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We study firms that sell multiple differentiated substitutable products and customers whose purchase

behavior follows a Nested Logit model, of which the Multinomial Logit model is a special case. Customers

make purchasing decision sequentially under the Nested Logit model: they first select a nest of products and

subsequently purchase a product within the selected nest. We consider the general Nested Logit model with

product-differentiated price sensitivities and general nest coefficients. The problem is to price the products

to maximize the expected total profit. We show that the adjusted markup, defined as price minus cost minus

the reciprocal of price sensitivity, is constant for all products within a nest at optimality. This reduces the

problem’s dimension to a single variable per nest. We also show that each nest has an adjusted nest-level

markup that is nest invariant, which further reduces the problem to a single variable optimization of a

continuous function over a bounded interval. We provide conditions for this function to be uni-modal. We

also use this result to simplify the oligopolistic multi-product price competition and characterize the Nash

equilibrium. Furthermore, we extend to more general attraction functions including the linear utility and the

multiplicative competitive interaction model, and show that the same technique can significantly simplify

the multi-product pricing problems under the Nested Attraction model.

Key words : multi-product pricing; Attraction model; Nested Logit model; Multinomial Logit model;

product-differentiated price sensitivity; substitutable products

History : first version in December 2011; this version on August 1, 2013

1. Introduction

Firms offering a menu of differentiated substitutable products face the problem of pricing them

to maximize profits. This becomes more complicated with rapid technology development as new

products are constantly introduced into the market and typically have a short life cycle. In this
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paper we are concerned with the problem of maximizing expected profits when customers follow

a nested choice model where they first select a nest of products and then a product within the

nest. The selection of nests and products depend on brand, product features, quality and price.

The Nested Logit (NL) model and its special case the Multinomial Logit (MNL) model are among

the most popular models to study purchase behavior of customers who face multiple substitutable

products. The main contribution of this paper is to find very efficient solutions for a very general

class of NL models and to explore the implications for oligopolistic competition and dynamic

pricing.

The MNL model has received significant attention by researchers from economics, marketing,

transportation science and operations management, and has motivated tremendous theoretical

research and empirical validations in a large range of applications since it was first proposed by

McFadden (1974), who was later awarded the 2000 Nobel Prize in Economics. The MNL model has

been derived from an underlying random utility model, which is based on a probabilistic model of

individual customer utility. Probabilistic choice can model customers with inherently unpredictable

behavior that shows probabilistic tendency to prefer one alternative to another. When there is a

random component in a customer’ utility or a firm has only probabilistic information on the utility

function of any given customer, the MNL model describes customers’ purchase behavior very well.

The MNL model has been widely used as a model of customer choice, but it severely restricts

the correlation patterns among choice alternatives and may behave badly under certain conditions

(Williams and Ortuzar 1982), in particular when alternatives are correlated. This restrictive prop-

erty is known as the independence of irrelevant alternatives (IIA) property (see Luce 1959). If the

choice set contains alternatives that can be grouped such that alternatives within a group are more

similar than alternatives outside the group, the MNL model is not realistic because adding new

alternative reduces the probability of choosing similar alternatives more than dissimilar alterna-

tives. This is often explained with the famous “red-bus/blue-bus” paradox (see Debreu 1952).

The NL model has been developed to relax the assumption of independence between all the

alternatives, modeling the “similarity” between “nested” alternatives through correlation on utility

components, thus allowing differential substitution patterns within and between nests. The NL

model has become very useful on contexts where certain options are more similar than others,

although the model lacks computational and theoretical simplicity. Williams (1977) first formulated

the NL model and introduced structural conditions associated with its inclusive value parameters,

which are necessary for the compatibility of the NL model with utility maximizing theory. He

formally derived the NL model as a descriptive behavioral model completely coherent with basic
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micro-economic concepts. McFadden (1980) generated the NL model as a particular case of the

generalized extreme value (GEV) discrete-choice model family and showed that it is numerically

equivalent to Williams (1977). The NL model can also be derived from Gumbel marginal functions.

Later on, Daganzo and Kusnic (1993) pointed out that although the conditional probability may

be derived from a logit form, it is not necessary that the conditional error distribution be Gum-

bel. To keep consistent with micro-economic concepts, like random utility maximization, certain

restrictions on model parameters that control the correlation among unobserved attributes have

to be satisfied. One of the restrictions is that nest coefficients are required to lie within the unit

interval.

Multi-product price optimization under the NL model and the MNL model has been the subject

of active research since the models were first developed. Hanson and Martin (1996) show that

the profit function of multiple differentiated substitutable products under the MNL model is not

jointly concave with respect to the price vector. While the objective function is not concave in

prices, it turns out to be concave with respect to the market share vector, which is in one-to-one

correspondence with the price vector. To the best of our knowledge, this result is first established

by Song and Xue (2007) and Dong et al. (2009) in the MNL model and by Li and Huh (2011)

in the NL model. In all of their models, the price-sensitivity parameters are assumed identical for

all the products within a nest and the nest coefficients are restricted to be in the unit interval.

Empirical studies have shown that the product-differentiated price sensitivity may vary widely and

the importance of allowing different price sensitivities in the MNL model (see Berry et al. 1995

and Erdem et al. 2002) has been recognized. Borsch-Supan (1990) points out that the restriction

for nest coefficients in the unit interval leads too often rejection of the NL model. Unfortunately,

the concavity with respect to the market share vector is lost when price-sensitivity parameters are

product-differentiated or nest coefficients are greater than one as shown through an example in

Appendix A.

Under the MNL model with identical price-sensitivity parameters, it has been observed that the

markup, defined as price minus cost, is constant across all the products of the firm at optimality

(see Anderson and de Palma 1992, Aydin and Ryan 2000, Hopp and Xu 2005 and Gallego and

Stefanescu 2011). The profit function is uni-modal and its unique optimal solution can be found

by solving the first order conditions (see Aydin and Porteus 2008, Akcay et al. 2010 and Gallego

and Stefanescu 2011). In this paper, we consider the general NL model with product-differentiated

price-sensitivity parameters and general nest coefficients. We show that the adjusted markup, which

is defined as price minus cost minus the reciprocal of the price sensitivity, is constant across
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all the products in each nest at optimal (locally or globally) prices. When optimizing multiple

nests of products, the adjusted nest-level markup, which is an adjusted average markup for all the

products in the same nest, is also constant for each nest. By using this result, the multi-product

and the multi-nest optimizations can be reduced to a single-dimensional problem of maximizing

a continuous function over a bounded interval. We also provide mild conditions under which the

single-dimensional problem is uni-modal, further simplifying the problem.

In a game-theoretic decentralized framework, the existence and uniqueness of a pure Nash equi-

librium in a price competition model depend fundamentally on the demand functions as well as

the cost structure. Milgrom and Roberts (1990) identify a rich class of demand functions, including

the MNL model, and point out that the price competition game is supermodular, which guarantees

the existence of a pure Nash equilibrium. Bernstein and Federgruen (2004) and Federgruen and

Yang (2009) extend this result for a generalization of the MNL model referred to as the attraction

model. Gallego et al. (2006) provide sufficient conditions for the existence and uniqueness of a

Nash equilibrium under the cost structure that is increasing convex in the sale volume. Liu (2006),

Cachon and Kok (2007) and Kok and Xu (2011) consider the NL model with identical price sensi-

tivities for the products of the same firm and have characterized the Nash equilibrium. Moreover,

Li and Huh (2011) study the same model with nest coefficients restricted in the unit interval and

derive the unique equilibrium in a closed-form expression involving the Lambert W function (see

Corless et al. 1996). In all these models, the price-sensitivity parameters for the products of the

same firm are assumed identical. This paper considers competition under the general NL model

and shows that the multi-product price competition is equivalent to a log-supermodular game in

a single-dimensional strategy space.

The remainder of this paper is organized as follows. In Section 2, we consider the general Nested

Logit model and show that the adjusted markup is constant across all the products of a nest.

Moreover, the adjusted nest-level markup is also constant for each nest in a multi-nest optimization

problem. In Section 3, we investigate the oligopolistic price competition problem, where each firm

controls a nest of substitutable products. A Nash equilibrium exists for the general NL model

and sufficient conditions for the uniqueness of the equilibrium are also provided. In Section 4, we

consider an extension to other Nested Attraction models and conclude with a summary of our main

results and useful management insights for application in business.

2. Price Optimization under the Nested Logit Model

Suppose that the products in consideration are substitutable, and they constitute n nests and nest

i has mi products. Customers’ product selection behavior follows the NL model: they first select
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a nest and then choose a product within their selected nest. Let Qi(p) be the probability that a

customer selects nest i at the upper stage; and let qj|i(pi) denote the probability that product j

of nest i is selected at the lower stage, given that the customer selects nest i at the upper stage,

where pi = (pi1, pi2, . . . , pimi
) is the price vector for the products in nest i, and p = (p1, . . . ,pn) is

the price matrix for all the products in the n nests. Following Williams (1977), McFadden (1980)

and Greene (2007), Qi(p) and qj|i(pi) are defined as follows:

Qi(p) =

(
ai(pi)

)γi

1 +
∑n

l=1

(
al(pl)

)γl
, (1)

qj|i(pi) =
eαij−βijpij

∑mi
s=1

eαis−βispis
, (2)

where αis can be interpreted as the “quality” of product s in nest i, βis ≥ 0 is the product-

differentiated price sensitivity, al(pl) =
∑ml

s=1
eαls−βlspls represents the attractiveness of nest l

(Anderson et al. 1992 show that the expected value of the maximum utility among all the products

in nest l is equal to log(al(pl))), and nest coefficient γi can be viewed as the degree of inter-nest

heterogeneity. When 0 < γi < 1, products are more similar within nest i than cross nests; when

γi = 1, products in nest i have the same degree of similarity as products in other nests, and the

NL model degenerates to the standard MNL model; when γi > 1, products are more similar to the

ones in other nests. The probability that a customer will select product j of nest i is equal to

πij(p) = Qi(p) · qj|i(pi). (3)

Apparently,
∑mi

j=1
qj|i(pi) = 1 and

∑mi
j=1

πij(p) = Qi(p).

Without loss of generality, assume that the market size is normalized to 1. For the NL model,

the monopolist’s problem is to determine prices for all the products to maximize the expected total

profit R(p), which is expressed as follows

R(p) =
n∑

i=1

mi∑

j=1

(pij − cij)πij(p). (4)

The profit function R(p) is high-dimensional and is hard directly to optimize. Hanson and

Martin (1996) provide an example showing that R(p) is not quasi-concave in p even under the

MNL model, so other researchers, including Song and Xue (2007), Dong et al. (2009), take another

approach. They express the profit as a function of the market-share vector and show that it is

jointly concave with respect to market shares. Li and Huh (2011) extend to the NL model with

nest coefficient γi ≤ 1 and identical price-sensitivity parameters within each firm (may different

across firms). However, the profit function may not be jointly concave when the price sensitivities
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are allowed to be product-differentiated, as we do in this paper, within each nest. Appendix A

analyzes the problem and shows that the objective function fails to be jointly concave with respect

to the market shares through an example. We will next take a different approach to consider the

multi-product pricing problem under the general NL model.

Although the markup is no longer constant for the NL model with product-differentiated price-

sensitivity parameters, we can obtain a similar result, which is crucial in simplifying the high-

dimensional pricing problem.

Theorem 1 The adjusted markup, defined as price minus cost minus the reciprocal of price sen-

sitivity, is constant at optimality for all the products in each given nest.

Aydin and Ryan (2000), Hopp and Xu (2005) and Gallego and Stefanescu (2011) observe that

the markup, defined as price minus cost, is constant for all the products under the standard MNL

model with identical price-sensitivity parameters. Li and Huh (2011) extend it to the NL model

but the price sensitivities are still identical for all the products within the same nest although they

may be different across nests.

Let θi denote the constant adjusted markup for all products in nest i, i.e.,

θi = pij − cij − 1/βij. (5)

For the sake of notation simplicity, let Qi(θ) be the probability that a customer selects nest i at the

upper stage, where θ is the vector of adjusted markups for all the nests, i.e., θ = (θ1, . . . , θn); and

let qj|i(θi) denote the probability that product j of nest i is selected at the lower stage, given that

the customer selects nest i at the upper stage, where the prices in each nest satisfy the constant

adjusted markup as shown in equation (5). Plugging equation (5) into the probabilities defined in

equations (1) and (2) results in

Qi(θ) =

(
ai(θi)

)γi

1 +
∑n

l=1

(
al(θl)

)γl
,

qj|i(θi) =
eeαij−βijθi

∑mi
s=1

eeαis−βisθi
,

where al(θl) =
∑ml

s=1
eeαls−βlsθl and α̃ls = αls −βlscls −1 for each l and s. Then, the total probability

that a customer will select product j of nest i is equal to πij(θ) = Qi(θ) · qj|i(θi).

Note that the average profit of nest i can be expressed by
∑mi

j=1
(θi + 1/βij)qj|i(θi) = θi + wi(θi),

where wi(θi) =
∑mi

j=1
1/βij · qj|i(θi). Then, the total expected profit corresponding to prices such
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that the adjusted markup is equal to θi for all the products in each nest i, can be rewritten as

follows

R(θ) =
n∑

i=1

Qi(θ)
(
θi +wi(θi)

)
. (6)

Then, high-dimensional price optimization problem is equivalent to determining the adjusted

markup for each nest, which significantly reduces the dimension of the search space.

We remark that the optimal adjusted markup θ∗
i does not have to be positive in general, but it

must be strictly positive when the nest coefficient is less than one for nest i (i.e., γi ≤ 1) because

the total profit can also be expressed by θ∗
i +(1−1/γi)wi(θ

∗
i ) as shown below. Consequently, when

γi > 1, it may be optimal to include “loss-leaders” as part of the optimal pricing strategy. More

specifically, it may be optimal to include products with negative adjusted markups or even negative

margins for the purpose of attracting attention to the nest.

Example 1. To demonstrate the “loss-leaders” phenomenon, we construct a simple exam-

ple with a single nest containing two products. The parameters in the NL models are: α =

(0.8122,0.4687), β = (0.0039,0.7637) and γ = 1.4536. The costs are c = (10,10). At the upper stage

of the NL model, the customer chooses an option between “purchase” and “non-purchase”; then

she selects one of the two products if choosing the “purchase” option at the previous stage. The

problem is to determine the prices for the two products to maximize the total profit assuming

customers’ purchase behavior follows the NL model.

By Theorem 1, the two-dimensional problem can be simplified to a single-dimensional problem

of maximizing the total profit with respect to the adjusted markup. It is easy to obtain the unique

optimal adjusted markup θ∗ = −10.2063, which is negative. Then, the optimal prices are p =

θ∗ +c+1/β = (256.2040,1.1031). The total profit is equal to 33.7106. Note that the markup of the

second product is negative, which is surprising at the first glance. In contrast, all the products will

be sold at finite prices with positive margins under the MNL model.

Next, what if we do not offer the second product or equivalently set its price infinite? Consider

the pricing problem only for the first product under the NL model. It is straightforward to find

the optimal price 218.0770, which is lower than its optimal price when the second product is also

offered at a finite price. The profit is 31.6803, which is 6% lower than that of offering the two

products.

If the second product is offered with a negative margin, the attraction of the nest containing the

two product is higher and more customers will select the “purchase” option at the upper stage of

the NL model. If the second product is not offered, the nest attraction is lower and more customers
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will decide not to purchase. Although the second product contributes negative profit, the nest

has higher attraction and more customers will select the “purchase” option at the upper stage. It

results that the market share is higher, the total profit can be higher as well if the additional profit

of the first product outperforms the loss from the sales of the second product. �

We now state our main condition for multi-product price optimization under the general NL

model:

Condition 1 For each nest i, γi ≥ 1 or maxs βis
mins βis

≤ 1

1−γi
.

Both the standard MNL model (γi = 1 for each nest i) and the NL model with identical price-

sensitivity parameters and γi < 1 satisfy Condition 1. When γi > 1, it corresponds to the scenario

where products are more similar cross nests; when 0 < γi < 1, it refers to the case where products

within the same nest are more similar, so the price coefficients of the products in the same nest

should not vary too much and it is reasonable to require maxs βis/mins βis ≤ 1/(1− γi). Condition

1 will be used later to establish important structural results.

We remark that when Condition 1 is satisfied, it requires either γi ≥ 1 or maxs βis/mins βis ≤
1/(1 − γi) for nest i. More specifically, it may happen that γi ≥ 1 for nest i, and γi′ < 1 and

maxs βi′s/mins βi′s ≤ 1/(1− γi′) for another nest i′. Recall that θi + wi(θi) is the average markup

for all the products in nest i, so we call θi +(1−1/γi)wi(θi) the adjusted nest-level markup for nest

i.

Theorem 2 Under Condition 1, the adjusted nest-level markup, defined as θi + (1− 1/γi)wi(θi)

for nest i, is constant for each nest.

Then, the multi-product price optimization problem can be reduced to maximizing R(φ) with

respect to the adjusted nest-level markup φ in a single-dimensional space, i.e.,

R(φ) =
n∑

i=1

Qi(θ)
(
θi +wi(θi)

)
, (7)

where for each nest i the adjusted markup θi is the uniquely determined by

θi +(1− 1/γi)wi(θi) = φ. (8)

Profit R(φ) is an implicit function expressed in terms of θi, as there is a one-to-one mapping

between θi and φ for each i according to equation (8) under Condition 1

∂

∂θi

(
θi +(1− 1/γi)wi(θi)

)
=
(
1− (1− γi)wi(θi)vi(θi)

)
/γi > 0,

where vi(θi) =
∑mi

j=1
βij · qj|i(θi). The inequality holds because wi(θi)vi(θi) ≤ maxs βis/mins βis as

shown in Lemma 1 in the Appendix.
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Corollary 1 Under Condition 1, R(φ) is strictly uni-modal in φ. Moreover, R(φ) takes its maxi-

mum value at its unique fixed point, denoted by φ∗.

Then, the optimal adjusted markup θ∗
i for nest i is the unique corresponding solution to equation

(8). Thus, the optimal price for product j of nest i is equal top∗
ij = θ∗

i + ci +1/βij.

The multi-product price optimization can also be transformed to an optimization problem with

respect to the total market share. Let R(ρ) be the maximum achievable total expected profit given

that the aggregate market share is equal to ρ, i.e.,
∑n

i=1
Qi(p) = ρ.

R(ρ) := max
p

∑n

i=1

∑mi
j=1

(pij − cij)πij(p)

s.t.,
∑n

i=1
Qi(p) = ρ.

(9)

Although in general the total profit is not jointly concave with respect to the market-share

matrix, it has a nice structure in the aggregate market share.

Corollary 2 Under Condition 1, R(ρ) is strictly concave with respect to the aggregate market

share ρ.

If Condition 1 is satisfied, the profit function R(φ) is uni-modal in φ and R(ρ) is concave in ρ, so

the first order condition is sufficient to determine the optimal prices, which can be easily found by

several well known algorithms for uni-modal or concave functions, e.g., the binary search method

and golden section search algorithm; if Condition 1 is not satisfied, R(φ) may not be uni-modal as

illustrated in the following example.

Example 2. Consider the NL model with a single nest containing five products. The

parameters for the NL model are α̃ = (−4.8150,−6.2897,−6.1610,−6.1906,−6.7078), β =

(0.6720,1.1249,1.0247,0.7968,0.0150) and the nest coefficient γ = 0.9150. Note that maxs βis
mins βis

=

1.1249/0.0150 = 74.99 > 1/(1 − γi) = 11.76, which violates Condition 1. By Theorem 1, the five

products should be priced such that the adjusted markup is constant. We use R(θ) to represent the

total profit of the five products corresponding to the adjusted markup θ. Figure 1 clearly shows that

R(θ) is not uni-modal with respect to θ and there are three stationary points in the interval (1,10):

(1.910,0.144765), (2.984,0.144719) and (4.736,0.144779). Observe that the relative difference of

profits is very small: (0.144779−0.144719)/0.144719= 0.04%. This suggests that R(θ) is very flat

at the peak and any solution to the first order condition gives a good approximation. �
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Figure 1 Non-unimodality of R(θ)
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3. Oligopolistic Competition

We will next consider oligopolistic price competition where each firm controls a nest of multiple

products. This is consistent with an NL model where customers first select a brand and then a

product within a brand. The oligopolistic price (Bertrand) competition with multiple products

under the standard MNL model has been widely examined and the existence and uniqueness of

Nash equilibrium have been established (see Gallego et al. 2006, Allon et al. 2011). Liu (2006)

and Li and Huh (2011) have studied price competition under the NL model with identical price

sensitivities for all the products of each firm. However, their approach cannot easily extend to the

general NL model with product-differentiated price sensitivities. To the best of our knowledge, our

paper is the first to study oligopolistic competition with multiple products under the general NL

model with product dependent price-sensitivities and arbitrary nest coefficients.

In the price competition game, the expected profit for firm i is

Game I: Ri(pi,p−i) =

mi∑

k=1

(pik − cik) ·πik(pi,p−i)

where pi is the price vector of firm i, i.e., pi = (pi1, pi2, . . . , pimi
), and p−i is the price vectors for

all other firms except firm i, i.e., p−i = (p1, . . . ,pi−1,pi+1, . . . ,pn).

By Theorem 1, the multi-product pricing problem for each firm can be reduced to a problem

with a single decision variable of the adjusted markup as follows

Game II: Ri(θi, θ−i) = Qi(θ)(θi +wi(θi)).

We remark that Ri(θi, θ−i) is log-separable. Because the profit function Ri(θi, θ−i) is uni-modal

with respect to θi under Condition 1, then it is also quasi-concave in θi because quasi-concavity
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and uni-modality are equivalent in a single-dimensional space. The quasi-concavity can guarantee

the existence of the Nash equilibrium (see, e.g., Nash 1951 and Anderson et al. 1992), but there

are some stronger results without requiring Condition 1 because of the special structure of the NL

model.

Theorem 3 (a) Game I is equivalent to Game II, i.e., they have the same equilibria.

(b) Game II is strictly log-supermodular; the equilibrium set is a nonempty complete lattice and,

therefore, has the componentwise largest and smallest elements, denoted by θ
∗

and θ
∗ respec-

tively. Furthermore, the largest equilibrium θ
∗

is preferred by all the firms.

The multi-product price competition game has been reduced to an equivalent game with a single

adjusted markup for each firm. The existence of Nash equilibrium has been guaranteed and the

largest one is a Pareto improvement among the equilibrium set, preferred by each firm.

To examine the uniqueness of the Nash equilibrium, we will concentrate on Game II, which is

equivalent to Game I by Theorem 3. We first consider a special case: the symmetric game, and

leave the discussion for the general case in the Appendix. Suppose that there are n firms and that

all the parameters (α,β, γ) in the NL model including the cost vector c are the same for each firm

i. Note that the firm index is omitted in this symmetric game but the parameters in the NL model

including costs may be product-dependent within a firm. Some properties about the equilibrium

set can be further derived.

Condition 2 γ ≥ n

n−1
or maxs βs

mins βs
≤ 1

1−n−1
n ·γ

.

We remark that Condition 2 is a bit stronger than Condition 1 and they are closer for larger n

(they coincide when n goes infinite).

Theorem 4 (a) Only symmetric equilibria exist for the symmetric game discussed above.

(b) The equilibrium is unique under Condition 2.

Under Condition 2, the unique equilibrium is the solution to the equation

θ +

(
1− 1

γi(1−Qi(θ))

)
wi(θ) = 0, (10)

where Qi(θ) is the probability to select each nest i given that the adjusted markup is θ for each

firm, i.e.,

Qi(θ) =

(∑mi
s=1

eeαis−βisθi
)γi

1 +n (
∑mi

s=1
eeαis−βisθi)

γi
.

It refers to the proof of Theorem 4 in the Appendix for details.
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4. Extension: Nested Attraction Model

The attraction models have received increasing attention in the marketing literature, as it specifies

that a market share of a firm is equal to its attraction divided by the total attraction of all the

firms in the market, including the non-purchase option, where a firm’s attraction is a function of

the values of its marketing instruments, e.g., brand value, advertising, product features and variety,

etc. As an extension, we will consider the generalized Nested Attraction models, of which the NL

model discussed above is a special case.

In this section, we extend to the general Nested Attraction model:

Qi(p) =

(
ai(pi)

)γi

1 +
∑n

l=1

(
al(pl)

)γl
,

qj|i(pi) =
aij(pij)∑mi
s=1

ais(pis)
,

πij(p) = Qi(p) · qj|i(pi),

where ais(pis) is the attractiveness of product s of nest i at price pis and is twice-differentiable with

respect to pis, and al(pl) =
∑ml

s=1
als(pls) is the total attractiveness of nest l. Note that ais(pis) =

eαis−βispis for the NL model discussed above; for the linear model ais(pis) = αis −βispis, αis, βis > 0;

for the multiplicative competitive interaction (MCI) model, ais(pis) = αisp
−βis
is , αis > 0, βis > 1.

Condition 3 (a) a′
ij(pij)≤ 0, 2(a′

ij(pij))
2 > aij(pij)a

′′
ij(pij) ∀j, pij.

(b) That a′
ij(pij) = 0 implies that (pij − cij)aij(pij) = 0.

That a′
ij(pij) ≤ 0 says that each product’s attractiveness is decreasing in its price; that

2(a′
ij(pij))

2 > aij(pij)a
′′
ij(pij) can be implied by a stronger condition that aij(pij) is log-concave or

concave in pij. Condition 3(b) requires that aij(pij) converges to zero at a faster rate than linear

functions when a′
ij(pij) converges to zero. In other words, when a′

ij(pij) = 0, product j of nest i

does not contribute any profit so it can be eliminated from the profit function.

Theorem 5 Under Condition 3, the prices at optimality satisfy that (pij − cij) + aij(pij)/a′
ij(pij)

is constant for each product j in nest i.

It is straightforward to verify that the MNL model, the Nested linear attraction model and the

Nested MCI model all satisfy Condition 3. The Corollary follows immediately for the special cases.

Corollary 3 The following quantities are constant at optimal prices for the Nested linear attrac-

tion model and the Nested MCI model, respectively:

2pij − cij −
αij

βij

, (1− 1

βij

)pij − cij.
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Denote the constant quantity by θi for each nest i, i.e., θi = (pij − cij)+aij(pij)/a′
ij(pij) for each

product j of nest i. There is a one-to-one mapping between θi and pij for each product j under

Condition 3 because it holds that

∂

∂pij

(
(pij − cij) +

aij(pij)

a′
ij(pij)

)
=

2(a′
ij(pij))

2 − aij(pij)a
′′
ij(pij)

a′
ij(pij)

< 0.

Then, the multi-product pricing problem under the general Nested Attraction model can be reduced

to maximizing the total profit R(θ) with respect to θi for each nest i, where R(θ) under the Nested

Attraction model is defined as follows

R(θ) =
n∑

i=1

mi∑

k=1

(pik − cik)πik(p), (11)

where price pij for each product j of each nest i is uniquely determined by

(pij − cij) +
aij(pij)

a′
ij(pij)

= θi. (12)

Furthermore, the results in price competition can also be obtained under the Nested Attraction

model.

5. Concluding Remark

Discrete choice modeling has become a popular vehicle to study purchase behavior of customers

who face multiple substitutable products. The MNL discrete choice model has been well studied

and widely used in marketing, economics, transportation science and operations management, but

it suffers the IIA property, which limits its application and acceptance, especially in the scenarios

with correlated products. The generalized NL model with a two-stage structure can alleviate the

IIA property. Empirical studies have shown that the NL model works well in the environment with

differentiated substitutable products.

This paper considers price optimization and competition with multiple substitutable products

under the general NL model with product-differentiated price-sensitivity parameters and general

nest coefficients. Our analysis shows that the adjusted markup, defined as price minus cost minus

the reciprocal of price sensitivity, is constant for all products of each nest at optimality. In addition,

the optimal adjusted nest-level markup is also constant for each nest. By using this result, the multi-

product and multi-nest optimization problems is reduced to a single-dimensional maximization of a

continuous function over a a bounded interval. Mild conditions are provided for this function to be

uni-modal. We also use this result to characterize the Nash equilibrium for the price competition

under the NL model.
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We also study the general Nested Attraction model, of which the NL model and the MNL model

are special cases, and show how it can be transformed to an optimization problem in a single-

dimensional space. The two-stage model can alleviate the IIA property and derive high acceptance

and wide use in practice. In the future, the research and practice on customers’ selection behavior

with three or even higher stages may attract more attention because it may be closer to the

rationality of the decision process. Another future research direction may consider the heterogeneity

of customers and investigate the discrete choice model in the context with multiple heterogenous

market segments.

Appendix A: Non-concavity of Market Share Transformation

In this section, we will first express the profit in terms of the market-share vector and then show it is no

long jointly concave under the NL model with product-differentiated price sensitivities.

From equation (1),

Qi

1−∑n

l=1 Ql

=

(
mi∑

s=1

eαis−βispis

)γi

.

Combining with equation (2) results in

eαij−βijpij =
πij

Qi

·
(

Qi

1−Qi

) 1
γi

.

Then, pij can be expressed in terms of πi := (πi1, πi2, . . . , πimi
) as follows

pij(πi) =
1

βij

(
logQi − logπij

)
+

1

βijγi

(
log(1−Qi)− logQi

)
+

αij

βij

. (13)

The total profit can be rewritten as a function of the market-share matrix:

R(π) =

n∑

i=1

mi∑

j=1

(
1

βij

(
logQi − logπij

)
+

1

βijγi

(
log(1−Qi)− logQi

)
− c̃ij

)
·πij , (14)

where Qi =
∑mi

s=1 πis and c̃ik = cik − αik

βik
.

Consider an NL model with a single nest consisting of two products with product-differentiated price

coefficients βi = (0.9,0.1) and nest coefficient γi = 0.1. Figure 2 demonstrates that R(π) is not jointly concave

with respect to the market-share vector π.
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Figure 2 Non-concavity of R(π) w.r.t. the Market-share Vector
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Appendix B: Proofs

Proof of Theorem 1. Consider the first order condition of R(p) with respect to price pij in a given nest

i:

∂R(p)

∂pij

= πij(p) ·
[
1− βij(pij − cij)+ βij(1− γi)

mi∑

s=1

(pis − cis)qs|i(pi)+ βijγi

n∑

l=1

mi∑

s=1

(pis − cis)πis(p)

]
= 0.

Roots of the above FOC can be found by either setting πij(p) = 0, which requires pij = ∞ or letting the

inner term of the square bracket equal 0, which is equivalent to

pij − cij −
1

βij

= (1− γi)

mi∑

s=1

(pis − cis)qs|i(pi)+ γi

n∑

l=1

ml∑

s=1

(pls − cls)πls(p). (15)

The right hand side (RHS) is independent product index j in nest i, so pij − cij − 1
βij

, the so-called adjusted

markup, is constant for all the products with finite prices in nest i. We will next show that all the products

should be charged finite prices such that the adjusted markup is constant.

Let Fi be the set of products in nest i offered at finite prices. Denote the adjusted markup of each product

k ∈ Fi by θi. Suppose the prices of all products in other nests are fixed. Note that the total attractiveness

of all other nests but nest i is
∑

l6=i

(
al(pl)

)γl =
∑

l6=i (
∑ml

s=1 eαls−βlspls)
γl . Let ρ be the total market share,

which can be expressed as follows

ρ =

n∑

k=1

Qk(θi,p−i) =

∑
l6=i

(
al(pl)

)γl +
(∑

s∈Fi
eαis−βisθi

)γi

1 +
∑

l6=i

(
al(pl)

)γl +
(∑

s∈Fi
eαis−βisθi

)γi
.

Then, the total attractiveness of nest i can be expressed in terms of ρ and aj, j 6= i,
(
∑

s∈Fi

eαis−βisθi

)γi

=
1

1− ρ
−
(

1 +
∑

l6=i

(
al(pl)

)γl

)
. (16)
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Given that the total market share is ρ and the offered product set in nest i is Fi, the adjusted markup is the

unique solution to equation (16), denoted by θFi
i . The total profit can be expressed as follows

RFi(ρ) = Qi(θ
Fi
i ,p−i)(θ

Fi
i + wi(θ

Fi
i ))+

∑

j 6=i

Qj(θ
Fi
i ,p−i)

mj∑

s=1

(pjs − cjs)qs|j(pj)

=

(
1− (1− ρ)

(
1 +

∑

l6=i

(
al(pl)

)γl

))(
θFi

i +

∑
s∈Fi

eαis−βisθ
Fi
i /βis

(
1/(1− ρ)− (1 +

∑
l6=i

(
al(pl)

)γl)
)1/γi

)

+(1− ρ)
∑

l6=i

(
al(pl)

)γl

mj∑

s=1

(pjs − cjs)qs|j(pj).

Let HFi(θi) be the RHS of the above equation with θFi
i replaced by a free variable θi, i.e.,

HFi(θi) =

(
1− (1− ρ)

(
1 +

∑

l6=i

(
al(pl)

)γl

))(
θFi

i +

∑
s∈Fi

eαis−βisθ
Fi
i /βis

(
1/(1− ρ)− (1 +

∑
l6=i

(
al(pl)

)γl)
)1/γi

)

+(1− ρ)
∑

l6=i

(
al(pl)

)γl

mj∑

s=1

(pjs − cjs)qs|j(pj). (17)

Considering its derivative at θi = θFi
i results in

∂HFi(θi)

∂θi

∣∣∣∣
θi=θ

Fi
i

=

(
1− (1− ρ)

(
1 +

∑

l6=i

(
al(pl)

)γl

))(
1−

∑
s∈Fi

eαis−βisθi

(
1/(1− ρ)− (1 +

∑
l6=i

(al(pl))γl)
)1/γi

)∣∣∣∣∣
θi=θ

Fi
i

= 0.

The second equality holds because of equation (16). Recalling that HFi(θi) is convex in θi, RFi(ρ) is the

minimum of HFi(θi) with respect to θi, i.e., RFi(ρ) = minθi
HFi(θi) = HFi(θFi

i ).

Suppose that another product z is added to set Fi and denote F+
i := Fi ∪ {z}. We will next show that

RF+

i (ρ) > RFi(ρ) for any 0 < ρ < 1. Similarly, we have RF+

i (ρ) = minθi
HF+

i (θi) = HF+

i (θ
F+

i
i ), where HF+

i (θi)

is defined in function (25) and θ
F+

i
i is the unique solution to equation (16) corresponding to offer set F+

i .

It is apparent that HF
+

i (θi) > HFi(θi) for any θi. Then,

RF+

i (ρ) = HF+

i (θ
F+

i
i ) > HFi(θ

F+

i
i ) > HFi(θFi

i ) = RFi(ρ).

The second inequality holds because θFi
i is the minimizer of HFi(θi) with respect to θi. Therefore, RFi(ρ) is

strictly increasing in Fi for any 0 < ρ < 1 and it is optimal to offer all the products at prices such that the

adjusted markup is constant in each nest. �

Lemma 1 Define wi(θi) =
∑mi

k=1
1

βik
· qk|i(θi) and vi(θi) =

∑mi

k=1 βik · qk|i(θi). The following monotonic prop-

erties hold.

(a) wi(θi) is increasing in θi and 1
maxs βis

≤wi(θi)≤ 1
mins βis

.

(b) vi(θi) is decreasing in θi and mins βis ≤ vi(θi) ≤maxs βis. Furthermore, wi(θi)vi(θi)≥ 1 for any θi, and

all the inequalities become equalities when βis is identical for all s∈Fi.
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Proof of Lemma 1. (a) Consider the first order derivative of wi(θi). Then

∂wi(θi)

∂θi

=−1 +

∑mi

k=1 eeαik−βikθi/βik

∑mi

s=1 βise
eαis−βisθi

(
∑mi

s=1 eeαis−βisθi)
2 .

That ∂wi(θi)
∂θi

≥ 0 can be shown by Cauchy-Schwarz inequality that is
∑m

i=1 xi

∑m

i=1 yi ≥
(∑m

i=1

√
xiyi

)2

for any xi, yi ≥ 0. Because

mi∑

k=1

eeαik−βikθi

maxs βis

≤
mi∑

k=1

eeαik−βikθi

βik

≤
mi∑

k=1

eeαik−βikθi

mins βis

then, 1
maxs βis

≤ wi(θi) ≤ 1
mins βis

and the inequalities become equalities when βis is constant for all

s = 1, . . . ,mi.

(b) Consider the first order derivative of vi(θi). Then

∂vi(θi)

∂θi

=
−
∑mi

k=1 β2
ikeeαik−βikθi ·

∑mi

s=1 eeαis−βisθi +
(∑mi

s=1 βise
eαis−βisθi

)2

(
∑mi

s=1 eeαis−βisθi)
2 .

It can be shown that ∂vi(θi)

∂θi
≤ 0 by a similar argument to part (a).

wi(θi)vi(θi) =

∑mi

k=1 eeαik−βikθi/βik

∑mi

s=1 βise
eαis−βisθi

(
∑mi

s=1 eeαis−βisθi)
2 =

∂wi(θi)

∂θi

+ 1≥ 1

The inequality holds because of part (a). �

Proof of Theorem 2. For the general NL model with product-differentiated price-sensitivity parameters,

the FOC of the total profit R(θ) is

∂R(θ)

∂θi

= γiQi(θ)vi(θi)

[
n∑

l=1

Ql(θ)(θl + wl(θl))−
(

θi + (1− 1

γi

)wi(θi)

)]
= 0.

Again, because vi(θi)≥mins βis > 0, the solutions to the above FOC can be found by either letting Qi(θ) = 0,

which requires θi =∞ or setting the inner term of the square bracket equal to zero, which is equivalent to

θi + (1− 1

γi

)wi(θi) =

n∑

l=1

Ql(θ)(θl + wl(θl)). (18)

The RHS of equation (18) is independent of nest index i, so θi + (1− 1
γi

)wi(θi) is invariant for each nest i,

denoted by φ. We will next show that each nest should be charged finite adjusted markup and the so-called

adjusted nest-level markup θi + (1− 1
γi

)wi(θi) is constant all the nests.

Let E be the set of nests whose adjusted markup satisfies equation (18). The total market share can be

expressed as follows

ρ =
∑

i∈E

Qi(θ) =

∑
i∈E

(∑mi

s=1 eeαis−βisθi

)γi

1 +
∑

i∈E
(
∑mi

s=1 eeαis−βisθi)
γi

, (19)
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Then,

∑

i∈E

(
mi∑

s=1

eeαis−βisθi

)γi

=
ρ

1− ρ
, (20)

θi + (1− 1

γi

)wi(θi) = φ, ∀i∈E. (21)

The solution to (20) and (21) is unique, which will be shown later, denoted by φE and θE = (θE
1 , . . . , θE

n ).

The total profit can be expressed

RE(ρ) =
∑

i∈E

Qi(θ
E)
(
θE

i + wi(θ
E
i )
)
=
∑

i∈E

Qi(θ
E)

(
φE +

wi(θ
E
i )

γi

)

= ρφE +
∑

i∈E

(∑mi

s=1 eeαis−βisθE
i

)γi

·wi(θ
E
i )

γi/(1− ρ)
,

Define a new function HE(φ) with φE replaced by a free variable φ but keeping the relation between φ and

θi as shown in (21), i.e.,

HE(φ) = ρφ+
∑

i∈E

(∑mi

s=1 eeαis−βisθi

)γi ·wi(θi)

γi/(1− ρ)
. (22)

where θi satisfies (21) for each i ∈ E. We will next show that HE(φ) is convex in φ under Condition 1 for

each i.

∂HE(φ)

∂φ
= ρ +

∑

i∈E

∂GE(φ)/∂θi

∂φ/∂θi

= ρ− (1− ρ)
∑

i∈E

(
mi∑

s=1

eeαis−βisθi

)γi

,

where GE(φ) =
∑

i∈E

(
Pmi

s=1
eeαis−βisθi)

γi ·wi(θi)

γi/(1−ρ)
. The second equality holds because

∂GE(φ)

∂θi

= −1− ρ

γi

·
(
1− (1− γi)wi(θi)vi(θi)

)
(

mi∑

s=1

eeαis−βisθi

)γi

,

∂φ

∂θi

=
1

γi

(
1− (1− γi)wi(θi)vi(θi)

)
.

Moreover,

∂HE(φ)

∂φ

∣∣∣∣
φ=φE

= 0.

The above equality holds because of equation (20). The second order derivative of HE(φ) is

∂2HE(φ)

∂φ2
=
∑

i∈E

∂
∂θi

(∂HE(φ)/∂φ)

∂φ/∂θi

=
∑

i∈E

γ2
i (1− ρ)vi(θi)

(∑mi

s=1 eeαis−βisθi

)γi

1− (1− γi)wi(θi)vi(θi)
> 0.

The inequality holds because 1− (1− γi)wi(θi)vi(θi) > 0 under Condition 1.

Thus, HE(φ) is convex in φ, and the solution to (20) and (21) is unique. Moreover, RE(ρ) is the minimum

of HE(φ) with respect to φ, i.e., RE(ρ) = minφ HE(φ). Let E+ be the new nest set if the adjusted markup of

another nest satisfies equation (18). We will next show that RE+

(ρ) > RE(ρ) for any 0 < ρ < 1.
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It is apparent that HE+

(φ) > HE(φ) for any φ, where HE+

(φ) is the function defined in (22) corresponding

to offer set E+. Then,

RE+

(ρ) = HE+

(φE+

) > HE(φE+

) > HE(φE) = RE(ρ).

The second inequality holds because φE is the minimizer of HE(φ). Therefore, RE(ρ) is strictly increasing

in E for any 0 < ρ < 1 and it is optimal to offer all the products at prices such that the adjusted nest-level

markup is constant for all the nests. �

Proof of Coronary 1. Consider the FOC of R(φ),

∂R(φ)

∂φ
=

n∑

i=1

∂R(θ)/∂θi

∂φ/∂θi

= (R(φ)−φ)

n∑

i=1

γ2
i Qi(θ)vi(θi)

1− (1− γi)wi(θi)vi(θi)
= 0, (23)

where θi is the solution to equation (21). Because
∑n

i=1

γ2
i Qi(θ)vi(θi)

1−(1−γi)wi(θi)vi(θi)
> 0 under Condition 1 for each i,

then, R(φ) is increasing (decreasing) in φ if and only if R(φ)≥ (≤)φ.

(i) Case I: there is only one solution to equation (23), denoted by φ∗. Apparently R(φ) is increasing in φ

for φ≤ φ∗ and is decreasing in φ for φ > φ∗.

(ii) Case II: there are multiple solutions to equation (23). Suppose that there are two consecutive solutions

φ1 = R(φ1) < φ2 = R(φ2) and there is no solution to equation (23) between φ1 and φ2. It must hold that

R(φ) < R(φ2) for any φ1 < φ < φ2; otherwise, there must be another solution to equation (23) between

φ1 and φ2, which contradicts that φ1 and φ2 are two consecutive solutions. We claim that R(φ) is

increasing in φ for φ∈ [φ1, φ2]. Assume there are two points φ1 < φ′
1 < φ′

2 < φ2 such that R(φ′
1) > R(φ′

2).

Then, there must be a solution to equation (23) between φ′
1 and φ2, which also contradicts that φ1 and

φ2 are two consecutive solutions. Thus, R(φ) is increasing between any two solutions to equation (23)

and R(φ) may be decreasing after the largest solution. Therefore, R(φ) is unimodual with respect to φ

under Condition 1. �

Proof of Coronary 2. Let ρ(φ) =
∑n

i=1 Qi(θ), where θi is the solution to θi + (1− 1
γi

)wi(θi) = φ, for each

i = 1,2, . . . , n. Then,

∂ρ(φ)

∂φ
=

n∑

i=1

∂ρ(φ)/∂θi

∂φ/∂θi

=−Q0(θ)
n∑

i=1

γ2
i Qi(θ)vi(θi)

1− (1− γi)wi(θi)vi(θi)
,

∂R(φ)

∂ρ
=

∂R(φ)/∂φ

∂ρ(φ)/∂φ
=−R(θ)−φ

1− ρ
.

We can easily show that R(ρ) is unimodual in ρ by a similar argument to part (c). Moreover, we consider

the second order derivative under Condition 1 for all i,

∂2R(ρ)

∂ρ2
= − ∂

∂ρ
· R(θ)−φ

1− ρ
=−R(θ)−φ

(1− ρ)2
+

1

1− ρ
·

∂R(θ)

∂φ
− 1

∂ρ

∂φ
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= − 1

(1− ρ)2
∑n

i=1

γ2
i

Qi(θ)vi(θi)

1−(1−γi)wi(θi)vi(θi)

< 0.

The last equality hold because (1 − γi)wi(θi)vi(θi) < 1 for all θi and each i under Condition 1. Therefore,

R(ρ) is concave in ρ under Condition 1. �

Proof of Theorem 3. (a) Suppose that (p∗
i ,p

∗
−i) is an equilibrium of Game I. From Theorem 1, the

adjusted markup is constant for all the products of each firm, i.e., pij − cij − 1
βij

is constant for all j,

denoted by θ∗
i . We will argue that (θ∗

i , θ
∗
−i) must be the equilibrium of Game II. If firm i is better-off

to deviate to θ̂i, then firm i will also be better-off to deviate to p̂i in Game I, where p̂i = (p̂i1, . . . , p̂imi
)

and p̂ij = θ̂i + cij + 1
βij

. It contradicts that (p∗
i ,p

∗
−i) is an equilibrium of Game I.

Suppose that (θ∗
i , θ∗

−i) is an equilibrium of Game II. We will argue that (p∗
i ,p

∗
−i) is an equilibrium of

Game I, where pij = θ∗
i + cij + 1

βij
for each j. If firm i is better-off to deviate to p̂i := (p̂i1, p̂i2, . . . , p̂imi

)

in Game I, p̂ij − cij − 1
βij

must be constant for each j by Theorem 1, denoted by θ̂i. Then, firm i must

be better-off to deviate to θ̂i in Game II, which contradicts that (θ∗
i , θ∗

−i) is an equilibrium of Game

II.

(b) Consider the derivatives of logRi(θi, θ−i):

∂ logRi(θi, θ−i)

∂θi

= −γi(1−Qi(θi, θ−i))vi(θi)+
wi(θi)vi(θi)

θi + wi(θi)
,

∂ logRi(θi, θ−i)

∂θj

= γjQj(θj , θ−j)vj(θj)≥ 0, ∀j 6= i,

∂2 logRi(θi, θ−i)

∂θi∂θj

= γiγjQi(θi, θ−i)Qj(θj , θ−j)vi(θi)vj(θj)≥ 0, ∀j 6= i.

Then, Game II is a log-supermodular game. Note that the strategy space for each firm is the real line.

From Topkis (1998) and Vives (2001), the equilibrium set is a nonempty complete lattice and, therefore,

has the componentwise largest element θ
∗

and smallest element θ∗, respectively.

For any equilibrium θ∗, it holds that θ
∗ ≥ θ∗ ≥ θ∗ and

logRi(θ
∗
i , θ

∗
−i)≤ logRi(θ

∗
i , θ

∗

−i)≤ logRi(θ
∗

i , θ
∗

−i).

The first inequality holds because ∂ logRi(θi, θ−i)/∂θj ≥ 0; the second inequality holds because (θ
∗

i , θ
∗

−i)

is a Nash equilibrium. Because logarithm is a monotonic increasing transformation, then

Ri(θ
∗
i , θ∗

−i)≤Ri(θ
∗
i , θ

∗

−i)≤Ri(θ
∗

i , θ
∗

−i).

Therefore, the largest equilibrium θ
∗

is preferred by all the firms. �
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Proof of Theorem 4 (a) Suppose that there exists an asymmetric equilibrium, denoted by

(θ∗
1, θ

∗
2, θ

∗
3, . . . , θ

∗
n). Suppose that θ∗

1 is the largest and θ∗
2 is the smallest without loss of generality, then

θ∗
1 > θ∗

2. Because the game is symmetric, (θ∗
2, θ

∗
1, θ

∗
3, . . . , θ

∗
n) is also an equilibrium. In other words, the best

strategies for firm 1 are θ∗
1 and θ∗

2 respectively corresponding to other firms’ strategies (θ∗
2, θ

∗
3, . . . , θ

∗
n)

and (θ∗
1, θ

∗
3, . . . , θ

∗
n). Since the game is strictly supermodular and (θ∗

2, θ
∗
3, . . . , θ

∗
n) < (θ∗

1, θ
∗
3, . . . , θ

∗
n), then

θ∗
1 ≤ θ∗

2, which contradicts that θ∗
1 > θ∗

2.

(b) Consider the derivative of Ri(θi, θ−i) with respect to θi as follows:

∂Ri(θi, θ−i)

∂θi

= −γiQi(θi, θ−i)
(
1−Qi(θi, θ−i)

)
vi(θi)

[
θi +

(
1− 1

γi(1−Qi(θi, n))

)
wi(θi)

]
.

Define Y (θi) as follows:

Y (θi) = θi +

(
1− 1

γi(1−Qi(θi, n))

)
wi(θi).

Its derivative can be expressed by

∂Y (θi)

∂θi

=
1

γi(1−Qi(θi, n))
·
(

1−wi(θi)vi(θi)

(
1− γi + γi

(n− 1)(Qi(θi, n))2

1−Qi(θi, n)

))
,

Clearly, Qi(θi, n), the probability to select nest i if all firms charge the same adjusted markup θi, is less

than 1/n, i.e., Qi(θi, n) < 1
n
. Then,

∂Y (θi)

∂θi

>
1

γi(1−Qi(θi, n))
·
(

1−wi(θi)vi(θi)

(
1− n− 1

n
γi

))
.

Therefore,

(i) If γi ≥ n
n−1

, then ∂Y (θi)

∂θi
> 0 for any θi.

(ii) If 0 < γi < n
n−1

and maxs βis

mins βis
≤ 1

1−n−1

n
·γi

, we claim that wi(θi)vi(θi)
(
1− n−1

n
γi

)
< 1. If there are more

than one products with different price coefficients, wi(θi)vi(θi) < maxs βis

mins βis
; otherwise wi(θi)vi(θi) = 1

for any θi. In both cases, wi(θi)vi(θi)
(
1− n−1

n
γi

)
< 1.

Thus, ∂Y (θi)

∂θi
> 0 for any θi under Condition 2. Then, Y (θi) is strictly increasing from negative to positive

as θi goes from −∞ to ∞. Hence, there exists a unique solution to the equation Y (θi) = 0 and it is also

the unique equilibrium to the symmetric game. �

Proof of Theorem 5. Similar to the proof of Theorem 1, consider the FOC for the profit R(p) under the

Nested Attraction model:

∂R(p)

∂pij

=
πij(p)a′

ij(pij)

βijaij(pij)
·
[
(pij − cij)+

aij(pij)

a′
ij(pij)

− (1− γi)

mi∑

s=1

(pis − cis)qs|i(pi)− γi

n∑

l=1

mi∑

s=1

(pis − cis)πis(p)

]
= 0.
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The above equation is satisfied when either
βijπij(p)a′

ij(pij)

aij(pij)
= 0, which requires a′

ij(pij) = 0, or the inner term

of the square bracket is equal to zero, i.e.,

(pij − cij)+
aij(pij)

a′
ij(pij)

= (1− γi)

mi∑

s=1

(pis − cis)qs|i(pi)+ γi

n∑

l=1

mi∑

s=1

(pis − cis)πis(p). (24)

We remark that the RHS of (24) is independent of product index j, so (pij − cij) +
aij(pij)

a′

ij
(pij)

is invariant in

products of set Fi in nest i, where Fi is the offer set of products in nest i at prices such that equation (24)

is satisfied. Denote θFi
i = (pij − cij)+ aij(pij)/a′

ij(pij) for each product j in set Fi.

Suppose that the prices of all other nests are fixed. Consider the price optimization problem with the

market share constraint as follows:

RFi(ρ,p−i) := max
pij<∞,∀j∈Fi

∑
l6=i

∑ml

s=1(pls − cls)πls(pi,p−i)+
∑

k∈Fi
(pik − cik)πik(pi,p−i)

s.t., Qi(pi,p−i) = ρ.

Let al =
∑ml

s=1 als(pls) for each l 6= i for the ease of notation. After some algebra, the total market share

constraint Qi(pi,p−i) = ρ results in

∑

s∈Fi

ais(pis) =

(
ρ

1− ρ
−
∑

l6=i

aγl

l

)1/γi

.

Then, RFi(ρ,p−i) can be rewritten as follows

RFi(ρ,p−i) =

(
ρ− (1− ρ)

∑

l6=i

aγl

l

)
·
(

θFi
i −

(
ρ/(1− ρ)−

∑

l6=i

aγl

l

)−1/γi
∑

s∈Fi

(ais(pis))
2

a′
is(pis)

)
+
∑

l6=i

(1− ρ)aγl

l

ml∑

s=1

(pls − cls)qs|l(pl),

where pis is uniquely determined by (pis − cis)+ ais(pis)/a′
is(pis) = θFi

i for each s∈Fi.

Define function HFi(θi) as follows

HFi(θi) = θi −
(
ρ/(1− ρ)−

∑

l6=i

aγl

l

)−1/γi
∑

s∈Fi

(ais(pis))
2

a′
is(pis)

, (25)

where pis is uniquely determined by (pis − cis)+ais(pis)/a′
is(pis) = θi for each s∈ Fi. Consider the first order

derivative for function HFi(θi):

∂HFi(θi)

∂θi

= 1−
(
ρ/(1− ρ)−

∑

l6=i

aγl

l

)−1/γi
∑

s∈Fi

∂
∂pis

(ais(pis))2

a′

is
(pis)

∂θi/∂pis

= 1−
(
ρ/(1− ρ)−

∑

l6=i

aγl

l

)−1/γi
∑

s∈Fi

2ais(pis)(a′

is(pis))2−(ais(pis))2a′′

is(pis)

(a′

is
(pis))2

1 +
(a′

is
(pis))2−ais(pis)a′′

is
(pis)

(a′

is
(pis))2

= 1−
(
ρ/(1− ρ)−

∑

l6=i

aγl

l

)−1/γi
∑

s∈Fi

ais(pis).

Then, it follows that

∂HFi(θi)

∂θi

∣∣∣∣
θi=θ

Fi
i

= 0.
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The equality holds because
∑

s∈Fi
ais(pis) =

(
ρ

1−ρ
−∑

l6=i
aγl

l

)1/γi

. The second order derivative of HFi(ηi) is

∂2HFi(θi)

∂θ2
i

=
∑

s∈Fi

∂
∂pis

(∂HFi(θi)/∂θi)
∂θi

∂pis

=−
(
ρ/(1− ρ)−

∑

l6=i

aγl
l

)−1/γi
∑

s∈Fi

(a′
is(pis))

3

2(a′
is(pis))2 − ais(pis)a′′

is(pis)
≥ 0.

The inequality holds because a′
is(pis) ≤ 0 and 2(a′

is(pis))
2 − ais(pis)a

′′
is(pis) > 0 from Condition 3. Thus,

HFi(θi) is convex in θi and RFi(ρ,p−i) = minθi
HFi(θi) = HFi(θFi

i ).

Suppose that another product z is added to set Fi and denote F+
i := Fi ∪{z}. Similarly, we have RF+

i (ρ) =

minθi
HF+

i (θi) = HF+

i (θ
F+

i
i ), where HF+

i (θi) is defined in function (25) and θ
F+

i
i is the unique solution to

equation (16) corresponding to offer set F+
i . It is apparent that HF+

i (θi) > HFi(θi) for any θi. Then,

RF
+

i (ρ) = HF
+

i (θ
F+

i
i ) > HFi(θ

F+

i
i ) > HFi(θFi

i ) = RFi(ρ).

Therefore, it is optimal to offer all the products in nest i, i.e., Fi = {1,2, . . . ,mi}. Moreover, their prices

satisfy that (pij − cij)+
aij(pij)

a′

ij
(pij)

is constant for all the products in nest i. �

Appendix C: Uniqueness of the Nash Equilibrium

In this section, we will investigate the uniqueness of the Nash equilibrium in the general case. First, we state

sufficient conditions.

Condition 4 (a) Denote Ψ as the region such that

−∂Qi(θi, θ−i)

∂θi

>
∑

j 6=i

∂Qi(θi, θ−i)

∂θj

, θ ∈Ψ, i = 1,2, . . . , n.

(b) Denote Ωi as the region such that θi + wi(θi) is log-concave in θi ∈Ωi, i = 1,2, . . . , n.

Notice that the NL model with product-differentiated price-sensitivity parameters within a nest and homo-

geneous nest coefficients, satisfies Condition 4 for any θ. Condition 4(a) is a standard diagonal dominant

condition (see e.g., Vives 2001) and it says that a uniform increase of the adjusted markups by all the firms

would result in a decrease of any firm’s market share. In the NL model, Condition 4(a) is equivalent to

γivi(θi) >
n∑

j=1

γjQj(θj , θ−j)vj(θj). (26)

From Lemma 1, inequality (26) can be implied by the following condition that is stronger but easier to be

verified:

min
i

γi min
l,s

βl,s > max
i

γi max
l,s

βl,s

n∑

j=1

Qj(θj , θ−j),
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which is equivalent to

n∑

l=1

(
ml∑

s=1

eeαls−βlsθl

)γl

<
mini γi minl,s βls

maxi γi maxl,s βls −mini γi minl,s βls

. (27)

From inequalition (27), Condition 4(b) can be satisfied when the adjusted markups θi are sufficiently large

for all the firms.

Apparently, θi + wi(θi) > 0 because each firm sells all her products at a positive average margin. Then,

Condition 4(b) can be implied by a stronger condition that θi + wi(θi) or wi(θi) is concave in θi for each

i = 1,2, . . . , n because if wi(θi) is concave, then

∂2 log(θi + wi(θi))

∂θ2
i

=
w′′

i (θi)(θi + wi(θi))− (w′
i(θi))

2

(θi + wi(θi))2
≤ 0,

where w′
i(θi) = ∂wi(θi)/∂θi and w′′

i (θi) = ∂2wi(θi)/∂θ2
i .

When θi is large enough, Condition 4(b) can also be satisfied without requiring the concavity of θi +wi(θi)

or wi(θi).

Lemma 2 There exist a threshold θ̃i for each firm i such that θi + wi(θi) is log-concave in θi for θi ≥ θ̃i.

Proof of Lemma 2. Consider the derivatives of log(θi + wi(θi)),

∂ log(θi + wi(θi))

∂θi

=
wi(θi)vi(θi)

θi + wi(θi)
,

∂2 log(θi + wi(θi))

∂θ2
i

=
wi(θi)

θi + wi(θi)
· ∂vi(θi)

∂θi

+ vi(θi) ·
∂ wi(θi)

θi+wi(θi)

∂θi

=
wi(θi)

θi + wi(θi)
· ∂vi(θi)

∂θi

+ vi(θi) ·
θi ·
(
− 1 + wi(θi)vi(θi)

)
−wi(θi)

(θi + wi(θi))2

The log-concavity of θi + wi(θi) can be guaranteed by θi ·
(
− 1 + wi(θi)vi(θi)

)
−wi(θi) ≤ 0 because vi(θi) is

decreasing from Lemma 1. We will next show that θi ·
(
−1+wi(θi)vi(θi)

)
→ 0 as θi →∞. Denote β

i
= mins βis

and let Ξi be the set Ξi = {s : βis = β
i
}. Then,

−1 + wi(θi)vi(θi) =
−
(∑mi

s=1 eeαis−βisθi

)2
+
(∑mi

s=1
1

βis
eeαis−βisθi

)
·
(∑mi

s=1 βise
eαis−βisθi

)

(
∑mi

s=1 eeαis−βisθi)
2

=
1

(∑
s∈Ξi

eeαis +
∑

s/∈Ξi
eeαis−(βis−β

i
)θi

)2 ·
(
−
(∑

s∈Ξi

eeαis +
∑

s/∈Ξi

eeαis−(βis−β
i
)θi

)2

+

(∑

s∈Ξi

1

β
i

eeαis +
∑

s/∈Ξi

1

βis

eeαis−(βis−β
i
)θi

)
·
(∑

s∈Ξi

β
i
eeαis +

∑

s/∈Ξi

βise
eαis−(βis−β

i
)θi

))

≈

∑
s∈Ξi

eeαis ·
(∑

s/∈Ξi
(βis

β
i

+
β

i

βis
− 2)eeαis−(βis−β

i
)θi

)

(∑
s∈Ξi

eeαis

)2

+ 2
(∑

s∈Ξi
eeαis

)
·
(∑

s/∈Ξi
eeαis−(βis−β

i
)θi

)
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In the above approximation, the higher order terms are ignored. Because βis

β
i

+
β

i

βis
− 2 > 0 and βis − β

i
> 0,

then

θi ·
((βis

β
i

+
β

i

βis

− 2
)
eeαis−(βis−β

i
)θi

)
=

θi ·
(

βis

β
i

+
β

i

βis
− 2
)

e−eαis+(βis−β
i
)θi

→ 0, as θi →∞.

The above convergence holds because the exponential function is increasing faster than the linear function.

Since
(∑

s∈Ξi
eeαis

)2

+2
(∑

s∈Ξi
eeαis

)
·
(∑

s/∈Ξi
eeαis−(βis−β

i
)θi

)
→
(∑

s∈Ξi
eeαis

)2

as θi →∞, therefore, θi ·
(
−

1 + wi(θi)vi(θi)
)
→ 0. There exists θ̃i such that

θi ·
(
− 1 + wi(θi)vi(θi)

)
≤ 1

maxs βis

≤wi(θi), for θi ≥ θ̃i.

Thus, θi + wi(θi) is log-concave for θi ≥ θ̃i. �

Tatonnement process can reach equilibrium under some mild conditions. In the basic tatonnement process,

firms take turns in adjusting their price decisions and each firm reacts optimally to all other firms’ prices

without anticipating others’ response, which can be interpreted as a way of expressing bounded rationality

of agents. In each iteration, firms respond myopically to the choices of other firms in the previous iteration

and the dynamic process can be expressed below.

Tatonnement Process: Select a feasible vector θ(0); in the kth iteration determine the optimal response

for each firm i as follows:

θ
(k)
i = arg max

θi∈Ωi∩Ψ
Ri(θi, θ

(k−1)
−i ). (28)

Theorem 6 Suppose θ
∗ is an equilibrium under Condition 4,

(a) θ
∗ is the unique pure Nash equilibrium of Game II in region (

⋂n

i=1 Ωi)
⋂

Ψ.

(b) The unique pure Nash equilibrium θ∗ can be computed by the tatonnement scheme, starting from an

arbitrary price vector θ(0) in the region (
⋂n

i=1 Ωi)
⋂

Ψ, i.e., θ(k) converges to θ∗.

Proof of Theorem 6. Consider the first order and second order derivatives of logRi(θi, θ−i) with respect

to θi:

∂ logRi(θi, θ−i)

∂θi

=
∂ log(Qi(θi, θ−i))

∂θi

+
∂ log(θi + wi(θi))

∂θi

=−γi(1−Qi(θi, θ−i))vi(θi)+
∂ log(θi + wi(θi))

∂θi

,

∂2 logRi(θi, θ−i)

∂θ2
i

= −γ2
i Qi(θi, θ−i)(1−Qi(θi, θ−i))

(
vi(θi)

)2
+

∂2 log(θi + wi(θi))

∂θ2
i

.

The cross-derivative of logRi(θi, θ−i) is

∂2 logRi(θi, θ−i)

∂θi∂θj

= γiγjQi(θi, θ−i)Qj(θj, θ−j)vi(θi)vj(θj)≥ 0, ∀j 6= i.
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Then,

∑

j 6=i

∂2 logRi(θi, θ−i)

∂θi∂θj

= γiQi(θi, θ−i)vi(θi)
∑

j 6=i

γjQj(θj , θ−j)vj(θj).

Under Condition 4, Ri(θi, θ−i) is log-dominant diagonal,

−∂2 logRi(θi, θ−i)

∂θ2
i

≥
∑

j 6=i

∂2 logRi(θi, θ−i)

∂θi∂θj

(29)

The inequality holds because

γ2
i Qi(θi, θ−i)(1−Qi(θi, θ−i))

(
vi(θi)

)2 ≥ γiQi(θi, θ−i)vi(θi)
∑

j 6=i

γjQj(θj , θ−j)vj(θj)

under Condition 4(a), and

∂2 log(θi + wi(θi))

∂θ2
i

≤ 0

under Condition 4(b). The inequality (29) establishes the uniqueness of the Nash equilibrium to Game II

(see e.g., Vives 2001).

If the equilibrium of a log-supermodular game with continuous payoff is unique, it is globally stable and a

tatonnement process with dynamic response (28) converges to it from any initial point in the feasible region.

�
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