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This paper provides a model of the competitive newsvendor problem in which there is price competition
following the inventory decisions. Using the biform game formalism of Brandenburger and Stuart (2004),

the price competition is modeled by considering the core of the induced cooperative game. Such an analysis
allows price competition to be modeled without a priori assumptions about price-setting power or pricing
procedures. The paper shows that with no uncertainty, the inventory decision is equivalent to the capacity
decision in Cournot competition. With uncertainty, the analysis again reduces to Cournot competition if the
demand uncertainty is characterized by an appropriately constructed, expected demand curve. The results
highlight the critical role of the fixed-price assumption in newsvendor models.
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1. Introduction
The newsvendor model provides a standard approach
to analyzing competitive inventory decisions under
uncertainty. In such a model, firms precommit to
inventory levels before a demand uncertainty is real-
ized. When the demand is realized, the goods are
sold at a price that is usually assumed to be fixed.
In this paper, the fixed-price assumption is replaced
with price competition—the price of the goods is
determined by competition between the firms and the
buyers.

To model the price competition, this paper uses
the biform game formalism of Brandenburger and
Stuart (2004). A biform game is a hybrid noncoop-
erative/cooperative game model designed for mod-
eling business interactions. In the application to the
newsvendor problem, the choice of inventory level
is an explicit move, just as it would be in a nonco-
operative game. Price competition is then modeled
by the core of a cooperative game. By using coop-
erative game theory to model price competition, the
exact procedures of the pricing game do not need
to be specified. Examples of specified pricing pro-
cedures are simultaneous take-it-or-leave-it offers by
firms, sequential take-it-or-leave-it offers by firms,
sealed-bid auctions, etc. With any of these proce-
dural models, the results usually depend upon the

choice of procedure. By contrast, in the core of a
cooperative game, a competitive outcome is obtained
without making any procedural assumptions. In fact,
the core can be said to model unrestricted competi-
tion: “unrestricted,” because there are no restrictions
on the transactions between players, and “competi-
tive,” because in any core outcome there can be no
opportunity for a group of players to do a better deal
on their own.1

This paper investigates the impact of unrestricted
competition in a newsvendor context. The results
suggest two conclusions. First, fixed retail prices are
a defining characteristic of a newsvendor analysis.
Although this insight is implicit in many newsvendor
analyses, it becomes self-evident in a biform anal-
ysis. Second, market-clearing prices are not neces-
sarily implied by unrestricted competition. Although
they can arise with unrestricted competition, there
is no guarantee that they will. This second conclu-
sion has two practical implications. The first is that
care must be taken when modeling price competition

1 This use of cooperative game has a long history, starting with
von Neumann and Morgenstern (1944), if not Edgeworth (1881).
This use in the “modern” era starts with Shapley and Shubik;
see, for example, Shapley and Shubik (1969, 1972). More recently,
Brandenburger and Stuart (1996) argue for the use of cooperative
game theory in modeling business contexts.
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with market-clearing prices. The domain in which a
market-clearing price can be justified by unrestricted
competition is limited. The second implication is that
in order to obtain a sharp prediction, a model of
inventory competition may benefit from a specified
pricing procedure; unrestricted competition may not
be the best modeling choice. For if unrestricted com-
petition does not lead to a clear outcome, such as
a market-clearing price, the inventory decision can
be difficult to formulate. A model with a specified
pricing procedure might then provide more insight.
In such cases, a model without pricing procedures,
namely a biform model, can be used to motivate,
perhaps ironically, a model with pricing procedures.

The main result of this paper is that the newsven-
dor model with price competition reduces to the
Cournot duopoly (or oligopoly) problem. By charac-
terizing the demand uncertainty with an appropri-
ately constructed, expected-demand curve, inventory
competition takes the form of Cournot capacity com-
petition. This result differs from standard newsven-
dor results in two significant ways. First, virtually all
newsvendor models capture an overage versus under-
age tension. There is a cost associated with having
too many units when demand is lower than desired,
and there is a cost associated with having too few
units when demand is higher than desired. With unre-
stricted competition, this tension disappears. In its
place, the quantity decision takes the form of a more
traditional economic trade-off: fewer units at a higher
price versus more units at a lower price. Because the
overage/underage tension is such a key element of
a newsvendor analysis, this suggests that fixed retail
prices are an essential, if not defining, characteristic
of newsvendor-style analyses.

This conclusion is further supported by the sec-
ond significant difference that arises in a biform anal-
ysis of the newsvendor problem. When prices are
fixed, a newsvendor model must specify a set of
rules for how buyers are matched with firms. Dif-
ferent modeling objectives have led to at least four
types of approaches. In the first type, each firm
is assumed to face a random demand. If there is
excess demand, the unsatisfied buyers try to buy from
other firms based on fixed proportions, and if an
unsatisfied buyer is again unsuccessful in the second
attempt, the buyer does not transact. Examples of this

approach include Parlar (1988), Karjalainen (1992),
and Netessine and Rudi (2003). In the second type of
approach, rather than viewing aggregate demand as
the sum of individual firm demands, Lippman and
McCardle (1997) start with aggregate demand and
then allocate it by both random and deterministic
rules. In the reallocation of excess demand, they allow
for different rules as well, including symmetric reallo-
cations and “herding” reallocations. In the third type,
Mahajan and van Ryzin (2001) replace specific allo-
cation and reallocation rules with a complete model
of consumer choice. For each buyer, there is a pref-
erence over each firm, and for each state of nature,
there is an order in which the buyers get to pur-
chase (or not). Finally, buyers have been matched to
firms based on the firms’ stocking quantities. Moti-
vated by situations in which more shelf space leads
to greater sales, Wang and Gerchak (2001) allocate
the aggregate demand based on displayed invento-
ries. More broadly, Deneckere and Peck (1995) and
Netessine and Zhang (2003) model each firm’s effec-
tive demand as a function of the stocking decisions
of every other firm. Deneckere and Peck (1995) con-
sider a specific function based on service levels (and
prices), and Netessine and Zhang (2003) consider gen-
eral functions.

In a biform analysis, the question of how to model
the matching of buyers with firms does not have to
be addressed. Since the competition is unrestricted,
the goods must end up in the hands of the buyers
who value them the most. To emphasize the extent
to which a core analysis puts minimal restrictions
on price competition, it is worth noting that other
forms of price competition may not solve the match-
ing problem. For example, in a model with determin-
istic demand, Kreps and Scheinkman (1983) model
firms which first make capacity choices, and then
compete with Bertrand pricing. They derive an equi-
librium result in which firms first choose Cournot
quantities and then set a price equal to the corre-
sponding, market-clearing price. But to derive this
result, they have to specify what would happen if
firms were to price above the market-clearing price.
They require that in such cases the goods be sold
efficiently, namely that the goods be sold to the buy-
ers who value them the most. However, Davidson
and Deneckere (1986) show that with other allocation
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rules, the Cournot result will not necessarily obtain.2

In the biform analysis of capacity choice, a matching
rule is not required. Instead, matchings are a conse-
quence of the model of competition.

When the core of a game is nonempty, a core out-
come can be described by prices paid and received
by the players. In general, these prices can be dif-
ferent for different players, but in the model of
this paper, the core analysis yields a tighter result:
A market-clearing price will always emerge. Con-
sequently, a biform analysis provides a foundation
for models which assume the existence of a market-
clearing price. For example, Van Mieghem and Dada
(1999), while investigating postponement strategies
under uncertainty, consider a model (“Price Postpone-
ment with Clearance”) in which firms must first com-
mit to capacity choices, but then a market-clearing
price is assumed to emerge. Based on the current
paper’s results, unrestricted competition can be used
as a foundation for their market-clearing assump-
tion, and their result can be viewed as a contin-
uous application of the main result of the current
paper. Unfortunately, unrestricted competition does
not always guarantee market-clearing prices. Two sit-
uations are particularly relevant. If demand is not
unitary, in other words if some buyers want more
than one unit, then a market-clearing price will not
necessarily emerge. And, even when demand is uni-
tary, if buyers view the products of the firms dif-
ferently, either due to transportation costs or actual
differences, then unrestricted competition will tend to
generate outcomes with buyer-specific prices rather
than market-clearing prices. This leads to the sec-
ond conclusion, namely that modeling price compe-
tition with the assumption of market-clearing prices
can be problematic. An additional assumption of uni-
tary demand supports the Van Mieghem and Dada
(1999) result, but other results may be harder to
support. For instance, Chod and Rudi (2003) extend
the Van Mieghem and Dada model to account for
resource flexibility in a multiproduct context. Because
their model allows for substitution (and complemen-
tarity), a core analysis is likely to generate more than
just market-clearing prices. Thus, their assumption of

2 The literature on Cournot and related oligopoly models is exten-
sive. For an introduction, see Tirole (1988) and Vives (1999).

market-clearing prices rests on a model of price com-
petition different from the unrestricted competition of
a core analysis.

This paper uses cooperative game theory to model
unrestricted price competition, but other papers
have used cooperative game theory differently in
their analysis of competitive inventory problems. For
example, Wang and Parlar (1994), in a model of inven-
tory competition with fixed prices, use cooperative
game theory in one of its original uses: They start
with a noncooperative game, then suppose that the
players can cooperate on strategy choices. In another
use of cooperative theory, Müller et al. (2002) use the
core to show that there is always a cost allocation
scheme such that newsvendors will prefer to pool
their inventory. More recently, Anupindi et al. (2001)
use a hybrid noncooperative/cooperative model sim-
ilar to a biform game. In their interpretation of their
model, they use cooperative game theory to charac-
terize possible opportunities for cooperation, similar
to Müller et al. (2002). By contrast, the use of coop-
erative game theory in a biform game has very little
to do with cooperation per se. It is not derived from
supposing that players can cooperate on their strat-
egy choices. Rather, the cooperative game is treated
as a primitive, providing an abstract model of a com-
petitive environment. (See Aumann 1985 for a further
discussion of this use of cooperative game theory.) To
emphasize this point, §2 demonstrates how the core
models unrestricted competition.

In §3, the biform formalism is introduced, and
the model is specified. Section 4 contains the main
result, namely that under unrestricted price competi-
tion, competitive inventory choices reduce to Cournot
competition. Section 5 provides examples demon-
strating why market-clearing prices may not emerge
as often as one might suspect. Additional examples
show that if the discreteness of demand creates inde-
terminacy in the outcome, preemptive capacity deci-
sions can be optimal. The paper ends with concluding
remarks in §6.

2. Core as a Model of Price
Competition

A transferable utility (TU) cooperative game �N�v�

consists of a set of players, N , and a characteristic func-
tion, v� 2N → �. The characteristic function specifies
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the economic value that can be created by any subset
of players, i.e., for any S ⊆ N , v�S� is the maximum
economic value that the players in S can create among
themselves. An outcome of a TU cooperative game
is described by an allocation x ∈��N �, where compo-
nent xi denotes the value received by player i. For
notational ease, let x�S� = ∑

i∈S xi. The core of a TU
cooperative game �N�v� is the set of allocations sat-
isfying x�N�= v�N� and, for all S ⊆N , x�S�≥ v�S�.

The following elementary example demonstrates
the use of the core to model price competition. It
also previews how with unitary demand, a market-
clearing price must emerge.
Example 1. Suppose there are three buyers, each

of whom has a willingness-to-pay for just one unit
of product. Buyer 1 has a willingness-to-pay of 8,
denoted by w1, Buyer 2 has a willingness-to-pay of 6,
denoted by w2, and Buyer 3 has a willingness-to-pay
of 4, denoted by w3. There are two firms, say A and B,
and suppose each has installed one unit of capacity
at a cost of zero, and each has a constant marginal
production cost of 2, denoted by c. The player set N
is then �A�B�1�2�3�, and v�N�= 10, namely �8− 2�+
�6− 2�. Figure 1 depicts the situation.

Because the value that can be created is 10, and
because v��A�B�1�2�� is also equal to 10, Buyer 3
is superfluous to the value creation. This suggests
that x3 should be equal to 0, and this is the case:
the core conditions x�N� = v�N� and x�N\�3�� ≥
v�N\�3��= 10 imply that x3 = 0. Nonetheless, Buyer 3
will still have an effect on the outcome by providing
a source of competition. This will be shown below.

To show how a market-clearing price must emerge,
first consider an allocation consistent with Buyers 1

Figure 1 Supply and Demand in Example 1
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and 2 paying different prices:

xA = �p1 − c�= �p1 − 2�

xB = �p2 − c�= �p2 − 2�

x1 = �w1 − p1�= �8− p1�

x2 = �w2 − p2�= �6− p2�

x3 = 0�

In this allocation, Buyer 1 can be thought of as buying
from Firm A at price p1, and Buyer 2 as buying
from Firm B at price p2. Now suppose that p1 > p2.
The core not only requires x��A�1�� ≥ v��A�1�� and
x��B�2�� ≥ v��B�2��, it also requires, among other
conditions, that x��A�2�� ≥ v��A�2�� and x��B�1�� ≥
v��B�1��. Although the first two conditions are met,
one of the second two is not met. In words, this allo-
cation is not stable because Firm B and Buyer 1 can
do a better deal on their own:

xB + x1 = �p2 − c�+ �w1 − p1�

= �w1 − c�+ �p2 − p1�

< �w1 − c�= v��B�1���

This is an example of why the core can be thought
of as modeling competition. A possible allocation has
to “compete” with every possible deal. With similar
reasoning, it follows that p1 cannot be less than p2, and
so the allocations must be consistent with a uniform
price, namely �w1 − x1� = �w2 − x2� = p, where p is a
constant.

To show that the emergent uniform price is a
market-clearing price, note that the intersection of
the “supply” and “demand” curves is described by
p ∈ �4�6�. Thus, we need to show that p ∈ �4�6�,
namely p ∈ �w3�w2�. First suppose p > 6. Because
w2 = 6, this would imply that x2 < 0, violating the core
condition x2 ≥ v��2�� = 0. (This particular core con-
dition is called individual rationality.) For the lower
bound on the price, the potential competition from
the “superfluous” Buyer 3 is now considered. Sup-
pose that p < 4. Then

x��A�B�1�3�� = x��A�B��+ x1 + x3

= 2�p− 2�+ �8− p�+ 0

= p+ 4

< 8= v��A�B�1�3���
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which is impossible in the core. Thus, p ∈ �4�6�, and
the core analysis leads to outcomes that can be inter-
preted as market-clearing prices. Finally, note that
p ∈ �4�6� implies that the market-clearing price is not
unique. A single price will emerge, but due to the dis-
creteness of the demand, there is some indeterminacy
about what the price will be.

The arguments in this example are not a com-
plete proof, and in particular, the above reasoning
has to be enhanced when a firm can sell more than
one unit. However, the example previews the formal
results, especially the fact that, with unitary demand,
the prices are the same as the prices that arise under
Cournot competition. To emphasize this point, it will
be useful to denote the number of units that will be
sold by q� In situations with industry undersupply,
p will be between wq+1 and wq , as above. With indus-
try oversupply, p will be shown to be equal to the
marginal cost, namely c.

3. Formalism and Model
A. Biform Formalism. To define a biform game,

consider a set of players N , indexed by i = 1� � � � �n,
and for each player i, a finite set Ai of strategies. Let
A=A1 ×· · ·×An, with typical element a, and let V be
a map from A to the set of maps from 2N to �, where
V �a���� = 0 for every a ∈ A. Note that for a given
a ∈A, V �a�� 2N →�, so that �N�V �a�� is a TU coop-
erative game. For each player i, let �i be a number
in �0�1�. An n-person biform game is then a collection
�A1� � � � �An�V ��1� � � � ��n�.

In the two models below, the strategy spaces Ai

will represent the possible capacity choices for each
firm. Based on each firm’s choice, the resulting profile
of choices, a ∈ A, will define a TU cooperative game
V �a�� 2N → �. Competition is then modeled by the
core of the cooperative game. As noted in the intro-
duction, this combined use of a TU cooperative game
with a core analysis is a standard method for mod-
eling price competition without a priori assumptions
of price-setting power or procedures. If a core analy-
sis yields a range of outcomes, rather than a unique
outcome, then the consequence of a player’s action
typically will be an interval of possible payoffs, rather
than a unique payoff. In such cases, it is necessary to
describe each player’s preferences over intervals. In a

biform game, these preferences are represented by
the numbers �i (i’s confidence index) for each player i.
Confidence indices will be discussed in further detail
in §5.2.

Before introducing demand uncertainty, it is use-
ful to first consider a model with known demand.
This is done in the next subsection. As will be seen,
the uncertainty can be formulated in such a way that
extending the model to cover uncertainty is straight-
forward. This is shown in the following subsection.

B. Oligopoly Model. Let N = F ∪T , where F ∩T =
�, �F � ≥ 2, and T = �1� � � � � b�, where b > 1. The set F

is the set of firms, and the set T is the set of buyers.
Let wj (j = 1� � � � � b) be numbers satisfying w1 ≥ · · · ≥
wb ≥ 0, where each wj is buyer j’s willingness-to-pay
for a unit of product from any of the firms. The plot of
the wj versus j describes a discrete demand curve. For
each firm, namely each i ∈ F , denote its strategy set
by Ai = �0�1�2� � � ��� A firm’s strategic choice, namely
an ai ∈Ai, is its choice of capacity. The buyers do not
have a strategic choice.3

Let k ≥ 0 be the constant unit cost of capacity, and
let c ≥ 0 denote the constant marginal cost of pro-
duction. In the inventory-competition interpretation
of this model, each ai ∈ Ai is a choice of inventory
quantity, each unit of inventory costs k+ c, and each
unit has a salvage value of c. Thus, the cost associated
with an unsold unit would be k, and the cost associ-
ated with a sold unit would be �c+ k�, just as in the
capacity interpretation.

To simplify the specification of the characteristic
functions V �a�, consider an a ∈ A. Then, for any
S ⊆N , let aS =

∑
i∈S∩F ai, let

w�S�= �j ∈ S ∩ T � wj ≥ c��

let dS = �w�S��, and let

R�S�=max
{
r�

r∑
j=1

$S�j�≤min�aS� dS�
}
�

where the function $S is the characteristic function
of S. ($S�j�= 0 or 1 according as j � S or j ∈ S, where
j = 1� � � � � b.)

3 To be consistent with the definition of a biform game, each
buyer should be given a singleton strategy set. For simplicity, these
singleton strategy sets are omitted.
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The term aS is the total capacity of the firms in
coalition S, the set w�S� contains the “viable” buy-
ers in S, namely those who could generate a nonneg-
ative gain from trade, and the term dS is the total
viable demand in S. In particular, note that aN can
be thought of as the aggregate supply and dN as the
aggregate demand. The term R�S� is used to identify
the buyers in S that would transact with the firms, if
the game were to consist only of the players in S.

Given an a ∈ A, the characteristic function V �a� is
defined as follows. For all S ⊆N ,

V �a��S�=




0 if S ∩ F =��

−kaS if S ∩ T =��

−kaS +
R�S�∑
j=1

$S�j��wj − c� otherwise.

(1)

C. Oligopoly with Uncertainty. To model uncer-
tainty with the biform game formalism, nature is
modeled as a player, namely %. Consider a player
set N ′ = N ∪ �%�, where N is the player set defined
above. Also, let the sets Ai be defined as above,
but let &, rather than A%, denote the strategy set
of nature, namely player %. For each ' ∈ &, let
W1�'��W2�'�� � � � �Wb�'� be a sequence of nonnega-
tive numbers with W1�'�≥W2�'�≥ · · · ≥Wb�'�. (For
a given ', the plot of the Wj�'� versus j describes a
discrete demand curve.)

Similar to before, consider an �a�'� ∈A×&. Let

W�'��S�= �j ∈ S ∩ F � Wj�'�≥ c��

let dS = �W�'��S��, and let

R�S�=max
{
r�

r∑
j=1

$S�j�≤min�aS� dS�
}
�

(The value of dS , and so R�S� as well, depends on ',
but because the values will be clear from the context,
this dependence is suppressed in the notation.)

Given an �a�'� ∈A×&, the characteristic function
V ′�a�'� is defined as follows. For all S ⊆N ,

V ′�a�'��S�=




0 if S∩F =��

−kaS if S∩T =��

−kaS+
R�S�∑
j=1

$S�j��Wj�'�−c� otherwise.

(2)

Additionally, for all S ⊆N ,

V ′�a�'��S ∪ �%��= V ′�a�'��S�� (3)

In the interpretation of the model with uncertainty,
the firms first simultaneously choose capacity, then
nature moves, i.e., the uncertainty is resolved, and
then there is price competition, modeled by the core
of the game �N ′�V ′�a�'��.

Note that for a given ' ∈&, the model reduces to
the original oligopoly model. Additionally, note that
by Equation (2), the model implicitly covers situations
in which the number of buyers is uncertain. For, if at
a given ' ∈&, Wj�'� ≤ c, then buyer j has no effect
on the game. Consequently, buyer j can be consid-
ered as not in the game at state '. Further, the model
can be related to a more traditional characterization
of demand-curve uncertainty as follows. Suppose that
the uncertain demand is taken to be a linear function
of price with an uncertain constant, for example,

D�p�'�= a+ *�'�− bp�

where * is a random variable. In the model above,
this would correspond to

Wj�'�=
a+ *�'�− j

b
�

4. Results
Consider an a ∈A. Let q =min�aN �dN �. The following
lemma describes what firms receive in the core when
more than one firm chooses to install capacity.

Lemma 1. For any a ∈ A such that ��i� ai > 0�� ≥ 2,
consider the cooperative game �V �a��N� of Equation (1).
The game has a nonempty core, and each firm i receives

ai �p− �k+ c�� �

where
(i) p ∈ �wq+1�wq� if aN < dN ,
(ii) p ∈ �c�wq� if aN = dN ,
(iii) p= c if aN > dN .

This result follows from Theorem II in Kaneko
(1976). A proof for this specific model is in the
appendix.

Lemma 1 states that when more than one firm
chooses to install capacity, the model reduces to
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Cournot competition. If only one firm chooses to
install capacity, Theorem III in Kaneko (1976) implies
the following monopoly result.4

Lemma 2. In the cooperative game �V �a��N� of Equa-
tion (1), if there exists a firm i such that ai = aN , then the
core is nonempty, and firm i receives

(i) between ai�wq+1 − �k+ c�� and
∑q

j=1�wj − �k+ c�� if
ai < dN ,

(ii) between −aik and −aik+
∑q

j=1�wj − c� if ai ≥ dN .
All the other firms receive 0.

The informal reasoning in the discussion of Exam-
ple 1 is based on Lemma 1. With industry undersup-
ply, the price will be between the willingnesses-to-
pay of the just-excluded buyer and the just-included
buyer, namely, between wq+1 and wq . When supply
matches demand exactly, there is no just-excluded
buyer, and the price is between the marginal cost
and the willingness-to-pay of the just-included buyer,
namely, c and wq . When there is excess supply, the
price is equal to the marginal cost. When only one
firm installs capacity, Lemma 2 shows that a uniform
price does not necessarily emerge. But, with under-
supply, i.e., part (i), the value wq+1 can be interpreted
as a minimum price guaranteed to the firm. With this
interpretation, note that the value ai�wq+1 − �k+ c��=
q�wq+1 − �k+ c�� is similar to the profit achieved by a
price-setting monopolist, namely q�wq − �k+ c��.

Before stating the main result, it is useful to restate
Lemma 1. Note that parts (i) through (iii) of the
lemma can be summarized by

p ∈ �p� �p ��
where

�p=max�waN
� c�� p=max�waN+1� c��

and where wj is defined to be equal to c for j > b.
With this restatement, it becomes clear that from the
decision-making perspective of a firm, a willingness-
to-pay less than the marginal cost has the same effect
as a willingness-to-pay equal to the marginal cost.
Using this insight, we can construct an expected,

4 Brandenburger and Stuart (1992) provide a proof of Lemma 2 for
this specific model. Moulin (1995, pp. 86–88) derives results similar
to Lemmas 1 and 2 for models without a specified characteristic
function.

“adjusted” demand curve as follows. For 1 ≤ j ≤ b,
and for a given probability measure + on &, let

pj =
∑
'∈&

+�'�max�Wj�'�� c�� (4)

To simplify the statement of the propositions, for all j
such that b < j ≤ b�F �, let pj = c.

The main result can now be stated as follows.

Proposition 1. For any a ∈A, consider the cooperative
game �V ′�a� ·��N ′� defined by Equations (2) and (3). Sup-
pose nature is playing a mixed strategy +. If ��i� ai > 0��
≥ 2, the expectation over the upper bounds of firm i’s core
allocations is

ai�paN − �k+ c���

and the expectation over the lower bounds of firm i’s core
allocations is

ai�paN+1 − �k+ c���

Proposition 1 states that the capacity choice under
uncertainty reduces to Cournot capacity choice under
an (appropriately constructed) demand curve. The
main reason this result reduces to a simple character-
ization is due to Lemma 1. Because a uniform price
must emerge in the core, each firm’s profit becomes a
linear function of price. The proof of Proposition 1 is
almost immediate.
Proof. Consider the minimum amount that a given

firm, say i, will receive. (The argument for the maxi-
mum is similar.) By Lemma 1, for a given ' ∈& and
a ∈ A, firm i receives at least ai�max�WaN+1�'�� c� −
�k+ c��. Taking the expectation over all ' ∈&, firm i

receives at least

∑
'∈&

+�'�
(
ai�max�WaN+1�'�� c�− �k+ c��

)

= ai

[(∑
'∈&

+�'�max�WaN+1�'�� c�

)
− �k+ c�

]

= ai�paN+1 − �k+ c��� �

Since the competitive newsvendor with price com-
petition reduces to a Cournot problem, a natural
question is whether a standalone newsvendor prob-
lem with price competition reduces to a standard
monopoly problem. The answer is positive in the
sense that Lemma 2 has a natural extension for uncer-
tain demand, as shown in Proposition 2.
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Proposition 2. For any a ∈ A, consider the coopera-
tive game �V ′�a� ·��N ′� defined by Equations (2) and (3).
Suppose nature is playing a mixed strategy +. If there
exists a firm i such that ai = aN , then the expectation over
the upper bounds of firm i’s core allocations is

−aik+
ai∑
j=1

�pj − c��

and the expectation over the lower bounds of firm i’s core
allocations is

−aik+ ai�pai+1 − c��

Similar to Lemma 2, if the firm is maximizing its
minimum expected profit, then it will act like a price-
setting monopolist and maximize ai�pai+1− �k+c��. As
before, the proof is almost immediate.
Proof. By Lemma 2, for a given ' ∈& and a ∈A,

firm i receives at least ai�max�WaN+1�'�� c�− �k+ c��.
Taking the expectation over all ' ∈&, firm i receives,
in expectation, at least

∑
'∈&

+�'�
(
ai�max�WaN+1�'�� c�− �k+ c��

)

= ai

[(∑
'∈&

+�'�max�WaN+1�'�� c�

)
− �k+ c�

]

= ai�paN+1 − �k+ c���

For the expectation over the upper bounds, first note
that for cases in which ai > dN ,

q∑
j=1

�Wj�'�− c�=
ai∑
j=1

�max�Wj�'�� c�− c��

From Lemma 2, for a given ' ∈& and a ∈ A, firm i

receives at most −aik+
∑ai

j=1�max�Wj�'�� c�− c�. Tak-
ing the expectation over all ' ∈&, firm i receives, in
expectation, at most

∑
'∈&

+�'�

(
−aik+

ai∑
j=1

�max�Wj�'�� c�− c�

)

=−aik+
( ai∑

j=1

[∑
'∈&

+�'�max�Wj�'�� c�

]
− c

)

=−aik+
ai∑
j=1

�pj − c�� �

Proposition 2 shows that a competitive inventory
problem is not needed to highlight the role of the

fixed-price assumption in a newsvendor model; a
single-firm problem would have sufficed. However,
with a single firm, unrestricted competition leads to
results that range from an outcome consistent with a
market-clearing price to an outcome consistent with
perfect price discrimination. Consequently, a compet-
itive model provides a more structured environment
for comparisons. Moreover, as Lemma 2 and Propo-
sition 2 show, unrestricted competition is not suffi-
cient to justify a market-clearing price in a single-firm
problem.

5. Discussion
5.1. Market-Clearing Prices
When the core yields a market-clearing price, and
only a market-clearing price, unrestricted competi-
tion provides a foundation for models assuming such
prices. As noted in the introduction, the “Price Post-
ponement with Clearance” model of Van Mieghem
and Dada (1999) provides an example. In particular,
their Equation (35) can be viewed as a continuous
application of Proposition 1. Unfortunately, Lemma 1
does not hold when demand is generalized to the
nonunitary case. Consider the following example.
Example 2. Suppose there are three buyers, say

1, 2, and 3, each of whom desires three units at
a willingness-to-pay of one per unit. There are two
firms, say A and B, and each has installed four units
of capacity at a cost of 0, and each has a constant
marginal production cost of 0.

In this example, there is excess demand �9 > 8�,
and the market-clearing price is 1, implying that each
buyer receives no value. Furthermore, this example
is seemingly well behaved: The firms are identical
and the buyers are identical. However, even though
the outcome corresponding to a market-clearing price,
namely �xA�xB�x1�x2�x3� = �4�4�0�0�0�, is in the
core, every other point in the core is inconsistent
with the market-clearing price. Moreover, many of
the points in the core are not consistent with even a
uniform price, much less the market-clearing price.
For instance, consider the following core allocation:
�xA�xB�x1�x2�x3�= �2�25�2�1�3�1�25�1�2�. There is no
price p consistent with this core allocation, and all
the buyers are receiving value, even though there
is excess demand. As this example shows, when
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demand is nonunitary, unrestricted competition does
not guarantee market-clearing prices.

Example 2 might suggest that as long as demand
is unitary, unrestricted competition will produce
a market-clearing price, but this is not the case.
Consider the case in which buyers have a differ-
ent willingness-to-pay for each firm’s product. The
difference could be due to transportation costs, or
more generally, to differences in taste. As with
nonunitary demand, the unrestricted competition of
the core can lead to nonuniform prices. Consider this
next example, in which demand is unitary, but some
buyers value the firms’ products differently.
Example 3. Suppose there are three buyers, each

of whom has a willingness-to-pay for just one unit
of product. There are two firms, say A and B, and
each has installed three units of capacity at a cost
of 0, and each has a constant marginal production
cost of 0. Buyer 1 has a willingness-to-pay of 2 for
Firm A’s product, and a willingness-to-pay of 0 for
Firm B’s product. Buyer 2 has a willingness-to-pay of
0 for Firm A’s product, and a willingness-to-pay of 2
for Firm B’s product. Buyer 3 has a willingness-to-pay
of 1 for either firm’s product.

In this example, every point in the core has the form
�xA�xB�x1�x2�x3�= �pA�pB�2−pA�2−pB�1�, where pA
and pB are between 0 and 2. Because Buyer 3 effec-
tively pays a price of zero, there is only one point
in the core consistent with a uniform price, namely
pA = pB = 0.

As these examples show, the assumption of a
market-clearing price can often be stronger than
expected. Without unitary demand and identical
products, a market-clearing price needs more than
unrestricted competition for justification. But, when
a core analysis does generate only a market-clearing
price, the analysis can lead to immediate results, as
shown by Proposition 1.

5.2. Indeterminacy
In the Cournot result of Proposition 1, there is inde-
terminacy in the price due to the discreteness of the
aggregate demand curve. Usually, this type of dis-
creteness is either eliminated by taking an appropriate
limit, or avoided by assuming a continuous demand
curve. As both of these approaches may be undesir-
able with a limited number of buyers, we consider

two examples that focus on the indeterminacy gener-
ated by the discreteness of the demand. We first note
that the core, when nonempty, usually describes a set
of points rather than a single point. In a biform game,
this implies that the consequence of a player’s action
will be a range of outcomes, rather than a single pay-
off. If a player is to evaluate different actions, it must
have preferences over different ranges. Appendix B
of Brandenburger and Stuart (2004) shows that if
a player’s preferences satisfy four standard axioms
(order, dominance, continuity, and positive affinity),
then these preferences can be represented by a num-
ber between 0 and 1, namely the player’s confidence
index, denoted by �i for player i. Similar to how a
player’s utility function allows it to evaluate payoffs
under uncertainty, a player’s confidence index allows
it to evaluate different ranges of outcomes. For exam-
ple, if player i’s possible core outcomes lie in the inter-
val �r� s�, then player i evaluates this range by the
weighted average �is+ �1−�i�r .

Example 4 demonstrates that with highly confident
players, preemptive equilibria can be possible.
Example 4. Suppose there are three buyers, each

with a willingness-to-pay for just one unit. Let
w1 = 14, w2 = 10, w3 = 6. The two firms, A and B,
each have a constant marginal production cost of 0.
Tables 1a and 1b below list each firm’s anticipated
payoff for capacity choices of 0 to 3. In each table,
�A = �B. Equilibrium outcomes are in bold type.

In this example, when �A = �B = 1, there are two
types of equilibria. There are (asymmetric) Cournot
equilibria, namely �2�1� and �1�2�, and there are two

Table 1a �A = �B = 1

0 1 2 3

0 0�0 0�14 0�24 0�30
1 14�0 10�10 6�12 0�0
2 24�0 12�6 0�0 0�0
3 30�0 0�0 0�0 0�0

Table 1b �A = �B = 0�5

0 1 2 3

0 0�0 0�12 0�18 0�15
1 12�0 8�8 3�6 0�0
2 18�0 6�3 0�0 0�0
3 15�0 0�0 0�0 0�0
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preemptive equilibria, namely �3�0� and �0�3�. When
�A = �B < 0�75, the asymmetric Cournot equilibria
drop out, and a symmetric Cournot equilibrium �1�1�
appears. The preemptive equilibria drop out when
�A = �B < 2/3. (For an example of the payoff calcu-
lation, consider the equilibrium outcome in Table 1b.
The value of q equals 2, so p ∈ �w3�w2�= �6�10�. Thus,
�i10+ �1−�i�6= 8�)

Example 4 also shows how indeterminacy, more
precisely a player’s preferences over indeterminacy,
can affect a firm’s choice of capacity. But this does not
always have to be the case. Consider the next example
with linear demand.
Example 5. Suppose there are f firms and b buy-

ers, where each buyer has a willingness-to-pay for
just one unit, and each firm has constant marginal
production cost of 0. For j ∈ �1� � � � � b�, suppose wj =
K−mj , where m is a positive integer, K−mb > 0, and
Kmod�f + 1�m ≤ m. For all i ∈ F , set a∗i equal to the
integer part of K/��f + 1�m�. Then a∗ is an equilib-
rium, regardless of the value of each firm’s confidence
index. (The proof is in the appendix.)

5.3. Other Generalizations
In the market-clearing discussion above, the two
examples address the main problems that arise in gen-
eralizing the demand. Because it is usually assumed
that a firm’s cost does not depend upon whom it sells
to, cost generalization creates fewer problems. If pro-
duction costs exhibit decreasing returns to scale, the
marginal cost in parts (ii) and (iii) of Lemma 1 will be
the “industry” marginal cost, rather than a constant. If
there are increasing returns to scale, characterizing a
player’s core allocation becomes difficult, but proving
nonemptiness of the core can be relatively straight-
forward: A core allocation is created by assigning to
each firm an average unit cost and an appropriate
revenue.5 However, if there are differentiated prod-
ucts as well as increasing returns to scale, the core
may be empty.6

Another form of generalization would be to allow
the firms to dispose of capacity after the demand
is realized, as in the “Price Postponement with

5 Radner (1992) provides an example of this in a simple model of
Cournot competition under certain demand.
6 Stuart (2004) provides an example.

Holdback” model of Van Mieghem and Dada (1999)
and the “Holdback” model of Chod and Rudi (2003).
In both these models, a market-clearing price is
assumed to emerge once the firms have disposed of
unwanted units. As before, a biform analysis can pro-
vide a foundation for such models provided that the
core of the relevant game yields a market-clearing
price. In the Van Mieghem and Dada model, this is
the case. In the Chod and Rudi model, it is an open
question.

6. Conclusion
In a biform analysis of competitive inventory deci-
sions, a nonprocedural model of price competition,
namely the core of the relevant cooperative game,
yields three benefits. First, the source of two key
newsvendor attributes, the overage/underage tension
and the matching problem, can be clearly linked to the
fixed-price assumption. Second, the unrestricted com-
petition of the core can be used to evaluate models
that assume market-clearing prices. For some models,
the biform analysis, by utilizing the core, provides a
foundation for the assumption. In other models, the
analysis identifies that more justification is required.
Finally, the biform analysis provides a purely game-
theoretic Cournot analysis that can be extended to
models with demand uncertainty. By contrast, Hviid
(1991) showed that the pure-strategy, Cournot result
of Kreps and Scheinkman (1983) does not extend
when demand is uncertain.
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Appendix
Proof of Lemma 1.
Nonemptiness of the Core. We start by establishing that the

core is nonempty. Consider the following allocation:

xi = ai�p− �k+ c��� i ∈ F �

xj =wj − p� 1≤ j ≤ q� and (A1)

xj = 0� q < j ≤ b�

where p ∈ �wq+1�wq� if aN < dN , p ∈ �c�wq� if aN = dN , and
p= c if aN > dN .
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First, recall that R�N� = min�aN �dN � = q. Remembering
that p= c when aN > dN , we have, for any value of aN ,

∑
i∈F

ai�p− �k+ c��=−kaN +
q∑

j=1

�p− c��

Thus,

x�N� = ∑
i∈F

ai�p− �k+ c��+
q∑

j=1

�wj − p�

= −kaN +
q∑

j=1

�wj − c�

= −kaN +
R�N�∑
j=1

$N �j��wj − c�

= V �a��N ��

Next, note that for any S ⊂ N such that S ∩ F = � or
S ∩ T =�, the allocation in (A1) trivially satisfies x�S� ≥
V �a��S�. Therefore, consider an S ⊂ N such that S ∩ F �= �
and S ∩ T �= �. If R�S� > q, note that xj = 0 for any
q < j ≤R�S�. Thus,

x�S� = ∑
i∈S

ai�p− �k+ c��+
q∑

j=1

$S�j��wj − p�

≥ −kaS + �p− c�aS +
R�S�∑
j=1

$S�j��wj − p�

≥ −kaS + �p− c�
R�S�∑
j=1

$S�j�+
R�S�∑
j=1

$S�j��wj − p�

= −kaS +
R�S�∑
j=1

$S�j��wj − c�

= V �a��S��

Thus, the allocation in (A1) is in the core, and the core is
nonempty.

Uniform Price �Constant p�, Buyers’ Perspective. Consider
each buyer j such that 1≤ j ≤ q. If a core allocation is consis-
tent with the presence of a uniform price, it must be the case
that each of these buyers receives value equal to xj =wj − p,
namely, that wj − xj is constant. The above nonemptiness
proof showed that it was possible for a uniform price to
emerge in the core of this game. We now show that a uni-
form price must emerge.

As a preliminary, we show that for any buyer j such that
q < j ≤ b, xj = 0� Because the core is nonempty, no player can
receive more than its marginal contribution.7 For any buyer
j > q, R�N\�j��=R�N�, so Equation (1) implies that xj = 0.

7 Suppose to the contrary that xi > v�N�− v�N\�i�� in a core allo-
cation. Because x�N� = v�N� in the core, this would imply that
x�N\�i�� < v�N\�i��, contradicting another core condition.

Now consider two distinct buyers j ≤ q and l ≤ q, and
consider two firms with ai > 0, say i and i′. From Equa-
tion (1), we can construct distinct subsets T1�T2 ⊂ T such
that j ∈ T1, l ∈ T2, and

V �a���i�∪ T1�+V �a���i′�∪ T2�+V �a��S�= V �a��N ��

where S =N\��i� i′�∪T1 ∪T2�. Because the core is nonempty,
it follows that

x��i�∪ T1�= V �a���i�∪ T1��

x��i′�∪ T2�= V �a���i′�∪ T2�� and

x�S�= V �a��S��

Similarly, from Equation (1) again,

V �a���i�∪ �l�∪ T1\�j��+V �a���i′�∪ �j�∪ T2\�l��
+V �a��S�= V �a��N �

and
x��i�∪ �l�∪ T1\�j��= V �a���i�∪ �l�∪ T1\�j��� etc.

Combining equations,

V �a���i�∪ �l�∪ T1\�j��−V �a���i�∪ T1�

= x��i�∪ �l�∪ T1\�j��− x��i�∪ T1�

= xl − xj �

From Equation (1),

V �a���i�∪ �l�∪ T1\�j��−V �a���i�∪ T1�=wl −wj�

implying
wl − xl =wj − xj� (A2)

and so there exists a p equal to wj − xj for 1≤ j ≤ q.
Uniform Price, Firms’ Perspective. Consider an arbitrary

core allocation, and following Equation (A2), let p=wj − xj
for each buyer j , 1 ≤ j ≤ q. Let F ′ be the set of firms i such
that ai > 0, and for each i ∈ F ′, let

pi =
xi
ai

+ �k+ c��

From Equation (1), we can construct a partition �Si�i∈F ′ of
�1� � � � � q� where �Si� = ai if dN ≥ aN and �Si� ≤ ai if dN < aN ,
such that ∑

i∈F ′
V �a���i�∪ Si�= V �a��N ��

Then for each i ∈ F ′,

x��i�∪ Si�= ai�pi − �k+ c��+∑
j∈Si

�wj − p��

Because the core is nonempty, and because
∑

i∈F ′ x��i�∪Si�=
V �a��N �, for each i ∈ F ′,

x��i�∪ Si�=
∑
i∈F ′

V �a���i�∪ Si��
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implying
ai�pi − c�= �Si��p− c�� (A3)

If dN ≥ aN , then �Si� = ai, and pi = p all i ∈ F ′.
For the case dN < aN , i.e., q < aN , summing Equation (A3)

over all i ∈ F ′ yields

∑
i∈F ′

aipi − aN c= q�p− c�� (A4)

Solving Equation (A3) for pi and substituting into Equa-
tion (A4) yields

∑
i∈F ′

�Si�p− aN c= qp− aN c= q�p− c�� (A5)

Since q < aN , Equation (A5) implies that p = c, and Equa-
tion (A3) implies that pi = c= p for all i ∈ F ′.

The Bounds on p. If q < aN , p = c as just shown above.
So, consider the case aN ≤ dN (implying q = aN ). Following
Equation (A2), let p = wj − xj for each buyer j , 1≤ j ≤ q.
Then the core condition xq ≥ 0 implies that p≤wq . This
upper bound is achievable because the allocations in (A1)
are in the core.

For the lower bound, the marginal contribution of a
buyer l≤ q is

V �a��N �−V �a��N\�l��

=
R�N�∑
j=1

$N �j��wj − c�−
R�N\�l��∑

j=1

$N\�l��j��wj − c�

=
q∑

j=1

$N �j��wj − c�−
q+1∑
j=1

$N\�l��j��wj − c�

=wl −wq+1 if aN < dN �

=wl − c if aN = dN �

Because a player cannot receive more than its marginal con-
tribution, namely xl ≤ V �a��N �− V �a��N\�l��, and because
p=wl − xl,

p≥wq+1 if aN < dN �

p≥ c if aN = dN �

These lower bounds are achievable because the allocations
in (A1) are in the core. �

Proof of Example 5. It suffices to show that ai is opti-
mal for �i = 1 and �i = 0. This implies that there are four
optimality conditions:

aiwq ≥ �ai + 1�wq+1

aiwq ≥ �ai − 1�wq−1

aiwq+1 ≥ �ai + 1�wq+2

aiwq+1 ≥ �ai + 1�wq�

Because wj =K−mj , these conditions can be written as:

�ai + 1�m ≥ wq�

�ai − 1�m ≤ wq�

�ai + 2�m ≥ wq�

aim ≤ wq�

Consequently, we need to show only that

�ai + 1�m≥wq ≥ aim� (A6)

Because Kmodm�f +1�≤m, there exists a positive integer n
such that K =mn�f + 1�+ r , r ≤m. For each i ∈ F , let ai = n,
and note that

q = aN = nf �

Thus,

wq = K−mq

= mn�f + 1�+ r −mnf

= mn+ r�

Because ai = n, and because r ≤ m, Equation (A6) then
follows. �
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