
December 1st 2018 (Week 10)

April 6th: Class 9 Object Oriented Programming

Object Oriented Programming
: A common concept in any modern programming language; Approach that grew out of a need to handle the
increasing complexity of programming.
: A point of view that a program is a set of objects, where each object can interact with other program objects
to accomplish the programmer’s goal.

Each object (noun) will

- have some number of attributes that are stored within the object. (adjectives)
- respond to some methods (verbs) that are particular to that kind (class) of object (e.g., move forward,

print)

A. Instance v.s. Class

- class is a template for making a new object
• built-in classes we've been using are int, str, bool, list, float, etc.

- A specific bject made by a class template is called an instance of that class
• The literal 3 is an instance of the int class, "Hello" is an instance of the str class

B. Defining class

 class ClassName():
 def anymethods you need

C. Defining methods within class

1) __init__(self, any other parameters…)
• Acts as constructor, or initializer, when class is invoked during object creation
• self is always written as a parameter in the method definition so that it can be referenced to

initialize instance variables for that particular instance
• However, when the constructor is actually invoked, self is not specified as an argument; only the

arguments after that are specified in the invocation
• E.g. Compare constructor definition for Card in Card.py and how we call x = Card(…)

constructor in Deck.py

2) __str__(self)
• function that specifies what string should be printed when the print function is called on the instance
• Again, self is a parameter only written in the method definition
• The method is called whenever you have commands like print(objectName)

3) Any additional user created methods (note these do not need the underscores like above)

** Let's see the Card class as an example.

D. built-in isinstance(object, class) function

- the isinstance function can be called on any instance of any class
- It returns a true if the object is an instance of the class specified as the explicit argument
- Returns a false if it is not

E.g. Summing up everything so far

December 1st 2018 (Week 10)

class Student():
 def __init__(self, first='', last='', id=0):

 self.firstname_str = first
 self.lastname_str = last
 self.id_int = id

 def update(self, first='', last='', id=0):
 if first:
 self.firstname_str = first
 if last:
 self.lastname_str = last
 if id:
 self.id_int = id

 def __str__(self):
 # print "In str method"
 return "{} {}, ID:{}".\
 format(self.firstname_str, self.lastname_str, self.id_int)

In separate file called StudentTester.py:
s1 = Student(); #blank constructor (everything will be default)
s1.update('Kelly','Ryu',2362)
print s1

s2 = Student('Kelly','Ryu',2362) #constructor initializing instance var's
print s2

s3 = Student('Kelly') #only specified first keyword argument
print s3

if (isinstance(s1,Student)):
 print str(s1)+" is a student"

Result:
Kelly Ryu, ID:2362 #s1
Kelly Ryu, ID:2362 #s2
Kelly , ID:0 #s3 (last name is an empty string, ID is default 0)
Kelly Ryu, ID:2362 is a student #if statement was true

E. When writing tester: Reminder on how to call on another file

- Make sure current file and class file is in the same directory
- In current file, first thing to do is write: from classFileName import ClassName
- So it's easiest for you even you save the class file as the same name as the class
- No quotations around anything in the from, import statement above

