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W4912
Spring 2003

Section Handout #1 - Linear Algebra Review

Notation

An,m is an n×m matrix, i.e. a matrix with n rows and m columns, such that:
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xn is an n-dimensional column vector, i.e. a matrix with one column, such that:
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Note that we’ll usually use capital letters to denote matrices, and lower case letters to
denote vectors.

Matrix Operations

½ Transpose: Bm,n=(An,m)’ such that bij = aji

 
½ Adding: Cn,m = An,m + Bn,m such that cij = aij + bij

Note that we can add two matrices only if they have the same dimensions.

½ Multiplying by scalar: Bn,m = cAn,m such that bij = caij

½ Multiplying: Cn,m = An,kBk,m such that ∑
=

=
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Note that: (1) We can multiply two matrices only if the number of columns in the first
is the same as the number of rows in the second, (2) The order is important, so even if
AB is a valid operation, it does not necessarily mean that BA is valid, and (3) If x is
an n×1 vector then xx’ is an n×n matrix while x’x is a scalar.

½ Comparison: A = B if and only if aij = bij for each i and j
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Some Properties to Remember

(A+B)’ = A’ + B’

(A+B)+C = A+(B+C)

(AB)’ = B’A’

(AB)C = A(BC)

A(B+C) = AB + AC or     (A+B)C = AC + BC

Special Matrices

½ Square matrix: a matrix with the number of rows equals the number of
columns

½ Symmetric matrix: the matrix A is symmetric iff A=A’. Note that for a matrix
to be symmetric it must be a square matrix.

½ Lower triangular matrix: a square matrix for which all the elements above the main
diagonal equal to zero.

 
½ Upper triangular matrix: a square matrix for which all the elements below the main

diagonal equal to zero.
 
½ Diagonal matrix: a matrix which is upper and lower triangular, so all off-

diagonal elements are zeros.
 
½ The identity matrix: a diagonal matrix with all elements on the main diagonal

equal to one. We denote the matrix by I. Note that this matrix is the matrix analogue
for the scalar 1, in the sense that for any matrix A, we have that: AI = IA = A.
 

½ The zero matrix: a matrix with all its elements equal to zero. Note that this
matrix is the matrix analogue for the scalar 0, in the sense that for any matrix A, we
have that: A0 = 0A = 0.
 

½ Idenpotent matrix: a matrix A that satisfies A2 = AA = A, which also means
that A3 = AAA = (AA)A = AA = A and that An = A for any n. Note that for a matrix
to be idenpotent it must be a square matrix.
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Rank

An n×k matrix A can be thought of as comprising k vectors: A = [v1,v2,...,vk]. The
number of these k vectors which are linearly independent is the column rank or simply
the rank of a matrix.  The row and column rank of a matrix are always equal.

A matrix with rank equal to its number of columns is of full rank.

If C=AB then each of the columns of C will be a linear combination of the columns of A.
Each of the rows of C will be a linear combination of the rows of B. So:

rank(AB) ≤ min{rank(A), rank(B)}

A useful corollary is that: rank(X) = rank(X’X) = rank (XX’).

Inverting Matrices and Determinants

The matrix A is invertible (or non-singular) if there exists another matrix B such that we
have AB = BA = I (where I is the identity matrix). A matrix is invertible only if it is a
square matrix, but not all square matrices are invertibles. A square matrix is invertible if
and only if it is of full rank.

We denote the inverse of A as A-1, so if A-1 exits, it is always the case that:

AA-1  = A-1A = I

For example:
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We always have that: (A’)-1 = (A-1)’

If A and B are both invertible then (AB)-1 = B-1A-1, but note that (AB)-1 can exist even if
A and B are not invertible (A and B can even be non-square matrices).

Let Aij be the (n-1)×(n-1) submatrix obtained by deleting row i and column j from A.
Then Mij/det(Aij) is the (i,j)th minor of A and Cij/(-1)i+jMij is the (i,j)th cofactor of A.

The determinant of an n×n matrix A is det(A) = a11C11 + a12C12 + ... + a1nC 1n, where aij is
the (i,j)th element of A. The adjoint of A, adj(A) is the matrix whose (i,j)th element is
Cji, the (j,i)th cofactor of A.
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The inverse A-1 of a matrix A is defined as adj(A)/det(A). The determinant of a matrix is
nonzero if and only if it has full rank. Consequently, a matrix with zero determinant is
non-invertible or singular.

Econometric application: the OLS estimates of the parameters β are b = (X’X)-1X’Y.
From the above, these can only be computed if X is of full rank.

Taking Derivatives

Taking derivative with respect to a matrix:
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Taking derivative with respect to a vector:
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Then we have:

1. For a, b vectors: a
b
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2. For a square matrix A: ’
)’(

,2
)’(

bb
A

Abb
Ab

b

Abb =
∂

∂=
∂

∂



5

Block Matrices

Sometimes we find it more convenient to separate the matrix into blocks, and not into
elements, and then do all the operations block by block instead of element by element
(provided that the dimensions match).

For example:
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Eigenvectors and Eigenvalues

Given a square matrix A, it is often useful to think of a transformation which would make
it diagonal. Eigenvectors and eigenvalues allow us to turn A into a diagonal or nearly
diagonal matrix.

The number λ is an eigenvalue of A if and only if det(A-λI) = 0. This is the characteristic
equation for A, and is an n’th degree polynomial in λ, with exactly n (possibly repeated
and complex) solutions.  The eigenvalues of a matrix are sometimes referred to as the
characteristic values.

If det(A-λI)=0, there must be a nonzero vector (an eigenvector) v such that (A-λI)v = 0,
so Av = λv. Each eigenvalue thus defines a corresponding eigenvector. Note that we
could multiply v by any scalar and it would still satisfy this condition, so the eigenvectors
are defined only up to normalization.

Let P be the matrix whose columns are the eigenvectors of A: P = [v1,v2,...,vn]. A useful
result is that if A has n distinct eigenvalues, the corresponding n eigenvectors are linearly
independent.
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where Γ is a diagonal matrix with the eigenvectors of A on its diagonal.  Then, if P is
invertible, P -1AP = Γ and we have diagonalized A. Alternately, A = PΓP-1. 
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Symmetric Matrices

In econometrics we will use a lot of symmetric matrices. In particular, given the
regression model Y = Xb + e, the variance-covariance matrix E = ee’ is a symmetric n×n
matrix.

If an n×n matrix A is symmetric, it has n distinct real eigenvalues and its eigenvectors are
mutually orthogonal, i.e. vi‘v j = vj‘v i = 0 for any i≠j.

Proof: start with Av1 = λ1v1, Av2  = λ2v 2 , A = A’, λ1≠λ2. Then λ1v1'v 2 = (λ1v1)’v  2 =
(Av1)’v  2 = v1’A’v  2 = v1’Av 2 = v1’(λ2v 2) = λ2v1’v 2.
So  λ1v1’v2 = λ2v1’v 2, which, by λ1≠λ2, implies v1’v 2 = 0.

Remember that we can scale eigenvectors by any factor we like. So let’s scale all the
eigenvectors in the matrix P to be of length one. Now if the eigenvectors are mutually
orthogonal we have that P’P = PP’ = I (where I is the identity matrix), so P’ = P-1.

This result turns out to be very useful in finding powers of matrices: consider AA = A2. If
A is symmetric, AA = (PΓP’)(PΓP’) = PΓP’PΓP’ = PΓ2P, since P’P = I. This is useful to
know, since Γ2 is simply the matrix Γ with each diagonal element squared.

Consider Γ1/2. This will only be defined if the eigenvalues of A are all non-negative.

PΓ1/2P’PΓ1/2P’= PΓP’ = A, so PΓ1/2P’ is the square root of the matrix A. This is the
Cholesky factorization of A.
Sometimes we will want to construct A-1/2.  This will be PΓ-1/2 P’ and will be defined if all
the eigenvalues of A are positive.

Definiteness of Quadratic Forms

A quadratic form is a polynomial in x1 ....x n where the highest power is two.  Thus

matrix, for jiijn xxaxxQ Σ=),...( 1 or, if n=2, 2
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We can always write a quadratic form in matrix notation as x’Ax where A is a symmetric
matrix, for example in the case n=2:
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½ A matrix A is positive definite if x’Ax > 0 for any vector x≠0
 

½ A matrix A is positive semidefinite if x’Ax ≥ 0 for any vector x
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½ A matrix A is negative definite if x’Ax < 0 for any vector x≠0

 

½ A matrix A is negative semidefinite if x’Ax ≤ 0 for any vector x
 
½ A matrix A is indefinite if it is neither positive semidefinite nor negative semidefinite

The definiteness of a quadratic form is determined by its eigenvalues.  Suppose we
choose x to be an eigenvector v1 of A. Then 111’ vvAxx λ= .  Although this is only a

one-way proof, it is true that

A is positive definite ⇔ the eigenvalues of A are all positive,
A is positive semidefinite ⇔ the eigenvalues of A are all non-negative, and so on.

We suggest that positive-definite matrices are thought of as being like positive numbers,
in that one can find their square roots.

More useful facts about eigenvalues are that:
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