
AHPA: Adaptive Horizontal Pod Autoscaling Systems on Alibaba Cloud
Container Service for Kubernetes

Zhiqiang Zhou1, Chaoli Zhang1, Lingna Ma1, Jing Gu3, Huajie Qian2, Qingsong Wen2,
Liang Sun2, Peng Li3, Zhimin Tang3

1DAMO Academy, Alibaba Group, Hangzhou, China
2DAMO Academy, Alibaba Group, Bellevue, WA, USA

3Alibaba Cloud, Alibaba Group, Hangzhou, China
{zhouzhiqiang.zzq, chaoli.zcl, malingna.mln, zibai.gj, h.qian, qingsong.wen, liang.sun, yuanyi.lp,

zhimin.tangzm}@alibaba-inc.com

Abstract

The existing resource allocation policy for application in-
stances in Kubernetes cannot dynamically adjust accord-
ing to the requirement of business, which would cause an
enormous waste of resources during fluctuations. Moreover,
the emergence of new cloud services puts higher resource
management requirements. This paper discusses horizontal
POD resources management in Alibaba Cloud Container Ser-
vices with a newly deployed AI algorithm framework named
AHPA - the adaptive horizontal pod auto-scaling system.
Based on a robust decomposition forecasting algorithm and
performance training model, AHPA offers an optimal pod
number adjustment plan that could reduce POD resources
and maintain business stability. Since being deployed in April
2021, this system has expanded to multiple customer scenar-
ios, including logistics, social networks, AI audio and video,
e-commerce, etc. Compared with the previous algorithms,
AHPA solves the elastic lag problem, increasing CPU usage
by 10% and reducing resource cost by more than 20%. In
addition, AHPA can automatically perform flexible planning
according to the predicted business volume without manual
intervention, significantly saving operation and maintenance
costs.

Introduction
The continuous development of cloud computing technol-
ogy provides more possibilities for current computer on-
line services, and users also have higher expectations for
cloud resilience. Furthermore, with the development of con-
tainer services in cloud-native technologies (Brewer 2015;
Balalaie, Heydarnoori, and Jamshidi 2016), more and more
new types of applications based on container services have
emerged. Unlike applications in the Virtual Machine (Al-
tintas et al. 2005) era, where minute-level manual opera-
tion is enough, new emerging applications usually require
second-level operations. Meanwhile, many fast-developing
applications have noticeable cyclical fluctuations (Yan et al.
2021; Higginson et al. 2020; Cortez et al. 2017; Atikoglu
et al. 2012; Chen et al. 2008), such as Internet broadcast,
e-Learning, online game, etc. This kind of application re-
peatedly emerges with peaks and valleys in business de-
mand, so flexible resource utilization with low latency is re-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

quired. Another main kind of new application is serverless
computing (Baldini et al. 2017; McGrath and Brenner 2017)
which allows clients to build and run services without think-
ing about servers. It is challenging to elastically manage re-
sources for such applications facing the difficulty of dealing
with cold starts, low latency, and scaling efficiency. Thus,
proactive autoscaling is popular (Taft et al. 2018; Rebjock
et al. 2020; Rzadca et al. 2020; Tsoumakos et al. 2013).

Both cloud technological maturity and the emergence
of new businesses have led to the development of effi-
cient resource utilization. More specifically, new applica-
tion characteristics call for a unique design of auto-scaling,
which allows adjustment of application instances to im-
prove the utilization under the cloud native concept. Ku-
bernetes (k8s) (Burns et al. 2022) is the primary open-
source container orchestration system for application/soft-
ware deployment and management maintained in the cloud
native computing foundation. Scalability is one of the core
requirements of Kubernetes (k8s). Auto-scaling (Lorido-
Botran, Miguel-Alonso, and Lozano 2014; Qu, Calheiros,
and Buyya 2018) is a necessary feature of the Kubernetes
platform to secure scalability. Auto-scaling saves time, pre-
vents performance bottlenecks, and avoids resource waste
with appropriate configurations.

Currently, there are three conservative ways to manage
the number of application instances in Kubernetes, whose
process is shown in Fig. 1: fixed number of instances,
HPA (Nguyen et al. 2020), and CronHPA1. Unlike the fixed
number of instances which does not change when fluctua-
tions of demand occur, HPA and CronHPA can adjust the
number of instances according to the change in demand.
However, they have shortcomings in efficiency, simplicity,
and accuracy, and none of these methods could resolve the
demand fluctuations elastically. For further details, the pol-
icy with a fixed number of instances is the easiest to imple-
ment and widely used. Meanwhile, it also has a significant
disadvantage of wasting resources in the valleys of business
demand. Compared with the static method, the HPA method
adjusts the number of instances after the demand varies.
Hence, its response to fluctuations in demand is lagging,
which may lead to ineffective processing and lousy quality

1https://www.alibabacloud.com/help/en/container-service-for-
kubernetes/latest/cronhpa-186978

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15621



Resource Manager

Scaling Demand?

Yes

No

Number of instance Adjustment 
Planning Start new instances needed

Approval and ArchiveExecuting the Adjustment Plan

Fixed: Just Skip

HPA: Response After demand 

CronHPA: Manually adjust with expert 
experience

Figure 1: The procedure of resource management in Ku-
bernetes with three conservative ways (Fixed, HPA, and
CronHPA).

of service, and even worse, the application is terminated. In
addition, the CronHPA policy requires expert experience to
manually set up the scaling schedule, which might be inac-
curate, inflexible, and a massive cost to human resources.

To address the shortcomings of existing solutions men-
tioned above, we designed and deployed a new system
named the Adaptive Horizontal Pod Auto-scaling Sys-
tem(AHPA) in the product of Alibaba Cloud Container Ser-
vice for Kubernetes (ACK2) that supports much better pre-
dictive auto-scaling. AHPA solves the problem of exist-
ing methods not being able to dynamically adjust POD re-
sources by using a decomposition method to accurately pre-
dict the next phase of business. At the same time, AHPA
learns the mapping from business workload to the number
of required PODs, and provides the final scaling action plan,
unlike CronHPA which requires manual intervention. The
automated model makes AHPA easy to deploy and scale up,
and saves significant operation and maintenance costs.

AHPA system has been deployed throughout Alibaba
Cloud Service since April 2021. It has significantly im-
proved the elastic resource management compared to the
previous algorithms used in Cloud Service. More specifi-
cally, in the scenario of intelligent voice, AHPA’s current
call reaches more than 5000 times per day. It has saved POD
resources cost about ten thousand daily, directly contribut-
ing to more than 28% daily cost savings compared to the
original.

Application Description
In this section, we introduce the architecture of the AHPA
system, as illustrated in Fig. 2. It consists of two main parts:
elastic metrics and elastic objects.

In elastic metrics, various metrics are provided to satisfy
different demands of clients, including resource metrics (for
instance, CPU and memory), custom metrics (for instance,

2https://www.alibabacloud.com/product/kubernetes

Resource Metrics 
CPU/Memory

Custom Metrics 
QPS/RT

External Metrics 
MQ length

Inteligent Elasticity

Proactive 
Prediction

Downgrade 
Protection

Application Load 
Deployment

Pod

Elastic 
Metrics

Elastic 
Objects

Pod Pod Pod

Figure 2: The architecture of the AHPA system.

query rate per second and response time), and external met-
rics (for instance, message queue length). A proactive pre-
diction module is used to predict demand in the future, and a
downgrade protection module is designed to guarantee sta-
bility, hence intelligent elasticity module outputs resource
prediction. With prediction results, the elastic objects mod-
ule would allocate the required number of pods via applica-
tion deployment.

The primary purpose of elasticity resource management
is to save costs for the client when satisfying the stability
requirement of service and reduce the cost of human re-
sources in operation and maintenance. Designed for the re-
quirements mentioned above, our new algorithm AHPA has
three typical features so it could greatly meet both the elastic
demand and the stable requirement:

• Stability: AHPA is performed under the condition that
the stability of client services is guaranteed.

• Zero cost in operation and maintenance: no additional
operation or maintenance is needed, including no more
added controllers and more concise configurations than
HPA.

• Serverless application feasibility: AHPA provides re-
sources at the pod level without considering the usage
rate at the node level, which enhances the long run of
applications.

Use of AI Technology
The use of AI technology mainly focused on the following
three modules in the adaptive horizontal pod auto-scaling
framework as illustrated in Fig. 3: future workload forecast-
ing, performance model training, and scaling plan genera-

15622



Figure 3: The framework of the scaling algorithm in AHPA.

tion. In the following, we introduce each component in de-
tail.

Future Workload Forecasting
The first module, named future workload forecasting, heav-
ily relies on AI technology and plays an essential role in the
AHPA framework. Accurate prediction of future workload
would significantly improve the optimality of the schedule
of the horizontal pod plan and hence earn more profit from
cost savings in the system. However, the forecasting process
still faces several complex challenges in the Alibaba Cloud
Service:

• Missing values and noisy data: there are many possible
causes for this issue. For example, when some nodes of
the cloud service distributed system is damaged, or some
accidents happen during the interaction between the user
and the service system, they will lead to the lack of valid
data. Besides, if the collected data is too far from the cur-
rent time, it may affect forecasting accuracy. Therefore,
setting the threshold to judge data validity is a necessary
procedure. There is also a need for an appropriate method
to complement the missing data and normalize the data
scale in some situations.

• Limited data scale: metrics data in Kubernetes generally
uses Prometheus storage. Considering cost and efficiency
in a compromise, the general business data storage period
is 7 days. The 7-day data volume is too small as a training
set, and the trained machine/deep learning model usually
has a poor accuracy. How to effectively estimate the fu-
ture business volume with a limited amount of historical
data is worthy of discussion.

• High complexity: in general, user demands change fre-

quently, which significantly enriches the complexity of
data. For instance, data may have complicated charac-
teristics such as multiple cycles. Therefore, sophisticated
data has higher requirements on the ability of the algo-
rithm model to make an accurate prediction.

We design a robust decomposition-based statistical
method as the main forecasting scheme to address the above
challenges and cater to high forecast latency requirements.
Specifically, we adopt our previously published three ro-
bust time series decomposition algorithms (Wen et al. 2021,
2019b,a) as the preprocessing steps as shown in Fig. 4.
Firstly, RobustPeriod (Wen et al. 2021), based on MODWT
(maximal overlap discrete wavelet transform) to decouple
multiple periodicities, is utilized to detect if the input time
series is periodic and its period lengths. According to the pe-
riod detecting result, there are two ways to deal with differ-
ent data characteristics. For periodic data, RobustSTL (Wen
et al. 2019b, 2020) is adopted to decompose the input
time series into trend, seasonality (periodic component), and
residual terms. For non-periodic data, RobustTrend (Wen
et al. 2019a) is adopted to decompose the input time series
into trend and residual terms.

Mathematically, the above robust forecasting module de-
composes the time series data into the trend item τt, the pe-
riod item si,t (if it is periodic), and the residual item rt, and
the formula is as follows:

yt = τt +
m∑
i=1

si,t + rt, t = 0, 1, ..., N − 1 (1)

The historical period item si,t is directly shifted to the right
as the prediction of the future period item. The trend term
τt is predicted by a classical time series model such as ex-
ponential smoothing to obtain the prediction of the future
trend component. Finally, the residual part uses the quan-
tile regression forest to get an upper bound prediction of the
future residuals. The combination of the above three items
leads to the final predicted value yt+1 at the next moment:

yt+1 =

m∑
i=1

si,t + ExponentialSmoothing(τt)

+QuantileRegression(rt)

(2)

In addition to the robust decomposition-based forecast-
ing schemes introduced above, we also consider the state-
of-the-art transformer-based deep learning forecasting mod-
els (Wen et al. 2022) for scenarios with enough data. Specif-
ically, we include our recently developed FEDformer (Zhou
et al. 2022) model, which is suitable for long-term time se-
ries prediction scenarios, and our recently developed Quat-
former (Chen et al. 2022) model, which is mainly designed
for data characteristics with complicated periodical patterns.
Shortly we would continue working on the whole scheme
and add more forecasting methods that could fit different
situations.

Performance Model Training
After getting the forecast volume values, the second mod-
ule, called the Performance Model, is used to simulate the

15623



Figure 4: The robust time series decomposition for forecasting module in AHPA.

relationship between the indicator metric and the number of
pods. In this section, due to the reality of some specific busi-
nesses, we have assumed that pods are equivalent comput-
ing units. The model mainly adopts the method of queuing
theory in operation research, including two kinds of differ-
ent queuing models. One is the linear relation using parallel
M/M/1 queues, and the other is M/M/c queues with a public
buffer pod.

In the Pod resource utilization queuing model, we regard
the business QPS (Queries Per Second) as the queue rate in
the system and the number of Pods as the number of service
desks c (in the M/M/1 queues, each pod could be considered
as a private desk and they have the same processing rate),
and ui is the average service of the service desks which can
be expressed in terms of Pod CPU. Based on these metrics,
we aim to find the average wait time per customer consistent
with the RT per request. Different average RT with different
queue models could be formalized by the following mathe-
matical formula:

AvgRT (M/M/1) = (u− QPS

N
)−1 + otherlatency

AvgRT (M/M/c) = f(QPS, u,N) + otherlatency
(3)

where u denotes the queries per second that could be pro-
cessed by one pod, and the f is given by Erlang’s C for-
mula (Janssen, Leeuwaarden, and Zwart 2011) and Little’s
Law (Little and Graves 2008). In general, we should find
the minimum value of the pod number while satisfying the
requirement of average RT. For the linear M/M/1 model,
pod = C ∗QPS; and for the nonlinear M/M/c queue model,
pod = g(QPS). When the number of adjustable pods
is small, the M/M/c model performs better than the other
model, and while there are more pods available, M/M/1
queue model outperforms. Therefore, different models could
be selected according to different requirements in actual de-
ployments. In summary, this performance training module
takes the predicted values of the previous forecasting mod-
ule and historical indicator data as input and outputs the
number of pods that need to be adjusted.

Scaling Plan Generation
Our system generates the final scaling decisions with the
future workload forecasting results and the performance
model. The scaling plan includes the number of pods and
times that should be added or reduced.

First, we forecast the number of pods required to sat-
isfy clients’ requirements in certain metrics (e.g., RT or
CPU usage rate). However, there is an overhead time for
pods to start, which means the system is troubled with
time delay problems when adding resources, and the de-
ployment throughput is limited. Facing the constraints men-
tioned above, we take the improved forecasting shift algo-
rithm (Flunkert et al. 2020) to handle such a challenge.

A simple example is shown in Fig. 5. Assume the pend-
ing time (including pods starting and so on) is 1 minute;
Fig. 5(a) shows that if the needed pods are scaling precisely
in real-time as required, the actual number of pods available
will be delayed. Therefore, the pod scaling actions should be
done in advance, as Fig. 5(b) shows.

However, for the sake of stability, frequent actions are not
a good choice. Generally, the operating frequency limit is
set as one per every 3 minutes or every 5 minutes maximum.
Thus, how to combine the scheduling plans within the cor-
responding interval is also a question worth exploring.

Experimental Evaluation
Proper validation of the AHPA system is challenging, as
these models are designed to adjust the horizontal pod
schedule for different deployments. It is not possible to ap-
ply different models to one application at the same time. We
here provide the real historical data collected from several
deployments in Alibaba Cloud Container Service for Ku-
bernetes (ACK) version 1.20.11 with Aliyun Linux/CentOS
operating system. The time series data length is 20160, i.e.,
one data point per minute for 14 days. The numerical results
compared with the classical HPA algorithm and FixPod pol-
icy are shown in the following subsections.

As illustrated in Fig. 6, the dataset NP/WP/SP denote
three scenarios that time series data with no periodicity,

15624



0                2               4                6               8
Time/minutes

6

4

2

0

#Pod

(a) Actual # pods with pending

#Pod

6

4

2

0
0                2                4                6                8

Time/minutes

(b) Pods scaling action

Figure 5: An example of the scaling action plan.

(a) NP

(b) WP

(c) SP

(d) NoisyData

(e) MissingData

(f) TrendChange

Figure 6: Typical signal series sampled from six actual
datasets.

weak periodicity and strong periodicity, respectively. As for
the NoisyData dataset, many outliers appear due to occa-
sional network jitter caused by underlying network link re-
construction in the system. As mentioned above, missing
values are common accidents due to some damage in nodes
or monitor systems; we here test the framework by using the
MissingData dataset, which drops all the data points on any
random day. At last, we also consider another common chal-
lenging situation: the trend of time series changes, mostly
caused by the new application version release. Hence, we
would like to evaluate the performance of the AHPA frame-
work when applied to the TrendChange dataset.

Since all models in a cloud container system aim to min-
imize the cost of satisfying the quality of service (QoS),
we consider the following three metrics for evaluating these
models: cost, violation rate (VR), and max pod number.
The violation rate (VR) is used to evaluate the QoS of each
model, i.e., for a specific metric target such as keeping CPU
usage less than 50%, then VR would be computed as the
time of CPU usage more significant than 50% divided by
the whole time length. The cost would be the total num-
ber of pods provided over time, computed as the integral
of the number of pods over time (minute). According to

the service-level agreement (SLA), the contract between a
service provider and its customers that documents what ser-
vices the provider will furnish and defines the service stan-
dards the provider is obligated to meet, the violation rate
(VR) plays the most crucial role among all the criteria in the
cloud service.

Comparison Experiment
In this subsection, we consider the performance of the
AHPA framework under different situations of complex
data, such as the time series data with strong periodicity,
week periodicity, or without periodicity.

From the results shown in Table 1, we can observe that the
FixPod policy provides a zero violation strategy but with a
massive waste of pod resources in all cases. However, com-
paring the HPA and AHPA frameworks, the results demon-
strate that AHPA achieves a much better QoS schedule plan
than HPA with comparable costs. The advantage of AHPA is
further highlighted when applied to time series with a more
substantial periodical property. In Fig. 7, the green and or-
ange line represent the number of pods suggested from the
AHPA and HPA method, and the blue line stands for the
optimal number of pods when given the real workload and
target metric value (e.g., keeping CPU usage under 50%).
We can obviously observe that adjustment from HPA is al-
ways lagging, which could lead to poor service experience
at the peaks of workload. Moreover, from the comparison
between the green and orange lines, we see the green line is
much smoother than the orange line, which shows another
advantage of the AHPA algorithm since the smoother of pod
number is, the less cost spent on the operations including
expanding and shrinking the pods resource.

Robustness Experiment
In this subsection, we evaluate the robustness of the AHPA
framework due to the complex situations in real cloud
services. Here we implement the algorithm on the actual
data with noise, outliers, missing values, and abrupt trend
changes.

15625



Figure 7: Comparison of the number of pods.

DataSet NP WP SP
Metric FixPod HPA AHPA FixPod HPA AHPA FixPod HPA AHPA
Cost 48830 19657 22063 604680 447096 495541 201340 77464 92930
VR 0 0.0047 0.0045 0 0.3975 0.0695 0 0.2950 0.0266

Max Pod 10 10 11 60 60 67 20 17 18

Table 1: Comparison of metric/cost/VR/max pod under different data structure.

DataSet NoisyData MissingData TrendChange
Metric HPA AHPA HPA AHPA HPA AHPA
Cost 77590 93011 75966 92519 77464 92930
VR 0.2958 0.0276 0.2934 0.0307 0.2950 0.0266

Max Pod 31 28 17 18 17 18

Table 2: Comparison of robustness test.

From the results in Table 2, we can observe the violation
rate of the HPA framework is around 30%, which means
almost one-third of the time the QoS is worse than cus-
tomers’ expectation. It is almost 1000% higher than the one
of AHPA. Besides, from the results of the AHPA framework,
we conclude the AHPA framework performs robustly in both
violation rate and cost saving under noisy data, missing val-
ues, and trend-changing situations.

Application Use and Payoff
AHPA system has been deployed across Alibaba Cloud Ser-
vices since April 2021 and has been promoted to many
different cloud service scenarios from March 2022. Many
related servers have used it to manage the elastic pod re-
sources. Up to now, AHPA has been implemented in multi-
ple customer scenarios, covering logistics, social network-
ing, AI audio and video, e-commerce, online education,
sports live+, and retail. Most such applications need to han-
dle the challenges of real-time high-performance, low la-
tency, and large and periodic business load fluctuations. In
this section, we will discuss the impact of the AHPA sys-
tem.

Take two applications as an example. For online educa-
tion, ACK with AHPA system provides services with the fol-
lowing features: minute-level deployment, industry-leading
reliability (a commitment of 99.999% availability for in-
dividual instances), easy management, and high scalability
(scaling according to real-time demands). For live streaming
of e-commerce, services satisfying properties of fast deploy-
ment at a low-cost, ultra-low latency (2000+ nodes with a
bandwidth of 150Tbps, bringing streaming latency less than
2 seconds) are provided by our system.

After customer business applications were deployed with
the AHPA system, the elastic lag problem was consider-
ably eased, with CPU usage increasing by 10% and resource
costs reduced by more than 20%. At present, our AHPA al-
gorithm has obvious advantages over other models. In addi-
tion, it can automatically perform flexible planning accord-
ing to the changing trend of business volume without manual
intervention, which significantly saves operation and main-
tenance costs. It is not easy to use digital numerical calcula-
tions for the workforce regarding operation and maintenance
costs, but an automated AHPA algorithm greatly liberates
the workforce and makes the entire system more efficient
and universal. Specifically, for example, in the scenario of
intelligent voice, AHPA is currently called around six thou-
sand times a day and performs about 1,000 dispatches. Com-
pared with another original management method, AHPA’s
result has reached that CPU usage is increased by about 9%
and saves the daily cost of POD resources (pieces * min-
utes) about ten thousand. With the help of AHPA, the AI
voice business saves around 28% of the original cost.

Application Development and Deployment
Section Use of AI Technology introduces the details of AI
technology used in the algorithm part of the AHPA system.
This section will show how such an algorithm is developed
and deployed in the real cloud container system. We will
first review the main components of AHPA (Fig. 8) and then
show the details of how it works in the whole Kubernetes
system (Fig. 9).

System Framework
As shown in Fig. 8, the framework of AHPA contains three
main parts: Data Collection, Prediction, and Scaling. The
main technologies and details of the Prediction part are in-
troduced in section Use of AI Technology. More specifically,
Preprocessing is the Data Preprocessing module in Fig. 3,
the scaling part contains Workload Forecasting and Perfor-
mance Model Training module in Fig. 3, and the Revise
Module consists of the Scale Plan Generation module in
Fig. 3.

15626



Figure 8: The framework of AHPA.

Figure 9: The deployed architecture of AHPA in Kubernetes.

Before Prediction, the Data Collection module collects
data from various sources and transforms data into a uni-
fied form. Collected data consist of resource metrics (CPU,
Memory, etc.), custom metrics (QPS, RT, etc.), and other
external metrics. The data sources include Prometheus (an
open-source system monitoring and alerting toolkit which
stores metrics information as time series data), Metrics
Server (a scalable, efficient source of container resource
metrics for K8s), Log Service (a complete real-time data
logging service developed by Alibaba Group) and other cus-
tom monitor platforms. After that, the Adapter module trans-
forms different metrics into a unified form.

The final module of AHPA is Scaling, which is used to
scale pods according to the resource estimation results. Two
scaling mechanisms are provided: Auto and Observer. Auto
scales the number of pods according to the estimation re-
sults; the observer is the dry-run mode provided to the clients
to monitor whether AHPA works as expected.

System Deployment
AHPA is deployed on Alibaba Cloud Container Service for
Kubernetes (ACK) with Go Programming Language. The
deployment architecture of AHPA is shown in Fig. 9. There
are two main components: AHPA Algorithm Deployment
and AHPA Controller Deployment.

CustomResourceDefinition (CRD) is introduced to de-
ploy the pod scaling. CRD is flexible for different config-
ures. The core parameters of CRD are following:

• scaleTargetRef: positional, deployment for special ob-
jects.

Figure 10: An example of visualization in the dashboard of
AHPA.

• metrics: positional, scaling metrics, e.g., CPU, Memory,
RT, QPS, GPU, etc.

• averageUtilization: positional, the threshold of target. For
instance, 40 means the utilization rate of the CPU can not
be larger than 40%.

• scaleStrategy: optional, scaling mechanism, Auto or Ob-
server. Auto means pod scaling is deployed and Observer
means not deploying pod scaling and only observing
whether AHPA works as expected.

• maxReplicas: positional, the maximum number of in-
stances to do scaling.

• minReplicas: positional, the minimum number of in-
stances to do scaling.

• instanceBounds: optional, time bounds of scaling, in-
cluding start time and end time.

15627



• cron: optional, setting for timing task.

Unique designs are also applied in deployment for high
availability of AHPA service. Although anomalies always
happen in complex systems. our goal is to provide high
availability. When failures happen in pods, the failed pod
will be killed, and a new pod will be created. Moreover, with
the number of applications or services increasing, both the
algorithm deployment part and controller deployment part
can scale horizontally to satisfy the requirement of high con-
currency.

To ensure the business task is not aware of the update
of AHPA, Algorithm and Controller communicate through
service, and they can update independently. The update is
rolling through pods, meaning the old pods will be killed
only when the newly created pods work well as expected.

Abundant visualization components are provided to help
clients monitor the state of AHPA, including Kubernetes
Event Center, Prothemetheus, Log Service, Dashboard, etc.
Visualization examples of Dashboard and Log Service are
shown in Fig. 10 and Fig. 11, respectively.

From the panel interface of Dashboard (shown in Fig. 10),
critical metrics, including Workload, CPU, memory, can be
monitored in real-time. In addition, log Service (shown in
Fig. 11) provides information on every scaling action, in-
cluding the time of scaling action, the mode (dry-run or not)
of scaling action, the number of actual pods, pods number
limitations, etc. All of these contribute to helping clients to
monitor if AHPA works as expected and locate the cause of
unexpected failures timely.

Figure 11: An example of visualization in log service for
AHPA.

Maintenance
As time goes by, changes in the data flow characteristics re-
quire dynamic tuning of the hyper-parameters of our mod-
els. However, as a whole, AHPA does not require a lot of
post-operation and maintenance modifications. That is, in
the workload forecasting module, due to the self-learning
ability of deep learning models, after adding new data, there
is no need to make many modifications to the original model,
but it can be fine-tuned or re-training in response to the new
data. Furthermore, in the following two modules, the final
pod number adjustment scheme can also be adjusted accord-

ing to the actual situation and does not involve model mod-
ification. The core idea of the entire algorithm is to predict
the business as accurately as possible and deal with fluctu-
ations in advance to save resources. Therefore, after AHPA
is launched, it is unnecessary to do any significant modifica-
tions. In our practice, only some model parameters need to
be fine-tuned by April 2021.

Conclusions and Future Work
In this paper, we present our improved framework AHPA
(Adaptive Horizontal Pod Auto-scaling) for better resource
management in Alibaba Cloud Container Service for Kuber-
netes to save resources while maintaining user experiences.
This platform has been widely spread throughout Alibaba
Cloud Services and deployed in various business scenarios
not restricted to ACK container controlling. By accurately
predicting the business volume of the next moment and ob-
taining the mapping relationship from historical data, AHPA
could address the challenge of saving resources while ensur-
ing business stability. The core section of the AHPA algo-
rithm uses the robust decomposition-based time series fore-
casting module and the queue theory for performance mod-
eling. Since its deployment in April 2021, AHPA has helped
over 20 different business scenarios in Alibaba Cloud Ser-
vices to solve the elastic lag problem and significantly in-
creased the efficiency of CPU by 10%. Besides, AHPA has
demonstrated significant advantages in that it could automat-
ically give the system’s planning without any manual inter-
vention. Further plans to expand AHPA in other parts of Al-
ibaba Cloud have been scheduled.

In subsequent work to adapt to different business scenar-
ios, we will investigate how to abstract the mapping rela-
tionships in appropriate theories other than queuing theory
according to the detailed requirements. Furthermore, with
the vigorous development of cloud services, more and more
large demands are constantly emerging. How to provide a
framework with a higher degree of adaptation while ensur-
ing the efficiency of each specific business scenario is also
our pursuing goal.

References
Altintas, Y.; Brecher, C.; Weck, M.; and Witt, S. 2005. Vir-
tual machine tool. CIRP annals, 54(2): 115–138.
Atikoglu, B.; Xu, Y.; Frachtenberg, E.; Jiang, S.; and
Paleczny, M. 2012. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMETRIC-
S/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems (SIGMET-
RICS ’12), 53–64.
Balalaie, A.; Heydarnoori, A.; and Jamshidi, P. 2016. Mi-
croservices architecture enables DevOps: Migration to a
cloud-native architecture. IEEE Software, 33(3): 42–52.
Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.;
Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.;
Slominski, A.; et al. 2017. Serverless computing: Current
trends and open problems. In Research advances in cloud
computing, 1–20. Springer.

15628



Brewer, E. A. 2015. Kubernetes and the path to cloud na-
tive. In Proceedings of the sixth ACM symposium on cloud
computing, 167–167.
Burns, B.; Beda, J.; Hightower, K.; and Evenson, L. 2022.
Kubernetes: up and running. ” O’Reilly Media, Inc.”.
Chen, G.; He, W.; Liu, J.; Nath, S.; Rigas, L.; Xiao, L.; and
Zhao, F. 2008. Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services. In
Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’08, 337–350.
USA: USENIX Association.
Chen, W.; Wang, W.; Peng, B.; Wen, Q.; Zhou, T.; and
Sun, L. 2022. Learning to Rotate: Quaternion Transformer
for Complicated Periodical Time Series Forecasting. KDD
2022.
Cortez, E.; Bonde, A.; Muzio, A.; Russinovich, M.; Fon-
toura, M.; and Bianchini, R. 2017. Resource central: Un-
derstanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP
’17), 153–167.
Flunkert, V.; Rebjock, Q.; Castellon, J.; Callot, L.; and
Januschowski, T. 2020. A simple and effective predictive
resource scaling heuristic for large-scale cloud applications.
arXiv preprint arXiv:2008.01215.
Higginson, A. S.; Dediu, M.; Arsene, O.; Paton, N. W.; and
Embury, S. M. 2020. Database Workload Capacity Plan-
ning using Time Series Analysis and Machine Learning. In
Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’20), 769–783.
Janssen, A.; Leeuwaarden, J.; and Zwart, B. 2011. A lower
bound for the Erlang C formula in the Halfin-Whitt regime.
Queueing Systems, 68(3-4): 361–363.
Little, J.; and Graves, S. C. 2008. Little’s Law. Springer US.
Lorido-Botran, T.; Miguel-Alonso, J.; and Lozano, J. A.
2014. A review of auto-scaling techniques for elastic appli-
cations in cloud environments. Journal of grid computing,
12(4): 559–592.
McGrath, G.; and Brenner, P. R. 2017. Serverless com-
puting: Design, implementation, and performance. In 2017
IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), 405–410. IEEE.
Nguyen, T.-T.; Yeom, Y.-J.; Kim, T.; Park, D.-H.; and Kim,
S. 2020. Horizontal pod autoscaling in Kubernetes for elas-
tic container orchestration. Sensors, 20(16): 4621.
Qu, C.; Calheiros, R. N.; and Buyya, R. 2018. Auto-scaling
web applications in clouds: A taxonomy and survey. ACM
Computing Surveys (CSUR), 51(4): 1–33.
Rebjock, Q.; Flunkert, V.; Januschowski, T.; Callot, L.; and
Castellon, J. 2020. A Simple and Effective Predictive Re-
source Scaling Heuristic for Large-scale Cloud Applica-
tions. In VLDB 2021 Workshop on Applied AI for Database
Systems and Applications (AIDB ’21).
Rzadca, K.; Findeisen, P.; Swiderski, J.; Zych, P.; Broniek,
P.; Kusmierek, J.; Nowak, P.; Strack, B.; Witusowski, P.;
Hand, S.; et al. 2020. Autopilot: workload autoscaling at

Google. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems (EuroSys ’20), 1–16.
Taft, R.; El-Sayed, N.; Serafini, M.; Lu, Y.; Aboulnaga, A.;
Stonebraker, M.; Mayerhofer, R.; and Andrade, F. 2018. P-
store: An elastic database system with predictive provision-
ing. In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD ’18), 205–219.
Tsoumakos, D.; Konstantinou, I.; Boumpouka, C.; Sioutas,
S.; and Koziris, N. 2013. Automated, elastic resource
provisioning for NoSQL clusters using TIRAMOLA. In
2013 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, 34–41.
Wen, Q.; Gao, J.; Song, X.; Sun, L.; and Tan, J. 2019a. Ro-
bustTrend: a Huber loss with a combined first and second
order difference regularization for time series trend filtering.
In IJCAI 2019, 3856–3862.
Wen, Q.; Gao, J.; Song, X.; Sun, L.; Xu, H.; and Zhu, S.
2019b. RobustSTL: A robust seasonal-trend decomposition
algorithm for long time series. In AAAI Conference on Arti-
ficial Intelligence (AAAI), 5409–5416.
Wen, Q.; He, K.; Sun, L.; Zhang, Y.; Ke, M.; and Xu, H.
2021. RobustPeriod: Time-Frequency Mining for Robust
Multiple Periodicity Detection. In ACM International Con-
ference on Management of Data (SIGMOD), 2328–2337.
Wen, Q.; Zhang, Z.; Li, Y.; and Sun, L. 2020. Fast Ro-
bustSTL: Efficient and robust seasonal-trend decomposition
for time series with complex patterns. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 2203–2213.
Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; and
Sun, L. 2022. Transformers in time series: A survey. arXiv
preprint arXiv:2202.07125.
Yan, Z.; Lu, J.; Chainani, N.; and Lin, C. 2021. Workload-
Aware Performance Tuning for Autonomous DBMSs. In
2021 IEEE 37th International Conference on Data Engi-
neering (ICDE), 2365–2368.
Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; and Jin, R.
2022. FEDformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. ICML 2022.

15629


