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1 The Newsvendor Problem

In this chapter we discuss the problem of controlling the inventory of a single item with stochastic
demands over a single period. This problem is also known as the Newsvendor Problem because the
prototype is the problem faced by a newsvendor trying to decide how many newspapers to stock on
a newsstand before observing demand. The newsvendor faced both overage and underage costs if
he orders too much or if he orders too little. The Newsvendor Problems is therefore the problem
of deciding the size of a single order that must be placed before observing demand when there are
overage and underage costs. The problem is particularly important for items with significant demand
uncertainty and large overage and underage costs.

Let D denote the one period random demand, with mean µ = E[D] and variance σ2 = V [D].
Let c be the unit cost, p > c the selling price and s < c the salvage value. If Q units are ordered,
then min(Q,D) units are sold and (Q−D)+ = max(Q−D, 0) units are salvaged. The profit is given
by p min(Q,D) + s(Q−D)+ − cQ. The expected profit is well defined and given by:

π(Q) = pE min(Q,D) + sE(Q−D)+ − cQ.

Using the fact that min(Q,D) = D − (D −Q)+ we can write the expected profit as

π(Q) = (p− c)µ−G(Q) (1)

where
G(Q) = (c− s)E(Q−D)+ + (p− c)E(D −Q)+ ≥ 0.

Let h = c − s and b = p − c. It is convenient to think of h as the per unit overage cost and of
b as the per unit underage cost. Sometimes the underage cost is inflated to take into account the
ill-will cost associated with unsatisfied demand.

Equation (1) allow us to view the problem of maximizing π(Q) as that of minimizing the expected
overage and underage cost G(Q).

Let Gdet(Q) = h(µ − Q)+ + b(Q − µ)+. This represents the cost when D is deterministic, i.e.,
Pr(D = µ) = 1. Clearly Q = µ minimizes Gdet(Q) and Gdet(µ) = 0, so πdet(µ) = (p − c)µ. Thus,
the Newsvendor Problem is only interesting when demand is random. Notice that the problem also
becomes trivial when s = c for in this case we can order an infinite amount, satisfy all demand, and
then return all unsold items.

Let g(x) = hx+ + bx−, then G(Q) can be written as G(Q) = E[g(Q−D)]. Since g is convex and
convexity is preserved by linear transformations and by the expectation operator it follows that G
is also convex. By Jensen’s inequality G(Q) ≥ Gdet(Q). As a result, π(Q) ≤ πdet(Q) ≤ πdet(µ) =
(p− c)µ. Thus, the expected profit is lower than it would be in the case of deterministic demand.

If the distribution of D is continuous, we can find an optimal solution by taking the derivative of
G and setting it to zero. Since we can interchange the derivative and the expectation operators, it
follows that G′(Q) = hEδ(Q−D)− bEδ(D−Q) where δ(x) = 1 if x > 0 and zero otherwise. Since
Eδ(Q−D) = Pr(Q−D > 0) and Eδ(D −Q) = Pr(D −Q > 0), it follows that

G′(Q) = hPr(Q−D > 0)− bPr(D −Q > 0).

Setting the derivative to zero reveals that

F (Q) ≡ Pr(D ≤ Q) =
b

b + h
=

p− c

p− s
≡ β. (2)
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If F is continuous then there is at least one Q satisfying Equation (2). We can select the smallest
such solution by letting

Q∗ = inf{Q ≥ 0 : F (Q) ≥ β}. (3)

It is clear that Q∗, selected this way, is increasing in β and therefore it is increasing in b and
decreasing in h.

If F is strictly increasing then F has an inverse and there is a unique optimal solution given by

Q∗ = F−1(β). (4)

In practice, D often takes values in the set of natural numbers N = {0, 1, . . .}. In this case
it is useful to work with the forward difference ∆G(Q) = G(Q + 1) − G(Q), Q ∈ N . By writing
E(D −Q)+ =

∑∞
j=Q Pr(D > j), it is easy to see that

∆G(Q) = h− (h + b)Pr(D > Q)

is non-decreasing in Q, and that limQ→∞∆G(Q) = h > 0, so an optimal solution is given by
Q = min{Q ∈ N : ∆G(Q) ≥ 0}, or equivalently,

Q∗ = min{Q ∈ N : F (Q) ≥ β}, (5)

The origin of the Newsvendor model appears to date back to the 1888 paper by Edgeworth [2]
who used the Central Limit Theorem to determine the amount of cash to keep at a bank to satisfy
random cash withdrawals from depositors with high probability. The fractile solution (2) appeared
in 1951 in the classical paper by Arrow, Harris and Marchak [1].

The newsvendor solution can be interpreted as providing the smallest supply quantity that guar-
antees that all demand will be satisfied with probability at least 100β%. Thus, the profit maximizing
solution results in a service level 100β%. In practice, managers often specify β and then find Q ac-
cordingly. This service level should not be confused with the fraction of demand served from stock,
or fill-rate, which is defined as α = E min(D,Q)/ED.

2 Normal Demand Distribution

An important special case arises when the distribution D is normal. The normal assumption is
justified by the Central Limit Theorem when the demand comes from many different independent or
weakly dependent customers. If D is normal, then we can write D = µ + σZ where Z is a standard
normal random variable. Let Φ(z) = Pr(Z ≤ z) be the cumulative distribution function of the
standard normal random variable. Although the function Φ is not available in closed form, it is
available in tables and also in electronic spreadsheets. Let zβ = Φ−1(β). In Microsoft Excel, for
example, the command NORMSINV(0.75) returns 0.6745 so z.75 = 0.6745. Since Pr(D ≤ µ+zβσ) =
Φ(zβ) = β, it follows that

Q∗ = µ + zβσ (6)

satisfies Equation (4), so Equation (6) gives the optimal solution for the case of normal demand.
The quantity zβ is known as the safety factor and Q∗ − µ = zβσ is known as the safety stock.

It can be shown that E(D−Q∗)+ = σE(Z − zβ)+ = σ[φ(zβ)− (1− β)zβ ] where φ is the density
of the standard normal random variable. As a consequence,

G(Q∗) = hE(Q∗ −D)+ + bE(D −Q∗)+

= h(Q∗ − µ) + (h + b)E(D −Q∗)+

= hzβσ + (h + b)σE(Z − zβ)+

= hzβσ + (h + b)σ[φ(zβ)− (1− β)zβ ]
= (h + b)σφ(zβ),
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so

π(Q∗) = (p− c)µ− (h + b)σφ(zβ)
= (p− c)µ− (p− s)σφ(zβ).

In addition, since E min(D, Q∗) = ED−E(D−Q∗)+, we can divide by ED and write the fill-rate
as

α = 1− cv[φ(zβ)− (1− β)zβ ]

where cv = σ/µ is the coefficient of variation of demand. Since φ(zβ)− (1− β)zβ ≥ 0 is decreasing
in β, it follows that the α is increasing in β and decreasing in cv. Numerical results show that α ≥ β
for all reasonable values of cv, including cv ≤ 1/3, which is about the highest cv value for which the
normal model is appropriate. Notice, for example, that α = 97% when β = 75% and cv = 0.2, while
α = 99.1% when β = 90% and cv = 0.2.
Example Normal Demand: Suppose that D is normal with mean µ = 100 and standard deviation
σ = 20. If c = 5, h = 1 and b = 3, then β = 0.75 and Q∗ = 100 + 0.6745 ∗ 20 = 113.49. Notice that
the order is for 13.49 units (safety stock) more than the mean. Typing NORMDIST(.6574,0,1,0) in
Microsoft Excel, returns φ(.6745) = 0.3178 so G(113.49) = 4 ∗ 20 ∗ .3178 = 25.42, and π(113.49) =
274.58, with α = 97%.

3 Poisson Distribution

Another distribution that arises often in practice is the Poisson distribution. D is said to be Poisson
with parameter λ > 0 if

Pr(D = k) = exp(−λ)
λk

k!
k = 0, 1, 2, . . .

The Poisson distribution arises as a limit of the binomial distribution with large n and small p via
the relationship λ = np. For example, the number of customers that enter a store and make a
purchase can often be modeled as a Poisson distribution. It is well known that µ = λ and σ =

√
λ so

the coefficient of variation σ/µ becomes small for large λ. When λ is large, the Poisson distribution
can be approximated by the Normal distribution with mean µ = λ and standard deviation σ =

√
λ.

The following recursions, starting from Pr(D = 0) = e−λ and E[D] = λ, are useful in tabulating
and solving problems involving the Poisson distribution:

Pr(D = k) = Pr(D = k − 1)λ/k, k = 1, 2, . . .
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Pr(D ≤ k) = Pr(D ≤ k − 1) + Pr(D = k), k = 1, 2, . . .

E[(D − k)+] = E[(D − k + 1)+]− Pr(D ≥ k) k = 1, 2, . . .

An optimal value of Q is given by the smallest integer such that P (D ≤ Q) ≥ β.
Example Poisson: If D is Poisson with parameter λ = 25, and c = 5, h = 1 and b = 3, then
β = 0.75 and Q∗ = 28 is optimal. To compute G(Q∗) notice that G(Q) = h(Q−λ)+(h+b)E(D−Q)+,
so G(28) = 6.48. Table 2 provides some of the values associated with the Poisson distribution. At
Q = 28, E(D − 28)+ = 0.87 so α = 1− 0.87/25 = .97.

[width=4.0in]normdist.bmp

Figure 1: Series

4 The Lognormal Distribution

When the coefficient of variation σ/µ is large, neither the Normal nor the Poisson distributions
are appropriate. The Normal is not appropriate because when σ/µ is large, it assigns a significant
probability to negative demands. The Poisson is not appropriate because σ =

√
µ so the coefficient

of variation is small for most reasonable values of λ. The Lognormal distribution provides, in many
cases, an adequate distribution that allows closed form solutions when the coefficient of variation is
large.

A random variable D is said to have the lognormal distribution, with parameters ν and τ , if
ln(D) has the normal distribution with mean ν and standard deviation τ ≥ 0. The lognormal
distribution is often used to model non-negative random variables such as lifetimes of electronic
devices and the total returns of risky securities It is well known that E(Xn) = exp(nν + n2τ2/2).
Thus, µ = exp(ν + τ2/2) and σ2 = µ2(exp(τ2)−1), so ν = ln µ− ln

√
1 + cv2 and τ =

√
ln(1 + cv2).

The solution to the Newsvendor Problem under the lognormal distribution is given by

Q∗ = exp (v + τzβ)

and
π(Q∗) = (p− c)µ− (h + b)µΦ(τ − zβ) + hµ.

To see why this is true, notice that if D is lognormal then Pr(D ≤ Q∗) = Pr(ln(D) ≤ ln(Q∗)) =
Pr(ν + τZ ≤ ν + τzβ) = Pr(Z ≤ zβ) = Φ(zβ) = β. Now, using the fact that E(D − Q∗)+ =
µΦ(τ − zβ)−Q∗Φ(−zβ) and Φ(−zβ) = h/(h + b) we see that

G(Q∗) = h(Q∗ − µ) + (h + b)E(D −Q∗)+

= h(y∗ − µ) + (h + b)µΦ(τ − zβ)− (h + b)Q∗Φ(−zβ)
= (h + b)µΦ(τ − zβ)− hµ.

Example Lognormal: Figure 1 shows actual weekly demand data for a semiconductor product
with c = 5, b = 5 and h = 2. The empirical distribution has a coefficient of variation equal to 2.22, a
sample mean of 207, and a sample standard deviation equal to 459. Although close to three quarters
of the demand observations were for fewer than 100 units, there is a chance of receiving a demand
for over 1000 units. The Newsvendor solution based on the empirical cdf is Q∗ = 100 resulting in an
expected profit of $63. If we assume demand is normally distributed with the moments calculated
based on sample demand data, then the profit maximizing solution will be 467 units resulting in
an expected loss of $291 (based on the empirical distribution). To satisfy demand with probability
95%, management would have to order 1,400 units and incur a loss of $1,583. If we use lognormal
distribution with the sample moments, the profit maximizing solution will be 181 units giving us an
expected profit of $29.
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5 Worst Case Distribution

Often there is not enough data to ascertain the form of the distribution or there may be no theoretical
justification for demand to follow a particular distribution such as the Normal or the Poisson. In
practice, one has to often work with guess-estimates of the mean and the forecast error or the
standard deviation. Fortunately, there is a closed form formula that minimizes the function G(Q)
(maximizes π(Q)) against the worst possible distribution with a given mean and a given standard
deviation. This order quantity is due to Herbert Scarf [9] and it is given by

QS = µ +
σ

2

(√
b

h
−

√
h

b

)
. (7)

Notice that Scarf’s formula (7) suggests ordering more (resp., less) than the mean demand when
b > h (resp., b < h). Moreover, |QS − µ| increases linearly in σ for h 6= b.

Scarf’s formula and of other related results, see Gallego and Moon [5], follow from x+ = 0.5(|x|+
x) and the Cauchy-Schwartz inequality:

E(D −Q)+ =
1
2
E{(|D −Q|+ (D −Q)}

≤ 1
2
{
√

σ2 + (µ−Q)2 + (µ−Q)}.
From this, and some algebra, it follows that

G(QS) ≤
√

bhσ =
√

(p− c)(c− s)σ

with equality holding for a certain distribution of demand with mass concentrated at two points.
As a result,

(p− c)µ−
√

(p− c)(c− s)σ ≤ π(Q∗) ≤ (p− c)µ,

and

1−
√

c− s

p− c

σ

µ
≤ π(Q∗)

(p− c)µ
≤ 1. (8)

This last expression allow us to see how far from optimal Scarf’s solution is in the worst case.
Notice that this depends an the distribution only through the coefficient of variation.

Scarf’s ordering rule is modified to QS = 0 when the left hand side of (8) is negative. reflecting
the fact that it may be better not to be in business when demand is very uncertain.

It turns out that E(D −QS)+ ≤ 1
2σ

√
h
b so

α =
E min(D, QS)

ED
≥ 1− 1

2

√
c− s

p− c

σ

µ
,

so if the coefficient of variation is 1/4 and h = b, then α ≥ 7/8. If b = 4h, we would have α ≥ 15/16.
Finally, it is also possible to show that G(µ) ≤ 1

2 (h + b)σ, so ordering the mean results in
an expected cost that is at most the arithmetic average of the overage and underage cost times the
standard deviation of demand. Thus, in the worst case the improvement in bounds between ordering
the mean and using Scarf’s ordering rule is a reduction from the arithmetic to the geometric mean
of h and p multiplied by the standard deviation of demand.
Example WCD vs. Normal: Consider the data used for the Normal Distribution: µ = 100,
σ = 20, If c = 5, h = 1 and b = 3. Then, QS = 100 + 10(

√
3− 1/

√
3) = 111.55, which is not too far

from 113.49, the optimal order quantity under the Normal distribution.
Example WCD vs. Poisson: Consider the data used for the Poisson Distribution: λ = 25, and
c = 5, h = 1 and b = 3. Then Q = 25 + 2.5(

√
3 − 1/

√
3) = 27.89, which is not far from 28, the

optimal order quantity under the Poisson distribution.
Example WCD vs. Lognormal: c = 5.00, h = 2, b = 5, µ = 207, σ = 459. In this case
σ/µ >

√
b/h so it would be best not to order if we expect the worst case distribution. The profit for

not ordering will be zero assuming that b = p− c and no additional penalties accrue for shortages.
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6 Compound Demand

A more general demand model arises when the number of customers, say N , is itself a non-negative
random variable taking integer values and each customer demands a random number of units. If
the customer demands are IID, then we can model the total demand as

D =
N∑

k=1

Xk.

The case Pr(N = 1) = 1 and X normal reduces to D = X normal and the case N Poison λ and
Pr(X = 1) = 1 reduces to the Poisson case.

In general, it is difficult solve the Newsvendor Problem in closed form when D =
∑N

k=1 Xk.
One alternative is to find Q by simulation. Another alternative is to compute µd = E[D] and
σ2

d = Var[D] and then approximate D by a known distribution with these moments, e.g., the
Normal or Lognormal. The normal approximation is recommended only when cvd ≤ 0.33. The
lognormal tends to work better for large values of cvd. One could also optimize Q against the worst
case distribution given the mean and the variance of D.

Using well known results on conditional expectations (see page 153 in reference [8]) it follows
that:

E[D] = E[E[D|N ]] and Var[D] = Var[E[D|N ]] + E[Var[D|N ]].

If µn = E[N ], σ2
n = Var[N ], µx = E[X] and σ2

x = Var[X], then

µd = µnµx and σ2
d = µ2

xσ2
n + µnσ2

x.

A little algebra reveals that the coefficient of variation of D is given by

cvd =
√

cv2
n +

1
µn

cv2
x.

Since cvd is decreasing in µn, everything else being equal, it is better to have a large number of
small customers than to have a small number of large customers. As an example, suppose that the
average demand is µnµd = 100, that cv2

x = 0.3 and that cv2
n = 0.2. Then cvd = 0.202237 if µx = 1

and cvd = 0.360551 if µx = 100. Since inventory related costs (overage and underage) are roughly
proportional to the standard deviation of demand, the cost of dealing with a small number of large
customers can be significantly higher, about 80% higher in this example, than the cost of dealing
with a large number of small customers.

If N is Poisson with parameter λ, then D has a compound Poisson distribution and

µd = λµx σ2
d = λ(µ2

x + σ2
x).

Notice that the coefficient of variation for the compound Poisson distribution

cvd = cvn

√
1 + cv2

x ≥ cvn =
1√
λ

.

7 Forecast Updates and Advance Demand Information

Our analysis, see (8), indicates that high risk items, i.e., those with large σ and large overage costs
c−s are those for which the Newsvendor Problem is more relevant. However, solving the Newsvendor
Problem is only the first step in the analysis. The next step is to find how to change the givens to
our advantage.

Typically, high risk items also have high margins and in many instances it is a good idea to
sacrifice the margin to reduce the risk. This can be done in several ways. One is to use higher cost,
but more responsive, suppliers that allow us to place orders later after we leave more information
about demand. Another way is to give price incentives to elicit advance demand information from
customers in the form of forward purchases.
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7.1 Supplier Selection

Let
D = µ + ε1 + ε2

where µ is a known constant and ε1 and ε2 are normal, mean zero, random variables with standard
deviations σ1 and σ2 and correlation ρ where it is possible to observe ε1 before observing ε2 by
postponing the purchase and agreeing to pay a higher unit cost. To be more precise, suppose that
we can purchase at unit cost c before observing ε1 or at unit cost c(1 + δ) ≥ c after observing ε1.
Obviously if δ = 0, we would wait and order after observing ε1. How large must δ be before we are
better off ordering without observing ε1?

If we order before observing ε1, then the expected profit is

(p− c)µ− (p− s)
√

σ2
1 + σ2

2 + 2ρσ1σ2φ(zβ).

Suppose we wait until observe ε1. Then ε2, conditioned on ε1, is normal with mean ρσ2ε1/σ1

and variance σ2
2(1− ρ2). Therefore, conditioned on ε1 the expected profit is given by

(p− c− cδ)(µ + ρσ2ε1/σ1)− (p− s)σ2

√
1− ρ2φ(zβ′)

where β′ = (p − c(1 + δ))/(p − s). Taking expectation with respect to ε1, the expected profit of
waiting to order until ε1 is observed is

(p− c− cδ)µ− (p− s)σ2

√
1− ρ2φ(zβ′).

The maximum δ is therefore, the largest root of

cδµ + (p− s)σ2

√
1− ρ2φ(zβ′) = (p− s)

√
σ2

1 + σ2
2 + 2ρσ1σ2φ(zβ).

For example: If c = 100, µ = 100, σ1 = 30, σ2 = 20, p = 200, s = 0, ρ = .4, then we would be
willing to pay a δ = 19.48% cost premium. The premium jumps to δ = 58.53% if ρ = .8.

7.2 Incentives to Induce Forward Purchases

Consider a seller selling to a single buyer with demand D and let

Q∗ = inf{Q : Pr(D ≤ Q) ≥ p− c

p− s
}

where c is the unit cost, p is the unit sale price and s is the salvage value to the seller. Let π(Q∗) be
the expected profit to the seller. The buyer will purchase min(D, Q∗) from the seller at an expected
cost pE min(D,Q∗).

Suppose that the seller wants to induce the buyer to buy ∆ ≤ Q∗ units before observing D. The
seller wants to find the discount price, say p(1− δ), that would induce the buyer to agree. Assume
that the the buyer orders ∆ units at p(1 − δ) before observing D. Then, after observing D, the
buyer purchases (min(D,Q∗)−∆)+ additional units at price p if D ≥ ∆ or salvages (∆−D)+ units
at the salvage value sb if D < ∆. The buyer’s expected cost is equal to

p(1− δ)∆ + p(E min(D, Q∗)−∆)+ − sbE(∆−D)+.

Given ∆, let δ(∆) be the solution to the equation

p(1− δ)∆ + p(E min(D, Q∗)−∆)+ − sbE(∆−D)+ = pE min(D,Q∗).

Then

δ(∆) =
p− sb

p

E(∆−D)+

∆
.
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At discount δ(∆), the buyer is indifferent between forward purchasing ∆ units and waiting until he
observes demand to purchase up to Q∗ units at the full price. The buyer may prefer the forward
purchase agreement if this reduces the variance of his cost. Notice that the variance of p(min(D,Q∗)−
∆)+ is decreasing in ∆ while the variance of sb(∆−D)+ is increasing in ∆.

The seller now faces the random demand D′ = (D − ∆)+ instead of D. We will show that
q∗ = Q∗ −∆ is the order quantity, in excess of ∆, that maximizes the seller’s total expected profit:

π(q) = (p(1− δ)− c)∆ + pE min(D′, q) + sE(q −D′)+ − cq

= (p(1− δ)− c)∆ + (p− c)ED′ −H(q)

where H(q) = (c− s)E(q −D′)+ + (p− c)E(D′ − q)+.
Notice that the smallest optimal solution is given by

q∗ = inf{q : Pr(D′ ≤ q) ≥ p− c

p− s
}.

But then, Pr(D ≤ Q∗) = Pr(D′ ≤ Q∗ −∆) = Pr(D′ ≤ q∗), so q∗ = Q∗ −∆.
As a result,

π(q∗) = (p(1− δ)− c)∆ + (p− c)ED′ −H(q∗)
= p(1− δ)∆ + pED′ − cE max(D, ∆)−H(q∗)
= p(1− δ)∆ + p(ED′ ± E(D −Q∗)+)− cE max(D, ∆)−H(q∗)
= pE min(D, Q∗)− sbE(∆−D)+ + pE(D −Q∗)+ − cE(D + (∆−D)+)−H(q∗)
= (p− c)ED − (c− sb)E(∆−D)+ −H(q∗)
= (p− c)ED −G(Q∗) + [G(Q∗)−H(q∗)]− (c− sb)E(∆−D)+

= (p− c)ED −G(Q∗) + (c− s)E(∆−D)+ − (c− sb)E(∆−D)+

= (p− c)ED −G(Q∗) + (sb − s)E(∆−D)+.

This shows that the scheme improves the expected profits for the seller when sb ≥ s. If sb ≥ s,
the seller will select the largest ∆ that results in a reduction of risk for the buyer.

The scheme seems to break down when sb < s, but the seller can propose a different agreement
where he buys back (∆ −D)+ units from the buyer at his own salvage value s. This is equivalent
to delivering min(D, ∆) instead of ∆ and paying back s(∆−D)+. The cash flow can be simplified
further by embedding the buy back cash flow into the discount. This results in a steeper discount

δ(∆) =
E(∆−D)+

∆

without buy backs where the seller delivers min(D,∆). Notice that in this case the buyer’s expected
cost remains constant while his risk is decreasing in ∆. The seller’s expected profit now stays
constant, but his risk first decreases and then increases with ∆. The goal of the seller is to select ∆
to minimize the variance of his profit resulting in a win-win solution for the buyer and the seller.

7.2.1 Risk Reduction

The next question to investigate is risk. The buyer would be interested in the variance of his cost,
while the seller would be interested in the variance of his profit. Since the random portion of the
cost to the buyer is p(min(D,Q∗) − ∆)+, the buyer is interested in how the variance of the the
random variable (min(D, Q∗)−∆)+ changes for values of ∆ ≤ Q∗.

Recall that if X is a non-negative random variable then E[Xk] =
∫∞
0

kxk−1P (X > x)dx for all
k for which the expectation exists. For x > 0, P (D̃ − y)+ > x) = P (D̃ > y + x) = F̃ (y + x), where
F̃ (x) = P (D̃ > x). It follows that

V [(D̃ − y)+] = 2
∫ ∞

y

(z − y)F̃ (z)dz −
(∫ ∞

y

F̃ (z)dz)
)2

.



IEOR 4000: Production Management page 9 Professor Guillermo Gallego

Consequently,

d

dy
[V (D̃ − y)+] = −2E[(D̃ − y)+] + 2E[(D̃ − y)+]F̃ (y) = −2E[(D̃ − y)+]P (D̃ ≤ y).

This analysis shows that the risk to the buyer is reduced as ∆ increases. Notice that the derivative
with respect to ∆ vanishes at ∆ = Q∗ and that at this point the variance is zero. As a result, the
buyer will reduce his risk by increasing ∆ over the range ∆ ≤ Q∗.

How does the risk for the seller changes with ∆? We analyze this question for the case where
sb = s. The profit to the seller can be written as

p(1− δ(∆))∆ + p(min(D,Q∗)−∆)+ + s(Q∗ −min(D,Q∗))+ − cQ∗.

As a result, the variance of the seller’s profit depends also on the the covariance Cov(min(D,Q∗), (min(D, Q∗)−
∆)+). The derivative of the covariance is given by (E min(D, Q∗)−∆)F̃ (∆)−E(min(D,Q)−∆)+],
and the second derivative by (µ−∆)F̃ ′(∆). Because of the covariance term the value at which the
risk for the seller is minimized is different than the value at which the risk for the buyer is minimized.
Example: Suppose that c = 10, p = 20, s = 0 and that D is uniform [0, 100]. Then µ = 50,
σ = 28.87 and Q∗ = 50. Suppose that the parties agree to a forward contract for ∆ = 20 units, at
a discount δ = 10%. The expected profits to the seller remains equal, but the risk is reduced. The
risk to the seller, measured by the standard deviation of his profit goes down from 144.99 to 123.79.
The risk to the buyer goes down from 320 to 251. A risk averse buyer would be happy to enter into
this agreement because of the risk reduction effect. For the seller, the probability that profit falls is
more than one standard deviation below its mean, drops from 20.3% to 14.9%.

8 Random Demand at Salvage Value

Consider now an extension where demand at the salvage price is a random variable V . Notice
that the traditional Newsvendor model implicitly assumes that Pr(V ≥ Q) = 1 for all Q. The
Newsvendor model also implicitly assumes that s < c. Here we will allow s ≥ c but we will keep the
assumption that p > s.

Using the fact that min(D, Q) = D − (D − Q)+ and the fact that min(V, (Q − D)+) = (Q −
D)+ − (Q−D − V )+ it follows that

π(Q) = (p− c)µ−H(Q)

where
H(Q) = G(Q) + sE(Q−D − V )+.

Thus, the expected profit differs from that of the traditional Newsvendor Model only when
V ≤ (Q − D)+, or equivalently, when V + D ≤ Q in that the revenue s(Q − D − V )+ does not
accrue. The problem of maximizing π(Q) reduces to that of minimizing H(Q). If the distributions
of D and V are continuous, then

H ′(Q) = G′(Q) + sEδ(Q−D − V )
= h− (h + b)Pr(D > Q) + sPr(D + V ≤ Q).

It is clear that H(Q) is non-decreasing in Q so H(Q) is convex. Thus, a minimizer of H, say Q∗,
can be found by finding a root of H ′(Q) = 0. Let Qnv be the solution to the traditional Newsvendor
Problem. Then H ′(Qnv) = sPr(D + V ≤ Qnv) ≥ 0, implying that there exists an optimal solution
Q∗ ≤ Qnv. Consequently, if Pr(D + V ≤ Qnv) > 0 then Q∗ < Qnv so it is optimal to order fewer
units than under the traditional Newsvendor model.
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If D and V take integer values then it is convenient to work with the difference function ∆H(Q) =
H(Q + 1)−H(Q) for Q ∈ N = {0, 1, . . .}. To compute the ∆H(Q) first notice that

H(Q) = h(Q− ED) + (h + b)E(D −Q)+ + sE(Q−D − V )+

= h(Q− ED) + (h + b)
∞∑

j=Q

Pr(D > j) + s

Q−1∑

j=0

Pr(D + V ≤ j).

Consequently,
∆H(Q) = h− (h + b)Pr(D > Q) + sPr(D + V ≤ Q).

Since ∆H(Q) is non-decreasing in Q, an optimal solution is given by

Q∗ = min{Q ∈ N : ∆H(Q) > 0}.

8.1 Revenue Management

A revenue management problem arises when Q is fixed and p < s. In this case, we need to decide
how many units to make available for sale at the low fare p so that enough capacity is protected
for sale at the high fare s to maximize expected revenues. Let q be the smallest integer such that
Pr(V ≥ q) > p/s. Then, it is optimal to protect q units for sale at the high fare s and to make
(Q− q)+ units available for sale at low fare p.
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