
March	2,	2019	
Python	Project	Suggestion	1	

	
Intro	to	PPM	Image	Formats	
The	PPM	(or	Portable	Pix	Map)	image	format	is	encoded	in	human-readable	ASCII	text.	When	you	open	
a	ppm	file	using	the	default	program,	most	likely	a	picture	viewer	will	pop	up.	But	if	you	specify	to	open	
it	with	a	text	editing	program,	such	as	NotePad	or	TextEdit,	the	same	file	looks	like	this:	
	
P3	
4	4	
255	
0		0		0										100	0		0							0		0		0					255			0	255	
0		0		0								0	255	175					0		0		0								0				0		0	
0		0		0									0				0				0							0	15	175			0				0		0	
255	0	255		0				0				0							0		0		0				255		255	255	
							
<Image	Header>	
You	can	think	of	the	image	as	having	two	parts,	a	header	and	a	body.	The	header	consists	of	four	
entries:	
P3	
4	4	
255	
		
P3	is	a	"magic	number".	It	indicates	what	type	of	PPM	(full	color,	ASCII	encoding)	image	this	is.	For	this	
assignment	it	will	always	be	P3.	
Next	comes	the	number	of	columns	and	the	number	of	rows	in	the	image	(4	x	4).	

- first	number	is	number	of	columns,	i.e.	how	many	pixels	are	in	each	row		
Finally,	we	have	the	maximum	color	value	255.	This	can	be	any	value,	but	a	common	value	is	255.	
The	way	you	see	the	header	presented	is	how	it	should	be	spaced	out.	(without	empty	lines	in	b/t)	
	
<Image	Body>	
The	image	body	contains	the	actual	picture	information.	Each	pixel	of	the	image	is	a	tiny,	colored	
square.	The	color	is	determined	by	how	much	red,	green,	and	blue	are	present.	The	sequence	of	3	
numbers	(0	to	255	or	some	other	max#)	for	each	pixel	shows	the	RGB	value.	(first	number	for	red,	
second	for	green,	third	for	blue)	By	varying	the	levels	of	the	RGB	values	you	can	come	up	with	any	color	
in	between.		
	
e.g.	0	0	0	represents	black		
						255	255	255	is	white.		
	

- Note	that	color	values	must	be	separated	by	a	space,	but	additional	whitespace	is	ignored	by	the	
image	viewer.		

- It	counts	the	first	3	numbers	as	the	RGB	sequence	for	the	first	pixel,	the	second	set	of	3	numbers	
as	the	RGB	sequence	for	the	second	pixel,	etc.	regardless	of	how	much	white	space	in	between	

- So	it	doesn't	matter	if	everything	is	on	one	line	(b/c	the	dimensions	of	pixels	are	already	
specified	for	the	image	viewer	in	the	file	header)	

- The	ppm	files	for	this	assignment	have	been	written	so	that	each	row	of	pixels	equals	one	line.	
Thus,	if	you	read	in	one	line	using	.readline(),	you	will	have	read	all	the	RGB	values	for	all	
pixels	in	one	row	

	
	

March	2,	2019	
Python	Project	Suggestion	1	

	
How	to	view	PPM	files	
You	may	need	to	install	a	program	to	view	the	images	for	this	assignment	on	your	machine.		GIMP	has	
worked	very	well	for	me:	https://www.gimp.org/downloads/		

- It	seems	ppm	files	are	visible	automaticallly	with	Preview	on	Mac.	But	it	never	hurts	to	
download	GIMP	

This	program	will	also	allow	you	to	convert	your	own	images	to	PPM	text	files	so	you	can	practice	with	
pictures	of	your	own	(although	you	can	never	be	sure	GIMP	will	create	the	same	white	space	as	I	
provided.	i.e.,	one	row	might	not	equal	one	line	in	that	file).	You	can	do	this	by	opening	any	image	file	in	
GIMP	and	exporting	it	with	the	.ppm	extension.		
	
Project	
Write	effects.py,	an	application	in	Python	that	contains	the	following	functions	for	manipulating	
any	ppm	image	file:	

1. shades_of_gray:	converts	a	color	image	to	a	black	and	white	image	
- replace	each	pixel's	individual	RGB	values	with	the	average	of	the	three	values	
- e.g.	if	a	particular	pixel	had	RGB	values	100	200	300	you	would	change	this	to	200	200	200	for	

the	black	and	white	version.	
2. negate_red
- change	just	the	RED	color	numbers	into	their	"negative"	
- "negative"	=	not	negative	numbers,	but	(maxColorDepth	-	x)	if	the	original	red	number	was	x	
- e.g.	if	max	color	depth	specified	in	the	header	is	255,	the	0	would	become	255	,and	100	would	

become	155	
- The	code	should	work	for	any	file,	not	just	ones	with	max	depth	255	so	make	sure	you	read	that	

in	from	the	header	
3. negate_green
4. negate_blue
5. mirror:	flip	the	picture	horizontally	
- pixel	that	is	on	the	far	right	end	of	the	row	ends	up	on	the	far	left	of	the	row	and	vice	versa	
- remember	to	preserve	R-G-B	order	within	each	pixel	

Each	function	above	should	read	in	a	ppm	file	(this	should	be	an	argument	of	the	function)	and	write	out	
a	new	ppm	file.		
		
	Then	write	tester.py	that	imports	the	effects	module	you	wrote	and	prompts	the	user	to	input	
an	image	for	modification	and	choice	of	modification.	
	
Example	session	with	a	user:	
Welcome to the Portable Pixmap (PPM) Image Editor!
Choose the effect you would like to try:
1) shades_of_gray
2) negate_red
3) negate_green
4) negate_blue
5) mirror
Enter a number: 2
Enter an input file name: test.ppm
Enter name of output file: out.ppm
out.ppm created.

	

March	2,	2019	
Python	Project	Suggestion	1	

	
TIPS:		

- Make	sure	you're	saving	the	project	files	in	the	same	folder	as	the	image	files.	The	output	file	
will	also	be	in	the	same	directory.		

- The	tiny.ppm	file	is	a	small	4x4	pixel	image	provided	for	initial	testing.	You	can	also	easily	tell	
if	your	negation	methods	are	successful.	When	using	GIMP	or	other	image	viewers,	you	really	
need	to	zoom	in	to	the	picture	to	see	the	different	color	boxes	and	check	your	effects	
Remember	it's	a	16	pixel	image.	If	you	note	how	most	pictures	printed	now	are	at	least	
1200*1800	pixels,	it's	a	really	small	picture.	

- pics.zip contains	several	files	for	you	to	test	your	code. Again,	note	that	each	row	of	pixels	
in	picture	=	each	line	of	text	file.	Try	smaller	pictures	first.	The	largest	is	bird.ppm	and	the	
results	should	look	like	this:

		

	
	 original		 	 	 shades	of	gray	 	 	 	 negate	red	
	
	
	
Extra	Challenge:	Modify	the	program	to	allow	the	user	to	input	multiple	effects	and	implement	all	of	
them	to	return	one	output	image	to	the	user	(This	is	where	you	would	use	the	variable	length	
parameters	we	talked	about!)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Referenced:	
Professor	Adam	Cannon	(Columbia	University)	
Images:	https://themysteriousworld.com/top-10-most-colorful-animals-in-the-world/,	
http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/imagefiles/image101/		

