2/2/19 Class 1: Introduction

- What is computer science?
 - <u>Merriam-Webster</u>: a branch of science that deals with the theory of computation or the design of computers.
 - <u>Dictionary.com</u>: the science that deals with the theory and methods of processing information in digital computers, the design of computer hardware and software, and the applications of computers.
 - \circ $\;$ Our focus this term: Computer science is the study of algorithms
- Algorithm: A finite set of instructions that tell us what to do
 - Try coming up with an algorithm for making a PB&J sandwich
 - An algorithm is a set of instructions that
 - 1. That is well-ordered
 - 2. Unambiguous
 - 3. <u>Computable</u>: Something that can be effectively done, can effectively produce an output given the input
 - 4. It produces a final result
 - 5. <u>Finishes/terminates in a finite amount</u> of time
 - Doesn't have to involve a specific device, such as a computer can be theoretical (=assuming we had the ability to perform these computations, what would be the set of instructions to solve this problem?)
- **Programming =** the implementation of an algorithm in a human-understandable language that is executable by a computer
 - What is an executable programming language?
 - Python is one
 - Means of communication
 - In programming languages, the two parties are human and computer: human gives a set of instructions to the computer
 - Programming languages are designed to be human-understandable (a computer, at the most basic level, only understands binary - on or off)
 - Compiler will translate our human-understandable code into machine code, which is composed of binary numbers that the computer can understand to produce the desired results
- First program: hello world
 - o print("hello world")
 - save the text file as "hello.py"
 - .py is file extension for python files
 - can run on command line by typing python hello.py
 - We will use Spyder (launched via Anaconda) in this class
 - Console will show the results of your code in real-time
 - Editor allows you to edit or write .py files → Clicking on green arrow ("run") will show the results of that file in the console
- Datatypes: a set of values and operations that can be used on them
 - Integers (whole numbers) > addition, subtraction, etc.
 - <u>Floating point numbers</u> (decimal points) > addition, subtraction, etc.
 - <u>Booleans</u> (True/False) > negation, and/or
 - o <u>Strings</u> (sequence of characters): concatenation, indexing

Assigning variables in Python: Use the '=' character

In[1]: a=3
In[2]: a
Out[2]: 3

- Let's do something useful with these datatypes! > Using "operators"
 - Integers, Floats
 - Arithmetic operators:
 - + (addition), (subtraction), / (division), // (floor division), %(modulus), **(exponent), *(multiplication)
 - (multiplication)

Comparison operators: == (equal), != (unequal), >, <, <=, >=

Booleans: and, or, not

and	<mark>True</mark>	<mark>False</mark>
<mark>True</mark>	True	False
<mark>False</mark>	False	False

or	<mark>True</mark>	<mark>False</mark>
<mark>True</mark>	True	True
<mark>False</mark>	True	False

not	
<mark>True</mark>	False
<mark>False</mark>	True

e.g. Run the following code and understand the output
m = 3
n = 5
b1 = m<n #True
b2 = m==n # False</pre>

print(b1 and b2) → False (True and False is False)
print(b1 or b2) → True (True or False is True)
print(not b1) → False (Opposite of True is False)