
Monte Carlo Analysis

• Monte Carlo (MC) analysis offers a way to understand/assess the
performance of estimators.

• We are often interested in comparing the performance of different
estimators in various research situations. Theory does not always
give us a clear sense of what estimator will work the best.

• Large sample v. small sample properties.

• Draws on frequentist notion of repeated samples.

• Experiments: we control the conditions under which the data are
generated and evaluated.

• Basic steps for MC analysis:

1. Define the DGP (specification, functional form, distribution,
parameter values).

– Tip: keep it simple (always have external validity issues,
no matter how complex you make the DGP).

2. Simulate the data: use random number generator to draw
values for RHS quantities (X, ε) and compute LHS values (y).

3. Compute the estimator(s) of interest and save the results
(coefficients, standard errors).

4. Repeat these steps numerous times (∼ 500–1000).

5. Examine the distribution of the estimates produced to assess
performance/compare estimators (e.g., are results consistent
w/ theory, asymptotic or otherwise?).
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• Criteria for evaluating performance:

– Bias: average performance of point estimates across

simulations (e.g.,
¯̂
β = S−1 ∑S

s=1 β̂s; S−1 ∑S
s=1 |β − β̂s|; ¯̂

β − β).

– Variance of sampling distribution (e.g.,∑S
s=1(β̂s − ¯̂

β)2/(S − 1)).

– Mean squared error (e.g.,
∑S

s=1(β̂s − β)2/S).

– Coverage/confidence interval length (e.g., proportion of times
β̂s is located within 95% CI).

– “Optimism”: assessment of performance of standard errors;
E.g.,

100×

∑S
s=1

(
β̂s − ¯̂

β
)2

∑S
s=1

[
SE

(
β̂s

)]2 ,

where “SE” refers to the estimated standard errors.

∗ Values above 100 indicate that true sampling variability is
greater than the reported estimate of that variability,
while values less than 100 indicate that the estimate
overstates true variability.

∗ Understating variability means that we might reject the
null of a zero coefficient when the null is true (i.e., commit
a Type I error).

∗ Overstating variability implies that we might not reject
the null of a zero coefficient when that null is false, leading
us to conclude that a variable does not have effects when
in fact it does (i.e., increases the risk of Type II errors).
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