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Sampling from Finite Populations
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1 Sampling

Sampling surveys are used to obtain information about a large population by examining only a small
fraction of that population. Examples: Census surveys, agricultural survesy, political surveys. In
random sampling each member of the population has a specified probability of being included in the
sample and the actual composition of the sample is random.

Advantages:

Guard against biass

Less costly than complete enumeration

May be more accurate than complete count

Can calulate error estimates

Can control size of error by selecting sample size

Population Parameters:
Let x; be numerical value of interested associated with the ith member of the population i =

Definition. A choice of a subset of size n from a larger set of size N is called a simple random
sample if each of the N choose n possible subsets of size n taken without replacement is equally
likely to be selected.

Example: Suppose N =4 and n = 2 then a simple random sample of size 2 consists of selecting
one of the six subsets of size 2: {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4} where each of the subsets
has equal probability of being selected, i.e., 1/6.

1.1 How to do random sampling

Naive way: List all K subsets of size n from the set of N elelments. Generarte a uniform [0, 1]
random number and select the ith sample if U € (i — 1/K,4/K]. This is a lot of work: For N = 393
and n = 16 we have K > 1033,
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Better way: Let I = 1 if the kth member is selected and 0 otherwise. Let us compute the
conditional distribution of I, given Iy,...,I;_1, First P(I; = 1) = n/N, now P(I; = 1|I; =0) =
n/(N—1)and P(Is =1/ =1) = (n—1)/(N — 1). Notice that

P(I,=1) = P(I,=111=0P(1=0)+P(l,=1LH=1)P(I; =1)
n anJrnflﬁ
N N—-1N

N -1
n

N
More generally,

n—zj;l Ik,
P(I; =1L,....I;1) = ?f—lj’

and
n
N

Let Uy, Us, ... be a sequence of independent uniform [0,1] random variables. And let I; =1

j—1
if Uy < n/N and in general let I; = 1 if U; < n;\fz}rlfjjk and I; = 0 otherwise. Stop when
I1 +I2—|—+IJ =nN.

Example: Let n =2 and N = 4. Then U; = 0.0051 < 2/4 so I; = 1 and item one is included in
the sample. Next Us = 0.3561 > 1/3 so item 2 is not included in the sample. Next Us = 0.455 < 1/2
so item 3 is included in the sample and we are done.

1.2 Estimating the Population Parameters

Since the composition of the sample is random, the sample mean is random. An analysis of the accu-
racy with which the sample mean approximates the population mean must therefore be probabilistic
in nature.

Assume a simple random sample of size n < N is drawn from the population. We will denote
the values of the sample members by X1, Xs, ..., X,,. In particular, X; is not the same as x;: X; is
the numerical value of the ith member of the sample, which is random and z; is the ith member of
the population which is fixed.

We will consider the sample mean

i—1
as an estimate of the population mean, and
T=NX
as an estimate of the population total.
1.3 The distribution of X;
Denote the distinct values of the population by yi,...,%, and denote the number of population
members that have the value y; by n;,7 = 1,...,m. Then X; is a discrete random variable with

probability mass function
P(Xz :y]) :n]/N, j: 1,,’/71

Then

EXi] = > wymi/N
=1
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Similarly,

Var[X;] = E[X?] - E[X))?

m
= Y ying/N -
=1

= 0’27

where we have use the fact that Zf\il x; =1y

We are now ready to compute the mean of X.
- 1
EX]=- = U.
[X] =~ ; np = p

Also, B
E[NX]=Nup=r.

Notice, however, that X;’s are NOT independent! Notice that if X; takes a large value then
X; j # i will take on average a smaller number, so X; and X; are negatively correlated. Remember
we are sampling without replacement.

Var[X] = % z”: En:Cov(Xi,Xj)

i=1 j=1
We already know that Cov(X;, X;) = o2 and it should be clear that Cov(X;, X;) should be a
constant, say ¢ independent of ¢ and j. Thus,

Var[X] = %[mf2 + (n? — n)d

It turns out that ¢ = —0?/(N — 1). The derivation of this is fairly tedious so we just state it as
a fact, although you may want to prove this for yourself. We now have

2 nN—-1 n N-1
The second term is less than one, and is known as the finite popilation correction. If we ignore the

fpc we are overestimating the variance of X.
Notice that

02 —n 02 n —
Var[X] = ni[nf(n2fn)/(Nfl)]o2 _ o Nzn o (1 1).

Var[T] = N*Var(X).

1.4 Estimating o2

Without the finite population correction, we know that

Ly X; - X)?

n—1 Z( i—%)
i—1

is an unbiased estiamtor of o2. With finite sampling, however, we obtain

%=

E[S?%] = o?

N-1

SO %52 is an unbiased estimator of 2.
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1.5 Estimating Var[X]

Well 2
- o -n
X]=— .
Var[X] N1
An an unbiased estimate of Var[X] is obtained by simply multiplying %S 2 by %%:Tf to obtain
N —nS§?
5% = —
X N n

To sumarize, we know that the mean and the variance of X and we know how to estimate Var[X].
A version of the CLT shows that if n is large, but small relative to N, then X is approximatetly
2 —
normal with mean p and variance 2~ %:7{, so the probability that p lies within X i_z(a /2)ox is
approximately 100(1 — «)%. Similarly, a 100(1 — a)% confidence interval on T'= N X is given by
NX + z(a/2)No k.

1.6 Ratio Estimates

Let N be the population size and let z; j =1,...,N and y; j = 1,..., N denote two measurable
characteristics of the population. For example z; can denote the book value of inventory of item %
while y; may denote the actual value of the inventory of item j. Suppose we know the x;’s but do
not know the y;’s.

Suppose we want to estimate the total value of all the items 7, = E;VZI y;. Without a sample

an estimate of 7, would be the estimate would be 7, = Ny, = Zjvzl x; the total book value of the
items in the population.
On the other hand, if a sample of size n is taken an estimate of 7, that ignores book values is

_ 1 <
NY = N- Y;
where Y; is the actual value of the i¢th item in the sample.

It may be that the x;’s are highly correlated with the y;’s. In this case we may want to use the
information on book values to estimate 7,. One way to do this is by using the estimate

Ha v Y
Be NV — Nyy= = NugR,
X Hog = VK

where R =Y/ X.

You can think of Nu,R = 7, R in two ways. First, you may think of R as providing you with
an estimate of the actual to book value ratio of the inventory, and correcting the estimate 7, by
the ratio R. Alternatively, you can think of £ as a correction to the estimate N Y. Notice that if
the sample happens to contain low values items then NY will underestimate 5 Yi» but the factor
pz/X > 1 will partially correct this. On the other hand, if the sample happens to contain large
values items then NY will overestimate Zj yj, but the factor yu,/ X < 1 will partially correct this.

Question: How does the two estimators Ny, R and NY of Y i Yi compare?

Most people judge estimators by their mean square errors. If the estimator Z is used to estimate
2 then the mean square error is E[(Z — 2)?]. If E[Z] = z we say that the estimator is unbiased and
the mean square error reduces to the variance of Z. More generally, if E[Z] = p and Var[Z] = o2
we have

El(Z - 2)%] = 0 + (u— 2)".

The second term p — z is called the bias of the estimator.
It turns out that if X and Y are highly correlated the MSE of Ny, R can be much smaller than
the MSE of NY although 7, R is typically a biased estimator of 7,,.
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Let r = % and
Y
R=—=.
X
We need to compute the mean and the variance of R. The approximate variance of R is given by
I1IN—-n1

Var|R)

:EN71M—2(7"203+05—27"0W).

Unfortunately, we may not know the values of 02, 0% and oxy. In this case, we may estimate
them, respectively, by

S%{ = nflz(Xl_X)27

1

i=1
N
2 v\ 2

and

N
1 _ _
=-— Y (X - XYY
SXY n71i=1< i )( i )7

obtaining an estimate of Var[R):

9 I1N—-—-n1
SR:_ -

N 1% (R25§( + 8%/ —2Rsxy).

An approximate 100(1 — )% confidence interval for r is

R+ z(a/2)sg.
Going back to our case, where we do know p,, we can use instead

IN—-n1

ﬁN—llui

Then an approximate 100(1 — a)% confidence interval for p, is

2, =

(R2S§( + S%/ — 2R8Xy).

poR £ 2(/2) g SR
Finally, an approximate 100(1 — a)% confidence interval for 7, is
TR+ 2(a/2)7,8R.
For the hospital data discussed in class, the 95% confidence interval for the total number of

discharges based on NY was (302752,430146) and had a width equal to 127,394. On the other
hand, the 95% confidence interval based on 7, R was (293681, 335790) and had a widt of 42,108.



