
Class	4.	Exercises	and	Challenge	problems	
	
1)	Class	4	Exercise:	Modify	the	candy.txt	file	
Write	a	program	that	would	allow	the	user	to	modify	the	quantity	of	some	candy	in	the	candy.txt	inventory	file.		
First	ask	for	their	input	("Enter	candy	name")	and	also	ask	for	the	new	quantity	("Enter	the	new	quantity	for	this	
candy").	Then	read	the	file	line	by	line	until	you	find	that	candy	name	and	replace	the	original	quantity	with	the	
new	one.		
(If	this	sounds	difficult,	go	through	the	class	example	files	of	findcandy.py	and	modifycandy.py.	Your	code	will	likely	
need	a	few	modifications	from	those	files	but	it's	a	good	starting	point!)	
	

- Bonus	would	be	to	use	control	flow	to	determine	whether	the	user	input	is	valid	(Make	sure	the	user	
input	candy	name	is	actually	in	the	inventory,	etc.)	

- Remember	to	use	the	os	module	for	renaming	and	deleting	files.	
			
<Challenge	problems:	Optional>	
2)	Simulate	mastermind	
(See	http://www.wikihow.com/Play-Mastermind	for	the	actual	board	game	for	those	who	don't	know	how	to	
play)	
How	to	Play	Mastermind	(revised	version	for	our	purposes)	
• The	computer	(codemaker)	uses	code	pegs	of	six	different	"colors"	(ABCDEF)	to	create	a	4-color	code.	For	

example,	BCFD	or	ADCB.	(Assume	colors	cannot	repeat.	So	AABB	would	be	illegal)	
• The	goal	of	the	game	is	for	the	codebreaker	(the	user)	to	correctly	determine	both	the	four	colors	selected	

and	their	position	in	the	code.	
• The	codebreaker	tries	to	guess	the	pattern,	in	both	order	and	color,	within	12	turns.	
• Each	guess	is	made	by	typing	in	the	console.	
• Then,	the	codemaker	provides	feedback	by	printing	out	0	to	4	scoring	pegs	

o A	black	scoring	peg	is	placed	for	each	code	peg	that	is	correct	in	both	color	and	position.	
o A	white	peg	is	placed	for	a	correct	color	peg	placed	in	the	wrong	position.	
o The	order	of	black/white	pegs	do	not	matter.	For	example,	the	codemaker	can	just	print	out	"1B,	1W"	or	

"1W,	1B"	meaning	the	codebreaker	received	one	black	and	one	white	peg	for	their	recent	guess.	
o Once	feedback	is	provided,	another	guess	is	made.	
o This	continues	until	either	the	codebreaker	guesses	correctly	or	12	incorrect	guesses	are	made.	At	this	

point,	the	codemaker	should	either	declare	a	win	or	loss	for	the	codebreaker.	
o Assume	the	codebreaker	is	not	dumb	and	never	puts	in	a	3	or	5	color	code	instead	of	4.	
o The	codemaker	should	always	print	the	complete	"board"	state	so	the	codebreaker	can	see	the	entire	

history	of	guesses	made.	
o Example	of	a	"board"	after	two	tries	from	the	user	

1.	input	ABCD:	1B,	1W	
2.	input	ADEF:	1B,	3W	
	
Suggested	step	by	step	process	

1. First	start	out	creating	and	testing	your	code	for	comparing	two	4-color	codes	and	then	correctly	
returning	black	and	white	pegs.	That	is	the	crucial	part	of	your	code.	

2. Then,	hardcode	a	codemaker's	code	into	the	program	and	work	on	having	the	codebreaker	input	the	
guess	12	times	or	until	he/she	gets	it	right.	

3. Finally,	work	on	randomly	generating	the	codemaker's	code.	
If	you	have	time,	you	can	make	it	even	more	similar	to	the	actual	game	by	allowing	colors	to	repeat	in	the	
codemaker's	code.	
	
3)	Use	lists	to	solve	this	puzzle.	



Jim	Loy	poses	this	puzzle:	I	have	before	me	three	numeric	palindromes	(numbers	that	read	the	same	backward	and	
forward,	like	838).	The	first	is	two	digits	long,	the	second	is	three	digits	long,	and	when	we	add	those	two	numbers	
together,	we	get	the	third	number,	which	is	four	digits	long.	What	are	the	three	numbers?		

- Hint	1:	All	variations	of	numeric	palindromes	can	be	easily	created	by	making	strings	of	digits	first.	
- Hint	2:	Use	lists!		

	


