
	

	 1	

Class	5	Functions	and	Advanced	I/O		
I. Functions	
II. Advanced	I/O	

	
	
I. Defining	functions	

	
def functionName(any parameters):
 what to do in function

 return something

A. Module	
- A	set	of	text	files	available	to	use	that	contains	definitions	of	functions	
- Does	nothing	demonstrable	to	us	in	the	console	when	run	by	itself	
- In	order	to	use	the	module,	we	write	code	that	imports	modules	e.g.	math	module	has	constants	

and	functions	à	pi,	e,	etc…	
• A	function	always	has	()	at	end,	whether	or	not	they	need	the	input		
• Another	eg.	random.random()àrandom()function	within	random module	
• Constants	do	not	have	input	à	no	()	
	

- Just	to	illustrate	how	math	module	is	working,	we	can	write	our	own	modules	and	import	them	
instead	of	math		
• important	to	have	all	files	in	the	same	folder	
• And	make	sure	main	file	imports	all	modules	needed	à	this	'main'	file	is	called	the	tester	

(because	it	'tests'	the	functions	within	a	user-defined	module)	
• In	the	tester,	you	can	change	a	long	module	name	to	a	short	one	by	declaring	"import ___

as __"		when	importing	
e.g.		
import circle as c

radius = 13
area = c.area(radius)
	
B. How	should	we	define	and	use	functions?:	Either	one	of	the	two	options	is	fine!	
- One	option:	Writing	a	module(s)	of	useful	functions	and	then	writing	a	tester	(as	above)	
- Second	option:	Writing	one	file	with	a	list	of	functions	you	need	and	then	writing	a	main	function	

in	the	same	file	à	see	pig.py	for	an	example	
• Remember	you	need	to	call	the	main	function	by	main()	in	your	code	for	this	file	to	output	

something	
C. Why	do	we	use	functions	so	much:	encapsulation	

1) Division	of	labor	
2) Debugging		

• Easier	to	check	where	it	went	wrong	
3) Readability	
4) Design	
5) Reusability	

	

	 2	

• Main	function	is	the	part	that	is	not	reusable,	that’s	why	we	want	it	to	be	as	small	as	
possible	

- Does	not	matter	which	order	definitions	of	functions	are	written	when	functions	call	each	other	
- encapsulation:	Fancy	term	for	packing	the	details	into	different	modules	or	functions	

• In	the	main	function,	you	just	know	a	certain	part	is	being	done	by	another	function	
without	knowing	how;	Details	are	in	the	other	function	or	module	

II. Advanced	I/O	

A. Input	
variable = open('text_name','r') ## to open file object
var2 = variable.read() # store entire text of file in var2
var3 = variable.readline() #store next line in var3

e.g.	
in_file = open('example.txt','r')
s=in_file.read()
print(type(in_file))
print(type(s))

à Output: file
 str

e.g.	of	using in operator	and	for	loop	on	files	to	iterate	through	lines	

for line in in_file:
 print(line)

B. Output	

var = open('nameOfNewFile.txt','w')
var.write('stuff to write')
var.close() # file only begins to be written when you close it
 # before that, only stored in memory

for	eg.	
fred = open('out_file.txt', 'w')
fred.write('very cool')
fred.write('write more stuff')
fred.close()
in_file.close() # also close the read file to conserve memory

for	e.g.	to	copy	the	entire	text	into	another	file	
this program copies the file example-txt

file_in = open ('example.txt', 'r')
file_out = open ('copy.txt', 'w')

#do the copying
for line in file_in:
 file_out.write(line) #line already has the newline character

	

	 3	

file_in.close()
file_out.close()

Things	to	note:	

• If	a	file	with	the	same	already	exists	in	directory,	newly	written	file	overrides	it	
• Always	remember	to	close	the	file	after	writing	AND	reading!	Program	doesn't	print	in	the	text	

file	until	you	close	it	
• Consecutive	write	methods	will	lead	to	strings	printed	continuously	on	one	line	
• You	need	to	add	\n	at	the	end	of	each	line	when	using	the	write	method	to	change	lines	
• 'a'	stands	for	append,	or	writing	at	the	end	of	an	existing	file	instead	of	replacing	it	as	we	did	

with	'w'	
	

C.	Deleting	and	renaming	files	(os	module)	
	

import os
os.remove(textfileName)
os.rename(originalFile, newFileName)
	

