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Abstract—This paper is concerned with the optimal decentral-
ized control problem for linear discrete-time deterministic and
stochastic systems. The objective is to design a stabilizing static
distributed controller with a given structure, whose performance
is close to that of the optimal centralized controller. To this end,
we derive a necessary and sufficient condition under which there
exists a distributed controller that generates the same input and
state trajectories as the optimal centralized one. This condition
is then translated into a convex optimization problem. Subse-
quently, a regularization term is incorporated into the objective
of the proposed optimization problem to indirectly account for
the stability of the distributed control system. The designed
optimization has a closed-form solution (explicit formula), which
depends on the optimal centralized controller as well as the
controller structure. If the optimal objective value of the proposed
optimization is small enough at the explicit solution, the resulting
controller is stabilizing and has a high performance. The derived
formula may help partially answer some open problems, such
as finding the minimum number of free elements required in
the distributed controller to achieve a performance close to the
optimal centralized one. The proposed approach is tested on a
power network and several random systems.

I. INTRODUCTION

The area of decentralized control has been created to address

computation and communication challenges in the control of

large-scale real-world systems. The main objective is to design

a controller with a prescribed structure, as opposed to the

traditional centralized controller, for an interconnected system

consisting of an arbitrary number of interacting local subsys-

tems. The structurally constrained controller is composed of a

set of local controllers, associated with different subsystems,

which are allowed to interact with one another according to

the given control structure. The names “decentralized” and

“distributed” are interchangeably used in the literature to refer

to the underlying controller (the latter term is often used

for geographically distributed systems). It has been known

that solving the long-standing optimal decentralized control

problem is a daunting task due to its NP-hardness [1], [2].

Great efforts have been made to solve this difficult problem for

special structures, such as spatially distributed systems [3]–[6],

dynamically decoupled systems [7], [8], strongly connected

systems [9], and optimal static distributed systems [10], [11].

Due to the evolving role of convex optimization in solving

complex problems, more recent approaches for the optimal

decentralized control problem have shifted towards a convex
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reformulation of the problem [12]–[19]. Using the graph-

theoretic analysis developed in [20], [21], we have shown

in [22]–[24] that a semidefinite programming (SDP) relaxation

for the decentralized control problem has a low-rank solution

for finite- and infinite-time cost functions in both deterministic

and stochastic settings. The low-rank SDP solution may be

used to find a near-global distributed controller, but SDPs are

often computationally expensive.

Consider the gap between the optimal costs of the cen-

tralized and decentralized control problems. This gap could

be arbitrarily large in practice (as there may not exist a

stabilizing controller with the prescribed structure). This paper

is focused on systems for which this gap is relatively small.

The main problem to be addressed is the following: given

an optimal centralized controller, is it possible to design a

stabilizing static distributed controller with a given structure

whose performance is close to that of the best centralized one?

The main objective of this paper is to propose a candidate

distributed controller via an explicit formula, which is indeed

the closed-form solution of an optimization problem.

In this work, we first derive a necessary and sufficient

condition under which the states and inputs produced by a

candidate distributed controller and the optimal centralized

controller are the same for a given initial state. We translate the

condition into an optimization problem, where the closeness

of the optimal centralized and distributed control systems are

captured by the smallness of the optimal objective value of

this optimization. We then add a regularization term to the

objective to account for the stability of the closed-loop system.

This problem has a closed-form solution, which depends on

the given sparsity pattern of the to-be-designed controller. The

main advantage of the proposed technique is that it explicitly

shows how the sparsity pattern affects the performance of the

distributed control system. As a by-product, if the number of

free elements in each row of the unknown static distributed

control is higher than the rank of some Lyapunov matrix,

then there exists a controller for which the above gap is zero

(without considering the stability requirement). However, this

controller may not be stabilizing and therefore having a higher

number of free elements in each row increases the likelihood

of finding both a stabilizing and a high-performance controller.

We demonstrate the efficacy of our technique on a power

network as well as random systems.

The rest of this paper is organized as follows. Deterministic

systems are studied in Section II, followed by an extension

to stochastic systems in Section III. Numerical examples are

provided in Section IV. Finally, concluding remarks are drawn

in Section V.
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II. DISTRIBUTED CONTROLLER DESIGN: DETERMINISTIC

SYSTEMS

In this section, we study the design of static distributed

controllers for deterministic systems. To this end, we will first

formulate the problem and then develop our main results.

A. Problem Formulation

Consider the discrete-time system

x[τ + 1] = Ax[τ ] + Bu[τ ], τ = 0, 1, ... (1)

with the known matrices A ∈ R
n×n, B ∈ R

n×m and x[0] ∈
R

n. The main objective is to design a static controller u[τ ] =
Kx[τ ] to satisfy certain optimality and structural constraints

to be specified later. Associated with the system (1) under an

arbitrary controller u[τ ] = Kx[τ ], we define the following

cost function for the closed-loop system:

J(K) =

∞
∑

τ=0

(

x[τ ]TQx[τ ] + u[τ ]TRu[τ ]
)

(2)

where Q and R are known positive semidefinite matrices

of appropriate dimensions. Let K = Kc denote an optimal

solution of the optimization problem

min
K∈Rm×n

J(K) (3)

Note that Kc is the optimal centralized controller gain, which

can be obtained from the Riccati equation.

Definition 1. Define K ⊆ R
m×n as a linear subspace

consisting of all distributed feedback gains K with a pre-

specified sparsity pattern (forced zeros in certain entries).

Definition 2. Given a matrix Kd ∈ K and a percentage

number µ ∈ [0, 100], it is said that the distributed controller

u[τ ] = Kdx[τ ] has the global optimality guarantee of µ if

J(Kc)

J(Kd)
× 100 ≥ µ (4)

To understand Definition 2, if µ is equal to 90% for instance,

it means that the distributed controller u[τ ] = Kdx[τ ] is

at most 10% worse than the best centralized controller with

respect to the cost function (2). The main objective of this part

is to study the following problem.

Problem 1: Distributed Controller Design. Given a per-

centage number µ ∈ [0, 100], find a distributed controller

u[τ ] = Kdx[τ ] meeting three requirements:

i) Kd ∈ K is the solution of an explicit formula with respect

to Kc without having to solve any optimization problem.

ii) The controller u[τ ] = Kdx[τ ] has the global optimality

guarantee of µ.

iii) The system (1) is stable under the controller u[τ ] =
Kdx[τ ].

Note that Requirement (i) in Problem 1 demands a low-

complex design approach, which does not allow solving any

optimization problem.

B. Performance Criterion

Consider the optimal centralized controller u[τ ] = Kcx[τ ]
and an arbitrary distributed controller u[τ ] = Kdx[τ ]. Let

xc[τ ] and uc[τ ] denote the state and input of the system (1)

under the centralized controller. Likewise, define xd[τ ] and

ud[τ ] as the state and input of the system (1) under the

distributed controller. The next lemma derives a necessary

and sufficient condition under which the centralized and dis-

tributed controllers generate the same state trajectory for the

system (1).

Lemma 1. Given the optimal centralized gain Kc , an arbi-

trary distributed control gain Kd ∈ K, and the initial state

x[0], the relation

xc[τ ] = xd[τ ], τ = 0, 1, 2, ... (5)

holds if and only if

B(Kc − Kd)(A + BKc)
τx[0] = 0, τ = 0, 1, 2, ... (6)

Proof. The proof is based on a simple induction on the time

instance τ . The details are omitted due to its similarity to the

proof of Lemma 2.

Lemma 1 investigates the equivalence of the centralized and

distributed controllers from the states’ perspective. The next

lemma studies the analogy of the input trajectories for the

centralized and distributed control systems.

Lemma 2. Given the optimal centralized gain Kc , an arbi-

trary distributed control gain Kd ∈ K, and the initial state

x[0], the relation

uc[τ ] = ud[τ ], τ = 0, 1, 2, ... (7)

holds if and only if

(Kc − Kd)(A + BKc)
τx[0] = 0, τ = 0, 1, 2, ... (8)

Proof. First, we prove that (7) implies (8). To this end, assume

that the equation (7) is satisfied. Since xc[0] = xd[0] = x[0],
we have xc[τ ] = xd[τ ] for every nonnegative integer τ (note

that the system (1) generates identical state signals under two

identical input signals uc[τ ] and ud[τ ] ). Now, one can write

uc[τ ] = Kcxc[τ ] = Kc(A + BKc)
τx[0] (9a)

ud[τ ] = Kdxd[τ ] = Kd(A + BKd)τx[0] (9b)

On the other hand, the relation xc[τ ] = xd[τ ] can be ex-

pressed as

(A + BKc)
τx[0] = (A + BKd)τx[0] (10)

Combining (9) and (10) leads to (8).

To prove that (8) implies (7), suppose that the equation (8) is

satisfied. By pre-multiply the left side of (8) with B, it follows

from Lemma 1 that xc[τ ] = xd[τ ]. Now, one can write:

uc[τ ]− ud[τ ] = Kcxc[τ ]− Kdxd[τ ]

= Kcxc[τ ]− Kdxc[τ ]

= (Kc − Kd)(A + BKc)
τx[0]

= 0

(11)

This yields the relation (7), and completes the proof.
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Theorem 1. Given Kc, an arbitrary gain Kd ∈ K, and the

initial state x[0], the relations

uc[τ ] = ud[τ ], τ = 0, 1, 2, ... (12a)

xc[τ ] = xd[τ ], τ = 0, 1, 2, ... (12b)

hold if and only if

(Kc − Kd)(A + BKc)
τx[0] = 0, τ = 0, 1, 2, ... (13)

Proof. This theorem is an immediate consequence of Lem-

mas 1 and 2.

Theorem 1 derives a necessary and sufficient condition in

order for a distributed control system to perform identically

to its centralized counterpart. To flourish this condition, we

introduce an optimization problem below.

Optimization A. This problem is defined as

min
Kd

trace
{

(Kc − Kd)P (Kc − Kd)
T
}

(14a)

s.t. Kd ∈ K (14b)

where the symmetric positive-semidefinite matrix P ∈ R
n×n

is the unique solution of the Lyapunov equation

(A + BKc)P (A + BKc)
T − P + x[0]x[0]T = 0 (15)

Since P is positive semidefinite and the feasible set K is

linear, Optimization A is convex. The next theorem explains

how this optimization can be used to study the analogy of the

centralized and distributed control systems.

Theorem 2. Given Kc, an arbitrary gain Kd ∈ K, and the

initial state x[0], the relations

uc[τ ] = ud[τ ], τ = 0, 1, 2, ... (16a)

xc[τ ] = xd[τ ], τ = 0, 1, 2, ... (16b)

hold if and only if the optimal objective value of Optimiza-

tion A is zero and Kd is a minimizer of this problem.

Proof. In light of Theorem 1, we need to show that the

condition (13) is equivalent to the optimal objective value of

Optimization A being equal to 0. To this end, define the semi-

infinite matrix

X =
[

x[0] (A + BKc)x[0] (A + BKc)
2x[0] · · ·

]

(17)

Now, observe that (13) is satisfied if and only if the Frobenius

norm of (Kc − Kd)X is equal to 0 or equivalently

trace{(Kc − Kd)XXT (Kc − Kd)
T } = 0 (18)

On the other hand, if P is defined as XXT , it will satisfy (15).

This completes the proof.

Theorem 2 states that if the optimal cost of the convex

Optimization A is 0, then there exists a distributed controller

ud[τ ] = Kdxd[τ ] with the structure induced by K whose

global optimality guarantee is 100%. Roughly speaking, a

small optimal value for Optimization A implies that the

centralized and distributed control systems can become very

close to each other.

C. Stability Criterion

In the preceding subsection, we studied conditions under

which the centralized and distributed control systems had

the same input and state trajectories, for a given initial

state. However, this condition does not guarantee the stability

of the distributed closed-loop system. To elaborate on this

statement, assume that condition (13) is satisfied, implying

that xc[τ ] = xd[τ ] and uc[τ ] = ud[τ ] for every nonnegative

integer τ . Assume also that A + BKd is diagonalizable as

A + BKd = V DV −1, where V is a matrix consisting of

the eigenvectors of A + BKd and D is a diagonal matrix

containing the eigenvalues of A + BKd. One can write

xd[τ ] = (A + BKd)τx[0] = V DτV −1x[0] (19)

Also, due to the stability of the centralized closed-loop system,

we have

0 = lim
τ→∞

‖xc[τ ]‖ = lim
τ→∞

‖xd[τ ]‖ = lim
τ→∞

‖V DτV −1x[0]‖

The above equation does not imply that all diagonal entries

of D have norms less than 1 (i.e., stability). Instead, it

implies that x[0] is orthogonal to every eigenvector whose

corresponding eigenvalue is unstable.

It follows from the above discussion that whenever the

centralized and distributed control systems have the same input

and state trajectories, x[0] belongs to the stable manifold of

the system x[τ + 1] = (A + BKd)x[τ ], but the closed-loop

system might be unstable. To address this issue, we introduce

an optimization problem below.

Optimization B. This problem is defined as

min
Kd

trace
{

(Kc − Kd)T BT B(Kc − Kd)
}

(20a)

s.t. Kd ∈ K (20b)

Lemma 3. There exists a strictly positive number µs such

that every distributed controller u[τ ] = Kdx[τ ] with a gain

Kd ∈ K stabilizes the system (1) if the objective value of

Optimization B at the point Kd is less than µs.

Proof. Notice that A + BKd could be interpreted as a struc-

tured additive perturbation of the closed-loop system matrix

corresponding to the centralized controller Kc, i.e.,

A + BKd = A + BKc + (B(Kd − Kc)) (21)

The proof follows from the above equation.

Note that there are several techniques in matrix perturbation

and robust control to maximize or find a sub-optimal value

for µs [25]. Note also that the stability criterion (20a) is

conservative, and can be improved by exploiting any possible

structure in the matrices A and B together with the set K.

D. Candidate Distributed Controller

Optimization A and Optimization B were introduced earlier

to guarantee a high performance and closed-loop stability

for a to-be-designed controller Kd. We merge these two

optimization problems below.
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Optimization C. Given a constant number α ∈ [0, 1], this

problem is defined as the minimization of the function

α×trace
{

(Kc − Kd)P (Kc − Kd)
T
}

+

(1 − α)×trace
{

(Kc − Kd)T BT B(Kc − Kd)
} (22)

with respect to the matrix variable Kd ∈ K.

Assume matrix Kd has l free entries to be designed. Denote

these parameters as h1, h2, ...hl. The space of permissible

controllers can be characterized as

K ,

{

l
∑

i=1

hiMi

∣

∣

∣

∣

∣

h ∈ R
l

}

(23)

for some (fixed) 0-1 matrices M1, ..., Ml ∈ R
m×n (note that

hi’s are the entries of h).

Theorem 3. Consider two matrices X ∈ R
l×l and Y ∈ R

l

with the entries

Xij = α trace{MiPM
T
j } + (1 − α) trace{MT

i B
T
BMj} (24a)

Yi = α trace{MiPK
T
c }+ (1− α) trace{MT

i B
T

Kc} (24b)

for every i, j ∈ {1, 2, ..., l}. The optimal solution of Opti-

mization C can be expressed as Kd =
∑l

i=1
hiMi, where

h = X−1Y .

To illustrate Theorem 3, assume that Kc is a square matrix

and K consists of diagonal matrices. Then, one naive strategy

to design Kd is to simply remove the off-diagonal entries of

Kc but keep its diagonal. However, Optimization C proposes

a distributed controller Kd whose (i, i)th entry is a weighted

sum of the elements of the ith row and ith column of Kc,

where the weights come from the Lyapunov matrix P .

We will numerically demonstrate in Section IV that the

explicit controller Kd proposed in Theorem 3 is stabilizing

and has a high optimality guarantee for a class of systems.

Remark 1. It can be inferred from Theorem 2 and Lemma 3

that there exists a positive number µ′ such that if the optimal

cost of Optimization C is less than µ′, then its solution Kd

solves Problem 1. Note that µ′ is indeed a function of µ,

i.e., the prescribed global optimality guarantee. Although it

is straightforward to find conservative values for µ′ (e.g.,

by choosing it sufficiently small), finding a non-conservative

value for µ′ is left for future work. Note that µ′ does not

depend on K. By plugging the optimal controller Kd obtained

from (24) into (22), the optimal cost of Optimization C will

be obtained as a function of the sparsity pattern K. Then, one

can evaluate how sparse the to-be-designed Kd should be so

that the optimal cost of Optimization C becomes less than µ′

in order to guarantee the existence of a solution to Problem 1.

E. Sparsity Pattern

Since x[0]x[0]T has rank-1 in (15), the Lyapunov matrix P

tends to be low-rank. In the extreme case, if the closed-loop

matrix A + BKc is 0 (the most stable discrete system), the

matrix P becomes rank 1. To illustrate this property, we will

later show in Example 3 that only 10% of the eigenvalues of

P are dominant for random highly-unstable systems. On the

other hand, Theorem 2 states that there exists a distributed

controller with the global optimality guarantee of 100% if the

optimal objective value of Optimization A is zero. In what

follows, we will show that this optimal value becomes zero if

the number of free elements of Kd is higher than a threshold

that depends on the rank of P .

Given a natural number r, let P̂ denote a rank-r approxima-

tion of P . Define an approximate version of Optimization A

below.

Approximate Optimization A. This problem is defined as

min
Kd∈K

trace
{

(Kc − Kd)P̂ (Kc − Kd)
T
}

(25)

Let V ∈ R
n×r be a matrix whose columns are those

eigenvectors of P̂ associated with the r nonzero eigenvalues of

this matrix. To simplify the statement of the next theorem, we

make the assumption that the spark of V T is r + 1, implying

that every r rows of V are linearly independent. Note that this

condition is satisfied generically.

Theorem 4. The optimal objective value of Approximate

Optimization A is 0 if every row of Kd has at least r free

elements.

Proof. Approximate Optimization A has the optimal objective

value 0 if (Kc − Kd)V = 0 or equivalently

K
j

dV = Kj
cV, j = 1, 2, ..., n (26)

where Kj
c and K

j

d denote the jth rows of Kc and Kd,

respectively. Note that the rows of Kd ∈ K can be designed

independently. On the other hand, (26) has a solution K
j

d with

the right sparsity pattern because it has at least r free elements

to be designed and the corresponding rows of V are linearly

independent by assumption. This completes the proof.

Corollary 1. Given a natural number r, assume that the rank

of P is r and that every row of the unknown controller Kd

has at least r free elements. Then, there exists a controller

Kd ∈ K whose global optimality degree is 100%.

Proof. The proof follows from Theorems 2 and 4.

Remark 2. The difference between the optimal solutions of

Optimization A and Approximate Optimization A can be upper

bounded by ‖P − P̂‖. On the other hand, Theorem 4 states

that the objective of Approximate Optimization A is zero

at optimality if every row of the to-be-designed distributed

controller Kd has at least r free elements. Now, due to

Theorem 2, there is a controller Kd whose global optimality

degree is close to 100% if the number of free elements in

each row of Kd is greater than or equal to the approximate

rank of P (i.e., the number of clearly dominant eigenvalues).

If the degree of freedom of Kd in each row is higher than

r, then there are infinitely many distributed controllers with a

high optimality degree, and then the chance of existence of a

stabilizing controller among those candidates would be higher.
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III. DISTRIBUTED CONTROLLER DESIGN: STOCHASTIC

SYSTEMS

In this section, we generalize the results developed earlier

to stochastic systems. Consider the discrete-time system
{

x[τ + 1] = Ax[τ ] + Bu[τ ] + Ed[τ ]
y[τ ] = x[τ ] + Fv[τ ]

τ = 0, 1, 2, ...

(27)

where A, B, E, F are known matrices, and d[τ ] and v[τ ]
denote the input disturbance and measurement noise, respec-

tively. Consider the cost functional

lim
τ→+∞

E
(

x[τ ]TQx[τ ] + u[τ ]TRu[τ ]
)

(28)

where E{·} is the expectation operator. Assume that the input

disturbance and measurement noise are zero-mean white-noise

random processes. Define the covariance matrices

Σd = E{Ed[τ ]d[τ ]TET }, Σv = E{Fv[τ ]v[τ ]TF T } (29)

for every τ ∈ {0, 1, 2, ...}. Let Kc denote the gain of the

optimal static centralized controller u[τ ] = Kcy[τ ] minimiz-

ing (28) for the stochastic system (27). Note that if F = 0,

Kc can be found using the Riccati equation. The goal is to

design a stabilizing distributed controller u[τ ] = Kdy[τ ] with a

high global optimality degree such that Kd ∈ K. Consider the

counterpart of Optimization A for stochastic systems defined

as the minimization problem

min
Kd∈K

trace
{

(Kc − Kd)Ps(Kc − Kd)T
}

(30)

where

(A + BKc)Ps(A + BKc)
T − Ps + x[0]x[0]T

+ Σd + (BKc)Σv(BKc)
T = 0

(31)

Similarly to Theorem 2, it can be shown that there is a

distributed controller u[τ ] = Kdy[τ ] resulting in the same

optimal cost (28) as the centralized controller u[τ ] = Kcy[τ ]
if the optimal objective value of (30) is zero. Since (30) is

equivalent to Optimization A after replacing Ps with P , the

results stated in the preceding section all hold for stochastic

systems after changing P to Ps.

IV. NUMERICAL RESULTS

Three examples will be offered in this section to demon-

strate the efficacy of the proposed controller design technique.

A. Example 1: Power Networks

In this example, the objective is to design a distributed

controller for the primary frequency control of a power net-

work. The system under investigation is the IEEE 39-Bus

New England test System [26]. The state-space model of this

system, after linearizing the swing equations, can be described

as

ẋ(τ ) = Acx(τ ) + Bcu(τ ) (32)

where Ac ∈ R
20×20, Bc ∈ R

20×10, and x(τ ) contains

the rotor angles and frequencies of the 10 generators in

the system (see [23] for the details of this model). The

input of the system is the mechanical power applied to each

(a) Fully Distributed (b) Localized

(c) Star Topology (G10 in center) (d) Ring

Fig. 1: Communication structures studied in Example 1 for IEEE 39-Bus
test System

generator. The goal is to first discretize the system with the

sampling time of 0.2 second, and then design a distributed

controller to stabilize the system while achieving a high degree

of optimality. We consider four different topologies for the

structure of the controller: distributed, localized, star and

ring. A visual illustration of these topologies is provided in

Figure 1, where each node represents a generator and each

line specifies what generators are allowed to communicate. In

the fully distributed structure, the generators are not allowed

to communicate with each other. In the localized structure, the

generators can only communicate with neighboring generators.

In the star topology, a single generator communicates with all

generators. In the ring communication structure, the generators

may communicate with two of their neighbors. We will study

both deterministic and stochastic cases below, by choosing

the entries of the initial state x(0) uniformly from the interval

[0, 1].

Deterministic Case: In this experiment, we generate the

weighting matrices Q and R in a random fashion as Q =
Q̃Q̃T and R = 0.1 × R̃R̃T , where Q̃ and R̃ are normal

random matrices. We then design distributed controllers using

the explicit formula given in Theorem 3. Figure 2a shows

the global optimality guarantee for the four aforementioned

control topologies for different values of the parameter α.

Figure 2b draws the maximum absolute eigenvalue of the

closed-loop matrix A + BKd. A number of observations can

be made:

• For those values of α that make the system stable, the

optimality guarantee is at least 80% for all topologies.

Note that a distributed controller with a significantly

higher optimality guarantee may not exist due to its low
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Fig. 2: Global optimality guarantee and maximum absolute eigenvalue of A + BKd for four different topologies and different values of α (deterministic

case).

degree of freedom.

• For those values of α making all topologies stabilizing,

the ring structure has the best optimality guarantee (near

100%) while the fully distributed one has the lowest

guarantee (near 80%).

• According to Figure 2b, the choice of α is critical for the

ring and star structures. 0.92 ≤ α ≤ 1 and 0.77 ≤ α ≤ 1
make the system unstable for the ring and star topologies,

respectively. Also, [0.02, 1] is the best region for α, for

the fully distributed and localized topologies.

Stochastic Case: Suppose that the power system is subject

to input disturbance and measurement noise. The disturbance

may be caused by certain non-dispatchable supplies and fluc-

tuating loads. The measurement noise could arise from the

inaccuracy of the rotor angle and frequency measurements. We

assume that Σd = I and Σv = σI, with σ varying from 0 to 5.

Q and R are set to I and 0.1×I, respectively. Also, α is chosen

as 0.4. The simulation results are provided in Figure 3. It can

be observed that the designed controllers are all stabilizing

with no exceptions. Moreover, the global optimality guarantees

for the ring, star, localized, and fully distributed topologies are

above 96.5%, 94.5%, 94%, and 90.8%, respectively.

B. Example 2: Stable Random Systems

The objective is to demonstrate the performance of the

proposed design technique on stable systems. Consider n =
m = 40 and Q = R = I. We generate random continuous-

time systems and then discretize them according to following

rules:

• The entries of Ac are chosen randomly from a Gaussian

distribution with the mean 0 and variance 25.

• The entries of Bc are chosen randomly from a normal

distribution.

• After constructing Ac, the matrix is rescaled by a real

number so that its maximum absolute eigenvalue becomes

equal to 0.8.

• K is assumed to be diagonal (off-diagonal elements are

forced to be zero).

• A and B are obtained by discretizing (Ac, Bc) using the

zero-order hold method with the sampling time of 0.1

second.

Notice that for K = 0 is a trivial stabilizing distributed

controller for the above system. However, this choice of the

controller may not result in a high optimality guarantee. We

design a diagonal controller Kd using the explicit formula

given in Theorem 3 for 100 random systems generated as

above, with α = 0.98. We arrange the resulting optimality

guarantees in ascending order and label their corresponding

trials as 1, 2, ..., 100. Also, we calculate the optimality guar-

antee for the trivial controller K = 0 for each random system.

The results of this experiment are provided in Figure 4. It can

be observed that the designed diagonal controller always has

a better optimality guarantee than the trivial solution K = 0.

Note that our formula designs the (i, i)th entry of Kd using

a linear combination of the entries in the ith row and column

of the optimal centralized controller Kc. Another approach

is to simply use the diagonal of Kc as a candidate diagonal

controller Kd. To assess this difference, we compute the cross-

correlation between the controller designed using Theorem 3

and a truncated version of Kc for these 100 trials. The cross-

correlation for these trials has the mean 0.4892 and standard

deviation 0.1217. This shows that the designed controller is

completely different from the naive method of truncating the

centralized controller.

C. Example 3: Highly-Unstable Random Systems

In Example 2, it was shown that the proposed explicit

formula could simply design high-performance distributed

controllers for stable systems. This example investigates highly

unstable systems for which the design of a stabilizing dis-

tributed controller is challenging itself without even imposing

any performance criterion. Consider Example 2, but assume

that the randomly generated matrices Ac’s are not scalded

down to make the maximum absolute eigenvalue to 0.8 and

indeed their unstable eigenvalues are untouched. Suppose that

each entry of K is forced to be zero with probability p. We

consider three scenarios associated with p equal to 0.1, 0.2
and 0.3.

Note that the above class of random systems is highly

unstable with the maximum absolute eigenvalue of A as

high as 9. The optimality guarantees and maximum absolute

eigenvalues of the design distributed controllers Kd are given

in Figure 5 for a sample random system with a varying

parameter α. The following observations can be made:

• As log as α is not very close to 1, the designed con-

trollers are stabilizing. This implies that it is crucial to
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incorporate both stability and performance terms in the

objective of Optimization C.

• As the probability of forced zeros in the controller

increases, the optimality guarantee of the designed con-

troller becomes more dependent on the value of α. Also,

the optimality guarantee for the controller with p = 0.1 is

higher than those of the other controllers, and it is almost

100% for a wide range of α. This is due to the fact that

the controller has many free elements for design.

Now, consider 100 random systems generated according to the

aforementioned rules and set α = 0.98. We design distributed

controllers for the three scenarios of p equal to 0.1, 0.2 and

0.3. We arrange the obtained maximum absolute eigenvalues

in ascending order and subsequently label their corresponding

trials as 1, 2, ..., 100. Figure 6 shows the optimality guar-

antees and maximum absolute eigenvalues of the designed

distributed controllers. For p = 0.1, the proposed method

always yields stabilizing controllers with optimality guarantees

near to 100%. For p = 0.2, 99 control systems are stable with

optimality guarantees near to 100%. For p = 0.3, 54 control

systems are stable with very high optimality guarantees. Note

that the designed controllers are very different from truncated

versions of Kc (by simply discarding 10%-30% entries of Kc).

More precisely, the cross-correlation between the controller

designed using Theorem 3 and a truncated version of Kc for

the above 100 trials with p = 0.1 has the mean 0.6245 and

standard deviation 0.0677.

As mentioned earlier, the eigenvalues of P in the Lyapunov

equation (15) may decay very rapidly. To support this state-

ment, we compute the eigenvalues of P for previous 100

randomly generated unstable systems. Then, we arrange the

absolute eigenvalues of P for each system in ascending order

and label them as λ1, λ2, ..., λ40. For every i ∈ {1, 2, ..., 40},

the mean of λi for these 100 independent random systems is

drawn in Figure 7 (the variance is very low). It can be seen that

only 10% of the eigenvalues are dominant and P can be well

approximated by a low-rank matrix. Due to Corollary 1, there

exist distributed controllers with global optimality degrees

close to 100% even for a large value of p, e.g., p = 0.9.

However, our stability term in Optimization C is not able to

find a stabilizing controller in those cases. Designing a better

convex compensation term for stability assurance is left as

future work.

V. CONCLUSIONS

This paper studies the optimal distributed control problem

for linear discrete-time systems. The goal is to design a stabi-

lizing static distributed controller with a pre-defined structure,

whose performance is close to that of the best centralized

controller. To this end, we derive a necessary and sufficient

condition under which there exists a distributed controller that

produces the same input and state trajectories as the optimal

centralized controller. We then convert this condition into a

convex optimization problem. Roughly speaking, the smaller

the optimal value of this optimization problem is, the closer the

state and input trajectories of the centralized and distributed

control systems can become. We also add a regularization

term to the objective of the proposed optimization problem to

account for the stability of the distributed control system indi-

rectly. The designed optimization has a closed-form solution,

which depends on the optimal centralized controller as well

as the prescribed sparsity pattern for the unknown distributed

controller. Hence, we provide a candidate distributed controller

with the right structure through an explicit formula. If the

optimal objective value of the proposed optimization is small

enough at this solution, the resulting controller is stabilizing

and has a high performance. The derived formula may help

partially answer some open problems, such as finding the

minimum number of free elements needed in the distributed

controller to attain a performance close to the optimal cen-

tralized one. The proposed method is evaluated on a power

network and several random systems.
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