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1 Series Systems

The study of multi-stage serial inventory systems is central to the study of supply chain management

both as a benchmark and as a building block for more complex supply networks. Existing policy

evaluation and optimization algorithms are, unfortunately, difficult to understand and communicate.

We provide a dynamic programming (DP) formulation based on the idea of optimally allocating

a given echelon-inventory level between the upstream stage and the downstream series system.

This formulation yields an algorithm that can be improved by incorporating gradient updates.

We develop a simple, near-optimal, heuristic that follows from the DP formulation by judiciously

selecting a common holding cost for the downstream stages. The heuristic calls for solving a single

newsvendor problem per stage and is very accessible to students and practitioners. The need to

develop accurate and accessible spreadsheet-based heuristics was recently identified by Shang and

Song [13] who develop a heuristic based on solving two newsvendor problems per stage. We evaluate

our heuristic and compare it to that of Shang and Song by testing it on the set of test problems in

Gallego and Zipkin [8] and Shang and Song [13] and in additional experiments designed to test the

performance when different stages have different lead times. Our numerical results indicate that

our heuristic is near optimal with an average error that is lower than the Shang and Song heuristic.

Finally, we provide an approximate distribution-free bound that accurately reflects the sensitivity

of the optimal average cost to changes in system parameters.

Consider a series system consisting of J stages as illustrated in the figure. Stage j < J procures

from Stage j + 1 and Stage J replenishes from an outside supplier with ample stock. Customer

demand occurs only at Stage 1 and follows a (compound) Poisson process, {D(t), t ≥ 0} with arrival

rate λ and random demand size X with E[X2] < ∞. It takes Lj units of time for a unit to arrive

at Stage j once it is released by its predecessor.

Unsatisfied demand is backordered at each stage but only Stage 1 incurs a linear backorder

penalty cost p, per unit, per unit time. We assume without loss of generality that each stage adds

value as the item moves through the supply chain, so echelon holding costs he
j are positive. The

local holding cost for stage j is hj = he[j, J ] ≡ ∑J
i=j he

i , where sums over empty sets will be defined

as zero. In particular, hJ+1 = 0. The system is operated under continuous review, so an order is

placed every time a demand occurs. As pointed out by Zipkin [14], this is justified for expensive

and/or slow moving items.

The following random variables describe the state of Stage j in equilibrium:

Dj = leadtime demand,

Ij = on-hand inventory,

Bj = backorders.

1



The total long run average cost for any policy can be expressed as

E[
J∑

k=1

hkIk + pB1 +
J∑

k=2

hkDk−1]. (1)

Optimality of an echelon base stock policy (sJ , . . . , s1) for this series system is well known

(see Federgruen and Zipkin [4], Chen and Zheng [2] and Zipkin [14], and the original work by

Clark and Scarf [3]). Under this policy, the manager continuously monitors the echelon inventory

order position at each stage and places an order from Stage j + 1 to bring it up to sj whenever

it is below this level. An echelon base stock policy (s̃J , s̃J−1, . . . , s̃1) is equivalent to (sJ , . . . , s1)

where sj = min(s̃J , . . . , s̃j), so there exists an echelon base-stock policy satisfying the property

sJ ≥ sJ−1 ≥ . . . ≥ s1. Let so ≡ 0 and let s′j ≡ sj − sj−1, j ≥ 1 denote the local base stock level at

stages j = 1, . . . , J . This local base stock policy is equivalent to the echelon base stock policy (see

Axsater [1] Propositions 1 and 2 or Zipkin [14] pg 306). The following recursion gives the steady

state distribution of the local on-hand inventory Ik and the backorder Bk at Stage k starting with

BJ+1 = 0.

Ik = (s′k −Dk −Bk+1)
+ Bk = (Bk+1 + Dk − s′k)

+ k = J, . . . , 1. (2)

Then, the total long-run average cost can be expressed as

gJ(sJ , . . . , s1) = E[
J∑

k=1

hk(s
′
k −Dk −Bk+1)

+ + pB1 +
J∑

k=2

hkDk−1]. (3)

Consider the sub-system consisting of Stages {j, . . . , 1} for some j ∈ {1, . . . , J − 1} and assume

that Stage j replenishes its inventory from an external supplier with ample supply. This sub-

system is equivalent to the original J stages series system with Dk ≡ 0, hk ≡ 0 for all k > j.

Let gj(sj, . . . , s1) be the long-run total average cost for an echelon base-stock policy (sj, . . . , s1).

Then gj(sj, . . . , s1) can be obtained via equations (2) and (3) by replacing J by j starting the

computations with Bj+1 = 0.

The next result provides a link between the cost of the different sub-systems.

Proposition 1

g1(s) = E[h1(s−D1)
+ + p(D1 − s)+],

and for j = 2, . . . , J

gj(sj, . . . , s1) = E[hj(s
′
j −Dj)

+ + gj−1(min(sj−1, sj −Dj), sj−2, . . . , s1) + hjDj−1]. (4)

Proof. Let go(s) = p(−s)+, then for j = 1,

g1(s) = E[h1(s−D1)
+ + pB1]

= E[h1(s−D1)
+ + p(D1 − s)+]

= E[h1(s−D)1)+ + go(min(0, s1 −D1)).
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This shows that the result holds for j = 1. Suppose the result holds for some j < J . We now show

that it holds for j + 1. Clearly from Equation (3),

gj+1(sj+1, sj, . . . , s1) = Ehj+1(s
′
j+1−Dj+1)

++E[
j∑

k=1

hk(s
′
k−Dk−Bk+1)

++pB1+
j∑

k=2

hkDk−1]+hj+1EDj.

The term in square brackets looks exactly as the definition of gj(sj, . . . , s1) except that Bj+1 =

(Dj+1 − s′j+1)
+ instead of 0. Thus, the echelon base-stock level at Stage j is given by sj − Bj+1 =

min(sj, sj+1 −Dj+1) instead of sj and this justifies (4) for j + 1, completing the proof.

2

We now provide a recursion to find the optimal expected cost at each stage for an arbitrary

echelon base stock level, as well as an algorithm to find optimal base-stock policies for each sub-

system {j, . . . , 1} for j = 1, . . . , J .

Let c1(s) = g1(s) and for j = 2, . . . , J define

cj(s) = min
x∈{0,...,s}

cj(x; s) (5)

recursively, via

cj(x; s) = E[hj(x−Dj)
+ + cj−1(min(s− x, s−Dj)) + hjDj−1]. (6)

Let N = {0, 1, . . . , } be the set of non-negative integers and let

s∗j ≡ min{s ∈ N : ∆cj(s) > hj+1} for j = 1, . . . , J, (7)

We will show that cj(s) is the long run average cost of optimally managing the sub-system

{j, . . . , 1} given echelon base stock level s and that optimal base stock levels are given by (7).

Before we prove this result formally, we will provide an intuitive link between equations (6) and (5).

Suppose that we have computed cj(·) and consider the sub-system {j + 1, . . . , 1}. Our goal is to

compute cj+1(·) from the knowledge of cj(·). To link the two sub-systems, we decompose the echelon

base stock level s of sub-system {j +1, . . . , 1} by allocating x units to Stage j +1 and s−x units for

sub-system {j, . . . , 1}. Given this allocation, the net inventory at Stage j + 1 will be (x −Dj+1)
+

which accrues at cost rate hj+1. Since Stage j + 1 will face a shortage when Dj+1 − x > 0, the

effective echelon inventory for sub-system {j, . . . , 1} is s− x− (Dj+1− x)+ = min(s− x, s−Dj+1).

Thus, a finite local base stock level at Stage j+1 imposes an externality to the sub-system {j, . . . , 1}
whose expected cost is now Ecj(min(s− x, s−Dj+1)). As a result, when we allocate x ≤ s units of

local base stock level to Stage j + 1, the cost of managing a series system with j + 1 stages is given

by (6).

Theorem 1 1) cj(s) is convex in s for all j = 1, . . . , J and given by (5) for j = 2, . . . , J ; 2)

xj(s) = (s− s∗j−1)
+ minimizes cj(x; s) for j = 2, . . . , J ; 3) The echelon base stock policy (s∗j , . . . , s

∗
1)

is optimal and cj(s
∗
j) is the optimal expected cost for sub-system {j, . . . , 1}, j = 1, . . . , J .
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Proof. For j = 1, the optimal cost of managing the subsystem given echelon base stock level s is

simply c1(s) = g1(s) since there is nothing to optimize. Notice that ∆c1(s) ≡ c1(s + 1) − c1(s) =

(h1 + p)Pr(D1 ≤ s) − p is non-decreasing in s so c1(s) is convex. The largest optimal base stock

level is given by s∗1 = min{s ∈ N : ∆c1(s) > 0} which is consistent with (7) since h2 = 0 for

the sub-system consisting only of Stage 1. As a result c1(s
∗
1) is the optimal expected cost for the

sub-system consisting of Stage 1 only. This establishes Parts 1 and 3 for j = 1.

Consider now the sub-system {2, 1} and notice that

c2(s) = min
s1∈{0,...,s}

g2(s, s1)

= min
s1∈{0,...,s}

E[h2(s− s1 −D2)
+ + g1(min(s1, s−D2)) + h2D1]

= min
x∈{0,...,s}

E[h2(x−D2)
+ + c1(min(s− x, s−D2)) + h2D1]

= min
x∈{0,...,s}

c2(x; s),

where the second equality is from Equation (4) and the third is by substituting x for s − s1.

Therefore, c2(s) is given by (5). Now let ∆c2(x; s) ≡ c2(x + 1; s)− c2(x; s). Then,

∆c2(x; s) = [h2 −∆c1(s− x− 1)]Pr(D2 ≤ x).

Notice that ∆c2(x; s) = 0 for all x < 0 on account of D2 ≥ 0. The convexity of c1 implies that

∆c1(s − x − 1) is decreasing in x. As a consequence, ∆c2(x; s) has at most one sign change over

the range x ∈ {0, . . . , s} and this would have to be from − to +. From Equation (7), s∗1 is the

smallest non-negative integer y such that ∆c1(y) > h2. Notice that s∗1 is the largest minimizer of the

newsvendor problem with holding cost h1−h2, backorder cost p+h2 and demand D1. In particular,

s∗1 is independent of the distribution of D2. We have shown that x = (s − s∗1)
+ is a minimizer of

c2(·; s) establishing Part 2 for j = 2. This result implies that allocating s∗1 units of echelon base

stock level to Stage 1 is optimal when s ≥ s∗1. Therefore, we have

c2(s) = c2((s− s∗1)
+; s) = E[h2((s− s∗1)

+ −D2)
+ + c1(min(s∗1, s−D2)) + h2D1]

= E[h2(s− s∗1 −D2)
+ + c1(min(s∗1, s−D2)) + h2D1],

where the last equation follows since (x+ − a)+ = (x − a)+ when a ≥ 0. To see that c2 is convex,

notice that

∆c2(s) = h2Pr(D2 ≤ s− s∗1) +
∞∑

x=(s+1−s∗1)+

∆c1(s− x)Pr(D2 = x).

Let ∆2c2(s) ≡ ∆c2(s + 1)−∆c2(s), then

∆2c2(s) =
∞∑

x=(s+2−s∗1)+

∆2c1(s− x)Pr(D2 = x) + [h2 −∆c1(s
∗
1 − 1)]Pr(D2 = s + 1− s∗1).

Now, ∆2c1(s − x) ≥ 0 on account of the convexity of c1, so the first term is non-negative. The

second term is also non-negative by the definition of s∗1. This establishes Part 1 for j = 2. Recall
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that h3 ≡ 0 for sub-system {2, 1}. Hence, the minimizer s∗2 of c2(s) is given by Equation (7) with

h3 = 0. With this final observation, we have shown that (s∗2, s
∗
1) is an optimal echelon base-stock

policy for sub-system {2, 1} with optimal expected cost c2(s
∗
2) establishing Part 3 for j = 2.

Assume now that all three statements are true for sub-system {j, . . . , 1} for some j < J . We

now add Stage j + 1 with local holding cost hj+1. Then,

cj+1(s) = min
0≤s1≤...≤sj∈{0,...,s}

gj+1(s, sj, . . . , s1)

= min
0≤s1≤...≤sj∈{0,...,s}

E[hj+1(s− sj −Dj+1)
+ + gj(min(sj, s−Dj+1), sj−1, . . . , s1) + hj+1Dj]

= min
x∈{0,...,s}

E[hj+1(x−Dj+1)
+ + min

s1,...,sj−1
gj(min(s− x, s−Dj+1), sj−1, . . . , s1) + hj+1Dj]

= min
x∈{0,...,s}

E[hj+1(x−Dj+1)
+ + cj(min(s− x, s−Dj+1)) + hj+1Dj]

= min
x∈{0,...,s}

cj+1(x; s),

so cj+1(s) is given by (5). Notice that cj+1(x + 1; s) − cj+1(x, s) is non-zero only when Dj+1 ≤ x

and is equal, in this case, to hj+1− cj(s− x− 1) + cj(s− x) = hj+1−∆cj(s− x− 1). Consequently,

∆cj+1(x; s) = [hj+1 −∆cj(s− x− 1)]Pr(Dj+1 ≤ x).

Now, since cj is convex it follows that ∆cj+1(x; s) has at most one sign change and this must be

from − to +. Since the sign change occurs at (s−s∗j) when s ≥ s∗j , it follows that xj+1(s) = (s−s∗j)
+

minimizes cj+1(x; s) so cj+1(s) = cj+1((s− s∗j)
+; s) establishing Part 2 for j + 1. This result implies

that allocating s∗j units of echelon base stock level to stage j is optimal when s ≥ s∗j . Therefore, we

have

cj+1(s) = E[hj+1(s− s∗j −Dj+1)
+ + cj(min(s∗j , s−Dj+1)) + hj+1Dj].

The convexity of cj+1 now follows the exact argument used to establish the convexity of c2. Indeed,

∆2cj+1(s) =
∞∑

x=(s+2−s∗j )+

∆2cj(s− x)Pr(Dj+1 = x) + [hj+1 −∆cj(s
∗
j − 1)]Pr(Dj+1 = s + 1− s∗j) ≥ 0

because ∆2cj ≥ 0 and by the definition of s∗j . This proves Part 1 for j + 1. Recall that hj+2 = 0 for

sub-system {j + 1, . . . , 1}, so it follows that the minimizer s∗j+1 of cj+1(s) is given by Equation (7)

with hj+2 = 0, implying that (s∗j+1, . . . , s
∗
1) is an optimal echelon base stock policy for sub-system

{j +1, . . . , 1} and that cj+1(s
∗
j+1) is the optimal expected cost for this sub-system. This establishes

Part 3 for j + 1 and concludes the induction argument for j + 1 and hence the proof. 2

Remark: Notice that the definition of s∗j changes as we go from sub-system {j, . . . , 1} to sub-system

{j +1, . . . , 1} because hj+1 = 0 for sub-system {j, . . . , 1} but hj+1 > 0 for sub-system {j +1, . . . , 1}.
However, the echelon base stock policy (s∗j , . . . , s

∗
1) does not change after we add Stage j + 1 and in

the course of the algorithm we need to find each s∗j only once. Finally, notice that cJ+1(s
∗
J) = cJ(s∗J)

on account of hJ+1 = 0 and DJ+1 ≡ 0.
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Optimal echelon base stock levels can also be found through solving the traditional recursive

optimization for j = 1, 2, . . . , J . This formulation is based on echelon cost accounting.

Cj(y) = E{he
j(y −Dj) + Cj−1(min[y −Dj, s

∗
j−1])} (8)

s∗j ≡ max{y : Cj(y) ≤ Cj(x) for all x 6= y}, (9)

where C0(y) = (p+h1)[y]−, see Chen and Zheng [2] and Gallego and Zipkin [8]. The optimal system

wide average cost is given by CJ(s∗J). We now verify that the new algorithm produces the same

echelon base stock levels as the traditional algorithm and find an explicit relationship between the

Cjs and the cjs.

Proposition 2 1) Cj(s) = cj(s)−hj+1E(s−Dj); 2) CJ(s) = cJ(s); 3)∆Cj(s) = ∆cj(s)−hj+1, so

s∗j minimizes Cj(s).

Proof. The proof is based on an induction argument. For the case j = 1, we have C1(s) =

E[he
1(s−D1)+ (p+h1)(D1− s)+] = E[he

1(s−D1)−h1(s−D1)+h1(s−D1)+ (p+h1)(D1− s)+] =

c1(s) + E[he
1(s − D1) − h1(s − D1)] = c1(s) − h2E(s − D1). Suppose the result holds for j, then

Cj+1(s) = E[he
j+1(s−Dj+1) + Cj(min(s∗j , s−Dj+1)) = E[he

j+1(s−Dj+1) + cj(min(s∗j , s−Dj+1))−
hj+1E(min(s∗j , s−Dj+1)−Dj)]±hj+1E(s−s∗j−Dj+1)

+ = cj+1(s)−hj+2E(s−Dj+1). Part 2 follows

directly from the fact that hJ+1 ≡ 0. Part 3 follows directly from Part 1 and the definition of s∗j .

2

Remark: Our result also allows us to interpret Cj(s) as cj(s) plus the inventory in transit to

Stage j minus an echelon inventory credit at rate hj+1. In our opinion, the interpretation of cj(s)

is easier to understand.

2 Algorithm with Gradient Updates

An algorithm strictly based on Equations (5), (6) and (7) requires computing cj(x; s) for each

x ∈ {0, . . . , s} and a minimization over this set to compute cj(s). Evaluating cj(x; s) for each

x takes computational work proportional to max(s − x, x). Therefore, evaluating cj(x; s) for all

x ∈ {0, . . . , s} requires work proportional to s2. The minimizing over x ∈ {0, . . . , s} does not

add to the complexity because the order of complexity for searching the minimizer is s ln(s). In

summary, computational work to evaluate cj(s) is proportional to s2. Computing cj(0), . . . , cj(s
∗
j)

takes work proportional to (s∗j)
3. Adding this work over all the stages gives us the computational

complexity of the algorithm. The complexity for the traditional algorithm without the gradient

updates is similar.

The next proposition establishes the link between ∆cj+1(x) and ∆cj(x) that requires consider-

ably less work. Indeed, the work required to compute ∆cj(s), via Equation (10), is proportional to

s, so the work required to compute s∗j is proportional to (s∗j)
2. Adding the work over all the stages

gives us the complexity of the algorithm with gradient updates.
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Proposition 3 For j = 1, . . . , J , we have

∆cj+1(s) = hj+1Pr(Dj+1 ≤ (s− s∗j)
+) +

min(s,s∗j−1)∑
k=0

∆cj(k)Pr(Dj+1 = s− k)− pPr(Dj+1 > s). (10)

Proof. Since cj+1(s) = E[hj+1((s− s∗j)
+−Dj+1)

+ + hj+1EDj + cj(min(s∗j , s−Dj+1))], after some

algebra we obtain:

∆cj+1(s) = hj+1Pr(Dj+1 ≤ s− s∗j) +
∞∑

k=(s+1−s∗j )+

∆cj(s− k)Pr(Dj+1 = k).

If s < s∗j , the first term is zero and

∆cj+1(s) = E∆cj(s−Dj+1) =
∞∑

k=0

∆cj(s− k)Pr(Dj+1 = k)

=
s∑

k=0

∆cj(s− k)Pr(Dj+1 = k)− pPr(Dj+1 > s)

=
s∑

k=0

∆cj(k)Pr(Dj+1 = s− k)− pPr(Dj+1 > s),

where the last two equations follow from ∆cj(s) = −p for s < 0. The last equation is equivalent

to (10) for s < s∗j . Next we show the result for s ≥ s∗j . In this case,

∆cj+1(s) = hj+1Pr(Dj+1 ≤ s− s∗j) +
∞∑

k=s+1−s∗j

∆cj(s− k)Pr(Dj+1 = k).

By noticing that ∆cj(s) = −p for s < 0, we can rewrite the difference as

∆cj+1(s) = hj+1Pr(Dj+1 ≤ s− s∗j) +

s∗j−1∑
k=0

∆cj(k)Pr(Dj+1 = s− k)− pPr(Dj+1 > s).

This is equivalent to Equation (10) for s ≥ s∗j , concluding the proof. 2

Next we describe an algorithm to obtain an optimal echelon base stock policy and the optimal

expected cost.

s∗1 ← min{y ∈ N : ∆c1(y) > h2},
cJ(0)← ∑J

i=1 hi+1EDi + pED[1, J ]

FOR j = 1 to J − 1 DO

∆cj+1(s)← hj+1Pr(Dj+1 ≤ (s− s∗j)
+) +

∑min(s,s∗j−1)

k=0 ∆cj(k)Pr(Dj+1 = s− k)− pPr(Dj+1 > s).

s∗j+1 ← min{y ∈ N : ∆cj+1(y) > hj+2}.
END

PRINT (s∗J , . . . , s∗1) and cJ(s∗J) = cJ(0) +
∑s∗J−1

y=0 ∆cJ(y).
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3 Newsvendor Bounds and Heuristics

The DP formulation enables the design of a fast algorithm based on gradient updates. Yet, both the

new and the traditional formulation are difficult to explain to non-mathematically oriented students

and practitioners and do not allow for sensitivity analysis. We now provide a heuristic that can be

implemented in a spreadsheet by solving one newsvendor problem per stage.

Consider the sub-system {j +1, . . . , 1}, for some j ∈ {1, . . . , J−1} at the time we are allocating

s between Stage j + 1 and sub-system {j, . . . , 1}. What complicates the problem of minimizing

cj+1(x; s) is the fact that the holding costs hk, k = j + 1, . . . , 1 are increasing. To see how this

simplifies when the downstream costs are equal consider what happens when hj+1 < Hj = hj =

hj−1 = . . . = h1. We will use the notation cj+1(x; s|Hj) to denote the cost of allocating x units

to Stage j + 1 and s − x units to sub-system {j, . . . , 1} where the downstream holding costs are

Hj. When it costs the same to hold stock at stages j, . . . , 1 it is optimal to hold stock only at

Stage 1 since this affords better protection against backorders. This observation implies that we

can collapse stages {j, . . . , 1} into a single stage with demand D[1, j] and holding cost Hj. This

reduces the problem to a two stage problem. Indeed,

cj+1(x; s|Hj) = hj+1(x−Dj+1)
+ + hj+1EDj + Hj

j−1∑
k=1

EDk + EGj(min(s− x, s−Dj+1)|Hj), (11)

where Gj(s|Hj) = HjE(s−D[1, j])+ + pE(D[1, j]− s)+. Consequently, the first difference is given

by

∆cj+1(x; s|Hj) = [hj+1 −∆Gj(s− x− 1|Hj)]Pr(Dj+1 ≤ x). (12)

Notice also that ∆Gj(s|Hj) ≡ Gj(s + 1|Hj) − Gj(s|Hj) = (p + Hj)Pr(D[1, j] ≤ s) − p and conse-

quently,

s∗j(Hj) ≡ min{s ∈ N : (p + Hj)Pr(D[1, j] ≤ s) > p + hj+1}. (13)

In other words, s∗j(Hj) is the largest minimizer of a newsvendor problem with demand D[1, j],

holding cost Hj − hj+1, backorder penalty cost p + hj+1 and that the solution is independent of the

demand Dj+1. Substituting x = (s− s∗j(Hj))
+, we obtain:

cj+1(s|Hj) = hj+1(s− s∗j(Hj)−Dj+1)
+ + hj+1EDj + Hj

j−1∑
k=1

EDk

+ EGj(min(s∗j(H), s−Dj+1|Hj). (14)

Notice that the heuristic is intimately related to the dynamic programming formulation; it follows

the same steps, but that of finding s∗j is greatly simplified by the assumption of equal holding costs

for the downstream sub-system. We can improve on the cost estimate in Equation (14) by using

the actual pipeline cost
∑j

k=1 hk+1EDk instead of the approximation hj+1EDj + Hj
∑j−1

k=1 EDk.

Consider now the general case where hj < hj−1 < . . . < h1. Shang and Song (2003) increase the

holding costs of stages j, . . . , 2 to Hj = h1. For this sub-system, the cost of allocating x units to

8



j +1 and s units to j is given by cj+1(x; s|h1) as defined in (11) and the optimal echelon base-stock

level for Stage j is given by s∗j(h1). Similarly, they decrease the holding cost of stages j−1, . . . , 1 to

Hj = hj. The resulting sub-system has expected cost cj+1(x; s|hj) and optimal echelon base-stock

level s∗j(hj). Shang and Song thus solve two newsvendor problems per stage to obtain s∗j(h1) and

s∗j(hj), j = 1, . . . , J and show that s∗j(h1) ≤ s∗j ≤ s∗j(hj). They develop a heuristic for the original

system by either truncating or rounding the average (s∗j(h1) + s∗j(hj))/2.

We propose a new heuristic that consists of solving a single newsvendor problem per stage based

on the approximate holding cost rate

Hj = hGO
j ≡

j∑
k=1

Lk

L[1, j]
hk.

The idea is based on adding the holding cost as the product goes through the stages without delay

and then dividing by the total lead time that it spends before reaching the end customer. In this

way, we obtain an approximate holding cost rate for each stage and solve the system cj+1(x; s|hG0
j )

obtaining s∗j(h
G0
j ) for j = 1, . . . , J . We explored other weighting strategies as discussed in the last

paragraph of the numerical study.

Proposition 4 For any given j and s we have:

1. cj(s|hj) ≤ cj(s|hGO
j ) ≤ cj(s|h1),

2. s∗j(h1) ≤ s∗j(h
GO
j ) ≤ s∗j(hj),

3. Gj(s|hGO
j ) ≤

√
phGO

j

√
λL[1, j]E[X2].

Proof. Notice that hj ≤ hGO
j ≤ h1. Part 1 follows immediately from this inequality. We also have

∆Gj(s|hj) ≥ ∆Gj(s|hGO
j ) ≥ ∆Gj(s|h1) since hj ≤ hGO

j ≤ h1. This implies Part 2. Finally Part 3 is

the distribution-free bound in Gallego and Moon [5] and Scarf [11].

The last proposition imply that if the bounds in Part 1 of Proposition 4 are tight then s∗j(h
GO
j )

would be a close to optimal heuristic. We will illustrate the accuracy of this heuristic in the

following section. If our heuristic is close-to-optimal, the cost of managing the series system can

also be bounded by the distribution-free upper bound

cJ(s∗J) = cJ+1(s
∗
J) ' cJ+1(s

∗
J(hG0

J )|hG0
J ) ≤

√
p(h1L1 + . . . + hJLJ)λEX2 +

J−1∑
i=1

hi+1EDi. (15)

This formula contains all of the parameters of the problem. A simple sensitivity analysis reveals

that (1) the system cost is proportional to
√

p, (2) downstream leadtimes have a larger impact on

system performance than upstream leadtimes, (3) upstream echelon holding cost rates have a larger

impact on the system performance than downstream echelon holding cost rates, (4) the system cost

is proportional to
√

λ and proportional to
√

E[X2], recall that X is the random demand size. Note

that it is possible to approximate the optimal expected cost for each stage by using the normal

9



approximation. This approximation would result in a formula of the form cj(s
∗
j) ' (p + Hj)σφ(z),

where z = Φ−1((p + hj+1)/(p + Hj)) for j = 1, . . . , J and σ is the standard deviation of D[1, j].

This type of parametric analysis enables a near characterization of system performance. Some

system design issues may require investments in new processing plans or quicker but more expensive

shipment methods. Marketing strategies could influence the demand as well as changing the back-

logging costs. The closed form expression (15) enables a first cut estimate of the cost impact of any

changes in the parameters. Our analysis suggests, for example, that management should focus on

reducing the lead time at the upstream stages while reducing the holding cost at the downstream

stages. If process re-sequencing is an option, the lowest value added processes with the longest

processing times should be carried out sooner rather than later. In addition, the bound can provide

an estimate of the decrease in cost that results from advanced demand information as explained in

[7] and increases in customer lead times as explained in [9]. The model can also be used to study

the benefits of outsourcing by truncating the supply chain using contractual costs instead. In a

recent study, Lutze and Özer [10] use similar closed form solutions to design a mutually beneficial

contract, referred to as a promised lead time contract, that trades of the value of advanced demand

information to the seller and the cost of customer lead time to the buyer in a two level multi period

supply chain.

4 Numerical Study

Here, we report the performance of our heuristic and of the distribution-free bound. We compare

the exact solution to the newsvendor heuristics and report the percentage error εi% =
cJ (si

J )−cJ (s∗J )

cJ (s∗J )

for i = {SS, GO}. Shang and Song (2003) use sSS
j ≡ s∗j (hj)+s∗j (h1)

2
and truncate this average when

p ≤ 39 and round it otherwise. We use sGO
j ≡ s∗j(h

GO
j ). By considering a larger set of experiments,

we complement the numerical study in Shang and Song (2002). In particular, our numerical study

includes unequal leadtimes. To manage the series system, we use an echelon base stock policy with

echelon base stock levels sGO
j for all j. The approximate cost is given by GJ(sGO

J ) +
∑J

i=1 hi+1EDi.

Shang and Song (2003) approximate the optimal cost by GJ(s∗J(hJ) +
∑J

i=1 hi+1EDi instead of the

average since the lower bounds become looser as the number of stages in the system increases. We

study two sets of experiments: constant leadtime set and the randomized parameters set.

The first set of experiments is similar to that of Gallego and Zipkin [8] and Shang and Song [13].

The holding cost and the lead times are normalized so h1 = 1 and L[1, J ] = 1. We consider J ∈
{2, 4, 8, 16, 32, 64}; λ ∈ {16, 64}; and p ∈ {9, 39} (corresponding to fill rates of 90%, 97.5%). Within

this group we consider linear holding-cost form (he
j = 1/J); affine holding cost form (he[1, j] =

α+(1−α)j/J with α = 0.25 and 0.75); kink holding cost form (he
j = (1−α)/J for j ≥ J/2+1 and

he
j = (1+α)/J for j < J/2+1 with α = 0.25 and 0.75) and jump holding cost form (he

j = α+(1−α)/J

for j = N/2 and he
j = (1 − α)/J for j 6= J/2 with α = 0.25 and 0.75). Notice that Shang and

Song (2002) consider only the case for λ = 64 and p = 39. We report the results in Table 1.

Out of 108 problem instances, in 24 cases the sGO and in 20 cases the sSS heuristic resulted in
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the same solution as the recursive optimization. The sGO (resp., sSS) heuristic outperforms in 48

(resp., 44) cases and they tie in 17 cases. The average error for sGO (resp., sSS) heuristic is 0.195%

(resp., 0.385%), while the maximum error is 3.68% and 1.24% for the GO and the SS heuristics

respectively. The quality of the heuristics seems to deteriorate as the number of stages in the system

exceeds 32. The SS heuristic seems to perform better for the jump holding cost case, while the GO

heuristic tends to dominate in the other cases.

The second set of experiments allow for unequal leadtimes. It is here that we expect the GO

heuristic to perform better. To cover a wider range of problem instances we generate the leadtimes

and holding costs from uniform distributions. In particular, we use the following set of parameters:

he
j ∈ {Unif(0, 1), Unif(0, 5), Unif(1, 10)},

Lj ∈ {Unif(1, 2), Unif(1, 10), Unif(1, 40)},

J ∈ {2, 4, 8, 16, 32} b ∈ {1, 9, 39, 49} λ ∈ {1, 3, 6}.

We consider 25 combinations, taken at random, from the above parameters. For each subgroup we

generate 40 problem instances and calculate the worst case as well as the average performances.

We present some of the problem instances in Table 2.

Out of 1000 problem instances, in 188 cases the sGO heuristic and in 133 cases the sSS heuristic

resulted in the exact solution. In 849 cases the error term for sGO heuristic is smaller or equal to

that of sSS heuristic. The average error for the sGO (resp., sSS) heuristic is 0.23% (resp., 0.83%). We

observe that as the variance of the leadtimes across stages increases the average error term for sGO

decreases (the average error for Lj ∼ Unif(1, 10) is 0.14% whereas it is 0.39% for Lj ∼ Unif(1, 2)).

Similarly the sGO heuristic performs even better as the variance of echelon costs across stages in

a series system increases. In the second half of Table 2 we present the ten worst cases that we

encountered. The maximum worst case we observed was 3.62% for the sGO heuristic and 4.36% for

the sSS heuristic.

In light of our numerical observations we suggest the sGO heuristics for a series system with

a small number of stages (J ≤ 32) especially for systems with high variability in leadtimes and

echelon holding costs across stages. More caution should be used for system with a large number

of stages and for systems with jump holding costs.

We have also performed a numerical study comparing the actual cost to the distribution-free

bound by performing simple linear regressions of the bound to the actual cost by fixing all but one

of the parameters. The results of the regressions can be found in Tables 3 and 4 where we report the

coefficients of determination R2 for the different regressions. Notice that in all cases R2 is close to

1. This observation suggests that the bound can safely be used to investigate the impact of process

and design changes on the cost of managing a series system.

The simple newsvendor heuristic and the bound enable a manager to quantify the impact of

re-sequencing a process. Consider, for example, a four stage series system where h1 = L[1, J ] = 1,

p = 1 and λ = 16. We now compare two systems with different configurations of leadtimes. The

first system has leadtimes (0.1, 0.1, 0.1, 0.7) and the second has leadtimes (0.7, 0.1, 0.1, 0.1). The
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costs based on the distribution free bound (resp., recursive optimization) are 13.29 (resp., 12.77)

for the first system and 5 (resp.,4.93) for the second system. The distribution free bound predicts a

cost reduction of 62.4% while the actual cost reduction based on recursive optimization is 61.39%.

This indicates that the distribution free bound enables a quick, yet accurate, what if analysis. In

this case, we observe that postponing the shortest and the most expensive processes to a later stage

can significantly reduce inventory related costs.

We explored using different weighting structures to approximate holding cost structure for the

newsvendor heuristic. In particular, we used
∑j

k=1
Lα

k∑j

i=1
Lα

i

hk for different α ∈ [0, 1]. We were unable

to identify an α that consistently results in lower error terms than α = 1. In addition, we also used

the holding cost structure Hj =
∑j−1

k=1 hk+1
Lk∑j−1

i=1
Li

for j ≥ 2, and H1 = h1 that equates the pipeline

holding cost under the approximation to the real pipeline cost. This holding cost structure did not

perform better than the original proposed holding cost structure. To further investigate what other

weighting strategies could work, we have also calculated the implied holding costs him
j for some

problem instances. These holding cost when used in the newsvendor problem of Equation (13) yield

the optimal echelon base stock levels s∗j obtained through the exact algorithm. In other words we

set hmin
j ≡ min{h ∈ R+ : s∗j(h) = s∗j} and hmax

j ≡ min{h ∈ R+ : s∗j(h) = s∗j − 1}. Note that using

an implied holding cost him
j ∈ [hmin

j , hmax
j ) in Equation (13) yields the optimal echelon base stock

level. In Table 5 we provide some examples. Due to the robustness of newsvendor cost the range

for possible implied holding cost is large. The holding costs hGO
j fall into this range for a large set

of problem instances.

5 Conclusion

The results of this letter can also be applied to assembly systems by following the ideas in Rosling [12].

For distribution systems, the heuristic can be applied after using the decomposition principles in

Gallego, Özer and Zipkin [6]. Our formulation can also be used to model whether or not it is ben-

eficial to outsource an upstream portion of the supply chain by comparing the cost of the original

supply chain and the cost of the truncated supply chain with the unit cost from the new source of

supply.
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Table 1: Comparison of Optimal and Heuristic Policy
(λ = 16, p = 39)

N Form c(sSS
J ) c(sGO

J ) c(s∗J ) εSS% εGO% Form c(sSS
J ) c(sGO

J ) c(s∗J ) εSS% εGO%

64 Kink 18.066 17.957 17.775 1.637 1.024 Kink 20.839 20.471 20.381 2.247 0.442

32 α = 0.25 17.860 17.793 17.668 1.087 0.707 α = 0.75 20.543 20.326 20.266 1.367 0.296

16 17.557 17.527 17.461 0.550 0.378 20.162 20.040 20.034 0.639 0.030

8 17.099 17.075 17.063 0.211 0.070 19.675 19.608 19.604 0.362 0.020

4 16.246 16.244 16.244 0.012 0.000 18.759 18.726 18.726 0.176 0.000

2 14.617 14.617 14.617 0.000 0.000 17.063 16.999 16.999 0.376 0.000

64 Affine 19.119 19.074 18.955 0.865 0.628 Affine 23.699 23.722 23.656 0.182 0.279

32 α = 0.25 18.957 18.897 18.814 0.760 0.441 α = 0.75 23.481 23.495 23.440 0.175 0.235

16 18.532 18.579 18.525 0.038 0.291 23.053 23.066 23.012 0.178 0.235

8 17.985 18.000 17.975 0.056 0.139 22.202 22.163 22.159 0.194 0.018

4 16.843 16.843 16.843 0.000 0.000 20.494 20.442 20.440 0.264 0.010

2 14.617 14.617 14.617 0.000 0.000 17.063 16.999 16.999 0.376 0.000

64 Jump 16.536 16.598 16.280 1.572 1.953 Linear 16.621 16.612 16.409 1.292 1.237

32 α = 0.25 16.301 16.375 16.142 0.985 1.443 16.428 16.427 16.296 0.810 0.804

16 15.977 16.137 15.861 0.731 1.740 16.174 16.238 16.094 0.497 0.895

8 15.339 15.478 15.317 0.144 1.051 15.704 15.759 15.703 0.006 0.357

4 14.204 14.306 14.204 0.000 0.718 14.956 14.975 14.954 0.013 0.140

2 12.011 12.011 12.011 0.000 0.000 13.314 13.314 13.314 0.000 0.000

(λ = 16, p = 9)

64 Kink 15.863 15.614 15.565 1.915 0.315 Kink 18.390 17.953 17.938 2.520 0.084

32 α = 0.25 15.602 15.491 15.450 0.984 0.265 α = 0.75 18.093 17.819 17.816 1.555 0.017

16 15.265 15.248 15.239 0.171 0.059 17.710 17.573 17.572 0.785 0.006

8 14.805 14.776 14.776 0.196 0.000 17.108 17.108 17.108 0.000 0.000

4 13.922 13.891 13.891 0.223 0.000 16.205 16.205 16.205 0.000 0.000

2 12.166 12.138 12.138 0.231 0.000 14.332 14.332 14.332 0.000 0.000

64 Affine 16.705 16.713 16.676 0.174 0.222 Affine 21.053 21.123 21.047 0.029 0.361

32 α = 0.25 16.540 16.553 16.529 0.067 0.145 α = 0.75 20.830 20.902 20.830 0.000 0.346

16 16.250 16.241 16.231 0.117 0.062 20.402 20.400 20.398 0.020 0.010

8 15.655 15.649 15.643 0.077 0.038 19.533 19.533 19.533 0.000 0.000

4 14.517 14.489 14.483 0.235 0.041 17.804 17.804 17.804 0.000 0.000

2 12.166 12.138 12.138 0.231 0.000 14.332 14.332 14.332 0.000 0.000

64 Jump 14.358 14.336 14.196 1.141 0.986 Linear 14.506 14.379 14.317 1.320 0.433

32 α = 0.25 14.115 14.145 14.051 0.455 0.669 14.304 14.231 14.201 0.725 0.211

16 13.806 13.840 13.755 0.371 0.618 14.021 14.007 13.980 0.293 0.193

8 13.187 13.228 13.178 0.068 0.379 13.574 13.580 13.558 0.118 0.162

4 12.031 12.061 12.031 0.000 0.249 12.688 12.688 12.688 0.000 0.000

2 9.710 9.710 9.710 0.000 0.000 10.924 10.924 10.924 0.000 0.000

(λ = 64, p = 39)

64 Kink 52.742 52.667 52.352 0.745 0.602 Kink 62.378 61.848 61.622 1.227 0.367

32 alpha=0.25 52.086 52.130 51.903 0.353 0.437 alpha=0.75 61.610 61.313 61.157 0.741 0.255

16 51.099 51.140 51.011 0.173 0.253 60.551 60.327 60.226 0.540 0.168

8 49.259 49.259 49.223 0.073 0.073 58.484 58.425 58.381 0.176 0.075

4 45.660 45.721 45.660 0.000 0.134 54.773 54.675 54.675 0.179 0.000

2 38.457 38.457 38.457 0.000 0.000 47.314 47.267 47.267 0.099 0.000

64 Affine 56.877 56.959 56.707 0.300 0.444 Affine 74.105 74.165 74.085 0.027 0.108

32 alpha=0.25 56.140 56.300 56.120 0.036 0.321 alpha=0.75 73.240 73.279 73.222 0.025 0.078

16 54.966 55.053 54.954 0.022 0.180 71.514 71.540 71.495 0.027 0.063

8 52.615 52.684 52.609 0.011 0.143 68.065 68.085 68.042 0.034 0.063

4 47.931 47.925 47.921 0.021 0.008 61.160 61.128 61.128 0.052 0.000

2 38.475 38.457 38.457 0.047 0.000 47.314 47.267 47.267 0.099 0.000

64 Jump 46.107 47.742 46.075 0.069 3.618 Linear 47.859 48.045 47.590 0.565 0.956

32 alpha=0.75 45.231 46.640 45.217 0.031 3.147 47.289 47.518 47.151 0.293 0.778

16 43.518 44.647 43.500 0.041 2.637 46.335 46.487 46.265 0.151 0.480

8 40.080 40.892 40.069 0.027 2.054 44.555 44.658 44.529 0.058 0.290

4 33.204 33.864 33.188 0.048 2.037 41.015 41.034 41.015 0.000 0.046

2 19.389 19.655 19.370 0.098 1.471 33.916 33.916 33.916 0.000 0.000

Note that this table includes all the experiments in Shang and Song (2002).
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Table 2: Problem instances for J = 4.
(L4, L3, L2, L1) (he

4, he
3, he

2, he
1) sSS c4(sSS

4 ) sGO c4(sGO
4 ) s c4(s∗4) εSS% εGO%

p = 49, λ = 1

(1.698,1.067,1.274,1.676) (9.928,2.889,4.290,1.521) (8,7,6,5) 113.143 (7,7,6,5) 110.650 (7,7,5,5) 110.606 2.29% 0.04%

(1.241,1.200,1.442,1.939) (5.818,7.261,2.996,6.118) (8,7,6,4) 119.258 (7,6,6,4) 117.140 (7,6,6,4) 117.140 1.81% 0%

(1.412,1.749,1.071,1.798) (9.804,5.981,4.367,1.712) (8,8,6,5) 135.000 (8,7,5,5) 134.123 (7,7,5,5) 132.365 2.04% 1.33%

(1.545,1.662,1.503,1.700) (5.982,4.047,4.553,2.421) (9,8,6,4) 105.408 (9,7,6,4) 105.094 (8,7,6,4) 103.954 1.40% 1.10%

(1.077,1.186,1.291,1.082) (6.992,7.452,6.848,6.558) (6,6,4,3) 112.003 (6,5,4,3) 110.826 (6,5,4,3) 110.826 1.06% 0%

(1.840,1.019,1.772,1.663) (9.896,2.546,2.596,8.907) (8,7,6,3) 120.961 (8,7,6,3) 120.961 (8,7,6,3) 120.961 0% 0%

(1.969,1.575,1.250,1.872) (2.681,8.524,2.728,5.110) (10,7,6,4) 101.835 (9,7,6,4) 100.681 (9,6,6,4) 99.852 1.99% 0.83%

(1.434,1.382,1.818,1.403) (3.391,5.041,2.926,6.195) (9,7,6,3) 87.307 (8,7,6,3) 86.457 (8,7,6,3) 86.457 0.98% 0%

(1.204,1.600,1.800,1.885) (5.879,4.950,8.401,9.215) (9,8,6,4) 141.850 (8,7,5,4) 136.538 (8,7,5,4) 136.530 3.89% 0%

(1.032,1.664,1.813,1.687) (3.185,2.163,1.310,5.019) (9,9,7,4) 65.950 (9,8,7,4) 65.937 (9,8,7,4) 65.937 0.02% 0%

Some of the observed worst cases for both heuristics

p = 49, λ = 1

(1.222,1.765,1.938,1.732) (7.719,9.942,4.913,9.118) (9,8,6,3) 172.428 (8,7,6,3) 165.232 (8,7,6,3) 165.232 4.355% 0%

(1.862,1.057,1.462,1.842) (7.542,1.643,3.786,5.147) (9,8,6,4) 102.465 (8,7,6,4) 99.765 (8,7,6,4) 99.765 2.707% 0%

(1.561,1.254,1.644,1.979) (3.155,8.428,9.658,4.546) (9,7,6,4) 135.289 (8,6,5,4) 131.429 (8,6,5,4) 131.429 2.937% 0%

(1.599,1.422,1.013,1.103) (6.410,3.175,2.005,1.374) (8,7,5,4) 75.141 (7,6,5,4) 72.836 (7,6,5,4) 72.836 3.165% 0%

(1.159,1.583,1.929,1.404) (8.716,1.984,3.435,3.370) (9,8,6,4) 112.422 (8,8,6,4) 108.227 (8,8,6,4) 108.227 3.876% 0%

(1.412,1.749,1.071,1.798) (9.804,5.981,4.367,1.712) (8,8,6,5) 135.06 (8,7,5,5) 134.123 (7,7,5,5) 132.365 2.04% 1.33%

p = 1, λ = 1

(1.949,1.921,1.550,1.346) (0.472,0.375,0.847,0.317) (7,6,3,3) 7.328 (6,5,3,3) 7.126 (6,5,3,3) 7.126 2.823% 0%

(1.009,1.919,1.276,1.273) (0.588,0.691,0.838,0.726) (5,4,3,2) 8.312 (5,4,3,2) 8.312 (4,4,3,2) 8.138 2.133% 2.133%

(1.693,1.303,1.427,1.070) (0.967,0.683,0.153,0.877) (4,4,4,2) 8.177 (5,4,4,2) 8.352 (4,4,4,2) 8.177 0% 2.137%

(1.545,1.448,1.409,1.299) (0.466,0.501,0.153,0.323) (6,5,4,3) 5.767 (6,5,5,3) 5.766 (5,5,5,3) 5.662 1.866% 1.845%

Table 3: Performance of the Distribution Free Bound for factors N, b, and λ.
p = 10 λ = 16 R2 = J = 4 λ = 16 R2 = J = 4 p = 10 R2 =

he
i = 0.25 Li = 0.25 99.99% he

i = 0.25 Li = 0.25 96.63% he
i = 0.25 Li = 0.25 99.97%

J DFB c(s∗J ) p DFB c(s∗4) λ DFB c(s∗4)

2 6.48 4.03 1 9.16 9.05 2 4.29 3.43

3 10.75 7.87 2 10.47 10.17 4 6.50 5.14

4 16.00 12.87 4 12.33 11.34 6 8.37 6.62

5 22.25 18.95 6 13.75 12.02 8 10.07 7.98

6 29.49 26.10 8 14.94 12.48 10 11.66 9.27

7 37.73 34.32 10 16.00 12.87 12 13.16 10.50

8 46.97 43.59 12 16.95 13.15 14 14.60 11.69

10 68.45 65.25 14 17.83 13.38 16 16.00 12.87

12 93.93 90.98 16 18.65 13.59 20 18.68 15.11

14 123.40 120.77 18 19.42 13.77 30 24.94 20.47

16 156.87 154.60 20 20.14 13.94 32 26.14 21.50

Table 4: Performance of Distribution Free Bound wrt factors h4, h1, L4, and L1 When J = 4
p = 10 λ = 16 R2 = p = 10 λ = 16 R2 = p = 10 λ = 16 R2 = p = 10 λ = 16 R2 =

he
i = 0.25 Li = 0.25 99.99% he

i = 0.25 Li = 0.25 99.07% he
i = 0.25 Li = 0.25 99.93% he

i = 0.25 Li = 0.25 99.99%

he
4 DFB c(s∗4) he

1 DFB c(s∗4) L4 DFB c(s∗4) L1 DFB c(s∗4)

1 29.83 26.07 1 17.40 15.12 1 17.40 13.81 1 29.83 24.59

2 46.49 42.20 2 19.04 17.35 2 19.04 14.68 2 46.49 39.18

3 62.24 57.61 3 20.49 19.25 3 20.49 15.36 3 62.23 53.23

4 77.46 72.43 4 21.81 20.55 4 21.81 15.95 4 77.45 67.00

5 92.33 86.88 5 23.03 21.83 5 23.03 16.49 5 92.33 80.60

6 106.94 101.04 6 24.16 23.10 6 24.17 16.96 6 106.93 94.06

7 121.35 115.17 7 25.23 24.02 7 25.24 17.41 7 121.35 107.4

8 135.61 128.75 8 26.25 24.74 8 26.25 17.82 8 135.61 120.66

9 149.73 142.34 9 27.22 25.45 9 27.21 18.22 9 149.72 133.85

10 163.74 155.93 10 28.14 26.16 10 28.14 18.59 10 163.74 146.98
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Table 5: Implied Holding Costs When J = 4
(L4, L3, L2, L1) (h4, h3, h2, h1) (hGO

4 , hGO
3 , hGO

2 , hGO
1 ) (hmin

4 , hmin
3 , hmin

2 , hmin
1 ) (hmax

4 , hmax
3 , hmax

2 , hmax
1 )

p = 9, λ = 1

(7.279, 1.606, 3.467, 7.087) (9.928, 12.817, 17.107, 18.628) (14.619, 17.427, 18.128, 18.628) (12.154, 15.991, 16.761, 17.909) (17.495, 19.769, 19.586, 18.805)

(7.570, 6.158, 8.306, 3.782) (2.134, 6.763, 16.100, 18.691) (10.157, 13.486, 16.911, 18.691) (8.372, 13.603, 15.611, 18.347) (11.608, 18.867, 20.898, 21.495)

(3.265, 8.386, 5.579, 3.418) (9.892, 19.141, 21.237, 24.797) (19.181, 20.926, 22.589, 24.797) (19.271, 19.270, 21.651, 22.701) (27.310, 23.834, 23.768, 25.026)

(6.126, 3.384, 2.003, 3.404) (7.601, 17.398, 22.789, 25.723) (15.998, 21.850, 24.636, 25.723) (12.598, 17.641, 23.521, 24.258) (19.031, 24.803, 29.712, 26.604)

(2.327, 9.546, 2.274, 9.146) (7.236, 10.963, 15.802, 17.435) (13.604, 14.311, 17.110, 17.435) (12.797, 13.299, 14.888, 17.208) (17.858, 16.072, 17.567, 18.468)

p = 39, λ = 1

(2.327, 9.546, 2.274, 9.146) (3.468, 4.990, 7.129, 7.490) (6.028, 6.313, 7.418, 7.490) (5.728, 5.851, 6.839, 7.338) ( 7.956, 6.896, 8.024, 7.543)

(1.210, 7.247, 3.146, 3.558) (2.820, 5.927, 10.124, 11.574) (7.875, 8.314, 10.894, 11.574) (7.314, 8.531, 10.467, 11.560) (11.030, 11.532, 14.224, 13.502)
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