
	

2/23/19	Class	4:	Control	Flow	(continued)	and	Lists	
• while	loop	
• for	loop	
• Lists	

		
A. While	(loop)	
while(Boolean expression):
 stuff to do until expression becomes false

- If	the	Boolean	statement	is	true,	we	keep	running		
- Common	mistake	for	beginners	is	making	an	infinite	loop!	
- Thus	it's	important	to	include	some	change	of	variable	in	the	while	loop	so	that	eventually,	

the	Boolean	expression	becomes	false	
	
E.g.)	
x=5
while(x>3):

print ‘happy’
 x=x-1
	
Compiler	will	enter	loop	because	x	=	5	>3	à	print	‘happy’	and	x	becomes	4		
Compiler	enters	loop	again	because	4>3	à	prints	‘happy’	and	x	becomes	3	
Compiler	evaluates	3>3	à	no	longer	True	the	compiler	moves	on	to	line	after	loop		
	
B. for	(loop):	logically	equivalent	to	a	while	loop	(simply	a	matter	of	convenience)	
	
In: l = [4,1,'happy','munday'] # this is a list
In: for item in l:
 print item
Out:
4
1
happy
munday
	
**for	vs	while	is	largely	a	difference	in	convenience		
- These	are	some	general	guidelines	for	those	who	want	to	differentiate	their	use:	

o if	your	problem	definition	involves	the	word	UNTIL:	use	a	while	loop	(keep	repeating	
UNTIL	that	while	loop	is	false)	

o If	you	just	want	to	repeat	it	for	everything	in	a	collection	or	range,	use	a	for	loop	
	
**	range	function	is	useful	in	for	loops	
In: for i in range(10):
 print i

	

Out:
0
1
2
3
4
5
6
7
8
9
	
C. LISTS: ordered	set	of	variables	(any	mix	of	data	types)	or	it	could	be	an	empty	list		

Datatype	 Python	

class	
Code		 Variable	 Literal	

List,	or	a	
collection	of	
objects	

list l = [4, 1, 'happy', True]

l [4, 1,
'happy', True]

- Access	elements	of	a	list	
In: l[0]
Out: 4

- Modify/Set	an	element	in	a	list	
In: l[3]=’munday’
In: l
Out: [4,1,'happy','munday']

In: n=[1,2,3,4,5] #same syntax for splicing a list as a string
In: n[0:2] = [6,7]
In: n
Out: [6, 7, 3, 4, 5]

- Find	length	
In: l.len()
Out: 4

- Append	and	Pop	(end	of	list)	
In: l.append(5)
In: l
Out: [4,1,’happy’, ‘munday’,5]
In: l.pop() ## remove element at end of list
In: l
Out: [4,1,'happy', ‘munday']

	

In: l.pop(1) ## you can remove at a specified index
In: l
Out: [4,'happy','munday']
	

- Insert	and	Remove	
In: l.insert(2,"sad") ## insert at index2
In: l
Out: [4,'happy',"sad",'munday']

In: l.remove("sad") ## For remove, you must give the element,
 ## not index. (it will remove the first
 ## occurrence)
In: l
Out: [4,'happy','munday']
	

- Add	two	lists	together	
In: l.extend(l2)
In: l
Out: [4,'happy','munday',4,3,‘sad’,1]
	

- Find	index	of	element	(This	finds	the	first	occurrence)	
In: l.index(4)
Out: 0
	

- Sort	from	smallest	to	largest	
In: l.sort()
In: l
Out: [1, 3, 4, 4, 'happy', 'munday', 'sad']
	

o ##	numbers	come	before	letters	in	default	sorting	methods	due	to	ASCII	
(https://en.wikipedia.org/wiki/ASCII)	

o to	avoid	unprecedented	complications,	only	use	this	when	all	elements	are	of	the	
same	datatype	

	

- Copy	the	list	

In: l = [4, 1, 'happy', True]
In: l_copy = l.copy()
In: l_copy
Out: [4, 1, 'happy', True]
In: l_copy[2]='sad'
In: l_copy
Out:[4, 1, 'happy', True]

o Think	about	how	this	would	be	different	from	setting l_copy = l

	

- Reverse	the	list	
In: l.reverse()
In: l
Out: ['sad', 'munday', 'happy', 4, 4, 3, 1]
	
**	FYI:	All	of	these	methods	modify	the	list		l,	instead	of	creating	a	new	list	object.	This	is	
because	lists	are	mutable	objects	(We	will	get	to	this	distinction	later	in	the	course)	
	

- the	in	operator:	checks membership in a collection (lists and strings)	
In: l = [1,2,3,4,5]
In: 5 in l
Out: True

- Using	for	loop	to	create	lists	=	list	comprehension	
In: [x for x in range(10)]
Out:	[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
	
<Additional	info:	Useful	methods	for	Strings>		
Suppose	s	is	an	object	of	class	str (in	all	of	these	methods,	s	itself	is	unchanged	because	it	is	
immutable)	

- s.upper()à	returns	new	string	that	looks	just	like	s	with	everything	capitalized		
- s.lower()
- s.isalpha() à	returns	True	if	the	string	is	comprised	solely	of	alphabets	
- s.split() à	split	string	into	individual	elements	using	whitespace	and	store	in	a	list		
- s.rstrip(something):		
	 	 	 	 returns	string	with	element	removed	from	the	right	end	of	string	
- s.lstrip(something):	same	as	above	from	left	end	

	
	

	

