
IEOR 4000:
Production Management

Professor Guillermo Gallego
December 4, 2001

1 Stochastic Demand

In this section we discuss the problem of controlling the inventory of an item with stochastic demand.
Initially we consider the single period problem known as the newsvender problem and then extend
it to multi-period, and infinite horizon problems with and without setup costs.

1.1 The Newsvender Problem

Let D denote the one period random demand, with mean µ and variance σ2. Let c be the unit cost,
c(1 + m) the selling price and c(1 − d) the salvage value. If Q units are ordered, then min(Q, D)
units are sold and (Q−D)+ units are salvaged. Here x+ = max(x, 0) and x− = max(−x, 0). Thus
the expected profit is given by

π(Q) = c(1 + m)E min(Q, D) + c(1− d)E(Q−D)+ − cQ

This can be written as
π(Q) = cmµ−G(Q)

where
G(Q) = cmE(D −Q)+ + cdE(Q−D)+.

For convenience let h = cd and p = cm. It is convenient to think of h as the per unit overage
cost and of p as the per unit underage cost. A little algebra reveals that G(Q) can be written as

G(Q) = h(Q− µ) + (h + p)E(D −Q)+.

It is easy to verify that the loss function G(Q) is convex in Q, and that if the distribution of D is
continuous, then the optimal value of Q can be obtained by setting the derivative to zero, resulting
in

P (D > Q) =
h

h + p
. (1)

This means that the optimal order quantity Q∗ is such that the probability of having a demand
larger than Q∗ is equal to the ratio of the overage cost h to the overage plus underage cost h + p.

Frequently D is assumed to be Poisson or Normally distributed. Unfortunately there is no closed
form solution to equation (1) for these distributions of demand. However, the optimal order quantity
against the worst possible distribution of demand with mean µ and variance σ2 can be expressed in
closed form:

QS = µ +
σ

2

(√
p

h
−
√

h

p

)
. (2)

This formula is due to Herbert Scarf [5], is fairly robust, and it can be shown that

G(QS) ≤
√

phσ

with equality holding for a certain distribution of demand with mass concentrated at two points.
Notice that Scarf’s formula (2) suggests ordering more (resp., less) than the mean demand when
p > h (resp., p < h). Moreover, |QS − µ| increases linearly in σ for h �= p.

It is also possible to show that if we order the mean, then

G(µ) ≤ 1
2
(h + p)σ.
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Consequently,

π(µ) ≥ pµ− 1
2
(h + p)σ.

Notice that

1 ≥ π(µ)
pµ
≥ 1− 1

2
h + p

p

σ

µ
.

This indicates that ordering the mean is guaranteed to be near optimal whenever

1
2

h + p

p

σ

µ

is small, e.g., when the coefficient of variation σ
µ is small.

1.2 Multi-period Models

In this section we consider a variety of multi-period models. Initially, we discuss models without
setup costs and with zero lead times. Later we extend the analysis to the case of positive setup costs
and positive lead times.

1.3 Finite Horizon Models

Let D1, . . . , DT be the demands for the next T periods. We assume that the Dt’s are independent
random variables, and that all stockouts are backordered. Let ct denote the unit cost in period
t, and let xt denote the inventory level at the beginning of period t, where a positive xt indicates
that xt units of inventory are carried from the previous period, and a negative xt indicates that a
backlogged of −xt is carried form the previous period. Let yt − xt ≥ 0 denote the size of the order
in period i. Then the inventory level at the beginning of period t + 1 is given by

xt+1 = yt −Dt.

At the end of period i a per unit cost ht is incurred for every unit of inventory carried into period
t + 1 and a per unit cost pt is incurred for every unit backordered into period t + 1. Thus, if yt = y
the loss function

Gt(y) = htE(y −Dt)+ + ptE(Dt − y)+

in period i is the expected holding and backorder cost charged to period i.
Let CT+1(xT+1) be an arbitrary cost function on the inventory level at the end of period T , let

0 < α ≤ 1 be the one period discounted cost and let Ct(x) denote the optimal expected discounted
cost starting in period t with xt units of inventory. Then,

Ct(xt) = min
y≥xt

{ct(y − xt) + Gt(y) + αECt+1(y −Dt)} . (3)

It can be shown that if CT+1(·) is convex, then Ct(·) is convex for all t = 1, . . . , T , and the
optimal policy is to order max(0, y∗

t − xt) units in period i where y∗
t minimizes

cty + Gt(y) + αECt+1(y −Dt).

This class of policies is known as order-up-to policies. The idea is that we order up to y∗
t in

period i if xt < y∗
t and not to order otherwise.

Notice that the above problem needs to be solved recursively starting with period T down to
period 1. This requires a computer code that can be written in less than one hour by an experienced
programer. The quality of the solution depends on the quality of the estimates of future cost and
of the demand distributions.
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1.3.1 The Myopic Policy

Here we describe a myopic policy that is frequently used in practice. To develop this policy we need
to write a slightly different but equivalent set of recursive equations. To this end let

Mt(xt) = Ct(xt) + ctxt

and notice that with this definition, the recursion becomes

Mt(xt) = αct+1µt + min
y≥xt

[mty + Gt(y) + αEMt+1(y −Dt)] ,

where mt = ct − αct+1. The myopic policy ignores at time i, the future discounted costs

αEMt+1(y −Dt),

and orders max(0, ym
t − xt) units in period i, where ym

t minimizes the current costs

mty + Gt(y).

If the demand is continuous, then ym
t satisfies

P (Dt > y) =
ht + mt

ht + pt
.

How is the myopic policy related to the optimal policy? The most important known result is
that

min{ym
t , . . . , ym

T } ≤ y∗
t ≤ ym

t

which implies that y∗
t = ym

t when the ym
t are non-decreasing.

Using Scarf’s min-max approach, the myopic policy is to order max(0, yS
t − xt) where

yS
t = µt +

σt

2

(√
pt −mt

ht + mt
−
√

ht + mt

pt −mt

)
.

1.4 Infinite Horizon, Stationary Models

If all the costs are stationary, i.e., ct = c, ht = h and pt = p for all i, and the demands are independent
and identically distributed (IID), then the infinite horizon cost function C(x) satisfies the functional
equation

C(x) = min
y≥x
{c(y − x) + G(y) + αEC(y −D)} .

In terms of M(x) = C(x) + cx, the functional equation can be written as

M(x) = αcµ + min
y≥x
{c(1− α)y + G(y) + αEM(y −D)}.

The myopic policy orders max(0, ym − x) units where ym minimizes the current cost

c(1− α)y + G(y).

If the one period demand has a continuous distribution, then ym satisfies

P (D > y) =
h + c(1 − α)

h + b
.

Surprisingly, the myopic policy is optimal if the distribution of D is over the non-negative num-
bers. This can be seen as follows. Suppose that M(·) is known and that y∗ minimizes

c(1− α)y + G(y) + αEM(y −D).
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Then for x ≤ y∗ we have

M(x) = αcµ + c(1 − α)y∗ + G(y∗) + αEM(y∗ −D).

Notice that the right hand side of the last equation is independent of x, so there is a constant, say
M∗, such that M(x) = M∗ for all x ≤ y∗. Since D ≥ 0, y∗−D ≤ y∗ so M(y∗−D) = M∗. Therefore
M∗ satisfies

M∗ = αcµ + c(1− α)y∗ + G(y∗) + αM∗.

Solving for M∗ yields

M∗ =
αcµ + c(1− α)y∗ + G(y∗)

1− α

so y∗ must minimize the current cost

c(1− α)y + G(y)

just as ym. Therefore y∗ = ym if c(1−α)y +G(y) has a unique minimizer or we can select y∗ as ym

if this function admits more than one minimizer.
Thus, for the infinite horizon stationary cost model the optimal policy is to order up to y∗. This

policy is also known as a base-stock policy because orders are placed in each period to restore the
inventory to y∗. Let us look at how the policy works in practice. Suppose first that inventory at
the beginning of period 1 is x1 < y∗. Since x1 < y∗ we place an order for y∗ − x1 units bringing the
inventory up to y∗. Suppose that during period 1 D1 ≥ 0 units are demanded. Then the inventory
at the beginning of period 2 is x2 = y∗ − D1 and D1 units are ordered to bring the inventory up
to y∗. It is easy to see that the order placed in period i is exactly for Di−1 units for all i ≥ 2. If,
on the other hand, x1 > y∗ then nothing is ordered until the first period, say i, where y∗ − xt > 0.
After period i, we simply order to replenish the quantity demanded in the previous period.

Notice that as α increases to one, i.e., no discounting, the optimal policy is to order up to y∗

where y∗ satisfies

P (D > y) =
h

h + b
.

Notice also that the myopic policy is also optimal for the finite horizon stationary problem
provided we set cT+1(x) = −cx.

1.5 Positive Lead Times

Suppose that an order placed at the beginning of period t arrives at the beginning of period t + L.
To work with positive, but deterministic, lead times, we need to add the inventory on order to
the inventory level to summarize the state space at the beginning of each period. The resulting
quantity is known as the inventory position and is equal to the inventory on hand plus on order
minus backorders. When the lead time is zero, the inventory position is equal to the inventory level.
Let xt be the inventory position at the beginning of period t, after we receive the order placed L
periods ago, but before we make the ordering decision for period t. Suppose that we order to bring
the inventory position to yt ≥ xt. This order will arrive at the beginning of period t + L. All orders
placed prior to period t would have arrived by the beginning of period t+L. Moreover, orders placed
after period t will not arrive until after period t + L. Consequently, the inventory level at the end
of period t + L is given by yt − D[t, t + L] where D[t, t + L] =

∑t+L
s=t Ds. The demand D[t, t + L]

over periods {t, . . . , t + L} is known as the lead time demand starting from period t. Notice that
D[t, t+L] contains the demand over L+1 periods and reduces to Dt when L = 0. Since the decision
made at time t determines the holding and penalty costs incurred at the end of period t+L it makes
sense to charge these costs to period t. This is accomplished by redefining the loss function to be

Gt(y) = htE(y −D[t, t + L])+ + ptE(D[t, t + L]− y)+.



IEOR 4000: Production Management page 5 Professor Guillermo Gallego

Let Ct(xt) be the minimial expected discounted cost of managing the system starting from period
t with inventory position xt. Then,

Ct(xt) = min
yt≥xt

{ct(yt − xt) + Gt(yt) + αECt+1(yt −Dt)}.

This formulation is equivalent to (3) except that xt is now the inventory position and Gt is defined
differently. One additional difference is that the last ordering period is T − L instead of T . Other
than this, the problems are mathematically equivalent. The myopic policy calls for bringing the
inventory position up to ym

t in period where ym
t satisfies

P (D[t, t + L] > y) =
ht + mt

ht + pt
.

The infinite horizon policy calls for bringing the inventory position up to y∗ where y∗ satisfies

P (D[t, t + L] > y) =
h + c(1− α)

h + p
.

Let

– µ mean demand per period

– σ standard deviation of daily demand

– µd mean of the leadtime demand.

– σd standard deviation of the leadtime demand.

If we assume that the period demands are statistically independent, then µd = µ(1 + L) and
σd = σ

√
1 + L. Often D[t, t+L] can be modeled as normally distributed with mean µd and standard

deviation σd. In this case,
y∗ = µd + zσd

where
Φ̄(z) =

ht + mt

ht + pt
.

1.5.1 Random Lead Times

When lead times are random things become complicated because of the possibility of order crossing,
i.e., a recent order arrives before an old order. There is no easy way to account for order crossings.
In many practical manufacturing and distribution situations orders do not cross or they cross so
rarely that it makes sense to build a under the assumtion that orders do not cross. If we are willing
to assume that orders do not cross, that demand lead times over different periods are normal and
identically distributed then the problem can be solved once we find the mean and the variance over
the lead time.

Let L be the lead time. To simplify the notation we will let µl and σl to denote respectively the
mean and the standard deviation of L + 1. Our objective is to write µd and σd in terms of µ, σ, µl

and σl under the assumption that the period demands are statistically independent. The formula for
the mean lead time demand is again µd = µµl. The formula for σd, which is what we are interested
in, is given by

σd =
√

µlσ2 + σ2
l µ2.

This formula is derived on page 153 in reference [3].
Numerical Example The mean daily demand for a product is µ = 80 units and the standard
deviation is σ = 20 units.
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– Scenario 1. The leadtime is short, but unreliable: The mean leadtime is µl = 5 days but the
standard deviation is σl = 4 days. In this case, the standard deviation of the leadtime demand
is

σd =
√

5(20)2 + (4)2(80)2 = 323.

– Scenario 2. The leadtime is long, but reliable: The mean leadtime is µl = 25 days but the
standard deviation is σl = 0 days. In this case, the standard deviation of the leadtime demand
is

σd =
√

25(20)2 + (0)2(80)2 = 100.

Since the holding and penalty costs are proportional to the standard deviation of demand, we see
that the costs are over three times higher with the shorter and more unreliable leadtime. Comparing
the standard deviation of the lead time demand to the mean lead time demand shows that the
incidious effect of randomness in the lead time is even worse than the direct comparison between
the standard deviations would indicate.

2 Positive Ordering Costs

2.1 (Q, r) Policies

The above models assumed that decisions are made at discrete points in time. In this section we
consider a continuous time model with nonzero lead times and positive setup costs. We follow the
notation in Zipkin [9] in developing performance measures.

Let D(t) denote the cumulative demand up to time t and define the following quantities:

– I(t) inventory on hand at time t.

– B(t) backorders at time t.

– IN(t) net inventory at time t.

– L lead time.

– IO(t) inventory on order at time t.

– IP (t) inventory position at time t.

By definition I(t) = IN(t)+ = max(0, IN(t)) and B(t) = IN(t)− = max(0,−IN(t)), so the
net inventory IN(t) is equal to the inventory when it is nonnegative. When IN(t) < 0 we have
B(t) = −N(t) backorders. We will assume that an order is received L time units after it is placed.
The inventory on order IO(t) at time t is therefore equal to the number of orders placed during
the interval (t − L, t]. The inventory position IP (t) is defined as the inventory on hand plus the
inventory on order minus the number of backorders. Mathematically,

IP (t) = I(t) + IO(t)− B(t)
= IN(t) + IO(t).

Notice that IO(t) = 0 when L = 0, and in that case the inventory position is equal to the net
inventory IN(t).

Given a stationary supply and demand processes, and a specific policy, we will determine a
number of performance measures of interest including the long run fraction of time out of stock, the
average number of units on inventory, the average number of units backordered, and the average
frequency of orders.

We will restrict our attention to the class of (Q, r) policies that are often used in practice. Under
an (Q, r) policy we monitor the inventory position continuously and place an order of size Q whenever
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the inventory position is at or below the reorder point r. We will assume that demands are for one
unit at a time. Under this assumption (Q, r) policies are equivalent to (s, S) policies with s = r
and S = r + Q. Under an (s, S) policy we monitor the inventory position continuously and place an
order to restore the inventory position to S whenever the inventory position drops to or below s.

2.2 Q = 1

Initially, we will compute the performance measures for the case Q = 1. This mode of operation is
optimal when there are no setup costs or they are small relative to the cost of holding inventory,
e.g., for expensive items with low demand rates. For convenience let S = r + Q = r + 1. Notice
that in this case the (Q, r) policy is actually a base stock policy with base stock level S. Under this
policy we order to keep the inventory position equal to S.

Then, IP (t) = S except at ordering epochs where the inventory position momentarily drops
below S. Since

S = IP (t) = IN(t) + IO(t)

we have
IN(t) = S − IO(t).

Now IO(t) is the number of units ordered during the interval (t, t−L). Under a base-stock policy
orders are placed to keep the inventory position constant so IO(t) is equal to D(t) −D(t − L) the
number of units demanded over the interval (t−L, t]. Let D(t|L) ≡ D(t)−D(t−L). As t→∞ we
have

IN(∞) = S −D(∞|L)

where D(∞|L) is the stationary lead time demand. Thus the stationary distribution of IN is
determined by the stationary distribution of the lead time demand. For example, if D(t) is Poisson
(λt) it follows that D(∞|L) is Poisson (λL).

We now compute some performance measures of interest. Let A = Pr(IN(∞) ≤ 0), then A is
the long run probability of being out of stock. Form the above, we have

A = Pr(D(∞|L) ≥ S).

Let B = E[B(∞)] then
B = E(D(∞|L)− S)+.

Finally, let I = E[I(∞)], then

I = E(S −D(∞|L))+ = S − ED(∞|L) + B.

Thus, if we want to minimize the long run expected holding and backorder costs, we are faced
with the problem of minimizing

bB + hI = bED(∞|L)− S)+ + hE(S −D(∞|L))+.

The good news is that this is a newsvendor problem, which, as we know, is solved by letting S
be the smallest integer such that

Pr(D(∞|L) ≤ S) ≥ b

h + b
.

2.3 Q a Positive Integer

Now, suppose that Q is a positive integer. Then, under very general conditions on the demand
process, it can be shown that the stationary inventory position is uniform between r + 1, and r + Q.
That is,

P (IP (∞) = j) =
1
Q

j = r + 1, . . . , r + Q.
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Moreover, it can be shown that IP (∞) is independent of D(∞|L). This allows us to compute the
relevant performance measures resulting in

A =
1
Q

r+Q∑
s=r+1

Pr(D(∞|L) > s),

B =
1
Q

r+Q∑
s=r+1

E(D(∞|L)− s)+,

and

I =
1
Q

r+Q∑
s=r+1

E(s−D(∞|L))+.

If the average demand per unit time is λ, then the long run frequency of orders is

O =
λ

Q
.

The above performance measures can then be combined to form a cost function. Suppose that
the ordering cost is K, the holding cost rate is h and the backorder cost rate is b. Then, the total
average cost can be written as

c(Q, r) =
Kλ

Q
+

1
Q

r+Q∑
y=r+1

G(y),

where
G(y) = hE(y −D(∞|L))+ + bE(D(∞|L)− y)+.

We will discuss an algorithm to find the optimal (Q, r) pair, as well as some bounds and heuristics.

2.4 Algorithm

An algorithm to find the optimal (Q, r) policy is easily obtained after making three observations.
First, since −G(y) is unimodal, the problem

c(Q) = min
r

c(Q, r)

is easily solved by finding the set of Q consecutive integers

{y1, . . . yQ}

such that
y1 = min{G(y) : y ∈ Z},

and, given y1, . . . , yk

yk+1 = min{G(y) : y ∈ Z, y �= yi, i = 1, . . . , k}.
Letting Gk denote G(yk) we can write

c(Q) =
Kλ +

∑Q
k=1 Gk

Q
.

In words, the Q smallest values of G, namely G1, . . . , GQ are attained by Q consecutive integers,
i.e., by some reordering of the set {y1, . . . , yQ}.
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The second observation is that we can write c(Q) as a convex combination of c(Q− 1) and GQ.
Indeed it is easy to verify that

c(Q) =
Q− 1

Q
c(Q− 1) +

1
Q

GQ.

This implies that c(Q) < c(Q− 1) if and only if C(Q− 1) > GQ which implies that

GQ < c(Q) < c(Q− 1).

The third observation is that −c(Q) is unimodal, which implies that the optimal batch size is
the largest value of Q for which

GQ < c(Q− 1).

Algorithm

1. Set Q = 1 and find y1, G1 and c(1).

2. Let
LQ = min{y1, . . . , yQ} − 1

and
RQ = max{y1, . . . , yQ}+ 1

If GQ+1 = min(G(LQ), G(RQ)) ≥ c(Q) then stop. Otherwise compute

c(Q + 1) =
Q

Q + 1
c(Q) +

1
Q + 1

GQ+1

and set yQ+1 = LQ if G(LQ) < G(RQ) and yQ+1 = RQ otherwise.

3. Set Q← Q + 1 and return to Step 2.

This algorithm is due to Federgruen and Zheng [1]
To facilitate the use of this algorithm it is convenient to write the increment of the G(y) as

G(y + 1)−G(y) = (h + p)P (D(∞|L) ≤ y)− p.

For Poisson demands we can update P (D(∞|L) = y) and P (D(∞|L) ≤ y)

P (D(∞|L) = y + 1) =
λL

y + 1
P (D(∞|L) = y),

starting from P (D(∞|L) = 0) = e−λL, and

P (D(∞|L) ≤ y + 1) = P (D(∞|L) ≤ y) + P (D(∞|L) = y + 1).

2.5 Sensitivity, Bounds and Heuristics

Let us consider again the cost function

c(Q, r) =
Kλ +

∑r+Q
y=r+1 G(y)
Q

that arises when the demand rate is λ, the ordering cost is K, the holding cost is h the backorder
cost is b and the lead time demand is a random variable D with mean µ and variance σ2.

Notice that if the variance σ2 = 0 the demand is deterministic and the resulting problem is
essentially an economic order quantity where we need to balance the ordering holing and backorder
costs. On the other hand, if the ordering cost K = 0 then the problem reduces to the newsvender
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problem where we need to decide on the stock level to minimize the holding and backorder costs.
Thus, the cost function c(Q, r) reduces to well known subproblems if either σ2 = 0, or K = 0.

Although we have developed a fairly deep understanding of both the EOQ and the newsvendor
subproblems and have an efficient algorithm to minimize the cost function c(Q, r), we don’t yet
have a deep understanding of the cost function c(Q, r). Is it more or less sensitive than the EOQ
to mispecifications of the batch size or the cost parameters. Is it more or less sensitive than the
newsvendor problem to the specification of the distribution of the lead time demand? Can we obtain
effective bounds on the average cost without having to run the algorithm? How does the average
cost behave as a function of the set up cost and the variance of the lead time demand? Can we find
upper and lower bounds on Q? Are there effective heuristics for the batch size? We now provide
answers to some of these questions. The results, except as noted, are due to Gallego [2].

2.5.1 Sensitivity

It can be shown that c(Q) = minr c(Q, r) is less sensitive than the EOQ in the sense that

c(Q)
c(Q∗)

≤ 1
2

(
Q

Q∗ +
Q∗

Q

)
.

Notice that we have an inequality for the case of random demands, where we had an equality for
the EOQ cost function. This result is due to Zheng [7].

2.5.2 Bounds

We have the following closed form bounds on the cost function√
c2
d + G2

1 ≤ c(Q∗) ≤
√

c2
d + G

2

1.

where cd is the average cost of the EOQ subproblem,

G1 = G(y1) = min{G(y) : y ∈ Z}.
is the newsvendor cost, and

G1 = σ
√

hb

is Scarf’s upper bound on the newsvendor cost. Recall that cd =
√

2HKλ where H = hb
h+b .

Closed form bounds on Q∗ are given by

Qd ≤ Q∗ ≤ Qe

where
Qd = cd/H

is the economic order quantity, and

Qe =
√

c2
d + G

2

1/H =
√

Q2
d + Q2

σ

where

Qσ =
G1

H
.

2.5.3 Heuristics

It can be shown that
c(
√

2 Qd)
c(Q∗)

≤ 1.0625,

so using a batch size that is
√

2 times the EOQ results in a cost increase of at most 6.25%. In
practice, the

√
2 Qd heuristic can be improved by using the batch size

Qg = min(
√

2 Qd,
√

QdQe).
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2.6 General Demand Sizes

When demands are not for one unit at a time an order under an (Q, r) policy consists of the number
of batches of size Q that are necessary to bring the inventory position to the interval [r, r+Q). In this
case, (Q, r) policies are no longer optimal. Managerially (Q, r) policies are policies are still attractive
because the more restricted order size facilitates packaging, transportation, and coordination. Let
X denote the random demand size. Then, the long run average cost under an (Q, r) policy is given
by

c(Q, r) =
KλE min(Q, X) +

∑r+Q
j=1 G(y)

Q
(4)

To see how the ordering cost arises, notice that when the inventory position is r+ j, a demand of
size X triggers an order if and only if X ≥ j. Since the inventory position is uniform {r+1, . . . , r+Q}
the probability, and the long run average frequency, of placing an order is

∑Q
j=1 P (X ≥ j)/Q. Since

X ≥ 0 and E min(Q, X) =
∑Q

j=1 P (X ≥ j), the cost function (4) results.

3 (s, S) Policies

Under an (s, S) policy, s < S, the inventory manager places an order to increase the item’s inventory
position to the order-up-to level S, whenever he finds the item’s inventory position to be at or below
the reorder-level s.

Academicians have devoted a large effort to the problem of identifying single-item stochastic
inventory models for which an (s, S) policy is optimal. It turns out that (s, S) policies are optimal
for a large class of single-item inventory models including the one we will study in this section. Here
we will take the optimality of (s, S) policies for granted and will concern ourselves with the problem
of computing an optimal (s, S) policy for a model where both the demand and the relevant costs
are time stationary.

We assume that

orders may be placed at the beginning of each period,
orders are delivered immediately,
all stockouts are backordered,
period demands are independent and identically distributed,
costs are stationary over time.

The objective is to minimize the long run average cost over an infinite horizon.

Notation:

D the one period demand,
pj = Pr(D = j), j = 0, 1, . . . ,
K > 0 fixed cost of placing an order,
G(y) one period expected cost starting with y units.

The typical form of G(y) is

G(y) = hE(y −D)+ + pE(y −D)−,

where h is the holding cost rate and p is the stockout penalty cost rate. However, other forms of
G(·) may also arise. In any event, all that we will require of G(·) is that:

(i) −G(·) is unimodal,
(ii) lim|y|→∞ G(y) > minx G(x) + K.
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Let c(s, S) denote the long run average cost of using the policy (s, S). To obtain an expression
for (s, S) we use the well known reward-renewal theorem that states that the long run average cost
is equal to the expected cost per cycle divided by the expected cycle length. A cycle is interpreted as
the time elapsed between the placement of two consecutive orders. We say that the system renews
itself after each cycle because the item’s inventory position immediately after an order is placed is
equal to S.

We are now concerned with the determination of the expected cost per cycle, and the expected
cycle length. For y > s, let k(s, y) denote the total expected cost until the next order is placed when
the starting inventory position is equal to y units. Our interest, of course, is in finding a formula
for k(s, S). Likewise, let M(j) be the expected total time until an order is placed when starting
with s + j units. Our interest, of course, is to find a formula for M(S − s). Once these formulas are
obtained, we can write

c(s, S) =
k(s, S)

M(S − s)
.

It is clear that the functions k(s, ·), and M(·) satisfy the discrete renewal equations

k(s, y) = G(y) + K

∞∑
j=y−s

pj +
y−s−1∑

j=0

pjk(s, y − j), y > s

and

M(j) = 1 +
j−1∑
i=0

ptM(j − i), j = 1, 2, . . .

Let m(0) = 1/(1− p0), M(0) = 0, and

m(j) =
j∑

k=0

pkm(j − k), j = 1, 2, . . . .

It follows that
M(j) = M(j − 1) + m(j − 1), j = 1, 2, . . . ,

and

k(s, y) = K +
y−s−1∑

j=0

m(j)G(y − j) y > s.

Consequently,

c(s, S) =
K +

∑S−s−1
j=0 m(j)G(S − j)

M(S − s)
.

Unfortunately the cost function c(s, S) is not, in general, convex. For a long time this fact
precluded the development of efficient algorithms. However, Zheng and Federgruen [8] have observed
that

c(s− 1, S) = αnc(s, S) + (1 − αn)G(s) (5)

where

αn ≡ M(n)
M(n + 1)

,

and n = S − s. Based on this observation, they have derived a very effective algorithm to compute
an optimal (s, S) policy. We present here some of their key results, as well as their algorithm. ¿From
(1) we see that c(s− 1, S) is a convex combination of c(s, S) and of G(s), and consequently

min {c(s, S), G(s)} ≤ c(s− 1, S) ≤ max {c(s, S), G(s)} .
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We will use property (1) to determine necessary and sufficient conditions on so to be the optimal
reorder-level for a fixed order-up-to level S. Then, we will obtain lower and upper bounds on an
optimal reorder-level and an optimal order-up-to level.

For fixed S the reorder-level so is optimal if

c(so, S) ≤ c(s, S) ∀s.

Consequently so must satisfy

c(so − 1, S) ≥ c(so, S) ≤ c(so + 1, S),

but then from (1)
G(so + 1) ≤ c(so, S) ≤ G(so). (6)

Let y∗
1 = min{y : G(y) = minx G(x)}, and notice that −∞ < y∗

1 <∞.

We will now establishing lower and upper bounds on an optimal reorder-level s∗.

Proposition 1 Let s∗l denote the smallest optimal reorder-level, then

s∗l ≤ s̄ ≡ y∗
1 − 1.

Proof: Let s∗l be the smallest optimal value of s that minimizes c(s, S∗). Suppose for a contradiction
that s∗l ≥ y∗, then it follows from the form of c(s, S) that c(s∗l , S

∗) ≥ G(s∗l ) which in turn implies
that c(s∗l − 1, S∗) ≤ c(s∗l , S

∗) contradicting the definition of s∗l . �.

Proposition 2 Let s∗u denote the largest optimal reorder-level < y∗
1 . Then

so ≤ s∗u

where so is the optimal order level for some arbitrary order-up-to level S.

Because s∗u is optimal for S∗ it follows that (2) must hold. In fact, we claim that G(s∗u+1) < c(s∗u, S∗)
holds. Suppose for a contradiction that s∗u < y∗ − 1, and that G(s∗u + 1) = c(s∗u, S∗) holds. Then
s∗u + 1 < y∗

1 is also optimal, contradicting the definition of s∗u. On the other hand, if s∗u = y∗
1 − 1,

then, by the definition of y∗
1 , G(y∗

u) = G(s∗ + 1) < c(s∗u, S∗). Now, given any S, and an optimal
reorder-level so for S, we have

G(s∗u + 1) < c(s∗u, S∗) ≤ c(so, S) ≤ G(so).

But then because G(s) is unimodal, G(so) ≥ G(s∗u) ≥ G(s∗u + 1), so so ≤ s∗u. �.

Corollary 3 There exists an optimal solution s∗ satisfying

so ≤ s∗ ≤ s̄. (7)

where so is an optimal reorder-level for an arbitrary order-up-to level S.

We now turn our attention to bounds on S∗. To this end, let S ≡ max{y : G(y) = minx G(x)};
notice that y∗

1 ≤ S < ∞. Let c∗ = c(s∗, S∗) denote the optimal average cost value, and let S̄ ≡
max{y ≥ S : G(y) ≤ c∗}.
Proposition 4 There exists an optimal policy (s∗, S∗) for which

S ≤ S∗ ≤ S̄. (8)
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Proof: We start by proving the lower bound. Let (s∗, S∗) be an optimal (s, S) policy that maximizes
the value of S∗. Assume for a contradiction that S∗ < S. Note that for j ≥ 0, G(S∗ + 1 − j) ≤
G(S∗ − j), so c(s∗ + 1, S∗ + 1) ≤ c(s∗, S∗) contradicting the maximality of S∗.

To show the upper bound, assume for a contradiction that G(S∗) > c∗. Notice that from the
definition of k(s, ·) and M(·) we can write

c∗ =
G(S∗) + KPr(D ≥ S∗ − s∗) +

∑S∗−s∗−1
j=0 pjk(s∗, S∗ − j)

1 +
∑S∗−s∗−1

j=0 pjM(S∗ − s∗ − j)

>
c∗ + kPr(D < S∗ − s∗)

1 + MPr(D < S∗ − s∗ − 1
,

where

k =

∑S∗−s∗−1
j=0 pjk(s∗, S∗ − j)

Pr(D < S∗ − s∗)

M =

∑S∗−s∗−1
j=0 pjM(S∗ − s∗ − j)

Pr(D < S∗ − s∗)
.

Consequently,

c∗ >
k

M
. (9)

However, we can identify the right hand side of (5) as the average cost of a feasible policy! This
contradicts the optimality of (s∗, S∗) so G(S∗) ≤ c∗.

Corollary 5 Let c > c∗, and S̄c ≡ max{y ≥ S : G(y) ≤ c}, then S∗ ≤ S̄ ≤ S̄c.

Corollary 5 can be used to identify increasingly tighter upper bounds for S∗ as increasingly better
(s, S) policies are found.

For any fixed order up to level S, let

c∗(S) = min
s<S

c(s, S).

S is said to be improving upon So, if c∗(S) < c∗(So).

Lemma 6 For a given order-up-to level So(≥ y∗
1), let so(< y∗

1) be an optimal reorder-level. Then
c∗(S) < c∗(So) if and only if c(so, S) < c(so, So).

Proof: Suppose c(so, S) < c(so, So), then c∗(S) ≤ c(so, S) < c(so, So) = c∗(So).
Conversely, assume that c∗(S) < c∗(So), and that c(so, S) ≥ c(so, So). To reach a contradiction

it is enough to show that c(s, S) ≥ c(so, So) for all s < y∗
1 . First, consider so < s < y∗

1 , and
notice that the optimality of so implies that c(so, So) ≥ G(so + 1), and since −G(·) is unimodal
G(S − j) ≤ c(so, So) for j = S − s, . . . , S − so − 1. Consequenlty,

c(so, S) =
K +

∑S−s−1
j=0 m(j)G(S − j) +

∑S−so−1
j=S−s m(j)G(S − j)

M(S − so)

=
c(s, S)M(s, S) +

∑S−so−1
j=S−s m(j)G(S − j)

M(S − so)

≤ c(s, S)M(s, S) +
∑S−so−1

j=S−s m(j)c(so, So)
M(S − so)

= βc(s, S) + (1− β)c(so, So),
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where β = M(S−s)
M(S−so) . Thus for so < s < y∗

1 , c(so, S) is dominated by a convex combination of c(s, S)
and c(so, So). But then, c(so, S) ≥ c(so, So) implies c(s, S) ≥ c(so, So).

Now, for s < so, the fact that G(S− j) ≥ c(so, So) for j = S− so, . . . , S− s−1, allow us to write

c(s, S) ≥ γc(so, S) + (1 − γ)c(so, So),

where γ = M(S−so)
M(S−s) , and consequently c(s, S) ≥ c(so, So). �.

Thus, given (so, So), we can easily identify an improving S′ by simply comparing c(so, So) and
c(so, S′). If S′ improves on So, then we want to find an optimal reorder-level s′ for S′. The following
lemma restricts the search for s′ to so, . . . , s̄.

Lemma 7 Assume that so ≤ s̄ is an optimal reorder-level for So and that S′ improves on So, then
there exists an optimal reorder-level s′ for S′ with s′ ∈ {so, . . . , s̄}.
Proof: Given S′ we know from Proposition 1 that there exists an optimal reorder-level ≤ s̄. Let s′

be the largest optimal reorder-level (≤ s̄) for S′. Then G(s′ + 1) < c(s′, S′) ≤ c(so, S′) < c(so, So) ≤
G(so). Since −G(·) is unimodal it follows that so ≤ s′. �.

We are now ready to present an algorithm to find an optimal (s∗, S∗) policy.

Algorithm.
Let y∗ be a minimizer of G(·).

Step 0. (Initial Solution)
So = y∗;
s = y∗ − 1;
DO WHILE c(s, So) > G(s);
s = s− 1;
ENDO;
co = c(s, So), S = So + 1;
Step 1 (Main Step)
DO UNTIL G(S) > co;
IF c(s, S) < co;
So = S;
DO WHILE c(s, So) ≤ G(s + 1);
s = s + 1;
ENDO;
co = c(s, So);
ENDIF;
S = S + 1;
ENDO;
END;

4 Multi-echelon Systems

Consider a serial system comprised of J stages arranged in series, where external demands occur
only at stage J. Stage j = 2, . . . , J is replenished by stage j − 1, and stage 1 replenishes from an
outside supplier. We assume that the outside supplier never runs out of stock. Let Lj and Dj denote
the lead time and the lead time demand at stage j = 1, . . . , J . Let h′

j denote the holding cost at
stage j. We assume that

h′
1 ≤ h′

2 ≤ . . . ≤ h′
J .

For convenience define h′
0 = 0. Then the echelon holding cost at stage j is defined to be

hj = h′
j − h′

j−1 ≥ 0, j = 1, . . . , J.
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Finally, let b be the backorder cost at stage J.
Consider now a local base stock inventory control system where stage j monitors its inventory

position (inventory on hand plus on order minus backorders) and places orders to keep its inventory
position at s′j , j = 1, . . . , J.

In order to assess the cost of this policy, we need to determine the inventory at each stage, the
inventory on transit, and the backorders at stage J.

The inventory in transit from stage j to stage j + 1, is equal to µj+1 = EDj+1. If we charge
this inventory at rate h′

j, the in transit inventory cost is
∑J−1

j=1 h′
jµj+1. To compute the inventory at

each stage and the backorders at stage J. We use the following recursion: Set B0 = 0, then

Bj = (Bj−1 + Dj − s′j)+

and
Ij = (s′j −Dj −Bj−1)+

denote the backorders and the inventory at stage j = 1, . . . , J. Letting B = BJ , the average cost can
be written as

c(s′1, . . . , s
′
J ) =

J∑
j=1

h′
jEIj + bEB +

J−1∑
j=1

h′
jµj+1.

For j = 2 the cost can be written as

c(s′1, s
′
2) = h′

1(s
′
1 − µ1)− h2E(D1 − s′1)+ + h′

2(s
′
2 − µ2) + (h′

2 + b)E((D1 − s′1)+ + D2 − s′2)+

which is not necessarily convex in (s′1, s
′
2).

Consider now a central control policy where stage j monitors its echelon inventory position
(inventory on hand at stage j plus all the inventory that has gone through stage j but has not yet
left the system plus inventory on order at stage j minus backorders at stage J) and places orders to
keep the echelon inventory position at sj .

It can be shown that for serial systems both policies are equivalent, and that

sj =
J∑

i=j

s′t.

The net echelon inventory at stage j can be obtained recursively as follows: Let IN0 =∞ then

INj = min(INj−1, sj)−Dj.

for j = 1, . . . , J.
With this notation, the average cost can be written as:

c(s1, . . . , sJ) =
J∑

j=1

hjEINj + (b + h′
J)EB.

The resulting problem can be solved sequentially as follows:
Let

CJ (y) = E{hJ(y −DJ) + (b + h′
J)(DJ − y)+}.

This is a newsvendor problem. Let s∗J be the minimizer of CJ (y), and set CJ(x) = CJ (x) if x < s∗J
and equal to CJ (s∗J) otherwise. In other words,

CJ (x) = CJ (min(x, s∗J)).

Now, suppose that you have computed s∗j and that you have constructed the function Cj(x).
Then define

Cj−1(y) = E{hj−1(y −Dj−1) + Cj(y −Dj−1)}.
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Let s∗j−1 denote the minimizer of Cj−1(y) and repeat the procedure until j = 1. At this point you
have obtained the numbers s∗1, . . . , s∗J . To construct a local control policy we can proceed as follows:
If the s∗j are non-increasing, the local base stock levels are given by

s′j = s∗j − s∗j+1.

Otherwise, define
s∗j = min

i≤j
s∗t

and proceed as above to compute the local control policy. This provides an efficient procedure to
solve the multi-echelon serial inventory problem. But once again, the algorithm fails to give us an
intuitive understanding of the system.

Recently Shand and Song [6] have developed bounds on the optimal echelon base stock levels
based on the observation that for each stage j, the optimal echelon base stock level s∗j depends on
the upstream stages {1, . . . , j − 1} only through the sum of the echelon holding cost rates at these
stages

∑j−1
i=1 hi and not on the base stock levels s∗1, . . . , s∗j−1. Base on this observation they are able

to show that
sl

j ≤ s∗j ≤ su
j , j = 1, . . . , J (10)

where

sl
j = F−1

j

(
b +

∑j−1
i=1 hi

b +
∑J

i=1 hi

)

su
j = F−1

j

(
b +

∑j−1
i=1 hi

b +
∑j

i=1 hi

)

where Fj is the cumulative distribution of
∑J

i=j Di. In addition, these authors show that the optimal
cost is bounded by

J−1∑
j=1

h′
jµj+1 + Gl

1(s
u
1 ) ≤ c(s∗1, . . . , s

∗
J)

≤
J−1∑
j=1

h′
jµj+1 + Gu

1 (sl
1).

where
Gl

1(y) = E[h1(y −D[1, J ])+ + (b + h[1, J ])(D[1, J ]− y)+]

and
Gu

1 (y) = E[h[1, J ](y −D[1, J ])+ + (b + h[1, J ])(D[1, J ]− y)+],

where we have used the notation h[j, k] =
∑k

i=j hi and D[j, k] =
∑k

i=j Di. In their experiments the
authors find that

c(s∗1, . . . , s
∗
J ) �

J−1∑
j=1

h′
jµj+1 + Gu

1 (sl
1).
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