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Abstract

We present here a new, very compact proof of the optimality of Scarf’s or-
dering rule for the newsboy problem where only the mean and the variance of
the demand are known. We find that when demand is normally distributed, the
expected loss of optimality is almost negligible over the set of problems that are
likely to arise in practice. We then extend the analysis to the recourse case,
where there is a second purchasing opportunity; to the case of random yields,

and to the case where multiple items compete for a scarce resource.
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1 Introduction

The newsboy problem is to decide the stock quantity of an item when there is a single
purchasing opportunity before the start of the selling period and the demand for the item
is random. The tradeoff is between the risk of overstocking (forcing disposal below the unit
purchasing cost) and the risk of understocking (losing the opportunity of making a profit).
The newsboy model is often used to aid decision making in the fashion and the sporting
goods industries, both at the manufacturing and at the retail level. In most cases, the
distributional information of the demand is very limited. Sometimes all that is available is
an educated guess of the mean and of the variance. There is a tendency to use the normal
distribution under these conditions. However, the normal distribution does not provide the
best protection against the occurrence of other distributions with the same mean and the
same variance.

In 1958 Scarf [8] addressed the newsboy problem where only the mean p and the variance
o? of demand are known without any further assumptions about the form of the distribution
of demand. Taking a conservative approach, he modeled the problem as that of finding the
order quantity that maximizes the expected profit against the worst possible distribution

2. He showed through a beautiful, but lengthy,

of demand with mean p and variance o
mathematical argument that the worst distribution of demand has positive mass at two
points and used this result to obtain a closed form expression for the optimal order quantity.
Unfortunately, Scarf’s ordering rule is not well known as is evidenced by its absence in
modern OM/OR textbooks [2], [3], [4], [5], [6], [9], [11].

The purpose of this paper is twofold. The first, is to disseminate Scarf’s ordering rule;
the second, is extend Scarf’s ideas in several directions. The rest of this section is related
to these goals and to the organization of the paper.

We feel that Scarf’s ordering rule is of practical value because it is optimal under limited
information, it is easy to use, and as we shall see, it is very robust. Moreover, Scarf’s rule

provides us with an intuitive explanation of when it is profitable (in expectation) to order

more (resp., less) than the expected demand.



Our presentation differs from Scarf’s in the choice of the parameters and in the method
of proof. We think that our choice of parameters makes Scarf’s ordering rule easier to
understand and easier to remember. Based on a simple observation relating the positive
part of a number to its absolute value, we considerably simplify the proof of Scarf’s rule.
We also present, in closed form, an extremely simple lower bound on the expected profit
with respect to all possible distributions of demand. This lower bound is of interest because
it indicates how the parameters influence expected profits, in the worst case.

We extend Scarf’s ideas to the recourse case, where there is a second purchasing op-
portunity after observing the demand; to the case of random yields, and to the multi-item
case, where multiple items compete for a scarce resource.

The rest of this paper is organized as follows. In Section 2 we introduce notation, derive
Scarf’s ordering rule and provide some numerical examples. The recourse case is handled
in Section 3. The multi-item case is studied in Section 4, and our conclusions are presented

in Section 5.
2 Basic Results

The data for the problem are:

¢ > 0, the unit cost,

p=c¢(1+m) > ¢, the unit selling price,
s = (1 —=d)ec < ¢, the unit salvage value,
1, the expected demand,

o, the standard deviation of demand,

Q), the order quantity.

Note that the markup m and the discount d are positive parameters that indicate the return
(resp., loss) per dollar on units sold (resp., unsold). Let D denote the random demand. We
make no assumption on the distribution G of D other than saying that it belongs to the
class G of cumulative distribution functions with mean p and variance 2. In what follows

we let 7 = max{x,0}.



The expected profit can be written as
©(Q) = pEmin(Q, D) + sE(Q — D) — cQ,

since min(Q, D) units are sold, (Q—D)™ are salvaged, and @ units are purchased. Observing
that

min(Q, D) =D — (D - Q)7,

and that
@Q-D)*=@Q-D)+(D-Q),

we can write the expected profits as

or, using the definition of m and d, as
Q) = c{(m +d)p—dQ - (m+d)E(D - Q)"}. (1)
Evidently, maximizing 7¢(Q) is equivalent to minimizing
dQ + (m+d)E(D - Q)", (2)

so we concentrate on the latter problem.
Since the distribution G of D is unknown we want to minimize (2) against the worst

possible distribution in G. To this end, we need the following two lemmas.

Lemma 1
po- g < VTT@ @0 )
Proof: Notice that
g -I2-Q -

The result follows by taking expectations and by using the Cauchy-Schwarz inequality
EID-Q| < VED-Q)*=o?+(Q — n)*. 0.

Lemma 2 For every Q, there exists a distribution G* € G where the bound (3) is tight.



Proof: For every (), consider the two point cumulative distribution G* assigning weight

VR (@Q@—p)?+ (Q—p)

’ 2V0? + (Q — p)?
to
1—

p—o Tﬁ = Q— o2+ (Q—p)?

and weight
g = Y@ - (Q-p)
2y/0%+(Q — p)?

to

u+o\/1i = Q+4/o? +(Q—p)

-

Clearly (3) holds with equality and it is easy to verify that G* € G. 0.

Lemmas 1 and 2 originally appeared in Gallego [1] where it was also shown that the
distribution achieving the bound (3) is unique. The compact proof of Lemma 1 is new.

Combining (2) and (3), our problem is now to minimize the upper bound

dQ+(m+d)VUQJF(Q_;L)?_(Q_N)' (4)

It is easy to verify that (4) is strictly convex in (). Upon setting the derivative to zero and

solving for () we obtain Scarf’s ordering rule:

o m d
QS_M—I—E(\/;—\/;). (5)

Thus (5) minimizes (4), and consequently maximizes (1) against the worst possible
distribution of demand. It is worth observing that the order quantity is independent of
the unit cost ¢. This is because the expected profit (1) is homogeneous of degree 1 on the
unit cost. Also notice that (5) calls for an order larger (resp., smaller) than the expected
demand if and only if the ratio m/d > 1 (resp., m/d < 1). Consequently, in the typical
formulation where the salvage value is zero (d = 1), the optimal order size is larger (resp.,
smaller) than the expected demand if and only if the markup is larger (resp., smaller) than

one.



Substituting (3) and then (5) into (1) we obtain, for all G € G, the following lower

bound on the optimal expected profit

Q%) > emp [1—% % . (6)

Noting that empy is the maximum profit when demand is deterministic, we can regard

%\/% as the maximal fractional cost of randomness. Note also that if we were to order u

units, then the expected profit would be at least empu [1 — "5;‘;#%} . So if the fraction ’g—;d%
is small then no great loss is incurred by simply ordering p units, i.e., by ordering as if the
problem were deterministic.

Remark 1: The lower bound is linearly increasing (resp., decreasing) in u (resp., o) and
increasing (resp., decreasing) convex in the markup (resp., the discount) m (resp., d).
Remark 2: The lower bound is achieved by the distribution G* exhibited in Lemma 2
with @ replaced by Q°. This distribution has weight m/(m +d) at u — o\/d/m and weight
d/(m+d) at u+ oy/m/d.

We normally expect demand to be a non-negative random variable. In this case, an
order of size zero leads to an expected profit equal to zero. This is a consequence of the
fact that for non-negative random variables ED' = pu. Thus, we prefer to order zero units
whenever ordering may lead to an expected loss in the worst case, i.e., to a negative value
in the right side of (6). This happens if m/d < (o/p)%. In this case, the ordering rule is
modified to order QS =Q%if

mid > (0/p)? (7)

holds, and to order QS = 0 otherwise.
To see that this rule is in fact optimal note that the two point distribution exhibited in

Lemma 2 is non-negative for

2 2
Q> M7
24
Over the interval
2 2
0< Q< ?
24



the worst distribution of demand is the one exhibited in Lemma 2 for

Over this interval, and under this two point distribution, (2) is linear in Q. If condition (7)
holds, the slope is negative, so by convexity Q% = Q°. Conversely, if condition (7) fails to
hold the slope in (2) is positive, so the minimum of (2) is attained at Q5 = 0.

In the presence of the modification, the lower bound on the expected profit is given by
the positive part of the right side of (6).

The above subsumes Scarf’s results. The reader should contrast (5) with Scarf’s original

formula:
o 1—2a

AWy

where a = (¢ — s)/(p — s).
So far we have ignored the constraint Q > 0. We would like to show that if condition
(7) is satisfied then @° > 0. We will show slightly more. To this end let Q¢ be the optimal

order quantity when the distribution of demand is G € G.
Proposition 3 If (7) holds, then 7¢(Q%) > 0 and Q€ > 0 for all G € G.
Proof: If condition (7) holds then

4Q%) > 7%(Q°%) > emp—covVmd > 0.

So
74Q) = e{(m + djp—dQ% — (m + HED - Q%)*} > 0.
Assume for a contradiction that Q¥ < 0; then, using the fact that
E(D-Q%)" = E(D-Q%) =pn-Q°,

we see that

0 < 7(Q%) < e{(m~+du—dQ% — (m+d)(un—Q)} = emQ% < 0.



If we use the order quantity Q° instead of Q©, the expected loss is equal to
Q%) — 7(Q%).

This is the largest amount that we would be willing to pay for the knowledge of G. This
quantity can be regarded as the expected value of additional information (EVAI).

Example 1. This problem is taken from Silver and Peterson [9]. The unit cost is
$35.10, the unit selling price is $50.30, and the unit salvage value is $25.00. The mean
and standard deviation of the demand are 900 and 122, respectively. We compare the
performance of Q° with QY where N € G represents the normal distribution. The results

are (normal in parenthesis) Q% ~ 925 (931) and a worst case expected profit of $12,168
($12,488). The EVAI (calculated with the exact values of Q% and QV) is

N(QN) — 7V (Q%) = $12,488.13 — $12, 486.66 = $1.47

a.
Example 2. The unit cost is $40, the unit selling price is $60, and there is no salvage
value. The mean and standard deviation of the demand are 300 and 200, respectively.

Again, we compare the performance of Q° with Q. The results are (normal in parenthesis)

Q° ~ 229 (214) and a worst case expected profit of $343 ($1,636). The EVATI is
™V (QY) — 7V (Q”) = $1,636.80 — $1,623.67 = $13.13.

a.

For the normal distribution, N € G, we have found through tabulations that |QV —Q°| <
0.09750 over the set of problems with 1/9 < m/d < 9. So, for most practical problems where
the normal distribution is used, the difference between Scarf’s ordering quantity and Q¥ is

no more than 10%o. In fact, we have found through tabulations that
™ (QN) — 7V (Q%) < 0.0036¢ovmd,

over the set of problems with 1/9 < m/d < 9. Most real life problems will satisfy condition

(7), so over those set of problems the guarantee is

™ (QN) — 7N (Q%) < 0.0036cmypu,



hence using Q° when the demand is normal will result in a loss no larger than 0.36% of the

deterministic profit.

3 The Recourse Case

In certain problems, we may have the recourse of placing a second order to satisfy the part
of the demand not covered by the first order. Thus, if after ordering () units we observe D
and find that D > @, an additional order is placed for D — @ units. Let ¢/ = ¢(1+e¢) denote
the unit cost for items ordered after observing the demand. We assume that 0 < e < m
because the solution to the other cases are trivial. Indeed, if e < 0 then the first order
should be of size zero since the items can be purchased after the demand is known at a unit
cost not higher than c¢.. On the other hand, if e > m then the second order should be of
size zero since the unit cost ¢ is at least as large as the unit selling price p.

It is clear that under our assumption all the demand will be met. Thus the expected

profit, is given by
Q) =pu+sE (Q— D) —cQ—E (D-Q)".

Using again the fact that (Q — D)™ = (Q — D) + (D — Q)" and the definition of m, d and

e we can write the expected profit as

79(Q) = c{(m+d)u—dQ — (e + d)E (D — Q) "} (8)

Note that the only difference between (1) and (14) is that e appears instead of m in the
part involving E (D — Q). This is intuitively correct since (1) and (14) must agree when
e = m. This is because if e = m there is no economic incentive to purchase units after
observing the demand.

Our goal, as before, is to maximize the expected profit against the worst possible distri-
bution of D. Solving this problem determines what part of the demand should be purchased
to stock at unit cost ¢ and what part should be purchased to order at unit cost ¢’. Using
inequality (3) in (14) and following the logic of Section 2, we find that the optimal size of

the initial order is given by (5) with e replacing m. Since e < m the size of the first order is



smaller when there is a second purchasing opportunity. The lower bound on the expected

profit is given by

Proposition 4

Q%) > ¢ (m,u - U\/a) . 9)

Note that (15) is strictly larger than (6) so the lower bound on the expected profit is
larger when there is a second purchasing opportunity.

If demand is known to be non-negative, an initial order of size zero, followed by an order
equal to the demand, leads to a positive expected profit equal to ¢(m — e)u. Thus, the first
order should be of size zero unless the expected profit (15) is larger than c¢(m — e)u. This
happens when (7) holds with e replacing m.

To summarize, in the recourse case with non-negative demand, the optimal size of the
initial order is Q° = p+ % (\/g = \/g) if
e/d > (o/n)*

holds and QS = 0 otherwise.
The size of the second order is, of course, (D — @Q°)*. By Proposition 3 the condition
e/d > (o/p)? implies that Q% > 0 and 7% (Q%) > ¢(m — e)u for all G € G.

Note that m does not enter into the formula of the optimal order size but enters in the
lower bound (15).
Example 3. The data is as in Example 1. We assume that the items can be purchased after
observing the demand at $40 per unit. The results are (normal in parenthesis) Q° ~ 855

(845) and a worst case expected profit of $12,820 ($13,019). The EVAI is
N N _
7N (845) — 7 (855) ~ $13,019 — $13,017 = $2.

0.
Example 4. The data is as in Example 2. We assume that the items can be purchased after

observing the demand at $50 per unit. The results are (normal in parenthesis) Q° ~ 150

(132) and a worst case expected profit of $2,000 ($3,188). The EVAI is

™ (132) — 7V (150) ~ $3,200 — $3, 188 = $12.



4 The Multi-product Case

Consider now a multi-item problem in the presence of a budget constraint. This is typically
the problem faced at the time when purchasing or production decisions are made in the
fashion and the sporting goods industries where the purchasing manager must allocate
his budget among competing items. Note that in the case of production, there may be a
capacity constraint rather than a budget constraint. See Silver and Peterson [9] for the
description of this problem. This problem is sometimes called as a stochastic product mix
problem (Johnson and Montgomery [6]).

Let ¢;, p;i = ¢;(14+m;), and s; = ¢;(1—d;) be the unit cost, the unit selling price, and the
unit salvage value where m; and d; denote the markup and the discount on item ¢ =1, ..., n.
Let p; and 02 denote the mean and the variance of the demand for item i = 1, ..., n. Suppose
that the cost of purchasing all the items cannot exceed a predetermined budget of B dollars.
We want to find the order quantities that maximize the expected profit against the worst
possible distribution of demand without exceeding the budget constraint. The problem can

be formulated as follows:

[\/%2 +(Qi — pi)? — (Qi — i)

i i diQi + (m; + d;
er’l}.l’%N ; ¢ Qi+ (m ) 2
N
s.t. Z CZ‘QZ' S B (10)
=1

Dualizing the budget constraint and letting A denote the dual variable we see that the

solution is of the form:

o; m; — A d; + A\ . m;—\_ o?
i(A) =pi+ = - £ ; 1l
Qi) M+2<\/di+)\ \/mi—)\> Yo TR 1

and 0 otherwise.

The problem is to find the smallest nonnegative A such that Q;()) satisfies (20). The

following algorithm is essentially a line search to find the optimal value of .

10



Algorithm

(Step 1) Check if Q;(0) (A = 0) satisfies the budget constraint (16). If it satisfies the
constraint, the solution is optimal, stop. Else go to Step 2.

(Step 2) Start from an arbitrary A > 0, set € > 0.

(Step 3) If ZL:;)? > Z—:;, set Q;(A) as in (12). Else set Q;(A) = 0.
(Step 4) If ", ¢;Qi()\) < B — ¢, decrease \ and go to Step 3.

If Zi]\il ci@Q? > B + ¢, increase A and go to Step 3.

If —e <N Q) — B <e, stop.
FEzxample 5. Consider the problem of a merchandise manager for a department store who
must purchase items for a special sale. He is considering 4 different items for stock,
but is not certain of the sales potential for any item. In establishing his inventory lev-
els prior to the start of the sale, he cannot exceed his budget of $80,000. The sale is
of short duration, so there is no opportunity to reorder. The relevant data are as fol-
lows: ¢ = (35.1,25.0,28.0,4.8),p = (50.3,40.0,32.0,6.1),s = (25.0,12.5,15.1,2.0), 0 =
(900, 800, 1200, 2300), o = (122,200, 170, 200).
Using the algorithm, the optimal order quantities are (normal in parenthesis) 881 (871),
772 (758), 698 (734), and 2123 (2094). The optimal Lagrangian value is 0.127 (0.141). The
worst case expected profit is $26,391 ($27,641). The value of the distributional information

when demand is normally distributed is

7N (871,758,734, 2094) — 7™ (881, 772, 698, 2123) ~ $27, 641 — $27, 333 = $308.

5 Conclusions

We have presented a new, compact proof of the optimality of Scarf’s ordering rule; we have
also studied the robustness of this rule and extended Scarf’s approach in several directions.
We hope that this paper will help disseminate Scarf’s ordering rule and that it will stimulate

new research on robust inventory policies. An interesting extension of this paper would be

11



to study (s, S) policies over an infinite horizion where only the mean and the variance of

the demand are known.
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