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ABSTRACT

Uncertainty Quantification in Data-Driven Simulation and

Optimization: Statistical and Computational Efficiency

Huajie Qian

Models governing stochasticity in various systems are typically calibrated from data, therefore
are subject to statistical errors/uncertainties which can lead to inferior decision making. This thesis
develops statistically and computationally efficient data-driven methods for problems in stochastic
simulation and optimization to quantify and hedge impacts of these uncertainties.

The first half of the thesis focuses on efficient methods for tackling input uncertainty which refers
to the simulation output variability arising from the statistical noise in specifying the input models.
Due to the convolution of the simulation noise and the input noise, existing bootstrap approaches
consist of a two-layer sampling and typically require substantial simulation effort. Chapter
investigates a subsampling framework to reduce the required effort, by leveraging the form of the
variance and its estimation error in terms of the data size and the sampling requirement in each
layer. We show how the total required effort is reduced, and explicitly identify the procedural
specifications in our framework that guarantee relative consistency in the estimation, and the
corresponding optimal simulation budget allocations. In Chapter [3] we study an optimization-
based approach to construct confidence intervals for simulation outputs under input uncertainty.
This approach computes confidence bounds from simulation runs driven by probability weights
defined on the data, which are obtained from solving optimization problems under suitably posited
averaged divergence constraints. We illustrate how this approach offers benefits in computational
efficiency and finite-sample performance compared to the bootstrap and the delta method. While
resembling distributionally robust optimization, we explain the procedural design and develop tight

statistical guarantees via a generalization of the empirical likelihood method.



The second half develops uncertainty quantification techniques for certifying solution feasibility
and optimality in data-driven optimization. Regarding optimality, Chapter {4| proposes a statis-
tical method to estimate the optimality gap of a given solution for stochastic optimization as an
assessment of the solution quality. Our approach is based on bootstrap aggregating, or bagging,
resampled sample average approximation (SAA). We show how this approach leads to valid statis-
tical confidence bounds for non-smooth optimization. We also demonstrate its statistical efficiency
and stability that are especially desirable in limited-data situations. We present our theory that
views SAA as a kernel in an infinite-order symmetric statistic. Regarding feasibility, Chapter
considers data-driven optimization under uncertain constraints, where solution feasibility is often
ensured through a “safe” reformulation of the constraints, such that an obtained solution is guar-
anteed feasible for the oracle formulation with high confidence. Such approaches generally involve
an implicit estimation of the whole feasible set that can scale rapidly with the problem dimension,
in turn leading to over-conservative solutions. We investigate validation-based strategies to avoid
set estimation by exploiting the intrinsic low dimensionality of the set of all possible solutions
output from a given reformulation. We demonstrate how our obtained solutions satisfy statistical
feasibility guarantees with light dimension dependence, and how they are asymptotically optimal

and thus regarded as the least conservative with respect to the considered reformulation classes.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In the data-rich era, decision making under uncertainty often relies on inference of unknown stochas-
ticity from real-world data. A common concern, however, is that the model and statistical errors
from the data may not be properly controlled when integrating into the downstream simulation and
optimization tasks, thus leading to inferior decisions. Therefore a quantitative understanding of the
statistical uncertainties is crucial in guarding against catastrophic decision making. Broadly speak-
ing, this has stimulated interests across multiple research communities, and various approaches
have been proposed to handle statistical uncertainties for different kinds of problems, such as un-
certainty sets in (distributionally) robust opotimization, penalties in regularized risk minimization,
and upper confidence bound (UCB) algorithms in reinforcement learning. This thesis instead in-
vestigates uncertainty quantification methods for two commonly used tools in operations research,
i.e., stochastic simulation (in Chapters [2| and [3)) and optimization under uncertainty (in Chapters

and [f]), and focuses on statistical and/or computational efficiencies of these methods.

1.1 Stochastic Simulation under Input Uncertainty

The first part (Chapters 2l and |3)) of the thesis is on efficient methods for tackling input uncertainty
in stochastic simulation. Stochastic simulation has been used routinely to assess and optimize

performances of stochastic operational systems. In conventional simulation output analysis, the
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underlying input models are assumed completely known or given by expert opinions, and simulation
outputs generated from these input models are used to make statistical inference on the performance
metric of interest. In a data-driven setting, however, input models are estimated from data to drive
simulation, and input uncertainty arises due to the propagation of the input estimation errors
to the output. Therefore, statistically valid inference and performance prediction require careful
incorporation of model errors on top of the stochastic computation noises in the Monte Carlo
simulation.

To further illustrate the necessity of tackling input uncertainty, consider an M/M/1 queue with
arrival rate 0.8 and service rate 1.0, and the performance measure of interest is the mean waiting
time of the first 20 arrivals (true value &~ 2.57). Suppose that the true arrival and service rates
are unknown and can only be estimated from data of inter-arrival times and service times, each
of size 50, therefore input uncertainty is present. Suppose that a criterion in designing the queu-
ing system is that the mean waiting time must be no longer than 2.5 units of time (the current
design is infeasible). We compare two approaches to assessing feasibility of the current design,
both involving the construction of upper confidence bounds for the target quantity. In the first
approach, an arrival rate and a service rate are estimated from the data, and then treated as the
truth to drive the simulation to obtain a 95%-level performance bound based on 500 replications.
The experiment is then repeated on 1000 independent input data sets, and the distribution of the
obtained performance bounds are shown in Figure The second approach, however, acknowl-
edges the statistical errors in the estimated input models, and incorporate them in constructing
the performance bounds. The results are in Figure We observe that when input uncertainty
is ignored the obtained bounds often (44%) fall below the threshold 2.5, rendering a substantial
chance of incorrect feasibility assessment, whereas after incorporating input uncertainty misassess-
ment happens much less frequently (10%). Quantification of input uncertainty therefore is essential
for correctly hedging the total risk in the output.

There are several challenges in quantifying input uncertainty. The first is the computational
demand in disentangling the statistical noise in calibrating the input model from the Monte Carlo

noise. Previous approaches to this problem such as the bootstrap (Barton and Schruben| (1993,
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Histogram of confidence bounds that ignore input uncertainty Histogram of ig bounds that it input

0 18

(a) Input uncertainty ignored. (b) Input uncertainty taken into account.

Figure 1.1: Distribution of upper confidence bounds, relative to the threshold 2.5.

2001), Cheng and Holland, (1997))) require a substantial computation effort because of the need to

conduct multi-layer nested simulation and consequently a multiplicatively growing size of simulation

replications. Secondly, approaches based-on the delta method (e.g., Chapter 3 in
|Glynn| (2007) and |Cheng and Holland, (1997],1998))) construct interval estimates from a linearization

of the performance metric and an estimation of the standard error term, which tend to undercover
the true performance metric under small input data. Chapters [2] and |3 respectively, are devoted
to addressing these challenges.

Chapter 2 develops a subsampling technique that significantly reduces the order of computation
in each layer of the nested simulation, by leveraging and properly rescaling the standard error arising
from input uncertainty according to the subsample size parameters. The proposed method provably
allows the simulation cost to grow independently of the data size, in contrast to the standard
bootstrap where the required simulation burden has to grow linearly, thus making our method
more attractive when each simulation run is computationally expensive or simulation resources are
limited. We also derive the optimal algorithmic configurations, regarding choices of the subsample
size and the simulation sizes to allocate to each layer, that achieve the minimum error in estimating
the input uncertainty under a fixed simulation budget, by balancing a trade-off between a Monte
Carlo (computational) error and a statistical error.

In Chapter |3| we propose an optimization-based approach that computes interval estimates as

the optimal values of suitably posited optimization problems which do not rely on linearization.
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Our formulation is based on an “empirical” version of distributionally robust optimization (DRO).
The latter is a decision-making framework for stochastic problems where the underlying distribution
is not fully known, which advocates the search of the best solution over the worst-case scenario.
Our formulation constructs interval estimates by optimizing the performance metric over a set of
distributions that are supported on the input data, satisfying a suitably weighted Kullback-Leibler
divergence constraint. We demonstrate how our approach can conform naturally to the numerical
boundary of the performance metric and leads to better finite-sample coverage than linearization-
based interval estimates. Moreover, we develop tight coverage guarantees via a generalization of
the empirical likelihood theory, in contrast to potentially loose confidence guarantees in previous

data-driven DRO formulations.

1.2 Uncertainty Quantification in Data-Driven Optimization

In the second part (Chapters {4] and we switch focus to uncertainty quantification for data-
driven optimization. Stochastic optimization has been extensively used for decision making under
uncertainty in both operations research and machine learning, where the decision maker optimizes a
certain expected performance measure, potentially subject to uncertain constraints. In the context
where the governing distributions are estimated from data, Chapters[dand [5]investigate statistically
efficient methodologies to assess and improve solution performances in terms of optimality and
feasibility.

Chapter {| presents a novel method based on bagging or bootstrap aggregating, an ensemble
method in machine learning, to compute bounds for the optimality gap of a given solution. The
motivation is that data-driven solutions to stochastic optimization can be suboptimal due to con-
tamination from statistical and model errors, and a quantitative assessment of solution quality can
help with screening out inferior solutions. The goal here is to assess solution performance by using
data; this is in contrast to the common analyses of stochastic optimization algorithms that reveal
the convergence rate, which are based on the worst-case and could be over-conservative for a given

particular problem instance. Existing methods based on data batching (Mak et al. (1999)) tend
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to generate unnecessarily loose bounds due to the inefficient use of the data, while those based on
sample average approzimation (SAA) asymptotics (Shapiro et al.| (2014)), Bayraksan and Morton
(2006)) require Lipschitz smoothness from the optimization and can perform poorly in practice
due to the instability in estimating the standard error. The proposed bagging method reduces the
estimation variance of optimality gap bounds and stabilizes estimation of the standard error by
averaging a large number of resampled estimates, and at the same time extends the SAA asymp-
totic theories to non-smooth problems by smoothing the SAA optimal values. Mathematically, we
established the asymptotic performance of our bagging approach by utilizing the so-called infinite-
order symmetric statistics, in which the SAA optimal value can be viewed as the kernel of the
corresponding statistics.

Chapter [5] focuses on improving data-driven solutions for optimization under uncertain con-
straints, such as probabilistic or expectation constraints. When these constraints are only observ-
able via data, feasibility can only be guaranteed at best with high confidence, and a data-driven
procedure needs to strike a balance between optimality and feasibility. Common data-driven for-
mulations, such as DRO, SAA, and robust optimization, ensure feasibility guarantees via a feasible
set estimation, or in other words, an implicit simultaneous estimation problem of the noisy con-
straint over the whole decision space. This could subsequently lead to over-conservative solutions
especially for high dimensional problems. To address this issue, we develop a general constraint-
validation framework that allows one to examine feasibility only on a low dimensional solution
path that is intrinsic to these common data-driven optimization formulations. We establish both
asymptotic and finite-sample performance guarantees of our framework, and dissect our results
to various formulations, by using recently developed high-dimensional Berry-Esseen theorem and
empirical process theory.

In the remainder of the thesis, Chapters present in detail the four projects mentioned above,
and Appendices contain technical proofs for each of the chapters respectively. As an effort
to improve the manageability of the notation system, mathematical symbols will be made self-
contained within each chapter, in other words, a symbol that refers to a certain object in one

chapter may be used to represent a different object in another chapter. The thesis is based on |[Lam
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land Qian| (2018¢}, 2017, [2018b, 2019a)), for which preliminary versions have appeared in

(Qian| (20184, [2016], 20184, 2019H).
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Chapter 2

Subsampling to Enhance Efficiency in

Input Uncertainty Quantification

2.1 Introduction

Stochastic simulation is one of the most widely used analytic tools in operations research. It provides
a flexible means to approximate complex models and to inform decisions. See, for instance, [Law
et al| (2000) and [Banks et al.| (2005) for applications in manufacturing, revenue management,
service and operations systems etc. In practice, the simulation platform relies on input models
that are typically observed or calibrated from data. These statistical noises can propagate to the
output analysis, leading to significant errors and suboptimal decision-making. In the literature,
this problem is commonly known as input uncertainty or extrinsic uncertainty.

In conventional simulation output analysis where the input model is completely pre-specified,
the statistical errors come solely from the Monte Carlo noises, and it suffices to account only
for such noises in analyzing the output variability. When input uncertainty is present, such an
analysis will undermine the actual variability. One common approach to quantify the additional
uncertainty is to estimate the variance in the output that is contributed from the input noises
(e.g., Song et al. (2014))); for convenience, we call this the input variance. This quantity acts as an

uncertainty measure which, when added together with the Monte Carlo variance, gives rise to the
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overall variance in the outputs. A refined decomposition of input variance across multiple input
sources can be used to identify models that are overly ambiguous and flag the need of more data
collection (e.g., Song et al.| (2014)). Input variance also provides a building block to construct
valid output confidence intervals (CIs) that account for combined input and simulation errors (e.g.,
Cheng and Holland| (2004)). Motivated by its central role in quantifying input uncertainty, this
chapter aims to study the efficient estimation of input variance.

In the literature, bootstrap resampling is a common approach for the above purpose. This
applies most prominently in the nonparametric regime, namely when no assumptions are placed
on the input parametric family. It could also be used in the parametric case (where more alter-
natives are available). For example, |Cheng and Holland| (1997) proposes the variance bootstrap,
and Song and Nelson (2015) studies the consistency of this strategy on a random-effect model that
describes the uncertainty propagation. A bottleneck with using bootstrap resampling in estimat-
ing input variances, however, is the need to “outwash” the simulation noise, which often places
substantial burden on the required simulation effort. More precisely, to handle both the input and
the simulation noises, the bootstrap procedure typically comprises a two-layer sampling that first
resamples the input data (i.e., outer sampling), followed by running simulation replications using
each resample (i.e., inner replications). Due to the reciprocal relation between the magnitude of
the input variance and the input data, the input variance becomes increasingly small as the input
data size increases. This deems the control of the relative estimation error increasingly expensive,
and requires either a large outer bootstrap size or inner replication size to extinguish the effect of
simulation noises.

The main goal of this chapter is to investigate subsampling as a simulation saver for input
variance estimation. This means that, instead of creating distributions by resampling a data set
of the full size, we only resample (with or without replacement) a set of smaller size. We show
that a judicious use of subsampling can reduce the total simulation effort from an order bigger
than the data size in the conventional two-layer bootstrap to an order independent of the data
size, while retaining the estimation accuracy. This approach leverages the interplay between the

form of the input variance and its estimation error, in terms of the data size and the sampling
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effort in each layer of the bootstrap. On a high level, the subsample is used to estimate an input
variance as if less data are available, followed by a correction of this discrepancy in the data size by
properly rescaling the input variance. We call this approach proportionate subsampled variance
bootstrap. We explicitly identify the procedural specifications in our approach that guarantee
estimation consistency, including the minimally required simulation effort in each layer. We also
study the theoretical behavior of our estimation error, in relation to the simulation effort allocation
in these layers as well as the input data and subsample sizes, which in turn reveals the optimal
configurations and provides implementation guidance.

In the statistics literature, subsampling has been used as a remedy for situations where the
full-size bootstrap does not apply, due to a lack (or undeterminability) of uniform convergence
required for its statistical consistency, which relates to the functional smoothness or regularity of
the estimators (e.g., [Politis and Romano (1994)). Subsampling has been used in time series and
dependent data (e.g., Politis et al.| (1999)), Hall et al.| (1995), Datta and McCormick| (1995)), ex-
tremal estimation (e.g., Bickel and Sakov| (2008)), shape-constrained estimation (e.g., Sen et al.
(2010))) and other econometric contexts (e.g., |Abadie and Imbens (2008), Andrews and Guggen-
berger| (2009,(2010))). In contrary to these works, our subsampling approach is introduced to reduce
the simulation effort faced by the two-layer sampling necessitated from the presence of both the
input and simulation noises. In other words, we are not concerned about the issue of uniform
convergence, but instead, we aim to distort the relation between the required simulation effort and
data size in a way that allows more efficient deconvolution of the effects of the two noises. We
also note that, as we will use resampling with replacement (instead of without replacement), our
approach is closer to the so-called m out of n bootstrap (Bickel et al. (1997)), Bickel and Sakov
(2008)). For coherence, throughout the chapter we use the term subsampling broadly to indicate a
bootstrap with a smaller resample size than the original data size.

We close this introduction with a brief review of other related work in input uncertainty. In the
nonparametric regime (the focus of this chapter), besides Cheng and Holland| (1997)) and [Song and
Nelson (2015) that study bootstrap-based estimation of the input variance, Barton and Schruben

(1993)) and Barton and Schruben| (2001)) investigate the percentile bootstrap to construct Cls (i.e.,
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the CI limits are determined from the quantiles of the bootstrap distributions). Like variance boot-

strap, percentile bootstrap also encounters two-layer sampling that requires substantial simulation

efforts. Yi and Xie| (2017) investigates adaptive budget allocation policies based on ranking and

selection to reduce simulation cost in the percentile bootstrap, and empirically shows the computa-

tional advantage of their approach. On the other hand, contrary to this work, they do not investigate

the required simulation efforts in relation to the input data size. Lam and Qianl (2016} 2017)) study

the use of empirical likelihood as an optimization-based alternative to the percentile bootstrap,

which requires simulation efforts to estimate the gradient information that remain substantial. Be-

yond the frequentist regime considered in this chapter, Xie et al. (2018) studies nonparametric

Bayesian methods based on Dirichlet process mixtures to estimate the variance contributed from

input uncertainty and construct Cls. |Glasserman and Xu (2014)), Hu et al.| (2012)), Lam| (2016b))

and |Ghosh and Lam| (2019)) study input uncertainty from a robust optimization viewpoint, where

they compute worst-case bounds subject to constraints or so-called uncertainty sets that represent

partial beliefs on unknown distributions. In the parametric regime, Barton et al. (2013)) and

(2016) investigate the basic bootstrap with a metamodel built in advance, a technique known

as the metamodel-assisted bootstrap. Cheng and Holland (1997) studies the delta method, and

|Cheng and Holland| (1998, [2004) reduce its computation burden via the so-called two-point method.

Lin et al. (2015) and Song and Nelson| (2019)) study regression approaches to estimate sensitivity

coefficients which are used to apply the delta method, generalizing the gradient estimation method

in Wieland and Schmeiser| (2006). Zhu et al.| (2020) studies risk criteria and computation to quan-

tify parametric uncertainty. Finally, Chick| (2001)), Zouaoui and Wilson| (2003)), Zouaoui and Wilson|

(2004) and [Xie et al. (2014) study variance estimation and interval construction from a Bayesian

perspective. We comment that although the exposition in this chapter focuses on the nonparamet-
ric setting, the same idea of subsampling can be adapted naturally to the parametric setting, with

similar advantages in computational efficiency. For general surveys on input uncertainty, readers

are referred to Barton et al| (2002), [Henderson| (2003), (Chick (2006), Barton| (2012)), Song et al.|
(2014)), [Lam| (2016al), and (2013) Chapter 7.

The remainder of this chapter is as follows. Section[2.2]introduces the input uncertainty problem
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and explains the simulation complexity bottleneck in the existing bootstrap schemes. Section |2.3
presents our subsampling idea, procedures and the main statistical results. Section discusses
the key steps in our theoretical developments. Section reports our numerical experiments. All

proofs are relegated to Appendix [A]

2.2 Problem Motivation

This section describes the problem and our motivation. Section first describes the input
uncertainty problem, Section [2.2.3| presents the existing bootstrap approach, and Section
discusses its computational barrier, thus motivating our subsampling investigation. We aim to

provide intuitive explanations in this section, and defer mathematical details to later sections.

2.2.1 Notation

We use the following notations. For any sequences a, and b,, both depending on n, we say that
an = O(by) if |an/b,| < C for some constant C' > 0 for all sufficiently large n, and a,, = o(by,) if
an/bp, — 0 as n — oo. Alternately, we say a, = Q(b,) if |a,/b,| > C for some constant C' > 0
for all sufficiently large n, and a,, = w(by) if |a,/by| — 00 as n — oco. We say that a, = O(b,)
if C < |an/by| < C as n — oo for some constants C,C > 0. We use 4, = Op(by,) to represent
a sequence of random variables A, that has stochastic order at least by, i.e., for any € > 0, there
exists M, N > 0 such that P(|A,/by| < M) > 1— € for n > N. We use A,, = 0,(by,) to represent
a sequence of random variables A, that has stochastic order less than b,, i.e., A, /by 20, We use
A, = ©,(b,) to represent a sequence A,, that has stochastic order exactly at b,, i.e., A, satisfies

A, = Op(by) but not A, = o0,(by,).

2.2.2 The Input Uncertainty Problem

Suppose there are m independent input processes driven by input distributions Fi, Fy, ..., Fin,.
We consider a generic performance measure ¢ (F1,..., F,,) that is simulable, i.e., given the input

distributions, independent unbiased replications of ¢ can be generated in a computer. As a primary
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example, think of ' and F5 as the interarrival and service time distributions in a queue, and v is
some output measure such as the mean queue length averaged over a time horizon.

The input uncertainty problem arises in situations where the input distributions Fi, ..., F;, are
unknown but real-world data are available. One then has to use their estimates 131, . ,ﬁm to drive

the simulation. Denote a point estimate of (Fy,..., F,,) as @(ﬁl, .. .,ﬁm), where typically we

take
N ~ 1L . . .
YL, Fn) == e(FL, . Fr)
q r=1
with 1217»(?1, .. ,ﬁm) being a conditionally unbiased simulation replication driven by Bi,... F,.

This point estimate is affected by both the input statistical noises and the simulation noises. By
conditioning on the estimated input distributions (or viewing the point estimate as a random
effect model with uncorrelated input and simulation noises), the variance of ¢(F}, ..., Fy,) can be
expressed as

Var[p(Fy, ..., Fp)] = 02 + 0%

where

of = Var[y(Fy, ..., Fp)] (2.1)
is the input variance, and

E[Var[()(F1, ..., Fp)|FL, ..., Fyl]
q

0% =

is the variance contributed from the simulation noises. Assuming that the estimates ﬁi’s are
consistent in estimating F;’s, then, as n; grows, o% is approximately Var[q/;r(Fl, ..., Fpn)]/q and
can be estimated by taking the sample variance of all simulation replications (see, e.g., Cheng and
Holland, (1997)). On the other hand, o? signifies the output variance contributed solely from the
input data noises, assuming a fully accurate evaluation of the performance measure . Estimating
U% is the key and the challenge in quantifying input uncertainty, which is the focus of this chapter.

Before going into details, we discuss two conceptual properties on a% that would be relevant in

motivating and pinpointing our study. First, suppose further that for each input model ¢, we have
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n; iid. data {X;1,...,X;n,} generated from the distribution F;. When n;’s are large, typically

the overall input variance a? is decomposable into

[

TS

=1

(2.2)

3

(2

where o2 /n; is the variance contributed from the data noise for model i, with 02 being a constant. In
the parametric case where 131 comes from a parametric family containing the estimated parameters,
this decomposition is well known from the delta method (Asmussen and Glynn| (2007), Chapter 3).
Here, 0'2-2 /n; is typically V1'%, V1), where V4 is the collection of sensitivity coefficients, i.e., the
gradient, with respect to the parameters in model 4, and ¥; is the asymptotic estimation variance
of the point estimates of these parameters (scaled reciprocally with n;). In the nonparametric
case where the empirical distribution Fj(z) := > ji10x,;(x)/n; is used (where dx, ; denotes the
delta measure at Xj ;), still holds under mild conditions (e.g., Propositions and in
the sequel). In this setting the quantity o is equal to Varg,[g;(X;)], where g;(-) is the influence
function (Hampel (1974))) of ¢ with respect to the distribution F;, whose domain is the value space
of the input variate X;, and Varg,[-] denotes the variance under F;. The influence function can
be viewed as a functional derivative taken with respect to the probability distributions Fj’s (see
Serfling| (2009), Chapter 6), and dictates the first-order asymptotic behavior of the plug-in estimate
of 1. Although the mathematical form of ¢?’s is known, it relies on gradient information that needs
to be estimated via simulation itself. Moreover, in the nonparametric case, the gradient dimension
in a sense grows with the data size. Thus directly using the delta method in this case could be
challenging. In our subsequent developments, we focus on the nonparametric case, both because
this is more challenging, and also that this can be viewed as a generalization of the parametric case
by viewing the “parameter” simply as a function of F;’s.

Second, under further regularity conditions, a Gaussian approximation holds for @(ﬁl, e ,ﬁm)

&(ﬁlv"',ﬁm)izl—a/Q \/ U%+U% (23)

is an asymptotically tight (1 — a)-level CI for ¢ (F1, ..., Fy,), where z;_, /o is the standard normal

so that
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1 —a/2 quantile. This CI, which provides a bound-based alternative to quantify input uncertainty,
again requires a statistically valid estimate of 0% or Y., 02/n; (and 0%). In this chapter we
primarily focus on the estimation of 0% and how our proposed approach substantially improves
upon previous methods in this regard. Naturally, the improved estimate of O‘% also translates into
a better CI when using . We caution, however, that an optimal procedural configuration to
estimate a? does not necessarily correspond to an optimal configuration in constructing the CI, as
the performance of the latter is measured by different criteria such as coverage or half-width (such
a difference in optimally estimating variance versus CI has also been observed in other contexts
such as time series (Sun et al. (2008]))). Nonetheless, we will show that a direct plug-in of our new
estimator of J% into is already enough to significantly outperform conventional bootstrap-
based Cls suggested in the literature, both theoretically and also supported by consistent empirical
evidence.

Next we will discuss bootstrap resampling, the commonest estimation technique that forms the

basis of our comparison.

2.2.3 Bootstrap Resampling

Let ﬁz* represent the empirical distribution constructed using a bootstrap resample from the original

data {X;1,...,X;n,} for input Fj, i.e., n; points drawn by uniformly sampling with replacement
from {X;1,...,Xin,}. The bootstrap variance estimator is Var, [w(ﬁf, ..., F*)], where Var,[]
denotes the variance over the bootstrap resamples from the data, conditional on F\l, . ,F\m.

The principle of bootstrap entails that Var,[(Fy, ..., F¥)] ~ Var[o(FL,. .., Fy)] = o?. Here

Var, [(F}, ... F*

)] is obtained from a (hypothetical) infinite number of bootstrap resamples and

simulation runs per resample. In practice, however, one would need to use a finite bootstrap size
and a finite simulation size. This comprises B conditionally independent bootstrap resamples of
{]51* Yo ,ﬁ;;}, and R simulation replications driven by each realization of the resampled input
distributions. This generally incurs two layers of Monte Carlo errors.

Denote 1[% (ﬁ 1b sy F\f;) as the r-th simulation run driven by the b-th bootstrap resample. Denote

® as the average of the R simulation runs driven by the b-th resample, and 1/:1 as the grand sample
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average from all the BR runs. An unbiased estimator for Var*w(ﬁl* - ,ﬁ;)] is given by
B
1 —p = Vv
B-1 Z(W — ) — = (2.4)
b=1
where
1 B R R R
Ve be(FP, ... EFb) — %)%

To explain, the first term in is an unbiased estimate of the variance of ¥°, which can be
expressed as Var, [w(ﬁl*, e ,F\;‘l)] + (1/R)E, [Var[zﬁr(ﬁl*, e ,ﬁ;;)\ﬁl*, e ,}?T’;L]] (where E,[-] denotes
the expectation on }?’i*’s conditional on ﬁi’s), since 9® incurs both the bootstrap noise and the
simulation noise. In other words, the variance of 9" is upward biased for Var,[t(F¥, ..., F%)]. The
second term in , namely V/R, removes this bias. This bias adjustment can be derived by view-
ing Var, [@b(ﬁl* ,...,F*)] as the variance of a conditional expectation. Alternately, v, (ﬁl*, L EY)
can be viewed as a random effect model where each “group” corresponds to each realization of
ﬁl*, e ﬁ,;“l, and estimates the “between-group” variance in an analysis-of-variance (ANOVA).
Formula has appeared in the input uncertainty literature, e.g., (Cheng and Holland| (1997)),
Song and Nelson (2015), |Lin et al.| (2015), and also in [Zouaoui and Wilson| (2004)) in the Bayesian
context. Algorithm [1| summarizes the procedure.

More generally, to estimate the variance contribution from the data noise of model 7 only, namely
02 /ni, one can bootstrap only from {X;1,..., X, } and keep other input distributions 133-, Jj#i
fixed. Then ﬁz* and ﬁj, j # i are used to drive the simulation runs. With this modification, the same
formula or Algorithm |1| is an unbiased estimate for Var, [w(ﬁl, . ,ﬁi,l,}?}*,ﬁiﬂ, e ,ﬁm)],
which is approximately Var[¢(F1, ... ,Fi_1,1?’i, Fit1,...,Fy)] by the bootstrap principle, in turn
asymptotically equal to af /n; introduced in . This observation appeared in, e.g., [Song et al.
(2014); in Section we give further justifications.

2.2.4 A Complexity Barrier

We explain intuitively the total number of simulation runs needed to ensure that the variance

bootstrap depicted above can meaningfully estimate the input variance. For convenience, we call
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Algorithm 1 ANOVA-based Variance Bootstrap
Given: B>2,R>2;data ={X;;:i=1,...,m,j=1,...,n;}

forb=1to B do
For each i, draw a sample {XZ T, ¢ anl} uniformly with replacement from the data to obtain
a resampled empirical distribution ]?'Z-b
for r=1to R do
Simulate &n(ﬁlb, L F)
end for
Compute %, = & YR @r(ﬁlb, L FY)
end for
Compute V = ﬁ 25:1 Zil(@@T(ﬁ{’, cel I?,fl) — W’Bv)2 and @ZBV = % 25:1 &%V

A 1 B /7 n %
Output 6%, = B > et (W — Uy )? — R

this number the simulation complexity. This quantity turns out to be of order bigger than the
data size. On a high level, it is because the input variance scales reciprocally with the data
size (recall (2.2)). Thus, when the data size increases, the input variance becomes smaller and
increasingly difficult to estimate with controlled relative error. This in turn necessitates the use of
more simulation runs.

To explain more concretely, denote n as a scaling of the data size, i.e., we assume n; all grow
linearly with n, which in particular implies that o? is of order 1/n. We analyze the error of 6%,
from Algorithm |1|in estimating o%. Since 6%, is unbiased for Var, [w(ﬁl* yeens ﬁ,",ib)] which is in turn
close to O'%, roughly speaking it suffices to focus on the variance of 6%‘/. To analyze this later

~

E}), as

quantity, we denote a generic simulation run in our procedure, ¢, (Fy, ..., F},

Dp(FF, . FE) = (Fy, ... Fp) +6+&

where
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are the errors arising from the bootstrap of the input distributions and the simulation respectively.
If ¢ is sufficiently smooth, § elicits a central limit theorem and is of order ©,(1/4/n). On the other
hand, the simulation noise £ is of order ©,(1).

Via an ANOVA-type analysis as in Sun et al.| (2011, we have

Var. hy] = B 15'] = (B 1))+ Gy (Bl + =y B2 + o
2 2 _ ~ ~
oA E e+ 2O S g (miiFy . Pl
+ 2R 86 Bl (2.5)

Now, putting § = ©,(1/y/n) and £ = O,(1) formally into (2.5)), and ignoring constant factors,

results in

1 1 1 1 1 1 1 1
Va5 = 0, ( )

B2 B2 B T B2Rn T B2R® ' BR® T BRn | B°Rivn

or simply

0 (5o * 572 (26)
The two terms in correspond to the variances coming from the bootstrap resampling and the
simulation runs respectively.

Since o7 is of order 1/n, meaningful estimation of 0% needs measured by the relative error. In
other words, we want to achieve &%‘V / O'% % 1 as the simulation budget grows. This property, which
we call relative consistency, requires 6%, to have a variance of order o(1/n?) (i.e., a standard error
of o(1/n)) in order to compensate for the decreasing order of 7.

We argue that this implies unfortunately that the total number of simulation runs, BR, must
be w(n), i.e., of order higher than the data size. To explain, note that the first term in forces
one to use B = w(1), i.e., the bootstrap size needs to grow with n, an implication that is quite
natural. The second term in , on the other hand, dictates also that BR? = w(n?), which

is satisfied if we use R = O(n) provided that B is already w(1). Note that this gives rise to a
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total simulation effort BR = w(1) - ©(n) = w(n), which can not be reduced further because the
requirement BR? = w(n?) already entails that (BR)? > BR? = w(n?) must hold.
We summarize the above with the following result. Let N be the total simulation effort, and

recall n as the scaling of the data size. We have:

Theorem 2.2.1 (Simulation complexity of variance bootstrap) Under Assumptions m
to be stated in Section[2.4.1] the required simulation budget to achieve relative consistency in

esttmating o7 by Algorithm|1}, t.e., o o7 — 1, 1s N =w(n).
imating o3 by Algorithm|l), i.e., 6%, /a2 51, is N

Though out of the scope of this work, there are indications that such a computational barrier
occurs in other types of bootstrap. For instance, the percentile bootstrap studied in |Barton and
Schruben| (1993, 2001) appears to also require an inner replication size large enough compared
to the data size in order to obtain valid quantile estimates (the authors actually used one inner
replication, but Barton| (2012) commented that more is needed). |Yi and Xie (2017)) provides an
interesting approach based on ranking and selection to reduce the simulation effort, though they
do not investigate the order of the needed effort relative to the data size. The empirical likelihood
framework studied in Lam and Qian (2017) requires a similarly higher order of simulation runs
to estimate the influence function. Nonetheless, in this work we focus only on how to reduce

computation load in variance estimation.

2.3 Procedures and Guarantees in the Subsampling Framework

This section presents our methodologies and results on subsampling. Section first explains
the rationale and the subsampling procedure. Section then presents our main theoretical

guarantees, deferring some elaborate developments to Section [2.4

2.3.1 Proportionate Subsampled Variance Bootstrap

As explained before, a huge simulation effort is required for the &%‘v in Algorithm (1| to achieve
relative consistency, because the input variance shrinks at the rate 1/n as the input data size

grows. In general, in order to estimate a quantity that is of order 1/n, one must use a sample size
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more than n so that the estimation error relatively vanishes. This requirement manifests in the
inner replication size R = O(n) needed in constructing 6% .

To reduce the inner replication size, we leverage the relation between the form of the input
variance and the estimation variance depicted in as follows. The approximate input variance
contributed from model i, with data size n;, has the form 01-2 /n;. If we use the variance bootstrap
directly as in Algorithm |1} then we need an order more than n total simulation runs due to ({2.6]).
Now, pretend that we have fewer than n; but still sufficiently many data, say s;, then the input
variance will be approximately 01-2 /si, and the required simulation runs is now only of order higher
than s; due to a reduced inner replication size R = ©(s;). An estimate of 02/s;, however, already
gives us enough information in estimating o?/n;, because we can rescale our estimate of o?/s;
by s;/n; to get an estimate of a? /n;. Estimating af /s; can be done by subsampling the input
distribution with size s;. With this, we can both use fewer simulation runs and also retain correct
estimation via multiplying by a s;/n; factor.

To make the above argument more transparent, the bootstrap principle and the asymptotic

approximation of the input variance imply that

m.o 2
~ o;
Var,[o(FY, .. g —(1
* [¢( 1> nz + OP )
=1
as the input data size n grows while Fy,..., F,, and v are fixed. As a side note, we comment

that the o,(1) error term is usually independent of the dimensions of the inputs F;’s because the
variance depends on the inputs only through the scalar quantity v (see the proof of Theorem m
for a related analysis). The subsampling approach builds on the observation that a similar relation

holds for

“‘l\')

m
. o
Var.[Y(Fg, 1, Fo m Z? +0p(1))
i=1 "*

where F o i denotes a bootstrapped input distribution of size s; (i.e., an empirical distribution of
size s; that is uniformly sampled with replacement from {X;1,..., X, }). If we let s; = |6n;] for

some 6 > 0 so that s; — oo (where [-] is the floor function, i.e. the largest integer less than or
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equal to -), then we have

mo 9
o 0;

Var [ (Fly, 1 Flgnn )] = D o (L+0p(1)).
i=1 "

Multiplying both sides with 6, we get
~, . i o?
OVar, [¢(F|_0nlj,1’ AR F|_0nmj,m Z ,rT 1+ OP

i=1 "

Note that the right hand side above is the original input variance of interest. This leads to our
proportionate subsampled variance bootstrap: We repeatedly subsample collections of input distri-
butions from the data, with size |6n;]| for model i, and use them to drive simulation replications.
We then apply the ANOVA-based estimator in on these replications, and multiply it by a
factor of 6 to obtain our final estimate. We summarize this procedure in Algorithm [2| The term
“proportionate” refers to the fact that we scale the subsample size for all models with a single

factor #. For convenience, we call 8 the subsample ratio.

Algorithm 2 Proportionate Subsampled Variance Bootstrap
Parameters: B >2, R>20<6<1;data={X;;:i=1,...,m,j=1,...,n;}

Compute s; = [6n;] for all ¢

forb=1to B do
For each i, draw a subsample {XZ T, ¢ 3 si} uniformly with replacement from the data, which
forms the empirical distribution F Sbl_ i

for r=1to R do

Simulate lbr( AR Fé),,“m)
end for
Compute ¢° = & Zr 1 7/Jr( s1,1o - 7ﬁ£m,m)
end for
Compute V = B(R 1) Zb 1 Zr 1(¢r( s1,10°° sm m) — ¢b) and QZ = % ZbB:I J’b

Output 6%, 5 = 0(5~ szlwb — )% - %)
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Similar ideas apply to estimating the individual variance contribution from each input model,
namely O’ZZ /n;. Instead of subsampling all input distributions, we only subsample the distribution,

say F*

%, ; whose uncertainty is of interest, while fixing all the other distributions as the original

empirical distributions, i.e., ﬁj, j # i. All the remaining steps in Algorithm [2| remain the same

(thus the “proportionate” part can be dropped). This procedure is depicted in Algorithm

Algorithm 3 Subsampled Variance Bootstrap for Variance Contribution from the i-th Input Model
Parameters: B >2, R>20<6<1;data={X;;:i=1,...,m,j=1,...,n}

Compute s; = |0n;]
for b=1to B do
Draw a subsample {Xﬁ Lreee ,Xﬁ s, uniformly with replacement from the i-th input data set,
which forms the empirical distribution F Sb”
for r=1to R do
Simulate @T(ﬁl, e ,ﬁ‘i_l,ﬁ;)i7i,ﬁi+1, e ,ﬁm)
end for
Compute ¢° = % Zle ﬁr(ﬁl, . ,ﬁi,l,ﬁ;’i,i,ﬁiﬂ, e ,ﬁm)

end for

Compute V = ﬁ 25:1 Zle(zﬂr(Fl, oL Fq, Ffi,i’ Fii1,...,Ep)—yY®)? and ¢ = % Zle b

Output &§v3,i = G(ﬁ Eszl(Q;b - 5)2 - %)

2.3.2 Statistical Guarantees

Algorithm [2| provides the following guarantees. Recall that N = BR is the total simulation effort,

and n is the scaling of the data size. We have the following result:

Theorem 2.3.1 Under Assumptions to be stated in Section [2.4.1), if the parameters
B, R, 0 of Algorithm[] are chosen such that

2
5 — 00, fn — 00 asn — oo (2.7)

BR-
(6n)

B — oo,
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then the variance estimate 6%, is relatively consistent, i.e. 6%y, /07 S

Theorem tells us what orders of the bootstrap size B, inner replication size R and subsample
ratio 6§ would guarantee a meaningful estimation of o%. Note that 6 = s;/n; for each 4, so that
On = w(1) is equivalent to setting the subsample size s; = w(1). In other words, we need the natural
requirement that the subsample size grows with the data size, albeit can have an arbitrary rate.
Given a subsample ratio 0 specified according to , the configurations of B and R under
that achieve the minimum overall simulation budget is B = w(1) and R = Q(fn). This is because
to minimize N = BR while satisfying the second requirement in , it is more economical to

allocate as much budget to R instead of B. This is stated precisely as:

Corollary 2.3.2 Under the conditions of Theorem given 0 such that On — oo, the values of
B and R to achieve (2.7)) and hence relative consistency that requires the least order of effort are
B — 0o and R > COn for some constant C > 0, leading to a total simulation budget N such that

N
%—>OO.

Note that On is the order of the subsample size. Thus Corollary implies that the required
simulation budget must grow linearly in the subsample size. However, since the subsample size can
be chosen to grow at an arbitrarily small rate, this implies that the total budget can also grow

arbitrarily slow relative to the input data size. Therefore, we have:

Corollary 2.3.3 (Simulation complexity) Under the same conditions of Theorem the
minimum required simulation budget to achieve relative consistency in estimating O'% by Algorithm

@ i.e., 6%y p/od 21, is N = 00 as n — oo by using a 0 such that On — cc.

Compared to Theorem [2.2.1] Corollary [2.3.3] stipulates that our subsampling approach reduces
the required simulation effort from a higher order than n to an arbitrary order, i.e., independent of
the data size. This is achieved by using a subsample size that grows with n at an arbitrary order,
or equivalently a subsample ratio 6 that grows faster than 1/n.

The following result describes the configurations of our scheme when a certain total simulation

effort is given. In particular, it shows, for a given total simulation effort, the range of subsample
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ratio for which Algorithm [2can possibly generate valid variance estimates by appropriately choosing

B and R:

Theorem 2.3.4 (Valid subsample ratio given total budget) Assume the same conditions of
Theorem|[2.3.1. Given a total simulation budget N such that N — oo, if the subsample ratio satisfies
On — oo and QW” — 0, then the bootstrap size B and the inner replication size R can be appropriately

chosen according to criterion (2.7) to achieve relative consistency, i.e., 621‘,3/0% B

The next result is on the optimal configurations of our scheme in minimizing the Monte Carlo

error. To proceed, define

O'ZVVB = Gval"* [¢(ﬁ[’<9nlj71, c ey ﬁ[kennLJym)] (28)

as the perfect form of our proportionate subsampled variance bootstrap introduced in Section [2.3.1

namely without any Monte Carlo noises, and 0 < 6 < 1 is the subsample ratio. We have:

Theorem 2.3.5 (Optimal budget allocation) Assume the same conditions of Theorem .
Given a simulation budget N and a subsample ratio 6 such that % — 00 and On — oo, the optimal
outer and inner sizes that minimize the order of the conditional mean squared error E,[(6%y 5 —
Ty )7 are

B* =

7| =

, R*=0(6n)
giving a conditional mean squared error E.[(6%, 5 — 0%y, 5)%] = ©(0/(Nn))(1 + 0p(1)).

Note that the mean squared error, i.e. E,[(6%, 5 — 0%, )?], of the Monte Carlo estimate 6%, 5 is
random because the underlying resampling is conditioned on the input data, therefore the bound
at the end of Theorem contains a stochastically vanishing term o,(1).

We next present the optimal tuning of the subsample ratio. This requires a balance of the
trade-off between the input statistical error and the Monte Carlo simulation error. To explain, the

overall error of 6%, 5 by Algorithm [2| can be decomposed as

6%vp — 07 = (6%yp — 0syp) + (08yp — 0}). (2.9)
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The first term is the Monte Carlo error for which the optimal outer size B, inner size R and the
resulting mean squared error are governed by Theorem In particular, the mean squared error
there shows that under a fixed simulation budget N and the optimal allocation R = ©(fn), the
Monte Carlo error gets larger as 6 increases. The second term is the statistical errors due to the
finiteness of input data and . Since 6 measures the amount of data contained in the resamples,
we expect this second error to become smaller as 6 increases. The optimal tuning of 6 relies on
balancing such a trade-off between the two sources of errors.

We have the following optimal configurations of B, R and 6 altogether given a budget N:

Theorem 2.3.6 (Optimal subsample size) Suppose Assumptions|2.4.1} (2.4.3{2.4.7 in Section
and Assumptions[2.4.10) in Section [2.4.3 hold. For a given simulation budget N such

that N — oo as n — oo, if the subsample ratio 6 and outer and inner sizes B, R for Algorithm

are set to

0* = O(N3n1) if 1 < N < n??
(2.10)
On~Y2) <o* <O(Nn2AL1) if N >n3/?
N
R =6(0"n), B' = o (2.11)

then the gross error 6%y, 5 — 02 = € + olf!)(]\ffl/?’rf1 +n=3/2), where the leading term has a mean

squared error

1 1

E[£?] = O(W +-5). (2.12)

Moreover, if R = ©((ns)™') and at least one of the ¥;’s are positive definite, where R and X; are
as defined in Lemma[2.4.8, then (2.12)) holds with an ezact order (i.e., O(-) becomes ©(-)) and the
configuration (2.10), (2.11)) is optimal in the sense that no configuration gives rise to a gross error

62 — 02 = op (N30 4 /2.

Note from (2.12) that, if the budget N = w(1), our optimal configurations guarantee the
estimation mean squared error decays faster than 1/n2. Recall that the input variance is of order

1/n, and thus an estimation error of order higher than 1/n? ensures that the estimator is relatively



CHAPTER 2. SUBSAMPLING TO ENHANCE EFFICIENCY 25

consistent in the sense 6%, /0% % 1. This recovers the result in Corollary We also comment
that the algorithmic configuration given in Theorem [2.3.6]is chosen to optimize the mean squared
error of the input variance estimate, but does not necessarily generates the most accurate CI. There
exists evidence (e.g.,|Sun et al. (2008))) that the optimal choice to minimize the mean squared error
of the variance estimate can be different from the one that is optimal for statistical inference,
although in our experiments they seem to match closely with each other.

We comment that all the results in this section hold if one estimates the individual variance
contribution from each input model 7, namely by using Algorithm [3] In this case we are interested
in estimating the variance ¢?/n;, and relative consistency means 6??1/3,1’ /(02/n;) B 1. The data
size scaling parameter n can be replaced by n; in all our results.

Finally, we also comment that the complexity barrier described in Section and our frame-
work presented in this section applies in principle to the parametric regime, i.e., when the input
distributions are known to lie in parametric families with unknown parameters. The assumptions
and mathematical details would need to be catered to that situation, which could be done naturally

by viewing the “parameter” as a function of F;’s.

2.4 Developments of Theoretical Results

We present our main developments leading to the algorithms and results in Section Section
first states in detail our assumptions on the performance measure. Section [2.4.2| presents the
theories leading to estimation accuracy, simulation complexity and optimal budget allocation in the
proportionate subsampled variance bootstrap. Section [2.4.3| investigates optimal subsample sizes

that lead to overall best configurations.

2.4.1 Regularity Assumptions

We first assume that the data sets for all input models are of comparable size.

max; N
—00 min; n;

Assumption 2.4.1 (Balanced data) limsup,,, < oo as all ny — oo.
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Recall in Sections and that we have denoted n as a scaling of the data size. More concretely,
we take n = (1/m) Y ;" n; as the average input data size under Assumption

We next state a series of general assumptions on the performance measure ¢). These assumptions
hold for common finite-horizon measures, as we will present. For each i let Z; be the support of
the i-th true input model F;, and the collection of distributions P; be the convex hull spanned by

F; and all Dirac measures on Z;, i.e.
l l
Pi = {VlFi+ZVklzk : Zyk =1,v; >0, < 0o,z € Z; for all k:}

k=2 k=1

We assume the following differentiability of the performance measure.

Assumption 2.4.2 (First order differentiability) For any distributions P;,Q; € P;, denote
P = (1—v) P+ v3Q; forv; € [0,1]. Assume there exist functions gi(Py,. .., Pp;-) : 2; = R such

that Ep,[gi(P1, ..., Pn; X3)] =0 fori=1,...,m and as all v;’s approach zero

VP, P = (P, Py) = Zm/gi(ﬂ, ey Py 2)d(Q; — Py) () +o(
=1

The differentiability described above is defined with respect to a particular direction, namely @Q; —
F;, in the space of probability measures, and is known as Gateaux differentiability or directional
differentiability (e.g., [Serfling (2009)), Van der Vaart| (2000)). Assumption therefore requires
the performance measure 1 to be Gateaux differentiable when restricted to the convex set P; x

+ X Ppp. The functions g;’s are also called the influence functions (e.g., [Hampel (1974))) that
play analogous roles as standard gradients in the Euclidean space. The condition of g;’s having
vanishing means is without loss of generality since such a condition can always be achieved by
centering, i.e., subtracting the mean. Note that doing this does not make any difference to the first
term of expansion because both @; and P; are probability measures. Taking each v; =1 in

(2.13]), one informally obtains the Taylor expansion of ¢ around P;’s

Q1o Q) — (Prs .. ) ~ Z/gi(Pl, o P 2)d(Q; — P)(@).
i=1
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When each P, is set to be the true input model F; and @Q; to be the empirical input model 1/7\7;, the
above linear expansion is expected to be a reasonably good approximation as the data size grows.

The next assumption imposes a moment bound on the error of this approximation:

Assumption 2.4.3 (Smoothness at true input models) Denote by g;(-) = gi(Fi,...,Fn;-)
the influence functions at the true input distributions F;,i =1,...,m. Assume that the remainder

in the Taylor expansion of the performance measure
~ ~ m ~
O(FL, ..., Ey) =¢(Fy,...,Fn)+ Z/gi(m)d(Fi —F)(z)+e€ (2.14)
i=1

satisfies E[e?] = o(n™!) as n — oo, and the influence functions g;’s are non-degenerate, i.e. o2 :=

Varg, [gi(X;)] > 0, and have finite fourth moments, i.e. Ex,[gi(X;)] < oo.

Assumption [2.4.3] entails that the error of the linear approximation formed by influence functions
is negligible in the asymptotic sense. Indeed, the linear term in (2.14)) is asymptotically of order
@p(n_l/ 2) by the central limit theorem, whereas the error e is implied by Assumption m to
be op(nfl/ 2). Hence the variance of the linear term contributes dominantly to the overall input
variance as n;’s are large. Note that, like the 0,(1) error in approximating the input variance using
the bootstrap principle, the o(n™!) order for E[¢?] is typically independent of the dimensions of
the input distributions, as can be seen from the proof of Theorem [2.4.7, Then, thanks to the
independence among the input models, the input variance can be expressed in the additive form

described in ([2.2]) together with a negligible error.

Proposition 2.4.1 Under Assumptions the input variance 0'% defined in (2.1)) takes
the form

m

0%:2 ‘—1—0(%) asn — oo

i=1

[\

Q

3

where each o = Varg,[g;(X;)] is the variance of the i-th influence function.

As mentioned before, consistent estimation of input variance O'% relies on the bootstrap principle,
for which we make the following additional assumptions. The assumption states that the error of

the linear approximation ([2.14]) remains small when the underlying distributions F; are replaced by
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the empirical input distributions 1/7\1-, hence can be viewed as a bootstrapped version of Assumption

243l

~

Assumption 2.4.4 (Smoothness at empirical distributions) Let §;(-) := g;(F1, ..., Fin;-) be
the influence functions at the empirical input distributions E,i =1,...,m. Assume the empirical
influence function converges to the truth in the sense that E[(g; — g:)*(X;1)] — 0. For eachi let F;

be either the i-th empirical input model }?’2 or the resampled model ﬁ:ﬁz For every (F1,...,Fp,) €

H;L{ﬁia F\s*zz}7 assume the remainder in the Taylor expansion
— — ~ ~ m — o~
(1, F) = (B, B) + ) /@-(x)d(Fi — F)(z) + € (2.15)
i=1

satisfies E.[(e*)] = 0,(s72) as both n,s — oo, where s := L 3" s is the average subsample size.

As the data sizes n;’s grow, the empirical input distributions ﬁz converge to the true ones F;. Hence
the empirical influence functions g;’s are expected to approach the influence functions g;’s associated
with the true input distributions, which explains the convergence condition in Assumption
The fourth moment condition on the remainder €* is needed for controlling the variance of our
variance estimator. Since the fourth moment is with respect to the resampling measure and thus
depends on the underlying input data, the condition is described in terms of stochastic order. Note
that we require to hold not just when F; = ﬁ;"l i for all i but also when some F; = E
This allows us to estimate the variance contributed from an arbitrary group of input models and
in particular an individual input model.

Assumptions are on the performance measure ¢ itself. Next we impose assumptions
on the simulation noise, i.e. the stochastic error 1/3T —1) where @r is an unbiased simulation replication
for 1. We denote by 72(Py, ..., P,,) the variance of @ET when simulation is driven by arbitrary input

models P, ..., P, ie.

2(P1,...,Pp) =Ep, . p,[(r —(P1,..., Pp))%.

Similarly we denote by p4(Py, ..., Py) the fourth central moment of 1% under the input models
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P,..., Py

pa(Pryeos Po) = Epy o p [(r = 0(Pryo, Pa))Y).
In particular, for convenience we write 72 = 72(F}, ..., F,,) for the variance of 1[1 under the true
input models, and 72 = TQ(ﬁl, - ,ﬁm) for that under the empirical input models.

The assumptions on the simulation noise are:

Assumption 2.4.5 (Convergence of empirical variance) 72 272 asn— 0.

Assumption 2.4.6 (Convergence of bootstrapped variance) For every (F1,...,F,,) where

each F; = F, or F* ., it holds that E(72(F1,. .., Fm) — 722 = 0p(1) as both n,s — oco.

Siyt?
Assumption 2.4.7 (Boundedness of the fourth moment) For every (Fy,...,Fy,) such that

eachfi:ﬁ’i or F*

o.is it holds that Ei[pa(F1, ..., Fm)] = 0,(1) as both n,s — oo.

Assumptions and stipulate that the variance of the simulation replication @r as a func-
tional of the underlying input models is smooth enough in the inputs. Conceptually Assumption
is in line with Assumption [2.4.3] in the sense that both concern smoothness of a functional
around the true input models, whereas Assumption is similar to Assumption since both

are about smoothness property around the empirical input models. Assumption [2.4.7]is a fourth

moment condition like in Assumption used to control the variance of the variance estimator.

Similar to Assumption we impose Assumptions |2.4.6| and |2.4.7| for each F; = ﬁl or F;*M

so that the same guarantees remain valid when estimating input variances from individual input
models, i.e., Algorithm
Although the above assumptions may look complicated, they can be verified, under minimal

conditions, for generic finite-horizon performance measures in the form

Y(F, . Fr) =Er p [R(X, ., X)) (2.16)

where X; = (X;(1),...,X;(T;)) represents the i-th input process consisting of 7; i.i.d. variables
distributed under Fj;, each T; being a deterministic time, and h is a performance function. An

unbiased simulation replication ), of the performance measure is (X1, ..oy, Xom).
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Suppose we have the following conditions for the performance function h:

Assumption 2.4.8 For each i, 0 < Varg, [S2ri, By p [M(X1, -, X)) | X5 (1) = X)) < o0.

Assumption 2.4.9 (Parameter k) For eachi let I; = (I;(1),...,1;(T3)) be a sequence of indices
such that 1 < I;(t) <t, and X; 1, = (X;(L;(1)), ..., Xi(Li(T;))). Assume

[ma}( EF17~--7Fm Hh(Xl,hv s 7Xm7fm)|k] < 00.
1y-e5dm

The conditional expectation in Assumption [2.4.8|is in fact the influence function of the performance
measure ([2.16)) under the true input models. So Assumption is precisely the non-degenerate
variance condition in Assumption All other parts of Assumptions[2.4.2 are consequences

of the moment condition in Assumption [2.4.9

Theorem 2.4.2 Under Assumptions and Assumption with k = 4, we have As-
sumptions hold for the finite-horizon performance measure 1 given by (2.16)).

2.4.2 Simulation Complexity and Allocation

This section presents theoretical developments on our proportionate subsampled variance bootstrap.
We first establish relative consistency assuming infinite computation resources. Recall (2.8)) as
the proportionate subsampled variance bootstrap estimator without any Monte Carlo errors. The

following theorem gives a formal statement on the performance of this estimator discussed in Section

231

Theorem 2.4.3 Under Assumptions if the subsample ratio 6 satisfies On — oo, then
the proportionate subsampled variance bootstrap without Monte Carlo error, namely (2.8)), is rela-
tively consistent as n — 00, i.e.

2 2 D
O'SVB/O'I — 1.

The requirement § = w(n~') implies that s; — oo, which is natural as one needs minimally an
increasing subsample size to ensure the consistency of our estimator. It turns out that this minimal

requirement is enough to ensure consistency even relative to the magnitude of 0’% .
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Now we turn to the discussion of the Monte Carlo estimate of the bootstrap variance generated
from Algorithm [2 The following lemma characterizes the amount of Monte Carlo noise in terms

of mean squared error.

Lemma 2.4.4 The output &%VB of Algorithm@ is unbiased for the proportionate subsampled vari-

ance bootstrap without Monte Carlo errors, namely O'%«VB. Furthermore, under Assumptionsm

BL f

B — 00, 0n — 00 asn— oo (2.17)

and R is arbitrary, then the conditional mean squared error

o2 12
B.(03vs - odvs)l = 5 (X 2+ ) 1+ o). (218)

=1

In addition to the condition # = w(n~!) which has appeared in Theorem we also require
B=w(1)in Lemma As the proof reveals, with such a choice of B, we can extract the leading
term of the conditional mean squared error shown in , which takes a neat form and is easy
to analyze.

Note that 0‘% here is of order n~! by Proposition m Hence the Monte Carlo noise of the

Lin order to achieve relative

variance estimate output by our algorithm has to vanish faster than n~
consistency. Combining Theorem and Lemma [2.4.4] we obtain the simulation complexity of
&%V g in Theorem To establish the theoretical optimal allocation on the outer and inner sizes
B, R, for given data sizes n;, subsample ratio 8, and total simulation budget /N, we minimize the

conditional mean square error ([2.18)) subject to the budget constraint BR = N. This gives rise to

the following result that gives a more precise (theoretical) statement than Theorem m

Theorem 2.4.5 Suppose Assumptions hold. Given a simulation budget N and a sub-
sample ratio 0 such that % — o0 and On — oo, the optimal outer and inner sizes that minimize

" -2 2 32
the conditional mean squared error E.[(6%, 5 — 0%, 5)°] are

N e 072

B = = T
R Sy aF /n
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which gives a conditional mean squared error

(1+ 0p(1)). (2.19)

3 ‘NQM

. 807
E.[(6%vp — oévp)’] :TZ

Theorem [2.4.5|gives the exact choices of B and R that minimize the Monte Carlo error. However,
this is more of theoretical interest because the optimal R* involves the desired input variance
S, 02/n;. Having said that, we can conclude from the theorem that the optimal inner size R is
of order ©(0n), the same as the subsample size, because the input variance is of order (1/n) b

Proposition and 72 is a constant. This results in Theorem in Section m

2.4.3 Optimal Subsample Ratio

In this section we further establish the optimal subsample ratio 6 or equivalently subsample sizes
s; that balance the two sources of errors in (2.9). For this, we need more regularity conditions on
the performance measure. The first assumption we need is third order Gateaux differentiability in

the convex set Py X - -+ X Ppy:

Assumption 2.4.10 (Third order differentiability) Using the same notations P;, Q;, P;" as
m Assumption assume that there exist second order influence functions gi,i,(P1,. .., Pn;) :
Zi, X Zi, — R and third order influence functions giyiyis(P1,- .., Pm;-) @ Zi X Eiy X 24y — R for

i1,19,13 = 1,...,m which are symmetric under permutations, namely

Givis(P1y oy Ps 1, 22) = Giiy (P1, ..., Pni o, x1)

Givigis(P1y -+ P 21,22, 23) = Gigiyis (P1y -+« P 2, 01, ¥3) = Giyigin (P1 - -, P 71, 73, T2).
and for all x,y satisfy

IEPZ‘2 [giliz(Pla o 7Pma maXig)] == 07 ]EPig [gi1i2i3(P17 cee 7Pm7 x, y?XZ?,)} = 0.
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Moreover, as all v;’s approach zero the following Taylor expansion holds

¢(P PVm)_q/)(Pl,...,Pm)
m
Zm/gl Pl,...,Pm;x)d(Qi_PZ.)(x)
=1
2
+ Z Vquz/gmz Pl’”"Pm;xl’m2)Hd(Qik_Pik)(CUk)
11,22 1 P
1 « 3 W
+6i1 Z§:1Vilyi2yi3/gi”éi?)(Pl’”.’Pm;wl’w%x?’ 1;[ sz_ ’Lk xk +O< ;1/12 2>.

Assumption [2.4.10] complements and strengthens Assumption [2.4.2] in that it imposes stronger
differentiability property. Similarly, the following two assumptions strengthen Assumptions

and respectively by considering cubic expansions.

Assumption 2.4.11 (Third order smoothness at true input models) Denote by gi,i, () :=
Givig(F1y ooy Fins2) and Giyigis(4) := Giyigis (F1, ..., Fm;+) the second and third order influence func-
tions under the true input models. Assume the remainder in the Taylor expansion of the plug-in

estimator 1#(?1, e 7ﬁm)

W(Br, .. By = w(Fl,...,Fm)—i—Z/gi(x)d(E—Fi)(x)
=1

1 & s
+3 Z /gi1i2($17m2)Hd(‘Fik_Ek)(xk)

i1,i2=1 k=1
1 m 3
ts Z /gmm T1,T2,23) H = Fi,)(zk) + €3
11,02,i3=1 k=1
satisfies E[e3] = o(n™3) as n — oo, and the high order influence functions satisfy the moment

conditions
E[g’?lig (Xihl’XiZajZ)] < OO7 E[glzlizig (Xi1717Xi27j27 XZJJ(})] <00

for all i1,12,13 and j2 < 2,73 < 3, where X; ; is the j-th data point from the i-th input model.
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Similar to the remainder € in Assumption the moment condition on €3 here is used to
control the error of the cubic approximation of v formed by up to third order influence functions.

With these additional assumptions, the error term in Proposition can be refined as follows:

Proposition 2.4.6 Under Assumptions|2.4.1],[2.4.5 and[2.4.10H2.4.11], the overall input variance,

as defined in (2.1)), can be expressed as

SN0

as n — oQ.

B‘Q

We also need third order differentiability around the empirical input models:

Assumption 2.4.12 (Third order smoothness at empirical input models) Let §i,,(-) =
Givia (Fuy - Fs ) and Givigis () = Girigis(F1, ..., Fim;-) be the second and third order influence

functions under the empirical input models. Assume that the remainder in the Taylor expansion of

the bootstrapped performance measure d)( AT F;"m m)
WE Bl ) = OB B + [ a@d(E - R)@)
1 m 2
+§ Z /91112 L1, X2 H slk,zk k)(mk)
i1,09=1 k=1
1 & ~ ~
152D DR [ ARRC [Ld(Fs, o, - Fuan) +
11,82,i3=1 k=1
satisfies Ei[(€5)?] = 0,(s73) as both n,s — oco. In addition, assume the high order empirical

influence functions Gi i, and iy iyig CONVETgE IN MeEAN square error, i.e.
- 2 p 2
E[(Girie — Ginia) " (Xir,1, Xig j2)] = 0, E[(Giviis — Givizin) ™ (Xir,15 Xig,jos Xig,js)] — 0

for all i1,i2,i3 and jo < 2,53 < 3, where X; ; is the j-th data point from the i-th input model. For

the first order influence function g;, assume the remainder in the Taylor expansion

~

Gi(Xi1) = gi(Xin) + > /97:7:' (X1, 2)d(Fy — Fy)(x) — /g,-(x)d(F,- —F)(z) + ¢
/=1
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satisfies Ele2] = o(n™') as n — oo.

As for Assumptions [2.4.3] and [2.4.4] finite-horizon performance measures under mild conditions

satisfy the above two assumptions:

Theorem 2.4.7 Under Assumptions and Assumption with k = 4, we have As-
sumptions |2.4.10 hold for the finite-horizon performance measure 1 given by (2.16)).

With Assumptions 2.4.11] and 2.4.12] we can identify the statistical error of our variance estimator

assuming infinite computation resources, which we summarize in the following lemma.

Lemma 2.4.8 Under Assumptions|2.4.1),[2.4.312.4.Q and[2.4.10H2./.19, the statistical error of the

proportionate subsampled bootstrap variance is characterized by

1

oty —oF :Z+R+op(m+g) (2.20)
where Z is a random variable such that
m
YD IDE
E[Z] =0, Var[Z] = ) = -
i=1 g

with \j = (1/n4,2/n1, ... 72/nm>T and
Y, = covariance matriz of (giz(Xi),EXi [91(X1)915( X1, Xi)], - - Exr [9m (X)) gmi (X, X5)])-

R is defined as

m m
1
=1 gir—1 o

y 3y fraclOni)of g~ Varlgio (X0, X)

4n;sy
i=1 ii'=1 v

where frac(z) := x — |x| denotes the fraction part of x € R, and for each i, X;, X| are independent

copies of the random variable distributed under F;.
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Combining the statistical error (2.20)), and the minimum Monte Carlo error (2.19) under the
optimal budget allocation into the trade-off (2.9)), we obtain the overall error of the output &%V B

of Algorithm [2}

Theorem 2.4.9 (Overall error of the variance estimate) Suppose Assumptions

|2.4.’7| and|2.4.1q-|2.4.12| hold. Given a simulation budget N and a subsample ratio 0 such that % —

oo and On — oo, if outer and inner sizes B, R for Algorithm @ are chosen to be R = ©(0n), B =
N/R, then the gross error of our Monte Carlo estimate 6%y, z—02 = E+0,(0Y/2(Nn)~V/2+0~1n"2 4
n_3/2), where the leading term has a mean squared error
) 0 s = ATEN
E[&% = 0(-= +R* + ) “—) (2.21)

Nn ¢ n;
=1

where R, A\;’s and X;’s are defined in Lemma |2.4.8

It is clear from their definitions in Lemma that R = O(6~'n~2) and each (AI'X;\;)/n; =
O(n=3), hence the mean squared error is in general of order O(G(Nn)~! + 67 2n=4 +n=3).
When R and at least one of the /\ZTEZ'/\i’S satisfy the non-degeneracy condition in Theorem this
bound becomes tight in order, and the optimal subsample ratio can be established by minimizing

the order of the leading overall error £.

2.5 Numerical Experiments

This section reports our experimental findings. We consider two examples with different scales and
complexities:

M/M/1 queue: The first example we consider is an M/M/1 queue that has true arrival rate
0.5 and service rate 1. Suppose the system is empty at time zero. The performance measure of
interest is the probability that the waiting time of the 20-th arrival exceeds 2 units of time, whose
true value is approximately 0.182. Specifically, the system has two input distributions, i.e., the
inter-arrival time distribution F; = Exp(0.5) and the service time distribution F, = Exp(1), for

which we have ny and ns i.i.d. data available respectively. If A; is the inter-arrival time between the
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t-th and (¢ + 1)-th arrivals, and Sy is the service time for the ¢-th arrival, then the system output

Y(F1, Fo) = Epy 1y [1{W2o > 2}]

where the waiting time Wy is calculated by the Lindley recursion Wy41 = max{W;+ S; — A, 0} for
t=1,...,19 and W7 = 0. To test the proposed approach under different levels of utilization, we
also consider true arrival rate 0.9 and service rate 1, for which case the target performance measure
is taken to be the probability that the waiting time of the 20-th arrival exceeds 6 units of time
(true value 0.190). The data sizes nj,ne are chosen so that ny = 2n9 in the experiments, so only
the minimum min; n; is reported for convenience.

Computer network: We also consider a computer communication network borrowed from
Cheng and Holland| (1997) and Lin et al.| (2015). The structure of the system is characterized by
the undirected graph in Figure 2.1} Four message-processing units, which correspond to the nodes,

are connected by four transport channels that are represented by the edges. For every pair i, j

Channel 1/////

—
//

Channel 2

/////Channel 4

Figure 2.1: A computer network with four nodes and four channels.

of processing units with i # j, there are external messages that enter into unit ¢ and are to be
transmitted to unit j through a fixed path, and their arrival follows a Poisson process with rate
Ai j- The specific values for A; ;’s are summarized in Table Each unit takes a constant time of
0.001 seconds to process a message, and has unlimited storage capacity. The messages have lengths
that are independent and follow an exponential distribution with mean 300 bits, and each channel

has a capacity of 275000 bits, therefore there are queuing and transmission delays. The messages
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node j
1 2 3 4
node 1
I n.a. 40 30 35
2 50 mn.a. 45 15
3 60 15 n.a. 20
4 25 30 40 n.a.

Table 2.1: True arrival rates \; ; of messages to be transmitted from node 7 to node j.

travel through the channels with a velocity of 150000 miles per second, and the i-th channel has a

100-2

length of 100 - ¢ miles for ¢ = 1,2, 3,4, leading to a propagation delay of 1z5575

seconds along the
i-th channel. The total time that a message of length [ bits occupies the i-th channel is therefore
m + % seconds. Suppose the system is empty at time zero. The performance measure of
interest is the average delay of the first 30 messages that arrive to the system, or mathematically,
E[% 20:1 Dy], where Dy is the time for the k-th message to be transmitted from its entering
node to destination node. The true value of the performance measure is approximately 6.91 x 1073
seconds. In the experiment, we assume that the arrival rates of the different types of messages, as
well as the distribution of the message length, are unknown, therefore there are 13 input models in
total. Like in the example of M/M/1 queue, the data sizes across different input models are kept
proportional to each other and only the minimum size is reported.

In the experiments we investigate the simulation efforts needed for our subsampling procedure
to generate accurate estimates of the input variance, the impacts of the procedural parameters
0, B, R on the estimation accuracy, and practical guidelines on optimal choices of these parameters.
Regarding performance metrics of the method, we primarily focus on the mean squared error of
the obtained input variance estimate. In addition, note that our estimated input variance can also
be used to construct Cls by plugging into formula . We also examine the quality of these Cls,
measured by coverage accuracy and width, as impacted by the estimation accuracy of the input
variance.

We compare our subsampling approach with the variance bootstrap depicted in Algorithm [I]and
the percentile bootstrap suggested by |[Barton and Schruben| (1993, 2001). The percentile bootstrap

adopts the same nested simulation structure as in variance bootstrap, but does not estimate the
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input variance and instead directly outputs order statistics of the resampled performance measures
to construct Cls. Specifically, after obtaining B bootstrapped performance measure estimates
Pt = % Zil zﬁr(ﬁlb, . .,ﬁ&), each averaged over R i.i.d. replications, the percentile bootstrap
outputs the $(B + 1)-th and (1 — )(B + 1)-th order statistics of {/* :b=1,...,B} asa (1 — «)-
level CI.

In converting our subsampled input variance estimate to CI, we also investigate the use of a
“splitting” versus a “non-splitting” approach. In most part of this section, we use the splitting
approach that divides the budget into two portions with one used to estimate the input variance
and the other to compute the point estimator. To describe it in detail, suppose we have a total
budget of N simulation runs. We allocate R,, simulation runs to estimate 0% using either Algorithm
or 2, and the remaining R, = N — R,, simulation runs driven by the empirical input distributions
to compute the point estimator 1/_1(?1, e ,ﬁm) When constructing the CI in , the simulation
variance a% is calculated as E—i, where 72 is the sample variance computed from the R, simulation
replications. The second, “non-splitting”, approach invests all the N simulation runs in estimating
0%, and constructs the point estimator by averaging all the replications, i.e., ¥ = % Zfil ¥®, where
Y’ is the performance measure estimate for the b-th resample from Algorithm [2l The simulation
variance a% in this case is taken to be the sample variance of all the ¥*’s divided by the bootstrap
size B. The rationale for this approach is that, when the subsample size n is large, E.[¢)] should
accurately approximate the plug-in estimator w(ﬁl, ceey ﬁm) with an error that is negligible relative
to the input variability. Using the former as a surrogate for the latter avoids splitting the budget;
however, we will see later that this may introduce too much bias to maintain the desired coverage
level when the subsample size is relatively small.

The rest of this section is organized as follows. Section [2.5.1]investigates practical guidelines for
choosing the algorithmic parameters in our procedure. Using these guidelines, in Section [2.5.2] we
compare the proposed procedure with the variance bootstrap and the percentile bootstrap. Section
[2.5.3| studies further the conversion of input variance estimate into CI, and compares the associated

splitting and nonsplitting approaches.
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2.5.1 Guidelines for Algorithmic Configuration

relative rmse of the input variance estimate
relative rmse of the input variance estimate

(a) @ min; n; = 5. (b) 6 min; n, = 30.
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Figure 2.2: Input variance estimation accuracy under different configurations of B, R such that
BR = 1000.

We examine the performances using a wide range of parameter choices for 6, B, R. For each
of the two considered examples, and input data sizes from 30 to 2000, we test our subsampling
approach at various combinations of 6, B, R where the subsample size § min; n; € {5, 15, 30,60, 120}
and the budget allocation parameters (B, R) € {(25,40), (50, 20), (100, 10), (200, 5)} (a total of 1000
simulation runs). To calculate the mean square error of the input variance estimate, we perform
1000 independent runs of the procedure, each on an independently generated input data set, and
then take the average of the squared errors. The reported error metric is the relative root mean
squared error (rmse) which can be expressed as w where 6’% and U% are the estimated

and true input variances respectively.

We first study and establish guidelines for the outer size B and inner size R for a given subsample
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size. Figure shows how the estimation error changes as the inner replication size R grows from
5 to 40 (correspondingly the outer size B drops from 200 to 25) and the subsample size 6 min; n;
is fixed at a certain value. Each curve represents the results for one of the considered examples
under a particular input data size. Although the precise optimal choice for B, R varies from one
example to another even when the subsample size is chosen the same, the estimation error appears
robust to the parameter choices, with a range of values that only slightly underperform the optimal.
In particular, compared to the unknown optimal choice, an R between %9 min; n; and %0 min; n;
seems to achieve a comparable accuracy level in the variance estimation, hence is recommended as

a general choice.

S

®

—s%— M/M/1 queue, arrival rate 0.5, min in‘=300
—»—M/M/1 queue, arrival rate 0.5, min in‘=1000

M/M/1 queue, arrival rate 0.5, min;n,=2000

o
®

—o— M/M/1 queue, arrival rate 0.9, min ."5300

—o—M/M/1 queue, arrival rate 0.9, min in‘:1000
M/M/1 queue, arrival rate 0.9, min in‘:ZOOO

——computer network, min ‘ni=750

—o—computer network, min ‘ni=1 80

relative rmse of the input variance estimate
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Omin;n,

Figure 2.3: Input variance estimation accuracy under different subsample sizes with B, R optimally
tuned.

Now we turn to optimal choices for the subsample size. Provided that B, R is properly chosen
as above, we examine the behavior of the variance estimation error as the subsample size varies. As
we have discussed in Section subsampling is preferred when the input data size is relatively
large, and thus we consider input data sizes > 500 for our M/M/1 queue and computer network,
and for each considered data size we plot the variance estimation error versus the subsample size in
Figure We see that a too large size such as 120 always leads to a larger estimation error than
moderate sizes like 30, whereas a too small size around 5 can lift the error by even more in some
cases, which is consistent with the theoretical insight from the bound . Therefore, in general
we recommend the use of a subsample size 6 min; n; between 20 and 40 to optimize the estimation

accuracy. Figure [2.3]shows that, under the suggested subsample size, the relative rmse is as low as
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0.2-0.5 across all the cases.

2.5.2 Comparisons with the Variance Bootstrap and the Percentile Bootstrap

We compare our subsampling method with the standard variance bootstrap and the percentile
bootstrap, under the same total budget of 1500 simulation runs. In addition to the relative rmse
of the input variance estimate, we also report the actual coverage probability and width of the CI
constructed by plugging in the input variance estimate. To estimate all these performance metrics,
we construct 1000 95%-level Cls for the target performance measures, each from an independently
generated input data set. The “splitting” approach that splits the total budget into R, = 1000, R, =
500 is adopted for the subsampling approach and the variance bootstrap, whereas for the percentile

bootstrap all the 1500 simulation runs are used for the resamples. As suggested in Section[2.5.1] we

use the parameter values § = mii? e B =100, R = 10 in our method in all the cases, whereas for the
other two methods we vary the parameter configurations over a reasonable range constrained by the
simulation budget and then report the best results generated by these considered configurations.
In particular, the parameters for the variance bootstrap are chosen to minimize the mean square
error of the input variance estimate from four combinations, “B = 25, R = 40”, “B = 50, R = 207,
“B =100,R =107, “B =200, R = 5", and those for the percentile bootstrap are chosen to achieve
the best the coverage accuracy from four combinations, “B = 50, R = 30", “B = 100, R = 157,
“B =300,R =5", “B = 1500, R = 1”. Note that these give an upper hand to our competing
alternatives in the comparisons.

Tables and summarize the experimental results for the M/M/1 queue when the true
arrival rate is 0.5 and 0.9 respectively, and Table shows those for the computer network. The
shorthand “PSVB” stands for proportionate subsampled variance bootstrap, i.e., our subsampling
approach. For each method, the “coverage estimate” column displays estimates of the actual
coverage probability based on 1000 independent Cls, and the “CI width” column shows their
average width. The second column of each table shows the ratio between the input standard error
or and the simulation standard error og for different input data sizes in our “splitting” approach. A

ratio close to or greater than 1 means that the input noise is a major source of uncertainty relative
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to the simulation noise, thus indicating the need to be taken into account in output analysis.

mingn; | %L . PSVB . variance bootstrap percentile bootstrap

s relative coYerage CI width relative cov.erage CI width cov.erage CI width
rmse estimate rmse estimate estimate

30 7.74 | 0.73 84.3% 0.422 0.73 84.3% 0.422 91.9% 0.467

100 3.77 | 0.55 92.5% 0.251 0.80 88.6% 0.248 98.8% 0.356

300 2.13 | 0.44 94.8% 0.156 1.04 85.6% 0.148 99.9% 0.307

1000 1.15 | 0.38 95.0% 0.103 2.48 89.4% 0.111 100% 0.285

2000 0.79 | 0.38 95.9% 0.087 5.43 92.8% 0.107 100% 0.280

Table 2.2: Results for the M/M/1 queue with arrival rate 0.5 and service rate 1.

min; n; | 2L PSVB variance bootstrap percentile bootstrap
os relative cov.erage T width relative cov'erage T width cov_erage CT width
rmse estimate rmse estimate estimate
30 11.12 | 0.59 81.4% 0.609 0.59 81.4% 0.609 94.6% 0.639
100 6.22 | 0.42 89.9% 0.372 0.63 88.6% 0.386 97.2% 0.446
300 3.46 | 0.32 92.6% 0.225 0.71 87.0% 0.225 99.3% 0.348
1000 1.86 | 0.27 93.3% 0.137 1.21 86.3% 0.137 100% 0.307
2000 1.30 | 0.24 95.0% 0.108 2.19 90.7% 0.119 100% 0.294
4000 0.91 |0.23 94.9% 0.089 3.61 91.2% 0.106 100% 0.288

Table 2.3: Results for the M/M/1 queue with arrival rate 0.9 and service rate 1.

min | oL PSVB variance bootstrap percentile bootstrap
v | os relative | coverage | CI width | relative | coverage | CI width | coverage | CI width
rmse estimate | (x107%) | rmse estimate | (x107%) | estimate | (x107%)
30 12.60 | 0.74 92.0% 19.3 0.74 92.0% 19.3 95.2% 22.0
150 5.36 | 0.41 94.3% 8.85 0.53 91.3% 8.50 98.3% 11.2
750 2.35 0.32 94.2% 4.27 0.94 86.9% 3.88 100% 7.97
1800 1.53 | 0.28 95.3% 3.03 1.63 87.1% 3.01 100% 7.34

Table 2.4: Results for the computer network.

We compare the approaches based on Tables Firstly, our subsampling approach signif-

icantly outperforms the variance bootstrap in terms of estimation accuracy of the input variance.

The estimates generated by our approach have a smaller relative error than those by the variance

bootstrap in all considered cases, and the gap becomes more significant as the data size grows

larger. In particular, as the data size grows from 30 to thousands, the estimation error keeps de-
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creasing from 0.7 to 0.25 in our approach, whereas in variance bootstrap it keeps increasing from
0.7 to larger than 1, a level that makes the estimate too crude to be useful. These demonstrate the
computational advantage and dictate the use of subsampling especially when the input data size
is relatively large. Note that the same budget of 1000 simulation runs are used in input variance
estimation for all considered data sizes and that the estimation accuracy seems much better for
large data sizes than for small sizes, and one may wonder whether more simulation runs should
be used for small data sizes to further improve the estimation accuracy. It turns out that the
estimation errors are mostly due to the inadequacy of the input data rather than the simulation
budget, hence a budget of 1000 is already large enough and further increasing the budget does not
bring much benefit. For instance, in the case of data size 30 in Table the relative error of the
input variance estimate remains as large as 0.69 even if the simulation budget is increased by 10
times.

Secondly, thanks to the high accuracy in the input variance estimates, our subsampling approach
generates accurate CIs whose coverage probabilities quickly approach the nominal level 95% as the
input data size grows. In contrast, the Cls using the variance bootstrap exhibit under-coverage,
and the percentile bootstrap Cls significantly over-cover the truth. We see that the coverage of
the variance bootstrap is below 90% in most considered cases, and in the very few cases where
the ClIs happen to have relatively good coverages, the intervals are much wider than those by
our subsampling approach. For example, in the case of data size 2000 in Table the variance
bootstrap gives a fairly accurate coverage 92.8%, but on average the interval is 1.23 times as wide as
that by our method. This shows that the better estimates of the input variance using subsampling
translate to better Cls significantly compared to using the variance bootstrap, in terms of both
coverage accuracy and width. The percentile bootstrap Cls show an overly high coverage probability
close to 100% and are 2-3 times wider than those by subsampling for all considered input data
sizes except 30. The over-coverage issue of the percentile Cls arises because the order statistics
capture only the input noise but not the simulation noise in the resampled performance measures,
a phenomenon that has been discussed in Barton et al.| (2007, [2018). When one can afford a

sufficiently large budget of simulation relative to the input data size, the simulation noise can be
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made negligible so that the Cls have the correct coverage. However, when simulation resources are
relatively limited (e.g., when data size > 100 in Tables , the Cls are unnecessarily widened by
the extra simulation noise that leads to over-coverage. We also notice that the percentile bootstrap
CIs do show more accurate coverage than the other two methods when the input data size is 30,
which may suggest that the percentile bootstrap is the preferred approach to constructing Cls in
small data cases. However, this outperformance is a result of optimally choosing the parameters
B, R in hindsight. In our experiments, this best parameter set varies from one case to another, and
the actual coverage under different configurations varies in a range of 8%.

Thirdly, results across different input data sizes show that, the advantages of subsampling in
both input variance estimation and CI construction are most significant in situations with relatively
large input data size. Note that one may argue in such situations input uncertainty is negligible.
However, whether this is indeed the case relates to the error tolerance of the decision-maker and the
magnitude of the target performance measure itself. For the large data sizes we consider, the input
noise appears still relatively substantial. For instance, when the input data size is 2000 in Table
the average width of the Cls as a measure of the input uncertainty and simulation uncertainty
combined amounts to as much as 57% of the target tail probability, and that the input uncertainty
serves as a major component of the total uncertainty (a ratio of 1.3 relative to the simulation
uncertainty).

Lastly, in situations with small input data size like 30 the CI coverage clearly falls below 95% in
Tables[2.2] and [2:3] This under-coverage phenomenon may appear to stem from the nonlinear effect
of the performance measure that is inadequately captured by the Gaussian-approximation-based
CI given in . The real reason, as our experiments suggest, turns out to be the insufficient
accuracy of the input variance estimates. In fact, if the true input variance 0'% (which can be
accurately estimated by repeatedly generating independent input data sets) is plugged into (12.3))
to construct Cls, the coverage probability under the data size 30 rises to 94%-95% for both the
M/M/1 queue and the computer network. This indicates a positive impact of an accurate input

variance estimate on the CI quality, a point that we will discuss further momentarily.
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2.5.3 Constructing CI via Input Variance and Comparisons of the Splitting and
Nonsplitting Approaches

We study in more depth the relation between the input variance estimation accuracy and CI quality,
and compare the splitting approach for CI construction that has been used in previous subsections,
with the alternate nonsplitting approach described at the beginning of this section. Finally, we
provide practical budget allocation strategies for the splitting approach.

First, to see how the estimation accuracy of the input variance affects the coverage accuracy
of the CIs, we use the splitting approach to compute 95%-level CIs, with 1000 simulation runs
assigned to input variance estimation and another 500 runs to point estimator evaluation. Figure
plots the coverage probability versus the relative rmse when the subsample size 6 min; n; is
chosen 30 in the M/M/1 queue example, where each point corresponds to a particular combination
of the data size min; n;, the outer replication size B, and the inner replication size R. Figure
plots the same for the computer network example with subsample size 30. Both figures clearly
show that, the more accurately the input variance is estimated, the closer to the nominal level 95%
the coverage probability will be. Accurate estimation of the input variance thus appears to play a

crucial role in the construction of accurate Cls.
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(a) M/M/1 queue with arrival rate 0.5, # min; n; = 30. (b) Computer network, 8 min; n; = 30.

Figure 2.4: Monotonicity between coverage accuracy and input variance estimation accuracy.

Next we compare the splitting and nonsplitting approaches under the same total budget of
1500 simulation runs. Like in the splitting approach, we use a subsample size # min; n; = 30 for

our nonsplitting approach, but use B = 75, B = 20 to consume all the 1500 simulation runs. We
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find that the ClIs generated from the two approaches have similar lengths, but the nonsplitting
approach underperforms in terms of coverage accuracy. Each plot in Figure shows the coverage
probabilities of the nonsplitting Cls versus the splitting ones for each of the considered example
systems, as the input data size grows from 30 to thousands. We see that when the data size is
relatively small (e.g., below 500), the two approaches generate Cls with similar coverage accuracy.
When the data size grows larger, however, the coverage probability of the nonsplitting Cls keeps
dropping in all the three examples, especially in the M/M/1 queue with arrival rate 0.9 where
a drop towards 86% is observed, whereas the splitting Cls exhibit almost exact 95% coverage.
A possible cause of the undercoverage is the overly small subsample size compared to the input
data size, which leads to a high bias in the point estimator. With a subsample size s, the bias of

the nonsplitting point estimator E,[¢)] with respect to the truth ¢(F1,..., F},) can be as large as
O(1/s). Given that the input standard error is ©(1//n), E.[¢)] has a negligible bias only when
the subsample size is large enough, namely when s = w(y/n), indicating that a small subsample
size relative to the data size can corrupt the CI. In our experiment, we find that the (supposedly
unobservable) bias can be as large as 25% of the CI width when the input data size is 2000 in the
M/M/1 queue with arrival rate 0.9, and that artificially removing the bias from the point estimator
can improve the coverage to a similar level achieved by the splitting approach. Because of the bias
and the consequent under-coverage issue, we caution the use of the non-splitting approach, that it
should only be used when a relatively large subsample size is adopted.

Since the splitting approach is recommended, next we explore strategies of splitting a given
budget. Our goal is to generate shortest possible Cls that have a sufficiently accurate coverage
probability. As in the beginning of the section, denote by R, the number of simulation runs used to
estimate the input variance, and by R, to construct the point estimator. Under a fixed total budget
R, + R, = 1500, we try four different splits R, = 100, 250, 500, 1000 (accordingly R, = 1500 — R,,),
and for each split the subsample size is fixed at § min; n; = 30 and several choices of B, R are tested
among which the one with the best coverage probability is reported. Figure [2.6] plots the coverage
probability versus the CI width for the four considered splits, where the M/M/1 queue with arrival

rate 0.9 is considered and input data size is 2000. We notice that the split controls a tradeoff
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Figure 2.5: Coverage comparison under the splitting and nonsplitting approaches.

between the coverage accuracy and the CI width. The more simulation runs one allocates to input
variance estimation, the more accurate but wider Cls one would obtain, because the input variance
is more accurately estimated while the point estimator becomes more noisy. The plot suggests
that allocating 500-1000 replications to variance estimation achieves a good balance of accuracy
and width, in the sense that the intervals from the split “500+1000” or “1000 4+ 500” are only
slightly wider than those by other splits and that allocating less (say 250) to variance estimation
results in a considerable drop in coverage probability from the nominal level 95%. The results
from Tables where the split “1000 4+ 500” is used, also validates the effectiveness of such a
strategy. Therefore, for a given simulation budget, we recommend that the user allocate 500-1000
replications to input variance estimation with our subsampling approach and all the remaining

budget to the construction of the point estimator.
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Figure 2.6: Coverage probability versus CI width, under different budget splits in the form of
“RU + Re” .

2.6 Conclusion

We have explained how estimating input variances in stochastic simulation can require large com-
putation effort when using conventional bootstrapping. This arises as the bootstrap involves a
two-layer sampling, which adds up to a total effort of larger order than the data size in order to
achieve relative consistency. To alleviate this issue, we have proposed a subsampling method that
leverages the relation between the structure of input variance and the estimation error from the
two-layer sampling, so that the resulting total effort can be reduced to being independent of the
data size. We have presented the theoretical results in this effort reduction, and the optimal choices
of the subsample ratio and simulation budget allocation in terms of the data size and the budget.
We have also demonstrated numerical results to support our theoretical findings, and provided
guidelines in using our proposed methods to estimate input variances and also construct output

Cls.
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Chapter 3

Optimization-Based Quantification of

Simulation Input Uncertainty via

Empirical Likelihood

3.1 Introduction

Following Chapter [2| we continue investigating input uncertainty quantification in this chapter,
but switch focus from input variance estimation to the construction of Cls for simulation outputs
that account for input uncertainty in addition to the noises in generating the random variates in
the simulation process. Again we focus particularly on the nonparametric regime. A common
approach is the bootstrap (e.g., Barton and Schruben| (1993, [2001), which repeatedly generates
resampled distributions to drive simulation runs and uses the quantiles of the simulated outputs to
construct the CIs. Another approach is the delta method (e.g., Asmussen and Glynn|[2007, Chapter
III) that estimates the asymptotic variance in the central limit theorem (CLT') directly. The latter
has been considered mostly in the parametric setting (e.g., Cheng and Holland! 1997, [1998| 2004
but bears a straightforward analog in our considered nonparametric scenario (as has been discussed
in Section . Estimating this variance can also be conducted by subsampling (i.e.,Chapter [2))

or bootstrapping (e.g., Cheng and Holland {1997, [Song and Nelson|2015)).



CHAPTER 3. OPTIMIZATION-BASED QUANTIFICATION 51

Our focus in this chapter is a new approach to construct input-induced Cls by using optimization
as an underpinning tool. Our approach looks for a set of “maximal” and a set of “minimal”
probability weights on the input data, obtained by solving a pair of convex optimization problems
with constraints involving a suitably averaged statistical divergence. These weights can be viewed
as “worst-case” representations of the input distributions which are then used to generate the input
variates to drive the simulation, giving rise to upper and lower bounds that together form a CI on
the performance measure of interest.

We will illustrate how this optimization-based approach offers benefits relative to the bootstrap
and the delta method. The bootstrap typically involves nested simulation due to the resampling
step before simulation runs, which leads to a multiplicative computational requirement. Its perfor-
mance can be sensitive to the simulation budget size and allocation rule in the nested procedure. A
key element of our approach is to use convex optimization to replace the resampling step, which by-
passes the multiplicative budget allocation problem and gives more robust performances, especially
under small input data sizes. On the other hand, the overhead in setting up our optimization is more
substantial than the bootstrap when the input data size is large. It should be noted that the boot-
strap possesses more flexibility as the resampled simulation replications can be used to approximate
many statistics and to construct Cls at different confidence levels, without re-running the bootstrap
procedure again. On the contrary, our approach needs re-optimization and a re-evaluation step for
each new confidence level or statistic of interest. Nonetheless, the monotonicity structure of our
decision space in the target confidence level allows us to speed up the re-optimization by starting
the optimization for a high confidence level at the solution obtained for a low confidence level, while
the re-evaluation step only requires a sample size for standard output analysis that is free of input
uncertainty.

Our method is closer to the delta method than the bootstrap in that, like the former, we need to
estimate gradient information. While our approach and the delta method have similar asymptotic
behaviors, we will demonstrate how our approach tends to outperform in finite sample. Roughly
speaking, this outperformance arises since the delta method relies heavily on a linear approximation

in constructing CIs. When the standard error, which arises from this linear approximation, is noisily
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estimated, the resulting CI tends to exhibit under-coverage issues. In contrast, using the weighted
distributions to drive simulation runs in our approach is less sensitive to the quality of the standard
error estimation, and moreover can introduce nonlinearity that naturally follows the boundaries of
a given problem, which in turn alleviates the under-coverage issue experienced in the delta method.

As our main technical contributions, we design and analyze procedures to achieve tight statistical
coverage guarantees for the resulting optimization-based Cls. Our approach aligns with the recent
surge of robust optimization (Ben-Tal and Nemirovski [2002, Bertsimas et al. 2011) in handling
decision-making under uncertainty, where decisions are chosen to perform well under the worst-case
scenario among a so-called uncertainty or ambiguity set of possibilities. Our approach particularly
resembles distributionally robust optimization (DRO) (e.g., Ben-Tal et al.|2013, Delage and Ye
2010, \Goh and Sim/[2010, Wiesemann et al.|2014) where the uncertainty of the considered problem
lies in the probability distributions, as our involved optimization formulation contains decision
variables that are probability weights of the input distributions. However, contrary to the DRO
rationale that postulates the uncertainty sets to contain the truth (including those studied recently
in the simulation literature; Hu et al.|[2012], |Glasserman and Xu/|2014, Lam|[2016b} [2018], |Ghosh
and Lam|2019), we will explain our procedures by viewing the constraints as log-likelihoods on the
input data, and develop the resulting statistical guarantees from a multi-sample generalization of the
empirical likelihood (EL) method (Owen |2001)), a nonparametric analog of the celebrated maximum
likelihood method in parametric statistics. Consequently, the form of our proposed constraint (i.e.,
the averaged statistical divergence constraint) differs drastically from previous DRO suggestions,
and the guarantee is provably tight asymptotically. We mention that, though EL has appeared in
statistics for a long time, its use in operations research has appeared only recently and is limited
to optimization problems (e.g., Lam and Zhou 2017} |[Duchi et al.|[2016, Lam 2019, Blanchet and
Kang] 2020, Blanchet et al.[[2019). We therefore contribute by showing that a judicious use of this
idea can offer new benefits in the equally important area of simulation analysis.

The rest of this chapter is as follows. Section reviews some related literature. Section
presents our procedure and main results on statistical guarantees. Section explains the

underlying theory giving rise to our approach and statistical results. Section shows some
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numerical results and compares with previous approaches. All technical proofs are left to Appendix

Bl

3.2 Related Literature

A review on the problem of input uncertainty has been given in Chapter [2| therefore here we
briefly survey two methodologically related areas. Our methodologies are related to several tools
in statistics. First is the EL method. Initially proposed by (1988) as a nonparametric

counterpart of the maximum likelihood theory, the EL method has been widely studied in statistical

problems like regression and hypothesis testing etc. (e.g.,|Qin and Lawless 1994} (Owenl 2001}, [Hjort|

2009). Its use in operations research is relatively recent and is limited to optimization.

Lam and Zhou (2017) investigates the use of EL in quantifying uncertainty in sample average

approximation. (2019) uses EL to derive uncertainty sets for DRO that guarantees feasibility

for stochastic constraints. [Duchi et al.| (2016) generalizes the EL method to Hadamard differentiable

functions and obtains tight optimality bounds for stochastic optimization problems. Blanchet and

Kang| (2020)), Blanchet et al.| (2019) generalize the EL method to inference using the Wasserstein

distance. In addition, our work also utilizes the influence function, which captures nonparametric

sensitivity information of a statistic, and is first proposed by (1974)) in the context of robust

statistics (Huber and Ronchetti 2009, Hampel et al.2011) as a heuristic tool to measure the effect

of data contamination. Influence function is also used in deriving asymptotic results for von Mises
differentiable functionals which have profound applications in U-statistics .

Our approach resembles DRO, which utilizes worst-case perspectives in stochastic decision-
making problems under ambiguous probability distributions. In particular, our optimization posited
over the space of input probability distributions has a similar spirit as the search for the worst-case

distribution in the inner optimization in DRO. The DRO framework has been applied in various

disciplines such as economics (Hansen and Sargent|2008), finance (Glasserman and Xu/2013}2014)),

stochastic control (Petersen et al.|[2000} Iyengar| 2005, |[Nilim and El Ghaoui 2005, Xu and Mannor|

2012)), queueing (Jain et al|2010) and dynamic pricing (Lim and Shanthikumar|2007). Among
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them, constraints in terms of ¢-divergences, which include the Burg-entropy divergence appearing
in our approach, have been considered in, e.g. |Ben-Tal et al.| (2013), |Bayraksan and Love| (2015)),
Jiang and Guan (2016)), so are other types of statistical distances such as Renyi divergence (e.g.,
Atar et al. [2015, Dey and Juneja 2012, Blanchet et al.|[2020) and the Wasserstein distance (e.g.,
Esfahani and Kuhn|2018, Blanchet and Murthy|2019, Gao and Kleywegt|2016)), and other constraint
types including moments and support (e.g., Delage and Ye 2010l |(Goh and Sim|[2010, Hu et al.|2012,
Wiesemann et al.|2014]). In simulation, the DRO idea has appeared in |Glasserman and Xul (2014),
Lam (2016b, 2018), Ghosh and Lam (2019) in quantifying model risks. Nonetheless, although
our involved optimization looks similar to DRO, the underpinning statistical guarantees of our
approach stem from the EL method. As we will explain, our constraints possess properties that are
dramatically different from those studied in DRO, and their precise forms also deviate from any

known DRO suggestions.

3.3 Optimization-Based Confidence Intervals

This section presents our main procedure and statistical guarantees. We start with our problem

setting and some notations.

3.3.1 Problem Setting

We consider a performance measure in the form
Z*=Z(P,...,Py)=Ep, _p, [MX1,....Xpn)], (3.1)

where P,..., P, are m independent input models, X; = (X;(1),...,X;(7;)) is a sequence of T;
i.i.d. input variates each distributed under P;, and 7T is a deterministic run length. The distribution
P; has (possibly multivariate) domain X;. The function h mapping from %1T1 X o x XIm to R is
assumed computable given the inputs X;. In other words, given the sequence X1, ..., X,,, the value

of h(Xy,...,X;,) can be evaluated by the computer. The notation Ep, _p, [] is a shorthand for

.....

E , the expectation taken over all the independent i.i.d. sequences Xji,...,X,,, i.e.,

Pt x..x PEm [
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under the product measure PIT Lx.--x PIm_ We use X; to denote a generic random variable/vector
distributed under P;.

As a simple example, X and X5 can represent respectively the sequences of inter-arrival times
and service times in a queueing system. P; and P> represent the corresponding input distributions.
h denotes the indicator function of the exceedance of some waiting time above a threshold. Then
Z(Py, Py) becomes the waiting time tail probability.

Our premise is that there exists a true P; that is unknown for each ¢, but a sample of n;
ii.d. observations {Xj1,...,Xin,} is available from each P;. The true value of is therefore
unknown even under abundant simulation runs. Our goal is to find an asymptotically accurate
(1—a)-level CI for the true performance measure Z*. To be more precise, we call a CI asymptotically
exact if it consists of two numbers ., %, derived from the data and the simulation, such that

lim P&<Z7"<%U)=1-«

each n; and R—oco

where R is the total number of simulation replications involved in generating the CI, and the
probability P is taken with respect to the joint randomness in the data and the simulation. The
asymptotic above is qualified by certain growth rates of n; and R that we will detail.

Along our development will also arise cases in which a coverage guarantee is provided as a lower
bound, i.e.,

lim inf P<Z7"<U)>1—-«

each n; and R—oo

We call [, 7] an asymptotically valid (1 — «)-level CI. The CIs constructed from our procedures
will be either asymptotically exact or, asymptotically valid and accompanied with an associated
upper bound that quantities the tightness of the coverage. Lastly, our developments fix the number
of independent input models m and the run lengths 7;’s, i.e., we focus primarily on transient
performance measures with a moderate number of input models relative to the data and simulation

sizes.
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3.3.2 Main Procedure

Algorithm [4] gives a step-by-step description of our basic procedure for computing . and % . The
quantity éZ(X”) foreachi=1,...,m,j =1,...,n; introduced in Step 1 is the sample estimate of
the so-called influence function of Z, which can be viewed as the gradient of Z taken with respect to
the input distributions (see Assumption and the subsequent discussion). This sample estimate
of the influence function is obtained from R; simulation runs. The same simulation replications are
also used to compute an estimate 7 (]51, R Pm) of the performance measure under the empirical
input models, that is, each Pj(-) = n% > 7i10x,;(-) where dx, ;(-) denotes the delta measure on
Xi ;-

Step 2 in Algorithm [4] outputs a minimizer and a maximizer of the optimization in which
“min / max” denotes a pair of minimization and maximization, and the calibrating constant Xﬁ l—o
is the 1—a quantile of the chi-square distribution with degree of freedom one. Optimization can
be viewed as a sample average approximation (SAA) (Shapiro et al.|2014)) on the influence function
(expressible as an expectation), with decision variables being the probability weights w; j,i =
1,...,m,j =1,...,n; on the influence function evaluated at each observation X; ; of input model

i. For convenience, we denote w; = (wj ;)j=1,..n, as the weight vector associated with input model

i, and w = (W;);=1,..m be the aggregate weight vector.

Optimization can be interpreted as two worst-case optimization problems over m indepen-
dent input distributions, each on support {X; 1,..., X, }, subject to a weighted average of individ-
ual statistical divergences (Pardo|2005). To explain, the quantity D, (w;) = —n% > ity log(njw ;)
is the Burg-entropy divergence (Ben-Tal et al.|2013) (or the Kullback-Leibler (KL) divergence)
between the probability weights w; and the uniform weights. Thus, letting N = >, n; be the

total number of observations from all input models, we have

m  n;
z

1 ", 1 & a“
N YD log(niw;,;) = ¥ g > log(nawiy) | = D (i)
i=1 j=1 i=1 j=1 i=1

which is an average of the Burg-entropy divergences imposed on different input models, each

weighted by the proportion of the respective observations, n;/N. The first constraint in ([3.3)
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Algorithm 4 Basic Empirical-Likelihood-Based Procedure (BEL)
Input: Data {X;1,...,X;,,} for each input model i =1,...,m. A target confidence level 1 — ¢,

and numbers of simulation replications, R1,2Rs, to be used in Step 1 and Step 3 respectively.
Procedure:
1. Influence Function Estimation: For each ¢ =1,...,m,j = 1,...,n; compute estimate of

the influence function evaluated at X ;

Rq T;

Gi(Xig) . DX, X5 = Z(Pr o Pa))(ne ) UXT (D) = Xig} = T0)] (3.2)

TR
L= t—1

where for each r = 1,..., Ry, XI = (X](1),..., X[ (T;)) are i.i.d. variates drawn independently
from the uniform distribution on {Xj1,...,X;,,} for each ¢, 1{-} is the indicator function, and

Z(Py,...,Py) = Zf:ll h(XT,..., X7 )/R; is the sample mean of the outputs.

2. Optimization: Compute respective optimal solutions (W‘lnin, co, Wiy and
(Wi ..o, wiiaX) of the following pair of programs
m N4 R
min / max Z Z Gi(Xij)wi
i=1 j=1
m ng
subject to  — 2 Z Zlog(niwi,j) < X12,17a
i=1 j=1 (3.3)

n;
Zwm =1, foralli=1,...,m
j=1

w;; >0, foralli=1,...,m,5=1,...,n;.

3. Evaluation: Compute
1 Ro ) ) 1 R2
gBEL _ E Z h(X;’mm’ o 7}(:;me)7 %BEL — E Z h(}(;,max7 o X?@max)
r=1 r=1

where for each r = 1,...,Ry, X™" = (X™"(1),..., X"™™(T;)) and X]™> =

K3 2 7

(X]™M(1), ..., X" (T;)) are i.i.d. variates drawn independently from a weighted distribution

max

on {X;1,...,Xin,}, according to weights w?rlin and w;"®* respectively for each i.

Output: The CI [ZBEL g/ BEL,
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can thus be written as

m

3

. X2
ZDTLZ(WZ) S 171—O¢

, 2N
=1

2|

which constitutes a neighborhood ball of size Xﬁ 1—o/(2N) measured by the averaged Burg-entropy
divergence.

Finally, Step 3 in Algorithm |4| uses the obtained optimal probability weights w?ﬁ

" and wtex

to form two weighted empirical distributions on {Xi,j}jzlwm for input model 7, which are used

to drive two independent sets of simulation runs, each of size Ro, in order to output the lower and

upper confidence bounds respectively.

An efficient method to solve optimization (3.3)) is discussed in the following proposition:

Proposition 3.3.1 For each i and every 5 > 0 define \i(B8) to be the unique solution of the
equation

> $ =1 (3.4)
= Gi(Xig) + N

N

on the interval (—min; G;(X; ;),00). Let B* > 0 solve the equation

2§:§:log 2nifp L X =0
11—« :

3 (3.5)
=1 =1 Gi(Xij) + Ni(B)

If there exist some ig € {1,...,m} and ji,j2 € {1,...,ni,} such that éio (Xipj1) # éio (Xio,jn)s
X, A

then B* € (O,D/(Q(l — e 3R )mini nl)) and is unique, where D = max{max; G;(X;;) —

min; éZ(X”)]z =1,....m},N = X" n;, and the minimizer (

min

witin L wminy of (3.3) can be
obtained by
min 25*
Wij = 2 '
Gi(Xij) + Ai(67)
The mazimizer (W, ... winax

) can be computed in the same way except that each éZ(X”) is
replaced by —éi(Xm).

Otherwise, if for each i =

1,...,m the coefficient CA;'Z-(XM) takes the same value across all
j=1,...,n4, then (3.3) has a constant objective hence becomes trivial. In this case, one can
output (W™ ... W) and (wiee, ... wlae

mar) as any solution in the feasible set (e.g., the uniform
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weights, i.e., W = wlm,jin = 1/n; for alli,j).

The proof of Proposition uses the Karush-Kuhn-Tucker (KKT) conditions of (3.3]), and can
be found in Section [B.7] of the Appendix. To implement what Proposition suggests, we first
check whether éi(Xi7jl) # éi(XmQ) forsome ¢ =1,...,m and some 1 < j; < jo < n;, in which case

max

the maximizer (W™, ... whax

max) and minimizer (wi®, ..., wiin) of (3.3) are unique. Here, given

a value of § we can efficiently evaluate each \;(3) by solving with Newton’s method. Then, 5*
is obtained by running a bisection on over the interval (0, D/ (2(1 — 6_%) min; nz)) whose
convergence is guaranteed by the uniqueness of §* and the continuity of in B, and finally each
wlm,jin or w;"™ is computed from 3%, Ai(B*)’s and é’i(X@j)’s. Note that for any 8 > 0 the left hand
side of is monotonically decreasing and convex in \;, hence Newton’s method is guaranteed to
converge to A\;() as long as it starts within (— min; él-(Xi,j), Ai(B)), say at 23 —min; éZ(X”) The
advantage of this approach over directly solving the convex optimization is that we reduce the
dimension of the decision space, from linear in the sample sizes to only solving univariate equations
in and , which is much more favorable when the sample sizes are large. Finally, note that
if Ci‘i(X,;’jl) = éi(XmQ) foralli=1,...,mand all 1 < j; < jo < n;, then, as the objective function
of becomes a constant, we can take any solution in the feasible set; for concreteness we can
take (Wit ... wlin) and (WX ... wla) to be the uniform weights.

Next we provide two variants of Algorithm @] depicted as Algorithms [5] and [6] which differ only
by the last step. The motivation (with more details in Section is that Algorithm M| tends
to under-cover the true performance value because its last step only outputs the sample mean of
the simulation replications and does not take full account of the stochastic uncertainty. Algorithm
takes care of this uncertainty by outputting the standard normal lower and upper confidence
bounds in the last step. However, this simple adjustment does not account for the joint variances
from the input data and the stochasticity in a tight manner, and tends to generate conservative Cls
that over-cover the truth. This motivates the refined adjustment in Algorithm [6] that is designed to
match the CI inflation from combined input and stochastic uncertainties, by taking into account the

asymptotic form of the joint variance, and subsequently leads to accurate coverage performances.

To explain intuitively, with no simulation noise, an asymptotically exact CI under input uncertainty
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would output a point estimate of the target performance measure plus or minus a standard error of
magnitude z1_,/207, where 0? denotes the input-induced variance. As we will develop in Section
using the weights (Win, ... wiin) and (Wi . wi) on {X;1,..., X; . }i = 1,...,m,
obtained in Step 2 of the algorithms, to evaluate the performance measure essentially matches this
CI as long as no simulation noise is present in the evaluation step. When R is finite, however,
the standard error should be inflated to z1_q /24 /U% + 02/ Ry where o2 denotes the variance of one
simulation run. But as z;_, /907 is already implicitly elicited by the optimal weights, it needs to
be removed from this standard error to avoid over-coverage. This leads to the adjustment in Step

3 of Algorithm |§|, where 62 is an estimate of 07 and 62, and 62, are estimates of 0. In the

x
expression of 67, the sample variance Z;“zl (é’z(X”))2 /n; for input model i is upward biased due
to the simulation noise in each éi(Xi,j), which is removed by introducing the term n;7;6%/R;. This
correction term is chosen to match the leading variance of the influence function estimate él(X”)
To explain, the performance function h — Z and the multiplier n; Zﬁl 1{X](t) = X;;} — T; that
form the product term in are nearly independent (see Proposition in Section ,
hence the variance of each product can be well approximated by the product of the variances of
the performance function and the multiplier which give rise to 62 and n;T} respectively, and the
1/R; factor simply results from the averaging over R; replications. The positive-part operation is
to handle small R, situations where such a variance estimate could yield negative values due to the

bias correction, in which case we reset it to zero. Note that the latter occurs increasingly rarely as

Ry grows and would not affect asymptotic properties of the estimate.

3.3.3 Statistical Guarantees

We present statistical guarantees of Algorithms [4] 5] and [f] We assume the following:

ming=1,....m Mg
m T

Assumption 3.3.1 liminf >0 as all n; — oo.

ey

Assumption postulates that data sizes across different input models grow at the same rate.
For convenience, we shall use the averaged size n := % > it n; to represent the overall scale of the

data size throughout the chapter.
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Algorithm 5 Evaluation-Adjusted Empirical Likelihood (EEL)

Follow Algorithm [4] until Step 3. Replace Step 3 by

EEL _ Amin Omin EEL max Omax
< =7 _Zl—a/Q 4 Z + 21_ a/2 5

VR VR

where
. 1 R . . 1 R . . .
Zmin _ Ri Z h(X?mln’ o ’X:;Lmln)’ a'?nin _ T Z(h(XI,mm’ o ’X:ﬁmm) . me)2
r=1

are the sample mean and variance of the R simulation runs driven by distributions on
{Xi1,..., Xin,} with weights win .. wmin and Zmax 52 are defined accordingly. z;_ —ay2 18

max

the 1 — a/2 quantile of the standard normal.

Output: The CI [ZFFL g/ EEL),

Algorithm 6 Fully Adjusted Empirical Likelihood (FEL)

Follow Algorithm 4] until Step 3. Replace Step 3 by

~9 52

min S Umin max ~ g ~
PFBEL _ gmin _ a/2( 52+ o ) g FEL _ gmax . a/2< 52 + E:X —01>
where 21_/2, Zmin_ 5 G2, Zmax g 62, are the same as in Algorithm l and
7= {Zm: 1 [i (G Xi)* niTi&Q] 0}, with 6% = ! i(h( LX) )
07 = max 2| 2 p e with 6“ = Rl_l,:l Lo X0,

(3.6)
is computed from the R; replications generated in Step 1.

Output: The CI [ZFEL g/ FEL],
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Assumption 3.3.2 At least one of Var(G;(X;)),i = 1,...,m is non-zero, where

T;

Gi(z) =Y Ep..pn[h(X1, ..., X)) |Xi(t) = 2] = LZ(Py,..., Py).
t=1

Assumption 3.3.3 For each i let I; = (I;(1),...,L;(T;)) be a sequence of indices such that 1 <
Iz(t) < Ti; and X@[i = (XZ(IZ(l)), ,XZ(IZ(TZ))) Assume EPl,...,PmHh(Xl,IlJ” . ,Xm,]m)‘g] 18

finite for all such I;’s.

The function G;(x) in Assumption is the influence function (Hampel |1974, [Hampel et al.
2011)) of the performance measure Z(Pi,..., P,;,) with respect to the input distribution P;, which
measures the infinitesimal effect caused by perturbing P; and represents the Gateaux derivative of

Z in the sense

d
%Z(Ph"'api—h(l_E)Pi"i_eQiaPi—l-l:"wpm)

.~ [ G@da) (3.7)

for any distribution @; on X;. A rigorous treatment of the validity of can be found in
Proposition [3.4.1] in Section Assumption [3:3.2 entails that at least one of the influence
functions is non-degenerate at the true input distributions P;’s, or in other words, at least one of
these distributions would exert a first-order effect on the performance measure. This assumption
is essential in ensuring a normality asymptotic for the output performance measure. In lack of
this assumption, the output performance measure will satisfy a x? or even higher-order asymptotic
behavior as the input data size grows, which has never been observed in the simulation literature to
our best knowledge (the parametric analog of this would be to say that the first-order sensitivities
to all input parameters are zero).

Note that the é’,(X”) in Step 1 of Algorithm 4| is a sample version of G;(X; ;). Assumption
is a moment condition that, as we will see, controls the magnitude of the linearization error
in Step 2 and the simulation error in Steps 1 and 3 of our algorithms. It holds if, for instance, h is
bounded.

We have the following statistical guarantees in using the three proposed algorithms to construct
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input-induced Cls:

Theorem 3.3.2 Suppose Assumptions[3.3.1],[3.3.9 and[3.3.5 hold. If the simulation sizes Ry, Ry

are chosen such that % — 00, % — 00, then the outputs LBEL gy BEL of Algom'thm constitute

an asymptotically exact (1 — av)-level CI, i.e.,

lim pP(LPPL<zr <PPl) =1-a. (3.8)

R R
n,R1,Ra—00: —+—00,72 00

Theorem 3.3.3 Suppose Assumptions|3.3.1],|3.3.9 and|3.3.5 hold. If the simulation sizes Ry, Ro

are chosen such that % — 00, % < M for some constant M > 0, then the outputs LFFL g EEL

of Algorithm @ constitute an asymptotically valid (1 — «)-level CI, i.e.,

lim inf P(LPPE <z <UPPl) > 1 -«
n,R1,Ra—00: %%oo,% bounded
~2
lim sup pP(LPEE<zr <PPly <1-a+ %

n,R1,Ro—00: %—mo, % bounded

where 1 — % = <I>(\/§zl_a/2) with ® being the distribution function of the standard normal. More-

over, if % — 00 like in Theorem then the CI is asymptotically exact, i.e., (3.8) holds for

EEL EFEL
PEEL g EEL

Theorem 3.3.4 Suppose Assumptions[3.3.1], [3.3.9 and[3.3.5 hold. If the simulation sizes Ry, R

are chosen such that % — 00, % < M for some constant M > 0, then the outputs LFEL g FEL

of Algorithm@ constitute an asymptotically valid (1 — «)-level CI, i.e.,

lim inf P(LrEPL<zr <utFEY > 1-«a
n,R1,Ra—00: %—wo,% bounded

lim sup P(D?FELgZ*S%FEL)SI—a—i—

042
n,R1,Ro—r00: %Hoo,% bounded 4

Moreover, if % — 00 like in Theorem then the CI is asymptotically exact, i.e., (3.8) holds

for LFEL g FEL

Theorem [3.3.2 states that Algorithm [4] generates an asymptotically exact CI for the true per-
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formance measure, when the simulation budgets available to both Step 1 and Step 3 dominate the
data size. Theorems and show that in Algorithms [5] and [] the simulation effort for Step
3 can be reduced to grow independent of the data size. This is thanks to the adjustment in the
evaluation of the confidence bounds that accounts for the stochastic uncertainty in Step 3. The CI
from Algorithm [5|tends to be conservative and can over-cover the truth with a level of 1 —a&+a?/2.
To get a sense of this conservativeness, when the desired coverage level 1 —a = 90%, the guaranteed
level can be as high as 1 —a+a&?%/2 ~ 98%. On the other hand, the further refinement in Algorithm
|§| is able to recover the exact coverage up to an error of a2 /4, which is negligible for most purposes

(e.g., when a = 5%, ?/4 = 0.0625%).

3.4 Theory on Statistical Guarantees

This section further elaborates on Algorithms and [0 and explains the underlying theories
leading to Theorems [3.3.2] [3.3.3] and [3.3.4] Section starts with an initial interpretation of our

approach from a distributionally robust optimization (DRO) perspective. The subsequent subsec-
tions then discuss the guarantees in several steps. Section [3.4.2|first presents a linear approximation
on the performance measures to bypass some statistical and computational bottlenecks. Sections
and develop the EL method for the linearized problem and CI construction. Section
[3:475 incorporates the simulation errors. Lastly, Section [3.4.6] discusses the last evaluation steps in

our procedures and links them to the conclusions of Theorems [3.3.2] [3.3.3] and [3.3.4]

3.4.1 An Initial Interpretation from DRO

On a high level, our algorithms in Section [3.3.2] can be interpreted as attempting to solve the
following problem. Given the observations {X; 1,..., Xjn,} for each input model ¢, we consider the
weighted empirical distribution Z;“Zl w; j0x; ;(+). To ease the notation, these weighted distributions
will be superseded by their corresponding weight vector w; in expressing the performance measure

Z(wi,...,Wy,) (and its linear approximations that will be introduced in later sections) evaluated
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at these distributions. We consider

L /% :=min /max Z(Wi,...,Wp)

(3.9)
subject to w € U,
where
2370 2221 log(niwi,;) < X12,1—a
Un =S (Wi, Win) €RN| S i =1, forall i = 1,...,m (3.10)

w;j > 0, for all 4,7

This problem resembles DRO, which is a special class of robust optimization whose uncertainty is on
the probability distribution. More specifically, robust optimization considers decision-making under
uncertainty or ambiguity of the underlying parameters, and hinges on optimizing the objective
under the worst-case scenario, where the worst-case is over all parameters within the so-called
uncertainty set or ambiguity set. In DRO, the uncertain quantities are the probability distributions
that govern a stochastic optimization, so that the uncertainty set lies in the space of distributions.
From this view, optimization calculates the worst-case performance measure subject to the
uncertainty set U,. In particular, as discussed in Section the constraint in (3.10]) resembles
an averaged Burg-entropy divergence, comprising m terms each being the divergence between the
distribution weighted by w; and the uniform distribution, on the support generated by the empirical
data {X;1,..., Xin, }

Despite this Burg-entropy divergence interpretation that ties the optimal weights in (3.9) to
“worst-case” distributions, the conceptual reasoning of U, that we present below is fundamentally
different from DRO. The latter advocates the use of uncertainty sets that contain the true distri-
bution with a certain confidence. To this end, a divergence ball used as an uncertainty set must
use a “baseline” distribution that is absolutely continuous to the true distribution, in order to have
an overwhelming (or at least non-zero) probability of containing the truth (Jiang and Guan|2016),
Esfahani and Kuhn [2018). This condition is violated in formulation when the true input
distribution is continuous. As the baseline distribution in our divergence (namely the empirical

distribution) is supported only on the data, the resulting ball does not contain any continuous
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distributions. Moreover, the use of weighted average and its particular weights put on each of these
empirically defined divergences is also an unnatural choice from a DRO perspective. Therefore, a
key difference between DRO and our approach in terms of coverage guarantees is that, DRO pro-
vides simultaneous confidence bounds for all performance measures because of the inclusion of the
true distribution in the uncertainty set, whereas our uncertainty set, as we show in later sections, is
constructed just rich enough to correctly bound a particular performance measure. In particular,
our approach bypasses the inclusion of the truth in the uncertainty set by directly targeting at the
uncertainty in the performance measure incurred by the input data.

Thus, instead of arguing the statistical behaviors of through the conventional reasoning of
DRO, we will explain them using a generalization of the empirical likelihood (EL) method, which is
a nonparametric analog of maximum likelihood and endows a tight statistical confidence guarantee
in using that can be translated to our procedures. Moreover, we also note that, from a
computational viewpoint, is non-convex and intractable in general. Our procedures as well as
statistical developments thus rely on a linearization of the objective function in . Furthermore,
estimating the objective (i.e., the performance measure) and its linearization involves running
simulation and incurs the associated errors. The next several subsections detail the linearization,

the EL method development, and the sampling error control.

3.4.2 Linearization of Performance Measure

We first state a property related to the influence function in (3.7) that shows up in Assumption

19.9.2)

Proposition 3.4.1 Let (Q},...,QL),(Q3%,...,Q2%) be two sets of distributions such that for any
sit€{l,2} withi=1,....mandt=1,...,T;

i

m T;
/ h(x1, . x)| [ T] Q5 (i) < +o0,

i=11t=1
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where x; = (Tit)t=1,.. 1, Then

lim © (Z((1 - Q) + @2, (1 - QL +€Q2) — Z(@QL,..., QL)) = 3 Egal¢2 P (x)],

(3.11)
1 1
where EQz[-] denotes the expectation with respect to Q? that governs X, and G?“'"’Qm 1s the influ-

ence function of Z(Q3,..., QL) with respect to the distribution Q}, given by
G (g ZEQI’ o [h(Xa, . X)) Xi(t) = 2] - TiZ(QL, ..., QL,).

Q1 Qn .
Moreover, Egi[G7V"" ™ (X)] =0 for alli=1,...,m

Proposition [3.4.1] can be shown by generalizing the techniques in the asymptotic analysis of von

Mises statistical functionals (e.g., Serfling/[2009)). It suggests the following linear approximation of

Z(Q3,..., Q) around (Q1, ..., Q)

m

Z(Qh,....QL) + Y Ega[GP 9 (X)) (3.12)
i=1

where the sum consists of expectations of influence functions under Q? and hence is linear in Q?.

In particular, when Q! = P, i.e., the true input distribution, and Q? = w; (like at the beginning of

Section we abuse notations slightly here to denote w; as the weighted distribution supported

on the observations {Xj j}j=1,..n:), suggests a linear approximation of Z(w1, ..., w,,) given

by

m n;

Zp(wi,o W) =25+ ) Y Gi(X j)wi (3.13)

i=1 j=1
where the G;’s are defined in Assumption [3.3.2] and correspond to the influence functions of Z at
the true input distributions.

Furthermore, taking Ql AZ, i.e., the empirical input distribution, and Q2 = w; in , we
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arrive at the linearization of Z (w1, ..., wy,) around the uniform weights w; ; = 1/n;
m  n;
Zr(Wi, .o W) 1= Z(Pry o Pr) + )Y GilXaj)wi (3.14)
i=1 j=1

where the G;’s are the influence functions of Z at the empirical input distributions, defined by
T;
Gi(x) =Y Ep  p [M(Xn,..., X)) Xi(t) = 2] = T.Z(P, ..., Py). (3.15)

t=1

The following result characterizes the quality of the above two linear approximations:

Proposition 3.4.2 Under Assumptions|3.3.1] and|3.5.5, as the input data size n — oo we have

1

E[ sup ‘Z(Wl,...,wm)—ZL(wl,...,Wm)m :O(—Q) (3.16)
(WiyeeoyWim ) EU n
_ 1

E[ sup ‘Z(wl,...,wm)—ZL(wl,...,wm)‘Q] :O(ﬁ) (3.17)

(W17~~~7Wm)€uo¢
where Uy, is defined in (3.10), and the expectation is with respect to the input data.

Proposition [3.4.2] suggests that, restricting to Uy, the maximum deviations of the linear approxima-
tions from the true performance measure vanish as fast as 1/n. Next we will build the theories and
explain our procedures for a linearized performance measure, and relate them back to the original

nonlinear performance measure Z through Proposition [3.4.2]

3.4.3 Empirical Likelihood Theory for Sums of Means

First proposed by |Owen| (1988), the EL method can be viewed as a nonparametric counterpart of
the maximum likelihood theory. Here we will develop this method for the linear approximation Z,.
Note that the second term in can be viewed as the sum of 