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Abstract

This paper develops simple approximate methods to analyze a two-stage stochastic

distribution system consisting of one warehouse and multiple retailers. We consider local

and central control schemes. The main ideas are based on relaxing and or decomposing

the system into more manageable newsvendor type subsystems. We provide bounds on

optimal echelon base-stock levels and on the optimal expected cost. We show that one

of the heuristics is asymptotically optimal in the number of retailers. The results of

this paper provide practicaly useful techniques as well as insights into stock-positioning

issues and the drivers of system performance.



1 Introduction

The formulations and the methodologies developed in multi-echelon production and dis-

tribution systems are often computationally intractable and difficult to explain to non-

mathematically oriented students and practitioners. Users are more likely to embrace decision

tools when they understand what is in the black box. In addition, data fed to these tools are

not always accurate. Systems and people have limitations. In this paper, we aim to provide

efficient control mechanisms for two level infinite horizon distribution system by developing

easy-to-describe, close-to-optimal and robust heuristics some of which can be implemented

on a spreadsheet. We also develop approximations that require less data, have closed-form

expressions and reveal important relationships for stock positioning.

In particular, we consider a two-level distribution system: Goods enter the system from

an outside source and proceed first to the warehouse. The warehouse in turn supplies J

retailers, where customer demands occur. Each such shipment requires a leadtime, but there

are no economies of scale. Demands are stochastic; those that cannot be filled immediately

are backlogged. There is an inventory holding cost at each location and a backorder penalty

cost at each retailer. The horizon is infinite, all data are stationary, and the objective is to

minimize total average cost. In this paper, we focus on a continuous review system and study

a class of replenishment policies known as base-stock policies that use local or centralized

stock information. Local control is also known as decentralized control (Eppen and Schrage

1981). However, this terminology is different than its recent use in contracting literature

where the emphasis is on multiple decision makers with different objective functions (Chen

2003).

Clark and Scarf (1960) initiated the analysis of the distribution system under centralized

information. They correctly pointed out that an optimal policy, if it exists, would be very

complex. Since then the research on distribution systems has shifted towards identification

of close-to-optimal heuristics and evaluation of plausible classes of policies. A comprehensive

review can be found in Axsäter (1993) for local control policies and in Federgruen (1993)

for central control. Often local control is referred to as a pull system and central control as

a push system. Here, we present heuristics, approximations and bounds for both local and

central control policies.

Under local control, the policy space is restricted to local policies such that each loca-

tion monitors its own inventory. The warehouse manager replenishes from an outside supplier

and ships to the retailer based on local information. Similarly, the retailers replenish through
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based on their local information. For local control we assume that the warehouse satisfies

retailers requests on a first-come-first-serve basis. The literature on local base-stock control

policy begins with the METRIC approximation of Sherbrooke (1968). We know how to com-

pute the best local base-stock policy in any particular instance (Graves 1985 and Axsäter

1990). The exact computational method is not easy to communicate to managers who are in-

terested in easy-to-use, near-optimal policies. In this paper, we provide simple heuristics and

approximations that are based on newsvendor-type solutions. Some of these heuristics are

related to similar methods in Gallego and Zipkin (1999). The first heuristic, the restriction

and decomposition (RD) heuristic, applies three sub-heuristics and selects the best. In par-

ticular, it restricts the warehouse to hold one of the three levels of inventory: zero inventory

(as in cross-docking), zero safety stock or the maximum possible inventory. In our numerical

study (based on more than 750 cases) the percentage difference from the exact solution for

RD heuristic is 1.37% on average. These sub-heuristics provide simple rules to set the total

system stock and its division among locations, and to estimate overall system performance.

For example, the superior performance of zero safety stock sub-heuristic suggests that the

major part of risk pooling benefit can be realized even without holding safety stock at the

warehouse. We also show that the RD heuristic is asymptotically optimal in the number of

retailers. In other words, the RD heuristic captures the behavior of the system even better

for distribution systems with many retailers.

We also develop two approximations, normal and maximal approximation that accurately

predict the systems performance. The maximal approximation, for example, does not require

one to estimate demand distributions, hence it is robust with respect to demand parameters.

For these approximations, we employ the first two moments of leadtime demand distribution.

Graves (1985) also uses first two moments but he approximates the number of outstanding

orders at each retailers and fits a negative binomial distribution. This approximation works

well. However, it is difficult to communicate and it does not provide closed-form solution.

Graves also establishes that the METRIC approximation is unreliable. The METRIC approx-

imation takes the stochastic sojourn time from outside supplier to the retailer as deterministic

by replacing it with its mean. For a comprehensive review of these two approximations, we

refer the reader to Axsäter (1993).

Another value of the RD heuristic and approximations is due to their computational

tractability. The scale of these problems in practice could be very large. For example, Gen-

eral Motor’s service parts organization manages more than 4 Million stock keeping units. GM
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revisits stock allocation problem every day and solve these problems repeatedly. 1 Compu-

tational improvements are therefore very important for implementation.

Under central control, the manager oversees the entire system. She decides on how

much to order from outside supplier; how much to withdraw from the warehouse and how

to allocate the withdrawn quantity to retailers so as to minimize the total average holding

and penalty cost. Note that the difference between local and central control policy is due to

the allocation rule at the warehouse. Under local control the warehouse allocates stock to

the retailers on a first-come-first-served bases. Under central control the warehouse allocates

to the retailer based on additional information, such as inventory levels and costs at the

retailers. On the other hand replenishment policies, not allocation policies, are the same

under both local and echelon base-stock control. For example, Axsater and Rosling (1993)

show that installation and echelon reorder point policies are equivalent. However, due to the

different allocation rule at the warehouse, the system performs differently under local and

central control as illustrated in the numerical section.

For the central control problem, we do not restrict the policy space to a certain class

of policies. Instead we use two approaches to simplify the problem and provide close-to-

optimal heuristics. Our first approach is based on relaxing some constraints on the control

variables. This relaxation leads to a simpler problem whose solution provides a lower bound

on the optimal average cost. The relaxation approach yields a problem that resembles a

series system for which the optimal policy is an echelon base stock policy (Gallego and Zipkin

1999). Combined with an allocation strategy at the warehouse, this approach provides a

heuristic for solving the central control case. The percentage difference between the cost of

this heuristic and the lower bound, called the optimality gap, was on average 9.44% in our

experiments. For periodic review systems a similar relaxation approach is used by Federgruen

and Zipkin (1984), Aviv and Federgruen (2001) and Özer (2003). The second approach is

based on decomposition. It decomposes the warehouse into J warehouses. This approach

provides bounds for the best echelon base stock levels. Using these bounds, we search for

the best echelon base stock levels that result in an optimality gap of 1.78% on average. This

approach is related to one proposed by de Kok and Visshers (1999) for assembly-distribution

systems.

Current trends in logistics point in opposite directions: Wal-Mart’s cross docking system,

a central part of its overall strategy (Stalk et. al. 1992), operates with little warehouse stock.

On the other hand, Apple Computers consolidate inventories at distribution hubs in Ireland

1Dr. Jeffrey Tew of GM R&D provided this information during a private communication.
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for Europe and in Shenzen for China 2. The recent resurgence of mail-order retailing (Dell,

Land’s End, Amazon, Medco, etc.) also attests to the strategic value of centralized stocks.

The effectiveness of a given strategy depends on the control policies used. Our heuristics and

numerical studies provide a foundation that sheds light on current developments in practice.

Through a numerical study, we test our heuristics and address issues that arise in the

design of production and distribution systems. To understand and quantify the role of cen-

tralization, we compare the system’s performance under local control to the performance

under central control. We illustrate, for example, that the value of central control increases

in the warehouse’s leadtime, its holding cost, and the retailers’ penalty cost.

Note that we could as well discuss the issues here under the setting of multi-item produc-

tion system with a common intermediate product. This interpretation underlies the literature

on postponed product differentiation; see Lee et al. (1993) and Aviv and Federgruen (2001).

Under this scenario, the warehouse represents the differentiation point and the retailers rep-

resent the differentiated products. The value of risk pooling corresponds to the value of

postponement or delayed differentiation. Our results apply to this setting as well.

The rest of the paper is organized as follows. In §2, we introduce the notation and describe

the system dynamics in detail. In §3, we study the distribution system under local control.

We provide some preliminaries followed by an easy-to-use heuristic and two approximations.

In §4, we study the distribution system under central control and provide heuristics and an

approximation to obtain echelon base-stock levels. In §5, we conduct numerical study of

several problem instances. First, we report on performance measures, such as optimality gap

and the computational requirement. Next, we provide insights for distribution system design

issues and the value of centralization. In §6, we conclude and suggest directions for future

research.

2 Distribution System

Consider a two level distribution system. All items enter the system from an external supplier

and proceed first to location j = 0, called the warehouse. The warehouse in turn supplies

J retailers, where the customer demands occur, indexed by j = 1, . . . , J . Shipments from

the external supplier arrive to the warehouse after time L0. Shipments arrive to retailer j

2Emily Choi, a senior manager in charge of world wide new product introductions at Apple, provided this

information
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after time Lj. The retailers satisfy the customer demand from on-hand inventory, if any.

Unsatisfied demand at retailer j is backordered at a linear penalty cost rate bj. All locations

are allowed to carry inventory. The local (installation) holding cost is hj per unit at retailer

j. Holding inventory at the retailer is assumed to be more expensive than holding it at the

warehouse hj ≥ h0 for j > 0. This could be due to more expensive storage space, overhead

or the value added operations carried out at the downstream. On the other hand, inventory

located closer to the end customer enables a quick response, hence reduces the possibility of

a backorder at each retailer. We assume that the demand at each retailer j follows a Poisson

process, {Dj(t), t ≥ 0} and it is independent across retailers. The question is where to locate

the inventory and how to control the distribution system so as to minimize the long run

average holding and penalty cost.

2.1 Cost

Let E[·] denote the expectation, V [·] the variance and [x]+ = max{0, x}. The state of the

distribution system just after all the decisions are made is summarized by

For each retailer j:

Ij : on-hand inventory at retailer j,

Bj : backorders at retailer j,

INj = Ij − Bj

: net inventory at retailer j,

ITj : inventory in transit to retailer j,

ITPj = ITj + INj,

: inventory transit position of retailer j,

IOj : inventory on order by retailer j,

IOPj = IOj + INj,

: inventory order position of retailer j,

ITPr =
∑
j>0

ITPj,

: sum of inventory transit positions at each retailers

For the warehouse:

I0 : on-hand inventory at the warehouse,

IN0 = I0 + ITPr,
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B0j : warehouse backorders due to the orders from retailer j,

ITP0 = IT0 + IN0.

We use Dj to denote the leadtime demand for location j in equilibrium, a generic random

variable that has the distribution of Dj(t, t+Lj ] = Dj(t+Lj)−Dj(t). Notice that IOj ≥ ITj

for j > 0 since retailer j can be replenished only when warehouse has inventory. Also inventory

order and transit positions are the same for the warehouse since it orders from an external

supplier with ample stock. We use the superscript − to refer to the state space right before

any decision. For example, ITP−
j refers to the inventory transit position at retailer j before

any decision is made. Under any policy, the total average cost can be expressed as

C = h0E[I0] + h0

∑
j>0

E[ITj] +
∑
j>0

(hjE[Ij] + bjE[Bj]) (1)

= H0E[IN0] +
∑
j>0

(HjE[INj] + (bj + hj)E[Bj ]), (2)

where Hj = hj − h0 and H0 = h0 are the echelon holding costs. The first equation above is

based on the local cost accounting while the second is based on the echelon cost accounting.

We use the former to establish our local control policies and the latter to develop central

control mechanisms. We use the lower case c to denote the resulting cost under a local

control policy and the capital C to denote the cost under a central control policy. For series

systems the cost and the optimal policy under local and central control are the same (Axsäter

and Rosling 1993, Chen and Zheng 1994, and Gallego and Zipkin 1999), but this is not the

case for distribution systems.

3 Local Control With Base Stock Policy

Under a continuous review local control mechanism each location monitors its own inventory

and its local base stock level. Whenever the inventory order position, IOPj at retailer j falls

below the local base-stock level sj, its manager orders from the warehouse to raise it up to

this level. The sum of the retailers’ orders constitute the warehouse’s demand process. The

warehouse manager replenishes its own inventory from an outside supplier with ample stock

whenever its inventory order position is below s0 and satisfies the retailers’ requests on a

first-come-first-served basis. Notice that the information and the control are decentralized

or localized in that each location sees its own demand and monitors its own inventory-order

position.

Assume that the initial on-hand inventory at each location is sj units and that there are
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no inventories in the pipeline. Arrival of demand to any location prompts its manager to

place an order from the warehouse. This in turn triggers an order at the warehouse from the

outside supplier. The warehouse fills retailers’ orders sequentially. If the demand process at

retailer j is Poisson with mean λj, then the warehouse’s demand process is also Poisson with

mean λ0 =
∑

j>0 λj. The standard exact analysis of this system is due to Graves (1985).

3.1 Preliminaries

3.1.1 The Analysis

Following a top down approach, that is, analyzing first the warehouse then the retailers we

have

B0 = [D0 − s0]
+, (3)

I0 = [s0 −D0]
+, (4)

Bj = [B0j + Dj − sj]
+ for j > 0, (5)

Ij = [sj −B0j −Dj]
+ for j > 0, (6)

where B0j represents the number of backorders due to retailer j. Notice that B0j and Dj

are independent. Recall that the warehouse faces independent Poisson arrivals from each

retailer and satisfies the retailer’s request in order. Consequently (B0j|B0) is binomial with

parameters B0 and θj = λj

λ0
. Given the base stock levels one can construct numerically the

distribution of state equations (3)-(6) and obtain performance measures such as E[Bj ]. This

enables us to evaluate the total average cost of a base stock policy from equation (1);

c(s0, s1, . . . , sJ) = h0E[I0] +
∑
j>0

cj(s0, sj), (7)

cj(s0, sj) = hjE[Ij] + bjE[Bj]. (8)

We omit the holding cost of shipments in transit since it is a constant equal to h0
∑

j>0 λjLj.

Let s∗ = (s∗j)
J
j=0 denote the optimal base stock policy that achieves the minimum total average

cost c∗. Given s0 the average cost cj in (8) is a newsvendor type (single-location) subsystem.

Hence, its minimizer is easy to compute. Notice also that cj is a function of s0 due to the

backlog B0j. Let

∆cj(s0, sj) ≡ cj(s0, sj + 1)− cj(s0, sj) = hj − (bj + hj)P (B0j + Dj > sj) (9)

s∗j(s0) ≡ min{sj : ∆cj(s0, sj) > 0}. (10)
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3.1.2 Exact Solution

This exact solution originally discussed in Graves (1985) and Axsäter (1990). Here, we

outline the exact solution for an easy reference and point out the challenges involved. Later

we compare this algorithm to the proposed easy-to-use, close-to-optimal heuristics and closed-

form approximations.

Given a base stock level s0, the total average cost in (7) separates into J convex functions

and the cost associated to the warehouse (that is a constant). Notice that to compute these

convex functions numerically, we need to obtain the distribution of Bj and Ij for all j. To do

so, the exact algorithm requires one to carry out numerical convolutions. Another challenge

is that the total average cost c(s0, s
∗
1(s0), . . . , s

∗
J(s0)) is not convex in s0. Finding the optimal

s0, therefore, requires an exhaustive search over all possible values. To simplify this search

we later provide an upper bound for s∗0 (see Proposition 1). Let UB denote such an upper

bound. Next, we describe an algorithm (projection method) to obtain c∗ and s∗:

FOR s0 = 0 to UB

Let c(s0, s
∗
1(s0), . . . , s

∗
J(s0)) = 0.

FOR j = 1 to J

s∗j(s0)← min{y : cj(s0, y) ≤ cj(s0, x) for all x �= y}
c(s0, s

∗
1(s0), . . . , s

∗
J(s0))← c(s0, s

∗
1(s0), . . . , s

∗
J(s0)) + cj(s0, s

∗
j(s0))

END

c(s0, s
∗
1(s0), . . . , s

∗
J(s0))← h0E[I0] + c(s0, s

∗
1(s0), . . . , s

∗
J(s0))

END

c∗ ← mins0∈[0,UB] c(s0, s
∗
1(s0), . . . , s

∗
J(s0)).

Notice from equation (3) that B0 the backlog at the warehouse decreases as we increase

s0. This in turn reduces the stock out probability and hence the optimal base stock level at

the retailers. This observation reduces the computational requirement since the search for

s∗j(s0) for j > 0 is over a smaller set as we increase s0.

Next, we present several heuristics and approximate methods to analyze the system. Some

of these approximations and heuristics are in closed form that involves only the original

problem data. They are easy to describe, compute and implement. These heuristics also

enable us to study the effect of system parameters on optimal cost and policy.
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3.2 A Heuristic: Restriction and Decomposition (RD)

This approach involves restriction of the policy space and decomposition of the resulting model

into independent single-location, newsvendor type subsystems. The overall RD heuristic

applies three sub-heuristics and selects the best. The first sub-heuristic restricts the warehouse

to carry zero inventory. The second one restricts the warehouse to carry maximal inventory.

The third sub-heuristic restricts the warehouse not to carry any safety stock. Next, we discuss

these sub-heuristics in detail.

3.2.1 Cross-Docking (CD) Sub-heuristic

The first sub-heuristic restricts s0 to 0. We call the restriction to no warehouse inventory

cross-docking. This phrase refers to a warehouse-management approach that, among other

things, utilizes little warehouse inventory. For a general discussion of managerial advantages

of cross-docking, we refer the reader to Rosenfield and Pendorck (1980). Our restricted system

can be viewed as a stylized representation of this practical approach. The warehouse can be

considered as a repackaging or bulk-breaking center with zero inventory, that is I0 = 0 and

B0 = D0. In this case B0j has the Poisson distribution with mean L0λj. The average cost is

c(0, s1, . . . , sJ) =
∑
j>0

cj(0, sj) =
∑
j>0

(hjE[sj −B0j −Dj]
+ + bjE[B0j + Dj − sj]

+),

where B0j + Dj is Poisson with mean (L0 + Lj)λj. In other words each retailer j operates as

an independent newsvendor subsystem with total leadtime L0 + Lj. The optimal base stock

level for each retailer is given by s∗j(0) ≡ min{y : cj(0, y) ≤ cj(0, x) for all x �= y}.

3.2.2 Stock-Pooling (SP) Sub-heuristic

The second sub-heuristic decomposes the system into J + 1 newsvendor subsystems. For any

policy, from (5), we have Bj ≤ B0j + [Dj − sj]
+ for all j > 0 so we have

c(s0, s1, . . . , sJ) = h0E[I0] +
∑
j>0

(hjE[Ij] + bjE[Bj])

≤ h0E[s0 −D0]
+ +

∑
j>0

(hjE[sj −Dj]
+ + bjE[B0j] + bjE[Dj − sj]

+) (11)

= (h0E[s0 −D0]
+ + (

∑
j>0

bjθj)E[D0 − s0]
+) +

∑
j>0

(hjE[sj −Dj]
+ + bjE[Dj − sj]

+)

= c0(s0) +
∑
j>0

cj(∞, sj),

9



where we have defined c0(s0) = h0E[s0 − D0]
+ + b0E[D0 − s0]

+ with shortage cost b0 =∑
j>0 bjθj. Each term in this expression is the cost of an independent, newsvendor subsystem,

one for each location, and we can optimize each one separately. Let s∗j(∞) ≡ min{y :

cj(∞, y) ≤ cj(∞, x) for all x �= y}. The optimal base stock level for the warehouse is given

by su
0 ≡ min{y : co(y) ≤ c0(x) for all x �= y}. We call this sub-heuristic as stock-pooling

because as we will show it uses maximal warehouse inventory, that is su
0 . The model can be

considered as a stylized version of the practical method of using minimal inventory at the

retailers and maximal inventory at the warehouse. This discussion leads us to the special

case of stock-pooling sub-heuristic next.

Notice the special case of the stock-pooling sub-heuristic when sj = 0. In this case, all

retailers act as order processing centers. Call centers, e-retailers and dealers of luxury goods

are examples of retailers that carry inventory, if at all, only for display purposes. Hence, the

inequality in equation (11) leads to an equality because Bj = B0j + Dj. Hence, the average

cost is

c(s0, 0, . . . , 0) = h0E[s0 −D0]
+ + b0E[D0 − s0]

+ +
∑
j>0

bjLjλj

= c0(s0) +
∑
j>0

cj(∞, 0),

This is also a newsvendor subsystem. Intuitively, the retailers are charged only for the

backorder due to the demand during the retailer leadtime and the warehouse incurs the

shortage cost of b0 per backorder if he cannot satisfy retailer’s order requests.

Since cj(∞, s∗j (∞)) ≤ cj(∞, 0), allocating sj = 0 to retailers results in an upper bound

to the second sub-heuristic. The difference will be null only when the solution to the second

sub-heuristic results in zero base stock level at the retailers. Another observation is that the

second sub-heuristic gives us a lower bound on the cost of treating the retailers as call centers

carrying no inventory. This special case also enables us to characterize an upper bound for

warehouse base stock level and provides insights for a system with stock-less retailers.

3.2.3 Zero-Safety-Stock (ZS) Sub-heuristic

The third sub-heuristic sets s0 = E[D0] and then optimize over sj, j > 0 for J single location

problems. If E[D0] is a fractional number we round it down to the nearest integer. The

ZS sub-heuristic, in contrast to the other sub-heuristics, uses a moderate value of warehouse

stock. Note that ZS sub-heuristic requires us to compute convolutions for Bj and Ij whereas

CD and SP sub-heuristics do not.
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3.2.4 Properties of RD Heuristic

In summary, the RD heuristic restricts the policy space, decomposes the problem into newsven-

dor type subsystems and selects the best of the three sub-heuristics. Note that it chooses

among two extreme levels of warehouse stock (none or maximal inventory) and an intermedi-

ate value (some inventory). Next, we provide monotonicity results for the base stock levels.

We also show that choosing minimum of CD or SP sub-heuristics, the two extreme levels of

warehouse stock, is near-optimal when the distribution system has a large number of retailers.

In other words, RD heuristic is asymptotically optimal.

Proposition 1

1. 0 ≤ s∗0 ≤ su
0 ,

2. s∗j(∞) ≤ s∗j(s
∗
0) ≤ s∗j(0),

3.
∑

j>0 cj(∞, s∗j(∞)) ≤ c∗ ≤ min{c(0, s∗1(0), . . . , s∗J(0)), c0(s
u
0) +

∑
j>0 cj(∞, s∗j(∞))}.

Axsäter (1990) provides a proof for the first two parts of this proposition. Here, we refine

their proof and provide an intuitive argument. The base stock level su
0 is an upper bound

because to obtain this value during the third sub-heuristic we restrict sj = 0 for j > 0.

Increasing sj would only reduce the required warehouse safety stock. The base stock level

s∗j(∞) is a lower bound since the second sub-heuristic assumes infinite supply at the warehouse

and ignores the backlog B0j. Similarly, s∗j(0) is an upperbound since the first sub-heuristic

assumes that the warehouse has zero inventory. 3 To see why Part 3 is correct, notice that

the newsvendor cost for the retailer’s cj(∞, s∗j(∞)) are lower bounds to the optimal retailer

costs since they ignore the warehouse backorders. If we sum these lower bounds and exclude

the cost for the warehouse then this sum would be a lower bound for the optimal cost c∗.

3A more formal argument is as follows. We first show that s∗j (s0 + 1) ≤ s∗j (s0) for any s0, which implies

Part 2. To do so, we show that ∆cj(s0 + 1, sj)−∆cj(s0, sj) ≥ 0. This implies s∗j (s0 + 1) ≤ s∗j (s0) due to the

definition of the base stock level (10) and the convexity of cj(so, sj) with respect to sj . From equation (9)

∆cj(s0 + 1, sj) − ∆cj(s0, sj) = (bj + hj)[P (B0j(s0) + Dj > sj) − P (B0j(s0 + 1) + Dj > sj)]. To show that

this difference is greater or equal to zero, it sufficies to show P (B0j(s0 + 1) > y) ≤ P (B0j(s0) > y) for any

y since Dj is a nonnegative random variable. From equation (3), we have B0(s0 + 1) ≤st B0(s0). Note

that P (B0j(s0 + 1) > y) = E1{B0j(s0+1)>y)} = E[E1{B0j(s0+1)>y)}|B0(s0 +1)] = E1{
∑B0(s0+1)

j=1
Xj>y)} ≤

E1{
∑B0(s0)

j=1
Xj>y)} = P (B0j(s0) > y), where 1{·} is an indicator function and Xj ’s are independent Bernoulli

random variables with parameter θj .
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Recall also that all of the optimal costs for the sub-heuristics are upper bounds to the true

optimal cost c∗ because we restrict the policy space and minimize within this space.

From the bounds in Proposition 1, we have

∑
j>0

cj(∞, s∗j(∞)) ≤ c∗ ≤ c(s) ≤ co(s
u
o) +

∑
j>0

cj(∞, s∗j(∞))

Proposition 2 If minj>0{cj(∞, s∗j (∞)} > 0, then the RD heuristic is asymptotically optimal

in the number of retailers.

Notice that

c(s)

c∗
≤ 1 +

co(s
u
o)∑

j>0 cj(∞, s∗j(∞))
≤ 1 +

√
h0b0LJ(maxj{λj})

J minj>0{cj(∞, s∗j(∞))} →︸︷︷︸
J→∞

1,

where co(s
u
o) ≤

√
hob0L

∑
j λj is the distribution-free upper bound (Gallego and Moon 1993).

3.3 Approximations

3.3.1 Normal Approximation (NA)

The standard normal approximation for newsvendor systems extends readily to this multi-

location system. Axsäter (2002) independently develops a similar but more intricate method

for the more general case of (r,q) policies. Let φ denote the standard normal density function,

Φ0 the standard normal complementary cumulative distribution function, Φ1 the standard

normal loss function, and Φ2 the standard normal second-order loss function, that is,

Φ0(z) =
∫ ∞

z
φ(x)dx

Φ1(z) =
∫ ∞

z
Φ0(x)dx =

∫ ∞

z
(x− z)φ(x)dx = −zΦ0(z) + φ(z)

Φ2(z) =
∫ ∞

z
Φ1(x)dx =

1

2
[(z2 + 1)Φ0(z)− zφ(z)].

Notice that although there is no closed-form expressions for these integrals, all standard

software packages (including MS Excel) today have a built in function to compute Φ0(z).

The mean and also the variance of Dj, j ≥ 0 are Ljλj. The normal approximation at the

warehouse yields

E[B0] = Φ1(z0)
√

L0λ0,

E[B0(B0 − 1)] = 2Φ2(z0) L0λ0,

E[I0] = Φ1(−z0)
√

L0λ0,
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where z0 = (s0 − L0λ0)/
√

L0λ0. Moreover,

E[B0j] = θjE[B0],

V [B0j] = θj(1− θj)E[B0] + θ2
jV [B0], for j > 0. (12)

We obtain the variance by using the conditional variance formula. Now, we approximate each

B0j + Dj by a normal distribution with mean and variance,

µ̂j = E[B0j] + Ljλj

σ̂2
j = V [B0j] + Ljλj.

Recall that B0j and Dj are independent. The normal approximation for retailer j yields

E[Bj ] = Φ1(zj)σ̂j,

E[Ij ] = Φ1(−zj)σ̂j,

where zj = (sj − µ̂j)/σ̂j. We now have all the elements needed to evaluate the average cost

c. Furthermore, if we set sj optimally given s0, that is s∗j(s0) = µ̂j + z∗
j σ̂j then the average

cost for retailer j is

cj(s0, s
∗
j(s0)) = (bj + hj)φ(z∗

j )σ̂j,

where z∗
j solves Φ0(z) = hj/(bj +hj). Notice also that the cost function depends on s0 through

σ̂j. The total average cost in equation (7), therefore, reduces to a function of one variable.

min
s0

c(s0, s
∗
1(s0), . . . , s

∗
J(s0)) = min

s0
{h0E[I0] +

∑
j>0

(bj + hj)φ(z∗
j )σ̂j}. (13)

This function is not convex, in general. However, one can show that it has a unique local

minimum. Thus, it is easy to optimize numerically. Once the optimal base stock levels are

obtained, we truncate the fractional values.

Next, we apply the normal approximation to the RD heuristic and provide approximations

to the bounds in Proposition 1. The resulting approximate bounds are in closed form and they

provide insight into the system’s performance. To do so, we approximate Dj and B0j + Dj

by normal distributions with mean and variance Ljλj and (L0 +Lj)λj, respectively. We have

∑
j>0

(hj + bj)φ(z∗
j )

√
Ljλj ≤ c∗ ≤ min{∑

j>0

(hj + bj)φ(z∗
j )

√
(L0 + Lj)λj,

∑
j≥0

(hj + bj)φ(z∗
j )

√
Ljλj}

To gain some insights into the system performance under local control, we consider

the normal approximation for identical retailers having parameters λ, h, b and L. No-

tice that θj = 1
J
. Notice first that from equation (12), we have σ̂j =

√
V [B0j + Dj] =
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√
V [B0] + (J − 1)E[B0] + J2λL/J. From equation (13), the total average cost is

c(s0, s
∗
1(s0), . . . , s

∗
J(s0)) = h0E[I0] + (b + h)φ(z∗)

√
V [B0] + (J − 1)E[B0] + J2λL,

where z∗ solves Φ0(z) = h/(b + h). Let’s examine the joint impact of s0 and the number of

retailers. First notice that when s0 = 0. If we fix the total mean demand λ0 then the average

cost is (b + h)φ(z∗)
√

J(L0 + L)λ0, which is proportional to
√

J . But increasing s0 increases

E[I0] and reduces V [B0], whose effects are independent of the number of retailers. On the

other hand, increasing s0 reduces E[B0] and this has a coefficient of J . This suggests that the

overall cost depends roughly on the square root of the number of retailers, but the strength

of this dependence declines with s0.

Hence base stock at the warehouse level has two purposes: (1) it serves to pool some of

the retailers’ demand uncertainty; this inventory can be used to fill an order from any retailer

and (2) it may be cheaper to carry inventory at the warehouse than at the retailer. But notice

that under local control the manager could not fully utilize the benefit of risk pooling. The

warehouse manager lacks the authority to take corrective action even if he observes that some

retailers need more inventory than the retailer that is scheduled to receive an order according

to the first-in-first-serve rule.

3.3.2 Maximal Approximation (MX)

Using Gallego and Moon’s (1993) distribution free bound, we provide a closed-form expression

for the base stock levels.

sm
j = Ljλj +

1

2

√
Ljλj




√√√√ bj

hj
−

√√√√hj

bj


 for j ≥ 0.

We also truncate any fractional base stock level. These base stock levels are optimal against

the worst possible distribution with mean and variance equal to Ljλj and the corresponding

closed-form upper bound on the cost of the optimal policy is

c∗ ≤∑
j≥0

√
hjbj

√
Ljλj.

Notice that a better approximation is to set the retailers’ base stock level to max(s∗j(∞), sm
j )

and the warehouse’s base stock level to min(su
0 , s

m
0 ). Nevertheless, in our numerical study we

investigate the stand alone performance of sm
j .
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4 Central Control with Echelon Base Stock Policy

Notice that the local control mechanism relies on the history rather than the current status

of the system to replenish the retailers’ request. The warehouse fills the orders sequentially;

that is, on a first-come-first-serve basis. Consider what happens when the warehouse runs

out of stock in a system with identical retailers. Suppose the first demand is observed at

retailer j while the next five demands are observed at retailer k. At this point the warehouse

receives a unit from its supplier. The warehouse allocates this unit to retailer j under local

control even though retailer k needs this unit more. It is here where we expect that a central

control mechanism to be beneficial. Under central control a unique decision maker collects

the information about the distribution system and decides on (1) how much to order from

an outside supplier to replenish the warehouse inventory, (2) how much to withdraw from the

warehouse and (3) how to allocate the withdrawn quantity to the retailers who then satisfy

the random demand.

4.1 The Analysis

Under any policy the average cost is given by equation (2). There is nothing that one can do

at time t to affect retailer j’s on-hand inventory before time t+Lj. Hence the system manager

should protect the retailer against the demand uncertainty faced during the replenishment

leadtimes. From this observation, we have INj = ITPj −Dj. Below we re-write the average

cost in equation (2) and define Cj for an easy reference.

C = H0EIN0 +
∑
j>0

Cj(ITPj), (14)

Cj(y) = HjE[y −Dj] + (bj + hj)E[y −Dj]
−. (15)

The form of the optimal policy that minimizes this above cost function under centralized

control is unknown. We use C∗ to denote the optimal cost under central control. Note

that the above average cost includes the shipments in transit. During our numerical study

we subtract the in-transit holding cost h0
∑

j>0 E[ITj] from equation (14) to be consistent

with local control case. Under any policy the shipment quantity to the retailers should

be nonnegative and it should not exceed what is available at the warehouse. In other words

ITPj ≥ ITP−
j and ITPr−∑

j>0 ITP−
j ≤ I−

0 . We present two heuristics and an approximation

to solve this problem.
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4.2 Heuristics

4.2.1 Relaxation-Based (RB) Heuristic

Using a relaxation approach we construct a lower bound to the average cost in (14). Based

on this bound we propose a heuristic that yields a feasible solution and, hence, an upper

bound to the true optimal average cost. Imagine that at any time we can ship any amount to

the retailers as long as the sum of inventory transit positions is equal to whatever is available

at the warehouse. We keep the constraint
∑

j ITPj = ITPr but relax ITPj ≥ ITP−
j . Under

this scenario, since we can shift stock among the retailers at any time in the future, we can

focus solely on the current cost rate. In other words, warehouse can always allocate to achieve

equal fractile at the retailers. The cost rate under this relaxation is

H0IN0(t) + Cr(ITPr),

where Cr(ITPr) = {min(y1,...,yJ )
∑

j>0 Cj(yj) s.t.
∑

yj = ITPr}. A recursive algorithm similar

to the series system (as in Chen and Zheng 1994 or Gallego and Zipkin 1999) solves this

problem:

Cr(x) = { min
(y1,...,yJ )

∑
j>0

Cj(yj) s.t.
∑

yj = x}

Sr = min{y : Cr(y) ≤ Cr(x) for all x �= y}
C0(y) = H0E(y −D0) + ECr(min{y −D0, Sr}) (16)

S0,r = min{y : C0(y) ≤ C0(x) for all x �= y}

Notice that Cr(x) is convex and has a finite minimizer. Let s∗j be the minimizer of Cj(y),

then the minimizer of Cr(·) is given by Sr =
∑

j>0 s∗j . Note that C0(S0,r) is also a lower bound

to C∗ since it is obtained by relaxing the constraint set ITPj ≥ ITP−
j .

We use this lower bound to decide on how much to order from an outside supplier and

how much to withdraw from the warehouse. In particular, the system manager orders from

outside supplier to bring the system wide inventory-transit position ITP0 up to S0,r whenever

it is below S0,r. Next, she withdraws (as much inventory as available) from the warehouse

inventory to bring ITPr up to Sr whenever it is below Sr. Finally, she allocates the withdrawn

quantity to the retailers based on the solution of a problem similar to Cr(x) in equation (16)

but with the additional constraint set yj ≥ ITP−
j .

In our numerical study, we use a greedy algorithm to solve this allocation problem. We

start with yj = ITP−
j and allocate one unit at a time to j-th retailer that has the smallest
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current value of the first difference, (that is, minj{∆Cj(yj)}) until all withdrawn quantity is

allocated.

We mention in passing that another approach for obtaining a lower bound is based on

aggregation. Note that

C = H0IN0 +
∑
j>0

{HjE[ITPj −Dj] + (bj + hj)[ITPj −Dj]
−}

≥ H0IN0 + min
j>0
{Hj}E[

∑
j>0

ITPj −
∑
j>0

Dj] + min
j>0
{bj + hj}

∑
j>0

[ITPj −Dj]
−

≥ H0[ITP0 −D0] + HaE[ITPr −Da] + (ba + ha)[ITPr −Da]
−

where Ha = minj>0{Hj}, ba = minj>0{bj}, ha = minj>0{hj} and Da =
∑

j>0 Dj. The last

inequality is due to
∑

j max(0,−xj) ≥ max(0,−∑
j xj). D0 is the leadtime demand observed

at the warehouse. This is precisely the cost rate of a two stage serial system in which the

leadtime demand is D0 at the upstream stage and Da at the downstream stage. The second

stage can be interpreted as an aggregate retailer that is facing aggregate leadtime demand

Da. The optimal policy can be found through solving a serial system as in equation (16) to

obtain echelon base stock levels Sa and S0,a. Through our numerical study, we observed that

the performance of this lower bound together with the warehous allocation policy described

above was inferior to that of the relaxation based heuristic.

4.2.2 Direct-Search (DS) Heuristic

One can obtain the best echelon base stock levels (S∗
0 , S

∗
r ) by enumeration. For all possible

values of (S0, Sr) together with the allocation policy described in § 4.2.1, one can simulate

the system and chose the policy that yields the smallest cost. Next, we provide bounds for

the best echelon base stock levels to limit our search.

To obtain these bounds we first ignore the risk pooling effect by restricting the warehouse

to maintain separate safety stock for each retailer. In this case, the warehouse manager orders

from an outside supplier to replenish the stock that serves as a buffer for retailer j. This

restriction decomposes the distribution system into J independent 2-Stage serial systems and

hence ignores the risk pooling effect. Let

IN0j : Echelon net inventory at the warehouse for retailer j

ITP0j : Echelon inventory transit position at the warehouse for retailer j.

It is well known that the echelon base stock policy is optimal for a serial system (Clark and

Scarf 1960). The optimal echelon base stock levels can be found through solving the following
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recursive optimization:

Cj(y) = E{Hj[y −Dj] + (hj + bj)[y −Dj]
−}

Sj = min{y : Cj(y) ≤ Cj(x) for all x �= y}
C0j(y) = E{H0(y −D0j) + Cj(min[y −D0j, Sj])} (17)

S0j = min{y : C0j(y) ≤ C0j(x) for all x �= y},

where D0j is the leadtime demand, Poisson with mean λjL0, at the warehouse due to retailer

j. The optimal system wide average cost under a decomposed warehouse mechanism is∑
j>0 C0j(S0j). Notice that this is an upper bound to the true optimal cost C∗ since it is

obtained by restricting the policy space. Similarly
∑

j>0 S0j is an upper bound to the optimal

echelon base stock level S∗
0 since this would ignore the gains from risk pooling. (This assumes

that echelon safety stocks S0j − λ(Lo + Lj) are positive for each j). Also
∑

j>0 Sj is a lower

bound to the optimal echelon base stock level S∗
r since it ignores the stock out possibility at

the warehouse due to other retailers’ orders. Now consider restricting the warehouse not to

hold any inventory. In this case, the system manager has to protect each retailer against the

demand that would occur during L0 + Lj periods. For each retailer the manager faces the

problem of minimizing the newsvendor cost with demand D0j + Dj. Let Su
j be the minimizer

of this newsvendor cost. Notice that this is an upper bound on the true S∗
r ≤

∑
j>0 Su

j .

Proposition 3 We have 0 ≤ S∗
0 ≤

∑
j>0 S0j and

∑
j>0 Sj ≤ S∗

r ≤
∑

j>0 Su
j .

4.3 An Approximation: Normal Approximation (NA)

Next, we provide a closed-form expression for the cost function Cr(x) defined in equation (16),

an approximation to solve the central control problem and a closed form lower bound for the

cost of every policy. This normal approximation to the distribution system is also discussed

in Zipkin (2000). Under identical retailer assumption and when we approximate the leadtime

demand Dj by a Normal distribution with mean and variance equal to λjLj, the second stage

cost function in equation (16) simplifies to Cr(x) =
∑

j>0 Cj(y
∗
j ) = (b + h)φ(z)

∑
j>0

√
λjLj,

or equivalently to Cr(y) = E[H(y −Dr) + (b + h)(y −Dr)
−], where Dr is normal with mean

µr =
∑

j>0 λjLj and standard deviation σr =
∑

j>0

√
λjLj. If the costs are not identical we set

hj and pj equal to the minimum of all holding and penalty costs, respectively. Together with

the warehouse the retailer constitute a serial system. Hence, a similar recursive algorithm as

in equation (16) can be used to obtain SN and S0,N .
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Next suppose that h0 = h, the local holding cost at the warehouse and at the downstream

representative retailer are equal. For this case, there is no incentive to carry inventory at

the warehouse instead one can ship all the inventories to the representative retailer. Then,

the solution to this two-stage system has S0,N = 0. The system reduces to a single-stage

system with leadtime demand D̃ = D0 + Dr, having mean µ̃ =
∑

j≥0 λjLj and variance

σ̃2 = λ0L0 + (
∑

j>0

√
λjLj)

2. Thus, the optimal cost becomes

(b + h)φ(z∗)σ̃, (18)

where z∗ solves Φ(z) = b/(b + h). Note that this is a lower bound, up to the normal ap-

proximation, on the cost of every policy, not just base-stock policies. In the case of identical

retailers, with λj = λ and Lj = L for j > 0, µ̃ = Jλ(L0 + L) and σ̃2 = Jλ(L0 + JL). Thus,

for fixed total leadtime L0 + L, σ̃ and hence the cost estimate decline as L0 increases and L

decreases.

5 Numerical Results

This section presents first the performance of the suggested heuristics and approximations.

Next, we provide managerial insights into stock positioning issues in a distribution system

under both local and central control. We conclude by illustrating the value of centralization.

5.1 Performance Measures

For the local control case, we compare the exact solution, which is based on the projection

algorithm of section 3.1.2, to the heuristics. We measure the percentage error εi% = ci−c∗
c∗ for

i ∈ {RD, NA, MX}. A small percentage indicates that the heuristic is close to optimal.

For the central control case, we measure the difference between the lower bound and

the upper bound εi% = UBi−LB
LB

for i ∈ {RB,NA,DS}. To estimate the cost of the upper

bounds, we use discrete event system simulation and simulate the distribution system under

the proposed heuristics. We run several replications to have a 95% confidence interval. Notice

that a small ε indicates that both the heuristic is close to optimal and the lower bound is

accurate.

For all heuristics and the exact algorithm, we carry out a total of 750 experiments, the

details of which is described in the following subsection. We report the average and the
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standard deviation for the above measures as well as the computational time required to

solve them. For some problem instances, we also report the specific details.

For approximations, we are also interested in whether they accurately predict the per-

formance of the system. In other words, we investigate whether a change in any of the

parameters, such as leadtimes, would change the system cost under these approximations

in the same proportion as the cost under optimal policy. To do so, we carry out regression

analysis.

5.2 Experiments: Parameters and Structures

We study two sets of experiments. The first experiment covers identical retailers scenario.

The second experiment covers non-identical retailers and some parameters are generated

randomly.

The first experiment includes a total of 144 cases with local holding cost hj = 1 for

j > 0. Within this group, we fix L0 = Lj ∈ {0.10, 0.25} and consider 96 instances with

J ∈ {2, 4, 8, 16, 32, 64}; λ0 ∈ {16, 64}; bj ∈ {9, 39} that corresponds to fill rates of 90%

and 97.5%; h0 ∈ {0.3, 0.9} that corresponds to adding 30% and 90% of the value to the

item at the warehouse. In the remaining 48 instances we consider distribution systems with

L0 ∈ {0.1, 0.9} with Lj = 1− L0 for j > 0 so as to address systems with different degrees of

risk pooling at the warehouse.

The second experiment includes a total of 200 cases and allows for non-identical retailers

with randomly drawn parameters. In particular, we set h0 = 0.3, hj = 1, J = {2, 4, 8, 16, 32},
L0 = {0.1, 0.25} and λ0 = {16, 32}. The parameters, bj and Lj are generated randomly,

according to independent uniform distributions. For each retailer j, we draw bj randomly

from a uniform distribution with parameters [9, 39] and Lj from [0.1, 0.25]. We consider

all possible combination, a total of 20 cases. For each case, we generate ten independent

replications, for a total of 200 problem instances. Note that unequal leadtimes have the same

effect as unequal demand rates. Similarly, unequal penalty costs mean unequal holding to

penalty cost ratio at each retailer.

5.3 Performance: Local Control Case

For the first experiment, the RD heuristic’s average error term is 1.17% and its standard

deviation is 1.48%. In Table 1, we summarize some statistics for the RD heuristic. The

20



Table 1: Summary statistics for RD Heuristic when retailers are identical

# Cases Average σRD # Cases Average σRD

J = 2 24 1.90% 1.79% λ0 = 16 96 1.27% 1.71%

J = 64 24 0.22% 0.31% λ0 = 64 48 0.96% 0.82%

b = 9 72 0.93% 1.24% h0 = 0.3 72 1.24% 1.36%

b = 39 72 1.40% 1.66% h0 = 0.9 72 1.09% 1.59%

Table 2: Summary statistics for RD heuristic when retailers are nonidentical

Average σRD Average σRD Average σRD

J = 2 1.90% 1.57% λ0 = 16 1.67% 1.01% L0 = 0.10 0.98% 0.78%

J = 32 0.84% 0.26% λ0 = 32 1.40% 1.06% L0 = 0.25 2.07% 0.97%

performance of the RD heuristic is better for a distribution system with shorter warehouse

leadtime L0, lower penalty cost b and higher retailer demand rate λj. The heuristic is relatively

less sensitive to the changes in the warehouse’s holding cost. These observations are also

supported by the asymptotic optimality of the RD heuristic. From the proof of Proposition 2,

RD heuristic converges to the optimal solution faster when L0, b, λj are smaller. Everything

else being equal, increasing the number of retailers reduces the error term for RD heuristic,

but the rate of reduction is problem specific.

The performance of the RD heuristic is better when the warhouse’s leadtime is shorter

than the retailer leadtimes. For example, see Table 5, the average error term is 2.43% when

L0 = 0.9, Lj = 0.1 and it is 0.20% when L0 = 0.1, Lj = 0.9. When the warehouse leadtime

is longer, the system gains more from risk pooling. The RD heuristic takes advantage of risk

pooling relatively less than the optimal algorithm.

The observations are similar under the second experiment for which the retailers are

nonidentical. The RD heuristic’s average error is 1.53% and its standard deviation is 1.04%.

In Table 2, we report some statistics for the RD heuristic. Among 200 cases, the ZS sub-

heuristic yields the lowest cost in 144 cases and the SP sub-heuristic yields the lowest cost in

the remaining 46 cases. The CD sub-heuristic is not cheaper because the warehouse leadtime

is not significantly shorter than the rest of the retailer leadtimes.

In summary, the RD heuristic performs very well because its sub-heuristics complement
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each other. In particular, the cross docking sub-heuristic performs better than the other two

sub-heuristic when the warehouse leadtime is significantly shorter than the retailers leadtimes

and most of the value add, (the holding cost) is done (incurred) by the retailers. The stock-

pooling sub-heuristic performs better when the warehouse leadtime is long relative to retailer

leadtimes and the holding cost is low at the warehouse. The zero safety stock sub-heuristic

performs better when the warehouse leadtime and holding cost are similar to those for the

retailers (see Tables 5 and 6).

The error terms for the normal and maximal approximations are large for both exper-

iments. The average absolute error term based on the first experiment is 20.97% for the

normal approximation and it is 30.2% for the Maximal approximation. As expected Nor-

mal approximation works poorly whenever Ljλj are small. We use approximations, not to

describe the system dynamics in detail but rather to predict performance. Hence, we carry

out a number of regressions of the normal and maximal approximations to the actual cost

for different parameter values and report the R2 in Table 7. We fix all parameters except

the parameter for which we investigate its effect on the optimal cost and the approximations.

Note that R2 is close to 1 for all factors. This suggests that both NA and MX approximations

can safely be used to investigate the impact of any parameter changes on the cost of managing

a distribution system.

The computational time required for the exact algorithm of § 3.1.2 is increasing in the num-

ber of retailers, warehouse leadtime, and the total demand rate as observed by the warehouse.

In particular, exact algorithm requires one to compute on the order of J many convolutions

for a given base stock level s0. The upper bound su
o is also proportional to J . Hence, the

computational requirement for the optimal algorithm is O(J2). For the RD heuristic, we

compute one convolution per retailer only for the ZS sub-heuristic. The other sub-heuristics

do not require us to compute any convolutions. Hence, the RD heuristic’s computational

complexity is O(J).

5.4 Performance: Central Control Case

For the first experiment, the average error term and the standard deviation are 12.86%,

25.18% for the RB heuristic; 18.99%, 20.84% for the normal approximation (NA); and 2.77%,

3.20% for the DS heuristic. The heuristics are better when the number of retailers in the

system are less than 32. In this case, the average error term and the standard deviation are

7.75%, 10.33% for the RB heuristic; 11.89%, 11.60% for the NA; and 3.07%, 3.23%for the
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Table 3: Summary statistics for heuristics when retailers are identical and J < 32

RB NA DS RB NA DS

J = 2 2.73% 4.89 % 1.59% λ0 = 16 10.03% 14.18% 3.22%

J = 16 13.50% 20.43% 2.93% λ0 = 64 4.33% 7.85% 1.98%

b = 9 8.31% 7.98% 3.11% h0 = 0.3 3.41% 9.89% 1.32%

b = 39 6.77% 15.54% 2.44% h0 = 0.9 11.68% 13.63% 4.24%

Table 4: Summary statistics when retailers are nonidentical

RB NA DS RB NA DS RB NA DS

J = 2 1.80% 6.08 % 1.28% λ0 = 16 6.20% 25.40% 2.12% L0 = 0.10 7.03% 20.39% 1.98

J = 16 8.5% 28.8% 1.81% λ0 = 32 6.46% 17.18% 1.81% L0 = 0.25 7.13% 19.11% 3.05

DS heuristic. In Table 3, we summarize our numerical results for J < 32. The RB heuristic

performs better under low holding cost and shorter leadtime at the warehouse and larger

penalty cost at the retailers. For example, the average error term for the RB heuristic is

0.99% when h0 = 0.3, b = 39, L0 < 0.25, J < 32 (there are 12 such cases) whereas it is 10.71%

when h0 = 0.9, b = 9, L0 ≥ 0.25, J < 32 (there are 12 such cases). In Table 8, we report some

of the problem instances.

For the second experiment (nonidentical retailer case), the average error term and the

standard deviation are 6.97%, 4.54% for the RB heuristic; 20.01%, 14.70% for the normal

approximation (NA); and 1.78%, 1.12% for the DS heuristic. In Table 4, we report some

statistics for the second experiment.

The computational time for each heuristic is proportional with the length of the simulation

horizon and the confidence interval (or equivalently the number of replications). Hence, for

a given simulation horizon and the number of replication the time required for RB and NA

heuristics are quite similar. In each case, we simulate the system for a given echelon base

stock level at the warehouse and at the aggregate retailer. The longest time required to

solve the RB or NA heuristics among all problem instances was less than one minute with

a Pentium III processor. However, the computational time required for the DS heuristic is

longer because we simulate the system as many times as the size of the upper bound for the

warehouse’s echelon base stock level, that is
∑

j>0 S0j. The longest time among all problem

instances to solve the DS heuristic was less than fifteen minutes.
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5.5 Insights

We describe our insights through numerical studies in three subgroups. The first group of

observations is based on the local control case, the second group is based on the central

control case. Finally, we conclude by comparing the two control strategies.

5.5.1 Cost of Cross Docking under Local Control

Now consider the special case where the warehouse cannot or does not hold inventory. We

investigate how a cross-docking strategy affects the system performance under local control.

In this case, the retailers pull inventory from the warehouse which carries zero inventory and

replenishes the orders in a first come first served bases. The CD sub-heuristic outlined in

section 3.2 is a stylized model for this strategy. Hence, the impact of a cross-docking strategy

on inventory related costs can be measured by the percentage difference in costs between

this sub-heuristic and the optimal policy. The percent difference can be interpreted as the

potential savings forgone due to not risk pooling. In Figure 1 (a), we fix L0+Lj = 1 and change

L0. We observe that the percentage difference increases with warehouse’s replenishment

leadtime and the number of retailers. The system sacrifices larger gains due to risk pooling

by not carrying inventory at the warehouse. On the other hand, an increase in warehouse

holding cost reduces the percent difference as illustrated in Figure 1 (b). Note that even when

the retailer holding costs are zero, the system gains from holding inventory at the warehouse.

An approximation for this percentage difference is given by the difference between the CD

sub-heuristic and the minimum of SP or CD sub-heuristics. Both of these sub-heuristics

are newsvendor type calculations which makes it easy to carry out such analysis on a simple

spread sheet. In conclusion, cross-docking may be a viable strategy when it is too expensive to

carry inventory at the warehouse, the penalty cost is high at the retailers and the warehouse

leadtime is short relative to the retailer leadtimes.

5.5.2 Value of Safety Stock under Local Control

To investigate the value of safety stock at the warehouse under local control, we plot the

percentage difference between the ZS sub-heuristic and the optimal solution with respect

to supplier-to-warehouse leadtime and holding cost in Figure 2 (a) and (b), respectively.

The value of safety stock increases with an increase in the leadtime; that is, the longer the

warehouse waits for the its order, the more valuable is the safety stock at the warehouse.

Comparing this figure with Figure 1 (a), we observe that a large portion of risk pooling
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Figure 1: Cost of Cross-docking under Local Control when λ0 = 16, b = 9 for J = 2, 4, 8

w.r.t. (a) Warehouse Lead Time when L0 +Lj = 1, hj = 1 (b) Warehouse Holding Cost when

L0 = Lj = 0.25

benefit could be materialized by holding ED0 units at the warehouse. In Figure 2 (b), we

observe that the safety stock value is convex with respect to the warehouse holding cost. The

convexity is intuitive. At very low levels of warehouse holding cost it is optimal to carry

significant safety stocks and there is a large penalty for not doing so. As we increase the

holding cost rate at the warehouse it is optimal to carry less safety stock so the benefit of

doing so deminishes. When the warehouse holding cost rate is very high it is optimal to carry

negative safety stocks so it becomes expensive to carry zero safety stocks.

5.5.3 Cost of Cross-Docking under Central Control

To investigate the cost of cross-docking under central control, we first obtain the best echelon

base stock levels (S∗
0 , S

∗
r ) and the resulting average cost using the direct search heuristic

described in Section 4.2.2 for each problem instances. Next, we force the warehouse echelon

base stock level Sr = S∗
0 and calculate the resulting cost C. This corresponds to carrying

zero inventory at the warehouse and shifting all the inventory to the retailers. In Figure 3,

we plot the percentage difference in cost between the two. Similar to our observations for

the local control case, here the cost of cross docking is also higher the longer the warehouse

leadtime and the smaller the warehouse holding cost are. Note also that one can approximate

the above analysis by using the lower bound, which is simpler to calculate, instead of the
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Figure 2: Value of Safety Stock under Local Control when λ0 = 16, b = 9 for J = 2, 4 w.r.t.

(a) Warehouse Lead Time when L0 + Lj = 1, hj = 1 (b) Warehouse Holding Cost when

L0 = Lj = 0.25

upper bound.

5.5.4 Local versus Central Control

To quantify the benefit of central control, we first obtain the optimal local base stock levels

s∗ and the average cost c∗ for each problem instances and by using the optimal algorithm in

Section 3.1.2. Next, we set the echelon base stock levels to Sr =
∑J

j=1 s∗j and S0 = s∗0 + Sr

and simulate the system under central control to obtain the average cost C. The percentage

difference between the two (that is, c∗−C
c∗ ) gives us the value of central control that is, the

cost reduction due to centralization. Note that one can compare the cost of the optimal local

control with that of the best echelon base stock policy obtained by direct-search heuristic

(instead of C above). This results in a percentage difference that is even higher than what we

report here (hence a larger gain due to centralization). We report the lower ratio to address

only the value of centralization and not the value gained by a better heuristic.

In Table 10, we report some results for a system with L0+Lj = 1, hj = 1 and λ0 = 16. We

observe that the value of central control increases with an increase in leadtime and holding

cost at the warehouse and the penalty cost at the retailers. For example, for a two retailer

distribution system with λ0 = 16, h0 = 0.9, L0 = 0.9 the optimal local base stock levels

are (s∗0, s
∗
j) = (20, 5) and the optimal average cost is c∗ = 15.28. If one uses a central
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Figure 3: Cost of Cross-docking under Central Control when λ0 = 16, b = 9 for J = 2, 4

w.r.t. (a) Warehouse Lead Time when L0 +Lj = 1, hj = 1 (b) Warehouse Holding Cost when

L0 = 0.8, Lj = 0.2

control with echelon base stock levels (S0, Sr) = (30, 10), the average cost under this policy

is C = 14.22 ± 0.049. This results in a cost reduction of 6.93% = (15.28−14.22
15.28

). Note also

that increasing the number of retailers in the system does not change λ0 = 16. Hence the

larger the number of retailers, the smaller is the mean demand at each retailer. In this

case the warehouse seldom runs out of stock. When this is the case, the local control is

equivalent to central control. The two control differs only when the warehouse runs out of

stock. Recall that the local control allocates using the FIFO rule, while the centralized policy

uses an allocation policy based on individual retailer’s inventory and cost information. These

observations suggest that local control can be used safely when (1) the warehouse holding

cost is low, (2) the penalty cost is low, (3) the demand rate seen by the retailers are small

and (4) the warehouse leadtime is shorter relative to the retailer leadtimes.

6 Conclusions

We established simple bounds, heuristics and approximation for distribution systems under

local and central control. We show that the RD heuristic is asymptotically optimal as the

number of retailers increases. The ZS subheuristic, while simple, is fairly effective, except

for the cases where the leadtime for the warehouse is significantly larger than the leadtime

to the retailers. The RD heuristic provides a powerful tool to manage distribution systems.
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The normal and maximal approximations are easy to compute and provide a mechanism to

perform sensitivity analysis. The thorny problem of managing a distribution system under

central control is approached through a relaxation scheme and a decomposition scheme. Our

numerical studies shed light into the value of risk-pooling and into the value of centralized

control. Our model also enables one to quantify the value of centralizing control by comparing

the average holding and penalty cost under each control.
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Table 5: Performance of RD Heuristic when Retailers are Identical

Parameters Optimal CD-Subheuristic SP-Subheuristic ZS-Subheuristic

J s0/sj c∗ sj cCD su
0/sl

j cSP s0/sj cZS RD %

L0 = 0.1 2 2/11 10.40 12 10.60 4/11 11.09 2/11 10.40 0.00

Lj = 0.9 4 2/6 14.92 7 15.39 4/6 15.47 2/6 14.92 0.00

b = 9 8 1/4 21.83 4 22.01 4/4 22.62 2/4 21.88 0.22

λ0 = 16 16 3/2 30.85 2 32.58 4/2 31.26 2/2 30.92 0.22

H0 = 0.3 32 3/1 46.39 1 50.09 4/1 46.65 2/1 46.75 0.14

64 2/1 65.22 1 66.43 4/1 65.66 2/1 65.22 0.00

L0 = 0.1 2 1/11 10.57 12 10.60 3/11 12.43 2/11 10.84 0.28

Lj = 0.9 4 1/6 15.26 7 15.39 3/6 16.81 2/6 15.35 0.59

b = 9 8 1/4 21.96 4 22.01 3/4 23.96 2/4 22.32 0.26

λ0 = 16 16 2/2 31.35 2 32.58 3/2 32.60 2/2 31.35 0.00

H0 = 0.9 32 2/1 47.18 1 50.09 3/1 47.99 2/1 47.18 0.00

64 2/1 65.66 1 66.43 3/1 67.00 2/1 65.66 0.00

L0 = 0.1 2 2/13 14.29 14 14.55 5/13 15.19 2/13 14.29 0.00

Lj = 0.9 4 2/8 20.76 8 21.38 5/8 21.72 2/8 20.76 0.00

b = 39 8 2/5 30.39 5 31.20 5/5 31.29 2/5 30.39 0.00

λ0 = 16 16 3/3 44.60 3 46.94 5/3 45.29 2/3 44.74 0.31

H0 = 0.3 32 3/2 65.89 2 68.90 5/2 66.52 2/2 66.13 0.37

64 4/1 110.76 2 117.89 5/1 111.12 2/1 112.40 0.11

L0 = 0.1 2 0/14 14.55 14 14.55 5/13 17.24 2/13 14.73 0.00

Lj = 0.9 4 1/8 20.99 8 21.38 5/8 23.76 2/8 21.20 0.99

b = 39 8 1/5 30.70 5 31.20 5/5 33.33 2/5 30.83 0.42

λ0 = 16 16 2/3 45.18 3 46.94 5/3 47.33 2/3 45.18 0.00

H0 = 0.9 32 2/2 66.57 2 68.90 5/2 68.57 2/2 66.57 0.00

64 3/1 111.96 2 117.89 5/1 113.17 2/1 112.84 0.79

L0 = 0.9 2 20/2 5.74 12 10.60 22/2 6.30 15/3 7.22 4.28

Lj = 0.1 4 20/1 7.52 7 15.39 22/1 7.95 15/2 8.84 2.23

b = 9 8 19/1 9.85 4 22.01 22/1 10.64 15/1 11.50 4.25

λ0 = 16 16 17/1 16.60 2 32.58 22/0 17.14 15/1 16.90 1.79

H0 = 0.3 32 22/0 17.14 1 50.09 22/0 17.14 15/0 26.06 0.00

64 22/0 17.14 1 66.43 22/0 17.14 15/0 26.06 0.00

L0 = 0.9 2 16/3 8.10 12 10.60 20/2 10.06 15/3 8.32 2.64

Lj = 0.1 4 16/2 9.92 7 15.39 20/1 11.71 15/2 9.94 0.16

b = 9 8 17/1 12.08 4 22.01 20/1 14.39 15/1 12.60 4.17

λ0 = 16 16 15/1 18.00 2 32.58 20/0 20.90 15/1 18.00 0.00

H0 = 0.9 32 20/0 20.90 1 50.09 20/0 20.90 15/0 27.16 0.00

64 20/0 20.90 1 66.43 20/0 20.90 15/0 27.16 0.00

L0 = 0.9 2 21/3 7.79 14 14.55 24/3 8.71 15/5 10.62 5.14

Lj = 0.1 4 21/2 10.28 8 21.38 24/2 11.25 15/3 13.51 4.43

b = 39 8 22/1 15.20 5 31.20 24/1 15.84 15/2 18.03 1.43

λ0 = 16 16 21/1 19.97 3 46.94 24/1 20.95 15/1 26.46 2.36

H0 = 0.3 32 19/1 34.04 2 68.90 24/1 35.42 15/1 36.43 2.42

64 17/1 64.72 2 117.89 24/0 65.85 15/1 65.16 0.69

L0 = 0.9 2 18/4 11.16 14 14.55 22/3 14.06 15/5 11.72 4.80

Lj = 0.1 4 19/2 13.63 8 21.38 22/2 16.61 15/3 14.61 6.72

b = 39 8 17/2 18.66 5 31.20 22/1 21.20 15/2 19.13 2.46

λ0 = 16 16 19/1 23.24 3 46.94 22/1 26.30 15/1 27.56 5.67

H0 = 0.9 32 17/1 36.49 2 68.90 22/1 40.78 15/1 37.53 2.76

64 15/1 66.26 2 117.89 22/0 71.21 15/1 66.26 0.00
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Table 6: Performance of RD Heuristic when Retailers are Not Identical

Parameters Optimal RD Heuristic

J = 4 L1/L2/L3/L4 b1/b2/b3/b4 s0/s1/s2/s3/s4 c∗ Type s0/s1/s2/s3/s4 c % ε

L0 = 0.1 0.12/0.16/0.14/0.18 19.99/20.12/27.90/15.90 3/2/2/2/2 8.61 ZS 2/2/2/2/2 8.92 3.59

λ=16 0.13/0.21/0.11/0.16 12.58/17.17/30.82/29.30 3/2/3/2/2 8.95 ZS 2/2/3/2/3 9.07 1.28

0.13/0.24/0.21/0.11 34.89/37.95/32.67/19.26 3/2/3/3/2 10.06 ZS 2/2/3/3/2 10.34 2.85

0.23/0.18/0.14/0.20 38.74/13.33/11.77/18.08 3/3/2/2/2 9.37 ZS 2/3/2/2/3 9.44 0.76

0.13/0.17/0.22/0.14 12.18/24.30/09.78/36.90 3/2/2/2/2 9.05 ZS 2/2/3/2/3 9.16 1.26

0.17/0.23/0.12/0.16 31.13/26.99/26.73/20.36 3/3/3/2/2 9.64 ZS 2/3/3/2/2 9.79 1.60

0.21/0.23/0.24/0.16 29.80/31.32/24.97/15.00 3/3/3/3/2 10.26 ZS 2/3/3/3/2 10.39 1.24

0.11/0.20/0.22/0.15 09.92/13.52/11.74/11.40 3/1/2/2/2 8.01 SP 4/1/2/2/2 8.11 1.24

0.11/0.22/0.10/0.21 28.62/12.31/20.54/30.11 3/2/2/2/3 8.93 ZS 2/2/2/2/3 9.08 1.70

0.19/0.25/0.13/0.15 25.13/18.84/21.28/31.24 3/3/3/2/2 9.76 ZS 2/3/3/2/3 9.85 0.99

L0 = 0.25 0.23/0.25/0.14/0.19 17.22/33.28/35.9/23.12 7/3/3/2/3 11.07 ZS 5/3/3/3/3 11.20 1.15

λ=16 0.25/0.24/0.16/0.14 28.70/36.76/17.77/22.44 7/3/3/2/2 10.60 SP 9/3/3/2/2 10.98 3.61

0.16/0.15/0.22/0.13 32.88/32.75/09.04/36.49 7/2/2/2/2 9.99 SP 9/2/2/2/2 10.27 2.78

0.20/0.14/0.22/0.22 37.59/31.63/26.99/18.24 6/3/2/3/3 10.83 ZS 5/3/3/3/3 11.04 1.89

0.24/0.19/0.20/0.12 25.21/18.83/17.44/33.80 7/3/2/2/2 10.29 ZS 5/3/3/3/2 10.61 3.06

0.16/0.12/0.16/0.25 11.89/17.34/27.35/14.57 6/2/2/2/3 9.23 ZS 5/2/2/3/3 9.37 1.48

0.19/0.23/0.16/0.11 35.41/33.89/36.21/23.16 6/3/3/3/2 10.63 ZS 5/3/3/3/2 10.85 2.13

0.12/0.11/0.19/0.22 11.93/38.88/16.13/13.02 7/2/2/2/2 9.13 ZS 5/2/2/2/3 9.46 3.54

0.22/0.20/0.15/0.16 31.37/10.17/10.74/11.84 6/3/2/2/2 8.93 ZS 5/3/2/2/2 9.10 1.90

0.22/0.13/0.19/0.11 11.61/10.48/22.77/38.68 6/2/2/3/2 9.27 ZS 5/3/2/3/2 9.49 2.33

L0 = 0.1 0.23/0.25/0.14/0.19 17.22/33.28/35.9/23.12 5/4/5/4/4 14.00 ZS 4/4/5/4/4 14.07 0.49

λ=32 0.25/0.24/0.16/0.14 28.70/36.76/17.77/22.44 5/5/5/3/3 13.81 ZS 4/5/5/4/3 13.99 1.30

0.16/0.15/0.22/0.13 32.88/32.75/09.04/36.49 5/4/4/4/3 12.67 ZS 4/4/4/4/4 12.72 0.39

0.20/0.14/0.22/0.22 37.59/31.63/26.99/18.24 4/5/4/5/4 14.17 ZS 4/5/4/5/4 14.17 0.00

0.24/0.19/0.20/0.12 25.21/18.83/17.44/33.80 5/5/4/4/3 13.07 ZS 4/5/4/4/3 13.15 0.55

0.16/0.12/0.16/0.25 11.89/17.34/27.35/14.57 5/3/3/4/4 11.86 ZS 4/3/3/4/4 11.90 0.40

0.19/0.23/0.16/0.11 35.41/33.89/36.21/23.16 5/4/5/4/3 13.60 ZS 4/4/5/4/3 13.71 0.82

0.12/0.11/0.19/0.22 11.93/38.88/16.13/13.02 5/3/3/4/4 11.57 ZS 4/3/3/4/4 11.61 0.29

0.22/0.20/0.15/0.16 31.37/10.17/10.74/11.84 4/5/4/3/3 11.78 ZS 4/5/4/3/3 11.78 0.00

0.22/0.13/0.19/0.11 11.61/10.48/22.77/38.68 5/4/3/4/3 11.63 ZS 4/4/3/4/3 11.68 0.40

L0 = 0.25 0.20/0.18/0.23/0.18 13.64/29.78/16.32/30.78 11/4/4/4/4 13.73 ZS 9/4/4/4/4 14.22 3.62

λ=32 0.17/0.16/0.19/0.17 30.47/35.75/32.58/18.90 11/4/4/4/4 13.99 ZS 9/4/4/5/4 14.39 2.87

0.10/0.15/0.14/0.24 22.16/20.47/31.29/37.22 11/3/3/4/5 13.48 ZS 9/3/4/4/5 13.77 2.14

0.17/0.14/0.12/0.19 19.26/23.69/09.14/17.95 11/4/3/2/4 12.12 ZS 9/4/4/3/4 12.32 1.65

0.14/0.14/0.25/0.18 10.23/20.14/11.60/35.76 11/3/3/4/4 12.42 ZS 9/3/3/4/4 12.95 4.26

0.24/0.13/0.21/0.19 38.12/19.49/13.02/37.43 11/5/3/4/4 14.05 ZS 9/5/3/4/5 14.48 3.07

0.21/0.13/0.23/0.10 16.02/20.10/25.48/25.22 11/4/3/5/3 12.80 ZS 9/4/3/5/3 13.16 2.80

0.19/0.24/0.13/0.14 11.24/26.45/16.47/34.01 10/4/5/3/4 13.10 ZS 9/4/5/3/4 13.26 1.22

0.16/0.14/0.20/0.17 38.21/10.35/25.18/22.25 11/4/3/4/4 12.99 ZS 9/4/3/5/4 13.37 2.88

0.18/0.15/0.14/0.21 20.18/25.91/27.67/36.57 10/4/4/4/5 13.97 ZS 9/4/4/4/5 14.12 1.10

Table 7: Performance of NA and MX under Local Control for λ0 = 16

J c∗ cNA cMX L0 c∗ cNA cMX b c∗ cNA cMX h0 c∗ cNA cMX

2 8.94 7.51 24.51 0.1 14.29 12.98 37.84 1 3.07 3.27 4.49 0.1 8.23 6.67 22.86

4 12.95 10.27 31.82 0.3 13.30 11.91 37.05 9 6.95 6.09 13.47 0.3 9.37 7.70 28.04

8 18.45 14.20 42.17 0.5 12.11 10.55 34.66 19 8.07 6.94 19.57 0.5 10.29 8.48 31.60

10 20.61 15.78 46.34 0.6 11.32 9.75 32.94 39 9.37 7.70 28.04 0.6 10.74 8.81 33.11

16 30.10 19.74 56.80 0.7 10.33 8.81 30.80 99 10.80 8.58 44.67 0.7 11.11 9.11 34.49

32 38.89 27.56 77.50 0.8 9.37 7.70 28.04 199 11.78 9.19 63.33 0.8 11.47 9.39 35.78

64 65.91 38.60 106.76 0.9 7.79 6.24 24.15 399 12.78 9.76 89.68 0.9 11.83 9.64 37.00

R2 = 98.51% 98.53% J = 2, R2 = 99.89% 98.35% J = 2, R2 = 99.70% 80.52% J = 2, R2 = 99.83% 99.69%

L0 = Lj = 0.25, b = 39, h0 = 0.3 L0 = 0.8, Lj = 0.2, b = 39, h0 = 0.3 L0 = 0.8, Lj = 0.2, h0 = 0.3 L0 = 0.8, Lj = 0.2, b = 39, h0 = 0.3
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Table 8: Comparison of NA, RB and DS Heuristics for Central Control: Identical Retailers
L0 = 0.1, Lj = 0.9

NA Approximation RB Heuristic DS Heuristic

J S0/S0,N CNA % S0/Sr CRB % S∗
0 /S∗

r C∗ %

2 23 / 22 10.45 ± 0.009 1.08 23 / 22 10.42 ± 0.020 0.78 24 / 22 10.34 ± 0.020 0.02

4 26 / 26 15.24 ± 0.014 2.74 26 / 28 15.41 ± 0.034 3.86 26 / 24 14.88 ± 0.019 0.28

8 30 / 30 22.52 ± 0.019 3.63 33 / 32 21.90 ± 0.010 0.77 32 / 30 21.81 ± 0.106 0.37

16 36 / 37 32.82 ± 0.049 6.45 35 / 32 30.85 ± 0.025 0.04 32 / 47 31.71 ± 0.139 2.84

32 44 / 46 50.24 ± 0.097 8.61 35 / 64 49.77 ± 0.082 7.59 32 / 43 49.17 ± 0.567 6.28

64 55 / 59 76.50 ± 0.074 17.41 66 / 64 65.18 ± 0.036 0.04 64 / 64 66.16 ± 0.057 1.54

b = 9, λ0 = 16, H0 = 0.3

2 23 / 27 10.59 ± 0.008 2.29 23 / 28 10.52 ± 0.025 1.68 24 / 28 10.35 ± 0.037 0.01

4 26 / 32 15.24 ± 0.014 2.74 26 / 36 15.41 ± 0.034 3.86 27 / 32 14.95 ± 0.017 0.74

8 30 / 39 22.52 ± 0.019 3.62 32 / 48 21.97 ± 0.016 1.10 32 / 40 21.75 ± 0.024 0.09

16 35 / 50 32.73 ± 0.046 5.88 34 / 64 32.61 ± 0.036 5.50 32 / 39 31.99 ± 0.079 3.50

32 43 / 64 50.14 ± 0.098 8.32 35 / 96 49.77 ± 0.082 7.52 32 / 49 49.39 ± 0.156 6.69

64 54 / 85 77.63 ± 0.093 18.50 66 / 128 67.65 ± 0.043 3.27 64 / 78 65.83 ± 0.010 0.49

b = 9, λ0 = 16, H0 = 0.9

2 27 / 26 14.47 ± 0.044 1.71 28 / 26 14.43 ± 0.070 1.39 28 / 26 14.25 ± 0.012 0.11

4 31 / 30 21.65 ± 0.064 4.83 33 / 32 20.99 ± 0.106 1.62 34 / 33 20.76 ± 0.028 0.53

8 37 / 37 33.51 ± 0.197 10.51 42 / 40 30.53 ± 0.040 0.66 40 / 38 30.55 ± 0.142 0.74

16 46 / 46 50.28 ± 0.387 12.81 51 / 48 44.84 ± 0.074 0.61 48 / 58 46.03 ± 0.501 3.28

32 58 / 60 83.14 ± 0.939 26.24 67 / 64 65.87 ± 0.158 0.02 67 / 64 65.99 ± 0.451 0.20

64 76 / 78 119.30 ± 1.233 8.18 69 / 128 119.63 ± 0.910 8.48 72 / 67 110.38 ± 0.894 0.09

b = 39, λ0 = 16, H0 = 0.3

2 27 / 29 14.68 ± 0.048 2.80 28 / 32 14.58 ± 0.065 2.15 28 / 34 14.33 ± 0.011 0.35

4 31 / 36 21.67 ± 0.051 4.71 33 / 40 21.43 ± 0.131 3.54 32 / 35 20.99 ± 0.166 1.44

8 37 / 44 33.51 ± 0.197 10.11 41 / 56 31.35 ± 0.063 2.99 40 / 49 30.61 ± 0.052 0.57

16 46 / 57 50.28 ± 0.387 12.28 50 / 64 47.24 ± 0.123 5.48 48 / 73 45.68 ± 0.090 2.01

32 58 / 75 83.14 ± 0.939 25.48 66 / 96 69.25 ± 0.243 4.52 64 / 89 67.80 ± 0.840 2.33

64 75 / 99 119.51 ± 1.408 8.37 69 / 128 119.63 ± 0.910 8.48 67 / 64 110.58 ± 0.067 0.28

b = 39, λ0 = 16, H0 = 0.9
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Table 9: Comparison of NA, RB and DS Heuristics for Central Control: Nonidentical Retailers

Parameters NA Approximation RB Heuristic DS Heuristic

J = 4 L1/L2/L3/L4 b1/b2/b3/b4 s0/s0N cNA %ε s0/sr cRB %ε s∗0/s∗r c∗ %ε

L0 = 0.18/0.13/0.22/0.19 23.4/19.5/35.9/33.7 11/9 11.10±0.004 13.38 12/11 10.56±0.004 7.90 12/10 10.28±0.088 5.03

0.1 0.21/0.13/0.23/0.21 24.4/18.1/9.4/11.7 10/8 9.63±0.004 11.44 11/9 8.92±0.002 3.25 11/9 8.92±0.002 2.29

λ = 16 0.16/0.12/0.12/0.25 22.4/12.6/9.1/9.3 9/7 8.32±0.002 7.88 10/9 8.40±0.001 8.87 11/8 8.08±0.006 4.77

0.16/0.18/0.19/0.19 27.2/14/28.9/22.5 10/9 11.09±0.003 18.17 12/11 10.04±0.000 7.00 12/9 9.72±0.089 3.53

0.15/0.11/0.19/0.22 33.1/24.6/18.1/35.3 10/9 11.32±0.012 19.36 12/11 10.14±0.003 6.97 12/9 9.65±0.010 1.82

0.21/0.24/0.24/0.18 13.3/22.9/16.1/34.9 11/10 11.46±0.014 16.21 13/12 10.35±0.002 4.93 13/12 10.35±0.002 4.93

0.13/0.22/0.23/0.25 39/27.3/20.8/17 11/10 12.07±0.006 20.57 13/11 10.32±0.002 3.10 13/11 10.32±0.002 3.13

0.14/0.23/0.1/0.16 11.8/29.3/10.7/9.3 9/7 8.77±0.002 12.25 10/9 8.39±0.003 7.38 11/8 8.11±0.021 3.72

0.24/0.14/0.14/0.19 29.7/34.1/30.8/23.5 11/9 10.76±0.005 8.65 12/10 10.45±0.004 5.47 13/9 10.16±0.014 2.55

0.13/0.21/0.17/0.17 37.5/31.3/12.2/27 10/8 11.12±0.005 18.74 12/10 9.74±0.002 3.96 12/10 9.74±0.002 3.96

L0 = 0.12/0.24/0.12/0.24 29.8/18.1/21.8/11.1 13/8 10.51±0.003 15.30 15/10 9.55±0.001 4.75 15/9 9.15±0.066 0.37

0.25 0.24/0.20/0.12/0.23 33.6/26.5/14.7/14.3 14/9 11.40±0.005 14.74 15/11 10.66±0.004 7.26 16/11 10.19±0.011 2.56

λ = 16 0.22/0.17/0.12/0.18 31/21.2/17.4/26.1 14/9 10.52±0.004 8.79 15/11 10.34±0.002 6.87 17/10 10.03±0.039 3.67

0.20/0.21/0.21/0.17 12.7/20/34/10.1 13/9 11.00±0.007 16.57 15/10 9.81±0.001 3.93 16/10 9.69±0.001 2.60

0.18/0.20/0.16/0.12 37.5/36.6/25.5/19.4 14/9 11.40±0.010 14.99 15/11 10.60±0.004 6.94 16/10 10.25±0.021 3.40

0.17/0.16/0.23/0.15 22.7/17.2/38.5/17.9 14/9 10.32±0.016 6.44 15/10 10.12±0.003 4.37 16/9 9.87±0.04 1.85

0.21/0.18/0.13/0.21 34.2/20.9/24/35.7 14/9 12.35±0.013 20.46 16/11 10.67±0.002 4.10 17/11 10.35±0.008 1.00

0.10/0.25/0.19/0.11 24.9/14.8/34.3/27.8 13/8 11.04±0.004 19.16 15/10 9.61±0.002 3.75 15/10 9.61±0.002 3.75

0.20/0.13/0.23/0.12 12.3/31.3/18.4/37.2 13/8 10.58±0.003 13.16 15/9 9.65±0.003 3.18 15/9 9.65±0.003 3.18

0.14/0.15/0.12/0.21 34/30.2/27/31.4 14/9 10.63±0.005 7.39 15/11 10.66±0.002 7.65 16/9 10.01±0.021 1.14

L0 = 0.13/0.21/0.23/0.16 24/35.7/9.8/38.8 16/13 15.93±0.009 25.36 19/16 13.15±0.005 3.49 19/16 13.15±0.005 3.49

0.1 0.19/0.11/0.18/0.13 34.3/27.8/28.7/14.9 16/12 13.99±0.009 16.46 18/14 12.24±0.002 1.84 19/14 12.13±0.005 0.95

λ = 32 0.23/0.12/0.12/0.21 18.4/37.2/17.6/19.1 17/14 12.90±0.003 6.72 18/15 12.79±0.006 5.84 20/14 12.15±0.02 0.58

0.12/0.21/0.22/0.21 27/31.4/16.6/13.3 17/14 14.24±0.003 13.10 19/16 13.07±0.004 3.79 19/16 13.07±0.004 3.79

0.10/0.11/0.22/0.23 15.3/12.5/25.6/9.4 15/12 12.24±0.005 11.74 17/15 11.53±0.002 5.23 17/15 11.53±0.002 5.23

0.12/0.17/0.21/0.20 25.3/11.2/22.1/15.1 16/13 13.14±0.007 12.22 18/14 12.03±0.002 2.71 18/14 12.03±0.002 2.71

0.20/0.14/0.17/0.14 26.3/25/27.9/13.8 16/13 13.77±0.009 13.50 18/16 12.83±0.003 5.72 18/14 12.47±0.021 2.75

0.18/0.24/0.20/0.24 14.7/19.1/14.4/38.9 19/16 14.29±0.006 7.77 21/18 13.71±0.004 3.36 20/16 13.49±0.021 1.75

0.17/0.25/0.12/0.19 11.8/22.1/36.9/10.5 16/13 13.38±0.010 12.77 18/15 12.47±0.001 5.13 19/14 12.09±0.023 1.96

0.23/0.14/0.13/0.22 21.3/15.1/27.8/27.1 17/14 13.95±0.006 10.40 19/16 13.19±0.005 4.35 20/14 12.79±0.006 1.20

L0 = 0.17/0.11/0.21/0.19 27.6/29.7/33.1/13.5 23/13 14.81±0.008 13.78 25/16 13.36±0.004 2.69 25/16 13.36±0.004 2.69

0.25 0.19/0.23/0.24/0.19 30.8/10.3/29/38.3 24/15 16.30±0.011 15.21 27/18 14.42±0.003 1.93 28/18 14.27±0.047 0.91

λ = 32 0.15/0.18/0.15/0.13 12.3/35.1/34.5/31.3 21/12 15.33±0.016 20.86 24/14 13.10±0.005 3.34 25/14 12.77±0.021 0.73

0.12/0.15/0.11/0.11 28.2/33.6/25.4/22.4 21/11 13.56±0.002 14.85 23/13 12.16±0.003 2.94 24/13 11.91±0.018 0.82

0.16/0.14/0.17/0.18 13.6/18.7/31.1/18.4 22/13 13.33±0.004 8.90 24/14 12.50±0.002 2.11 24/14 12.50±0.002 2.11

0.22/0.24/0.23/0.21 18/37.3/12.8/11 25/16 14.55±0.008 6.72 27/17 13.96±0.005 2.38 27/17 13.96±0.005 2.38

0.22/0.18/0.19/0.24 11.2/35.3/28.6/18.7 24/15 15.06±0.013 10.20 26/17 14.06±0.005 2.93 26/17 14.06±0.005 2.93

0.12/0.18/0.13/0.14 36.6/25.5/28.9/12.4 21/11 14.25±0.008 17.29 23/14 12.71±0.004 4.62 25/14 12.44±0.007 2.40

0.17/0.16/0.18/0.22 24.3/20.5/29.6/25 24/15 14.30±0.009 6.54 25/17 14.08±0.002 4.93 27/17 13.79±0.002 2.78

0.19/0.16/0.10/0.21 12/27.7/34.9/23.7 22/13 14.11±0.005 12.38 24/15 12.97±0.008 3.31 25/15 12.92±0.028 2.91
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Table 10: Local versus Central Control when λ0 = 16, hj = 1 and L0 + Lj = 1
L0 s∗o/s∗j c∗ S0/Sr C +/− % h0 s∗0/s∗j c∗ S0/Sr C +/− %

0.1 2 / 13 14.29 28 / 26 14.09 0.016 1.43 0.1 19 / 5 8.23 29 / 10 8.11 0.005 1.46

0.3 6 / 11 13.30 28 / 22 13.16 0.031 1.02 0.3 18 / 5 9.37 28 / 10 9.18 0.008 2.06

0.5 10 / 9 12.11 28 / 18 11.80 0.033 2.52 0.5 17 / 5 10.29 27 / 10 10.03 0.019 2.57

0.6 14 / 7 11.32 28 / 14 11.23 0.059 0.77 0.6 17 / 5 10.74 27 / 10 10.47 0.017 2.52

0.7 16 / 6 10.33 28 / 12 10.19 0.036 1.39 0.7 16 / 5 11.11 26 / 10 10.72 0.048 3.55

0.8 18 / 5 9.37 28 / 10 9.18 0.007 2.05 0.8 16 / 5 11.47 26 / 10 11.06 0.045 3.59

0.9 21 / 3 7.79 27 / 6 7.62 0.015 2.19 0.9 16 / 5 11.83 26 / 10 11.41 0.043 3.61

J = 2, h0 = 0.3, b = 39 J = 2, L0 = 0.8, b = 39

b s∗o/s∗j c∗ S0/Sr C +/− % J s∗0/s∗j c∗ S0/Sr C +/− %

1 14 / 2 3.07 18 / 4 3.02 0.000 1.63 2 18 / 5 9.37 28 / 10 9.17 0.078 2.13

9 16 / 4 6.95 24 / 8 6.83 0.010 1.78 4 18 / 3 12.59 30 / 12 12.43 0.034 1.27

19 18 / 4 8.07 26 / 8 7.92 0.014 1.82 5 17 / 3 14.52 32 / 15 14.26 0.012 1.78

39 18 / 5 9.37 28 / 10 9.18 0.008 2.07 8


