the
convex relaxation of the infinite-horizon SODC problem:

i) The relaxation is exact if it has a solution

(hoPt KoP! PoP! GOP! LOP! MOP! W OPY) such that
rank{W'} = 1.

ii) The relaxation always has a solution
(hePr) KoP, PoPt GOPT ) LOPT ) MOPT W OPT) such that
rank{WW'} < 3.

Proof. The proof is omitted (see Theorems [7] and [9). O

As before, it can be deduced from Theorem that the
infinite-horizon SODC problem has a convex relaxation with
the property that its exactness amounts to the existence of a
rank-1 matrix solution WP, Moreover, it is always guaranteed
that this relaxation has a solution such that rank{ W'} < 3.

A computationally-cheap SDP relaxation for the SODC
problem will be derived below. Let ©1 and o be two nonneg-
ative numbers such that

Q> xd Td71 B, = po x I, (61)

Define @ =@ — p1 X & TH—! and f]” =3y — g X L.

Computationally-Cheap Relaxation of Infinite-Horizon
SODC: Minimize

(P,Sq) + (M, %) + (KTRK,S,) + (uaR + al,,, Ws3)

(62a)
subject to
G — 11 Wag G (AG + BL)T LT
G Q! 0 0
—
AG + BL 0 G 0 =z 0, (62b)
i L 0 0 R!
'p 1,
I, G} = 0, (62¢)
[ M (BK)T
BK G ] = 0, (62d)
I, @G K 0f
W= |G W B (62¢)
K0T L W
K ek, (621)
W33 € /C2, (62g)
W >0, (62h)

over K e R™*" PeS,,GeS,, LeR™"™" MecS, and
W e Sgn+m.

It should be noted that the constraint (62d) ensures that the
relation M = (BK)TG~(BK) occurs at optimality.

Theorem 11. The problem (©2) is a convex relax-
ation of the SODC problem. Furthermore, the relax-
ation is exact if and only if it possesses a solution

(Kept, Lort, popt GoP') MOP' WP such that rank{W'} =

n.

Proof. Since the proof is similar to that of the infinite-horizon
case presented earlier, it is omitted here. O

For the retrieval of a near-optimal controller, the direct
recovery method delineated for the infinite-horizon ODC prob-
lem can be readily deployed. However, the indirect recovery
method requires some modifications, which will be explained
below. Let (K°P, LOPY PoPt GOPL MOPL 'WOPY) denote a so-
lution of the computationally-cheap relaxation of SODC. A
near-optimal controller K for SODC may be recovered by
minimizing

(KT(BT(G™)"'B+ R)K,%,) + a||K||% +¢ x v (63a)

subject to
(G —Q+~I, (A+BKCO)T (KC)T
(A+ BKC) G™ 0 > 0 (63b)
(KC) 0 R™!
Keh N +...4+hDN;. (63¢)

over K € R™*" L € R! and v € R, where ¢ is a pre-specified
nonnegative number. This is a convex program.

VI. EXTENSION TO DYNAMIC CONTROLLERS

Consider the problem of finding an optimal fixed-order
dynamic controller with a pre-specified structure. To formulate
the problem, denote the unknown controller as

{ ze|T + 1] = Acze[r] + BeylT]

U[T] = Ceczc [7'] + Dcy['r] (64)

where z.[r] € R™ represents the state of the controller,
and n. denotes its known degree. The unknown quadruple
(A, Be, Ce, D) must belong to a given polytope K. More
precisely, A., B¢, C., and D, are often required to be block
matrices with certain forced zero blocks. It is shown in [51]
how the design of a fixed-order distributed controller for
an interconnected system adopts the above formulation. The
augmentation of the system with the above unknown
controller leads to the closed-loop system Z[r + 1] = AZ[7],
where #[7] = [ 2[r +1]7 zJ[r+1]T | and

- [ A+BD.C BC,

A= B.C A 65)

Note that this closed-loop system reduces to x[r + 1] =
(A + BKC)z[r] in the static case. Since A is a linear
structured matrix with respect to (A., Be, Ce, D,), the state
evolution equation Z[r + 1] = AZ[r] is bilinear, similar to its
static counterpart z[7 + 1] = (A + BKC)z[r]. Hence, the
parameterized matrix A plays the role of A + BKC, which
makes it possible to naturally generalize all results of this work
to the dynamic case in both finite- and infinite-horizon cases.
Note that the existence of a Lyapunov matrix guarantees the
stability of A or the internal stability of the system.

VII. NUMERICAL EXAMPLES

In what follows, we offer multiple experiments on random
systems and mass-spring systems. More simulations are pro-
vided in [45]].
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Fig. 5: The ratio §—2 obtained from the dense SDP relaxation of the finite-

horizon ODC Problem (26) for 100 random systems.
A. Random Systems

Consider the system (I) with n = 5 and m = r = 3. The
goal is to design a decentralized static controller u[7r] = Ky|7]
(i.e., a diagonal matrix K) minimizing the cost function

<Z alr]alr] + U[T}TU[T}) +107%| K|

7=0

(66)

This function accounts for the state regulation, input energy,
and controller gain. The SDP relaxation problems (22), (26)
and @]) have a 235 x 235, 168 x 168 and 29 x 29 matrix vari-
ables, respectively. According to Corollary [T} it is guaranteed
that the sparse SDP relaxation problem has a solution
WePt with rank at most 3 (i.e., at least 233 eigenvalues of
this solution must be zero), independent of the values of the
matrices A, B, C, and z[0]. Note that this result does not
imply that all solutions of problem (22) have rank at most 3,
but Theorem [T] can be used to find such a low-rank solution.

Since real-world systems are normally highly structured in
many ways, we consider some structure for the system under
study by assuming that B can be expressed as [b b b for
some vector b € R®. Assume that A, b, and x[0] are normal
random variables with the standard deviations 0.2, 1, and 1,
respectively, while C' is equal to [I3  03x2]. We generated 100
random systems according to the above probability distribu-
tions for the parameters of the system and checked the rank of
a low-rank solution of the sparse, dense, and computationally-
cheap SDP relaxation problems for every trial. Let A\; and
Ao denote the largest and the second largest eigenvalues of
WOPt agsociated with the dense relaxation. We arranged the
obtained 100 ratios i—f in ascending order and subsequently
labeled their corresponding trials as 1,2,...,100. Figure [
plots the ratio i—f for the ordered trials. It can be observed
that this ratio is equal to O for 53 trials, implying that the
dense SDP relaxation has found the solution of the ODC
problem for 53 samples of the system. In addition, :\\—f is less
than 0.1 in 95 trials. Also, three near-global solutions of the
ODC problem were found using different relaxations in all
100 cases. Figure[6] (a) depicts the (global) optimality degrees
of these solutions after re-arranging the trials based on their
associated optimality degrees for the dense SDP relaxation
problem. Optimality degree is defined as

upper bound - lower bound

Optimality degree (%) = 100 — x 100

upper bound

where “upper bound” and ‘lower bound” denote the cost of
the near-global controller recovered using the direct method

and the optimal SDP cost, respectively. The optimality degree
is an upper bound on the closeness of the cost of the near-
optimal controller to the minimum cost, which is expressed
in percentage. Notice that the employed optimality measure
evaluates the global performance within the specified set
of controllers. For example, the optimality degree of 100%
means that a globally optimal controller is found among all
linear static structured controllers.

As an alternative, we solved a penalized SDP relaxation
with the penalty term U(WW) = 0.5 trace{W} added to the
objective of the SDP relaxation. Interestingly, the matrix Tort
became rank 1 for all of the 100 trials. Figure [6](b) depicts the
optimality degrees associated with the penalized dense SDP
relaxation problem of the 100 random systems. It can be seen
that the optimality degree is greater than 99.8% for 69 trials
and is never less than 98.2%.

B. Mass-Spring Systems

In this subsection, the aim is to evaluate the performance
of the developed controller design techniques in Lyapunov
domain on the Mass-Spring system, as a classical physical sys-
tem. Consider a mass-spring system consisting of N masses.
This system is exemplified in Figure [7]for N = 2. The system
can be modeled in the continuous-time domain as

Fo(t) = Auze(t) + Boue(t) 67)

where the state vector xz.(t) can be partitioned as
[o1(t)T 0a(t)T] with oy(t) € R™ equal to the vector of
positions and o03(t) € R™ equal to the vector of velocities of
the N masses. We assume that N = 10 and adopt the values of
A, and B, from [52]. The goal is to design a static sampled-
data controller with a pre-specified structure (i.e., the controller
is composed of a sampler, a static discrete-time structured
controller and a zero-order holder). Consider two different
control structures shown in Figure [§] The free parameters of
each controller are colored in red in this figure. Notice that
Structure (a) corresponds to a fully decentralized controller,
where each local controller has access to the position and
velocity of its associated mass. In contrast, Structure (b)
allows limited communications between neighboring local
controllers. Two ODC problems will be solved for these
structures below.

Infinite-Horizon Deterministic ODC: In this experiment, we
first discretize the system with the sampling time of 0.1 second
and denote the obtained system as

x|t 4+ 1] = Az[r] + Bulr], 7=0,1,... (68)

It is aimed to design a constrained controller u[7] = Kz[7] to
minimize the cost function Y7 o (z[r]"z[r] + u[r] u[7]).
Consider 100 randomly-generated initial states x[0] with
entries drawn from a normal distribution. We solved the
computationally-cheap SDP relaxation of the infinite-horizon
ODC problem combined with the direct recovery method to
design a controller of Structure (a) minimizing the above cost
function. The optimality degrees of the controllers designed
for these 100 random trials are depicted in Figure [0] As
can be seen, the optimality degree is better than 95% for
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Fig. 8: Two different structures (decentralized and distributed) for the
controller K: the free parameters are colored in red (uncolored entries are
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Fig. 9: Optimality degree (%) of the decentralized controller K for a mass-
spring system under 100 random initial states.

more than 98 trials. It should be mentioned that all of these
controllers stabilize the system.

Infinite-Horizon Stochastic ODC: Assume that the system is
subject to both input disturbance and measurement noise. Con-
sider the case ¥4 = I,, and X, = ol,, where o varies from
0 to 5. Using the computationally-cheap relaxation problem
(62) in conjunction with the indirect recovery method, a near-
optimal controller is designed for each of the aforementioned
control structures under various noise levels. The results are
reported in Figure [I0} The designed structured controllers are
all stable with optimality degrees higher than 95% in the worst
case and close to 99% in many cases.

VIII. CONCLUSIONS

This paper studies the optimal distributed control (ODC)
problem for discrete-time deterministic and stochastic systems.
The objective is to design a fixed-order distributed controller
with a pre-determined structure to minimize a quadratic cost
functional. Both time domain and Lyapunov domain formu-
lations of the ODC problem are cast as rank-constrained
optimization problems with only one non-convex constraint

requiring the rank of a variable matrix to be 1. We propose
semidefinite programming (SDP) relaxations of these prob-
lems. The notion of tree decomposition is exploited to prove
the existence of a low-rank solution for the SDP relaxation
problems with rank at most 3. This result can be a basis for
a better understanding of the complexity of the ODC problem
because it states that almost all eigenvalues of the SDP solution
are zero. Moreover, multiple recovery methods are proposed
to round the rank-3 solution to rank 1, from which a near-
global controller may be retrieved. Computationally-cheap
relaxations are also developed for finite-horizon, infinite-
horizon, and stochastic ODC problems. These relaxations are
guaranteed to exactly solve the LQR and Hs problems for the
classical centralized control problem. The results are tested
on multiple examples. In our supplementary paper [45], we
have conducted a case study on electrical power systems to
further evaluate the performance of the methods proposed in
this paper.
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